Lyes Touati
email: lyes.touati@hds.utc.fr

Yacine Challal
email: ychallal@cerist.dz

Instantaneous Proxy-Based Key Update for CP-ABE

Keywords: CP-ABE, Access Control, Pairing Cryptography, Attribute revocation

Attribute Based Encryption (ABE) scheme has been proposed to implement cryptographic fine grained access control to shared information. It allows to share information of type one-to-many users, without considering the number of users and their identities. However, original ABE systems suffer from the non-efficiency of their attribute revocation mechanisms.

Based on Ciphertext-Policy ABE (CP-ABE) scheme, we propose an efficient proxy-based immediate private key update which does require neither re-encrypting ciphertexts, nor affect other users' secret keys. The semi-trusted proxy assists nodes during the decryption process without having ability to decrypt users' data.

Finally, we analyze the security of our scheme and demonstrate that the proposed solution outperforms existing ones in terms of generated overheard.

I. INTRODUCTION

Access Control is a security service that allows to grant or deny the permission for a user to access some resource. It becomes a compulsory security service to prevent attacks against sensitive applications (such as Internet of Things (IoT) applications) that would have a deep impact and great damages on the systems. Users' privacy is another issue that requires fine-grained access control to avoid access to private information by third parties.

John Bethencourt et al. proposed the first construction of Ciphertext-Policy Attribute-Based Encryption in [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF]. CP-ABE uses a set of attributes to define users' access scope and access structures are used to define the access policy to encrypted data. The attribute revocation is the mechanism by which one or more attributes are eliminated from the set of attributes of a specific user. Attribute revocation is a tricky issue [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF], as the same attribute could be shared with many other users, and it is very difficult to update a user's key without affecting other users.

In this paper, we introduce new security requirements for a kind of applications and developed a proxy-based approach to efficiently achieve a real-time attribute revocation for CP-ABE by updating only concerned users' secret keys.

The rest of the paper is organized as follows. Section II introduces some background notions. We discuss related works in Section III. The proposed solution is presented in Section IV. We discuss security and performance analysis in Section V and Section VI respectively. Finally, we conclude our paper in Section VII.

II. BACKGROUND A. Bilinear Maps

Let G 0 and G 1 be two multiplicative cyclic groups of prime order p. Let g be a generator of G 0 and e be a bilinear map, e : G 0 × G 0 → G 1 . the bilinear map e has the following properties:

1) Bilinearity: for all u, v ∈ G 0 and a, b ∈ Z p , we have e u a , v b = e (u, v) ab .

2) Non-degeneracy: e (g, g) = 1.

We say that G 0 is a bilinear group if the group operation in G 0 and the bilinear map e are both efficiently computable. [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF] allows to implement fine-grained access control, it consists mainly of four primitives:

B. CP-ABE scheme

CP-ABE

• Setup. It is run by the Attribute Authority at the bootstrap phase. It outputs the public parameters P K and a master key M K.

C. Access tree

The access trees defines access policies. Each non-leaf node of them represents a threshold gate k out-of n, where k represents a threshold, and n represents the number of node's children (1 < k x ≤ num x). Where num x is the number of children of a node x, and k x is its associated threshold value. Each leaf node x of the tree is described by an attribute and k x = 1. Some functions are defined to facilitate working with access trees: parent(x): denotes the parent of the node x in the tree. att(x): is defined only if x is a leaf node, and denotes the attribute associated with the leaf node x in the tree. index(x): denotes the order of the node x between its brothers. Children of a node y are numbered from 1 to num y .

Satisfying an access tree. Let γ be an access tree with root r. γ x is the sub-tree of γ rooted at the node x. If a set of attributes S satisfies the access tree γ x , we denote it as γ x (S) = 1. We compute γ x (S) recursively as follows. if x is a non-leaf node, evaluate γ x (S) for all children x of node x. γ x (S) returns 1 if and only if at least k x children return 1. if x is a leaf node, then γ x (S) returns 1 if and only if att (x) ∈ S.

III. RELATED WORKS

Some solutions were proposed in the literature to tackle the problem of the attribute/key revocation.

Access Policy Based Revocation. This solution was proposed in [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF] by J. Bethencourt et al. which consists in expressing the revocation condition in the access tree. This enlarges access trees, and therefore, the overhead considerably increases.

Renaming Attribute Based Revocation. M. Pirretti et al. proposed in [START_REF] Pirretti | Secure attributebased systems[END_REF] an idea implement attribute revocation for CP-ABE. The principle is to rename attributes by concatenating them with their corresponding expiration dates after each revocation. This approach induces a heavy overhead since all entities will be affected by the revocation.

Proxy Re-Encryption Based Revocation. It is a kind of solutions that consist in using a Proxy Re-Encryption technique (PRE [START_REF] Blaze | Divertible protocols and atomic proxy cryptography[END_REF]): A proxy is introduced to absorb the overhead due to the re-encryption. It is assigned a special secret key that allows it to re-encrypt data to a decrypt-able ciphertext for only authorized users (For example PIRATTE [START_REF] Jahid | Piratte: Proxy-based immediate revocation of attribute-based encryption[END_REF]).

IV. OUR SOLUTION

A. Motivations and Application cases

This paper tackles the attribute revocation issue of CP-ABE in a particular kind of applications where the encryption time is not significant. The only thing that matters is the ciphertext's access policy and the current users' attributes list. Which means that, a user gaining some new attributes has the access right to all data encrypted with an access policy satisfied with the new user's set of attributes even if the data was encrypted before updating the user's attributes list. Likewise, a user who loses some attributes will not have the access right to data whose access policy is not satisfied by the new user's attributes list. -Medical files management system: is an illustration of such application case: each patient has his own medical file that lists all information about his health (Medical history, prescribed medication, ...). These information must be kept secret in order to protect user's privacy. When a doctor has to examine this patient, he needs patient's medical file, so he must be allowed to access to the whole medical file.

B. Security Requirements

C. Overview of our solution

We have introduced a semi-trusted proxy which maintains for each user a part of his secret key. The proxy is necessary for ciphertexts decryption process. The attribute revocation (key update) requires only the attribute authority to generate a new key based on the new user's set of attributes. The revocation is immediate once the proxy receives the part of the new key, the previous user's key will no longer be usable for decryption.

D. Network model

We assume the existence of a powerful semi-trusted proxy in the network (curious but honest). The network also contains a special entity called Attribute Authority that manages users' attributes and creates users' secret keys. All other entities are considered as users of the system.

Each user U i in the system shares a symmetric key K p,i with the proxy. We assume also that the proxy has received a couple of keys (secret key P rSK and public key P rP K) constructed using a public-key crypto-system like RSA. The proxy holds in its memory the list of all users' identities and the symmetric keys K p,i .

E. Assumptions

Let e be a non-degenerate bilinear map.

• The Fixed Argument Pairing Inversion 1 (FAPI-1) [START_REF] Galbraith | Aspects of pairing inversion[END_REF]:

Given D 1 ∈ G 1 and z ∈ G T , compute D 2 ∈ G 2 such that e(D 1 , D 2) = z. • The Fixed Argument Pairing Inversion 2 (FAPI-2) [5]: Given D 2 ∈ G 2 and z ∈ G T , compute D 1 ∈ G 1 such that e(D 1 , D 2) = z.

F. Scheme

Let e : G 1 × G 1 → G T be a bilinear map (see Section II-A) The scheme consists of four primitives: Secret key constructed by Keygen primitive SK (1) User's part of the secret key SK SK (2) Proxy

• Setup.
P K = G 1 , g, h = g β , f = g 1/β , e (g, g) α (1)
M K = (β, g α) (2)
• KeyGen(MK,S). It takes as input the user set of attributes S. The primitive chooses a random r ∈ Z p , and then random r j ∈ Z p for each attribute j ∈ S. It constructs the secret key exactly as in [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF] (Formula 3). Instead of giving it entirely to the user, the Attribute Authority splits it into two parts (Formula 4): the first one SK (1) contains all D j and D j and it is for the user. The second one SK (2) consists only of D and it is sent to the proxy.

SK = D = g (α+r)/β , ∀j ∈ S :

D j = g r • H (j) rj , D j = g rj (3)
SK (1) = ∀j ∈ S : D j , D j . SK (2) = D. (4)

• Encrypt(PK,γ,M).

The encryption primitive encrypts a message M under the tree access γ. The algorithm is very similiar to the one defined in [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF]. First, it chooses a polynomial q x for each node x in γ in the in a top-down manner, starting from the root R. For each node x, set the degree

d x = k x -1 of q x .
Starting with the root node R, the algorithm chooses a random s ∈ Z p and sets q R (0) = s. Then, it chooses d R other points of the polynomial q R randomly to define it completely. For any other node x, it sets q x (0) = q parent(x) (index (x)) and chooses d x other points randomly to define q x . Let Y be the set of leaf nodes in γ. The ciphertext is then constructed computing:

CT = γ, C = M e(g, g) αs , C = {h s } _ P rP K , ∀y ∈ Y : C y = g qy(0) , C y = H (att (y)) qy(0) (5)
The plaintext of h s is encrypted with the Proxy Public Key P rP K. • Decrypt(CT,SK). The decryption primitive decrypts the ciphertext CT using the private key SK which is associated with a set S of attributes. This primitive uses the DecryptNode function defined in [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF], then sets A = DecryptN ode(CT, SK, r) = e (g, g) rq R (0) = e (g, g) rs .

After that, the user sends the value of C encrypted with the symmetric key K p,u to the proxy. The proxy recovers h s by double decrypting the user's message using K p,u and P rSK respectively. Then, it computes e (h s , D) and sends it back to the user.

Once the user receives e (h s , D), he can proceed to the decryption by computing the message M this way:

C/ (e (h s , D) /A) = C/ e h s , g (α+r)/β /e (g, g)

rs = M (6)
V. SECURITY ANALYSIS Proposition 1. In our scheme, users require the proxy to be able to decrypt any ciphertext.

proof:

Our scheme forces the user to solicit the proxy for computing e (h s , D) during the decryption process. In addition, the FAPI-1 assumption (Section IV-E) prevents the user from computing D using the intermediate result e(h s , D) calculated by the proxy. Furthermore, as the value of h s is encrypted with P rP K, it is hidden to users. The FAPI-2 assumption (Section IV-E) ensures also that the user cannot get h s from e(h s , D). Hence, it is not possible for any user to find a correlation between old h si (i = 1, 2, ...) and a new h x . Proposition 2. Our scheme achieves Attribute-Based Backward and Forward Accessibility and Attribute-Based Forward and Backward Secrecy (Section IV-B).

proof:

As soon as the Attribute Authority updates the user secret key and sends SK (2) to the proxy, and SK (1) to the concerned user, the latter is able to decrypt all old and future ciphertexts with an access policy satisfied by his new attributes set. Hence, Attribute-Based Backward and Forward Accessibility are verified (Definitions 1 Section IV-B). On another side, the user's previous key is no longer usable as the part SK (2) is updated in the proxy side. Indeed, all what the user could do with it is to compute e(g, g) rs using her/his SK (1) . The r in the exponent is relative to the secret key, and it appears only in proxy's part SK (2) . Therefore, the result e(g, g) rs is unusable as it is randomized with r.

In addition, as the proxy's secret part is updated, Proposition 1 ensures that it is no longer possible for the user to use his previous attributes set to decrypt any ciphertext. Proposition 3. Our scheme achieves collusion resistance property as defined in section IV-B.

proof: CP-ABE secret keys are constructed in a such way that collusion is not allowed. Indeed, each secret key is randomized with a random number r (Equation 3). As our scheme is based on CP-ABE, this property is also included.

Proposition 4. Our solution ensures the user privacy (data and attributes set): The user's attributes set and data he wants to decrypt are hidden to the proxy and to any third party.

proof: All the communications between the user and the proxy are encrypted with symmetric shared key (Section IV-E: Assumption 1). Therefore, any third party cannot have any information about the exchanges.

The part of the secret key sent to the proxy SK (2) contains only the element D. It reveals no information about the user's attributes set.

Proposition 5. Our scheme does not allow to a curious proxy to use users' privileges to access data.

proof:

The proxy possesses only a part SK (1) = D of the original CP-ABE user's secret key SK. This part all alone is useless during the decryption process as it needs the elements D j and D j associated to each attribute.

VI. PERFORMANCE ANALYSIS

We have chosen the pairings parameters defined in the file "a" [START_REF]Pbc library: The pairing-based cryptography library[END_REF] to analyze the performances of our solution. Sizes of elements are given in the table II.

A. Size of the proxy table

Let N be the number of the users managed in the system. The identifier of a user could be codified with log 2 (N) bits. We assume that the symmetric key is a AES key codified in 128 bits. The size of D (D ∈ G 2) is 132 bytes. In conclusion we have: The size of the table does not have to bother much as our protocol allows to spread the decryption assisting overhead (storage and computation) across multiple proxies. Thereby, the load of computation and storage upon one proxy is lightened.

Size (T able) = (128 + |D| + log 2 (N)) • N bits. (7)

B. Size of User's Private Key

The user's secret key contains an integer n (Encoded in four (4) bytes) representing the number of attributes, and n = |S| couples of elements < D j , D j > from G 2 and G 1 respectively. The average size of attributes is represented as a. CP-ABE SK contains also an element D from G 2 (This element is stored by proxy in our solution). The private key in PIRATTE has in addition n elements D j from G 1 .

The table IV summarizes the size of the user's secret key for the three schemes. We notice that, our solution has the lowest size for each pairing parameter.

C. Decryption cost

The decryption process in our solution requires only one extra exchange (One sending and one reception) of messages between the user and the proxy. The overhead of symmetric cryptography is negligible compared to CP-ABE operations. Our solution allows the user to save up one pairing operation as the latter is executed by the proxy.

The original CP-ABE [START_REF] Bethencourt | Ciphertext-policy attributebased encryption[END_REF] is not concerned. As for PI-RATTE [START_REF] Jahid | Piratte: Proxy-based immediate revocation of attribute-based encryption[END_REF], for every leaf node in the access tree, the user sends an element C y of G 2 and receives from the proxy an element of G 2 and another of Z p . Table V summarizes the sizes of exchanged messages. Our solution widely overcomes PIRATTE [START_REF] Jahid | Piratte: Proxy-based immediate revocation of attribute-based encryption[END_REF] in term of exchanged messages overhead.

 CT, SK). It takes as parameters the public parameters P K, a ciphertext CT and a secret key SK. If the set of attributes S of SK verifies the access policy defined in CT , the primitive succeed and outputs the original message M .

• KeyGen(MK, S). It is run by the Attribute Authority to generate users' secret keys. It takes the master key M K and a set of attributes S. It outputs a secret key SK corresponding to the set S.

• Encrypt(PK, M, γ). The encryption algorithm takes as input the public parameters P K, a message M , and an access structure γ. The primitive encrypts M and produces a ciphertext CT using γ. • Decrypt(PK,

1)

 1 Definition 1: Attribute-Based Backward and Forward Accessibility. After gaining new attributes, a user is able to decrypt all old and future ciphertexts encrypted with a policy which is satisfiable by his new set of attributes.2) Definition 2: Attribute-Based Backward and Forward Secrecy. After losing one or many attributes, a user must have no access to old or future ciphertexts decryptable with its previous private key if its new attributes set doesn't satisfy the encryption policy. 3) Collusion Resistance. It means that the conspiracy of many non-authorized users for decrypting a ciphertext is useless, even if the union of their attributes sets satisfies the encryption policy of the ciphertext. 4) Immediate Key Update. All the changes made in a user's attributes set must take effect immediately. 5) User's privacy. The attribute management mechanism must preserve user's privacy.

Table I :

 I Summary of notations.

	Notation	Description
	P K	Public Key generated by the Attribute Authority
	M K	Master Key generated by the Attribute Authority
	S	User's attributes set
	SK	

The setup primitive is run by the Attribute Authority to generate a Public Key P K and a Master Key

Table II :

 II Size of elements

	G 1	G 2	G t Z p
	Size (bytes) 132 132 132 24

Table III :

 III Required storage size for the proxy

	N	10	200	400	600	800	1000
	Size (kB) 1.45 29.1 58.24 87.4 116.57 145.75

Table IV :

 IV Size of the user's secret key

		Secret key size (bytes)	
	CP-ABE [1]	PIRATTE [4]	Ours
	136 + (a + 264)n	136 + (a + 392)n	4 + (a + 264)n

Table V :

 V Size of exchanged messages during decryption

This work was carried out in the framework of the Labex MS2T (Reference ANR-11-IDEX