N
N

N

HAL

open science

SUB-EXPONENTIAL LOWER BOUNDS FOR
EMBEDDED EIGENFUNCTIONS OF SOME
DISCRETE SCHRODINGER OPERATORS
Marc-Adrien Mandich

» To cite this version:

Marc-Adrien Mandich. SUB-EXPONENTIAL LOWER BOUNDS FOR EMBEDDED EIGENFUNC-

TIONS OF SOME DISCRETE SCHRODINGER OPERATORS. 2016. hal-01353783v2

HAL Id: hal-01353783
https://hal.science/hal-01353783v2

Preprint submitted on 19 Sep 2016 (v2), last revised 24 Apr 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01353783v2
https://hal.archives-ouvertes.fr

SUB-EXPONENTIAL LOWER BOUNDS FOR EMBEDDED
EIGENFUNCTIONS OF SOME DISCRETE SCHRODINGER OPERATORS

MANDICH, MARC-ADRIEN

ABSTRACT. Following the method of Froese and Herbst, we show for a class of potentials V' that
an embedded eigenfunction v with eigenvalue E of the multi-dimensional discrete Schrodinger
operator H = A + V on Z? decays sub-exponentially whenever the Mourre estimate holds at
E. In the one-dimensional case we further show that this eigenfunction decays exponentially
with a rate at least of cosh™ ((E —2)/(0r — 2)), where 0 is the nearest threshold of H located
between F and 2. A consequence of the latter result is the absence of eigenvalues between 2
and the nearest threshold to 2 on either side.

1. INTRODUCTION

The analysis of the decay rate of eigenfunctions of Schrédinger operators goes back to the

famous works of Slaggie and Wichmann [S\W], Agmon [A], and Combes and Thomas [C'T]. Their
results showed that eigenfunctions corresponding to eigenvalues located outside the essential
spectrum decay exponentially. Subsequently, Froese and Herbst [I'H], but also | | and

| |, investigated what happened for eigenfunctions corresponding to eigenvalues located
in the essential spectrum of Schrodinger operators. They showed that eigenfunctions of the
continuous Schrédinger operator on R™ decay exponentially at non-threshold energies for a large
class of potentials. Since their pioneering work a solid literature has grown using these ideas. For
example, these ideas have been applied to Schrédinger operators on manifolds [V], Schrodinger
operators in PDE’s [[15], and self-adjoint operators in Mourre Theory | |. This short list of
examples is by no means complete. The question however does not seem to have been investigated
for the discrete Schrodinger operator and constitutes the subject of this paper.

We now describe the mathematical setup of the article. The configuration space is the multi-
dimensional lattice Z¢ for some integer d > 1. For a multi-index n = (n1,...,nq) € 7%, we set
In|? := n? + ... + n2. Consider the complex Hilbert space H := (2(7%) of square summable
sequences (u(n)),cze. The discrete Schrodinger acting on H is

(1.1) H:=A+YV,
where A is the non-negative discrete Laplacian defined by

(Au)(n) := Z (u(n) —u(m)), forallnez% ueH,
meZ?,
[n—m|=1
and V is a multiplication operator by a bounded real-valued sequence (V' (n)),,cz4. Let us denote
by 7,V and 7V the operators of multiplication by the shifted sequence (V(n)),cz4 to the right
and to left respectively on the i? coordinate, namely

[(:V)u](n) :== V(ni,...,ni — 1, ....,ng)u(n), forallnezZ% ue M, andi=1,...d,
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and correspondingly for 7*V. In addition to V' bounded, two hypotheses on the potential appear
in this manuscript :

e Hypothesis 1: V satisfies
(1.2) max sup |n;(V —7;V)(n))| < oo.

I<i<d pezd
e Hypothesis 2: The potential V is compact, i.e.
(1.3) V(n) — 0, as|n|— o0.

The method of Froese and Herbst that we employ works in conjunction with the Mourre estimate,
which we now briefly recall in order to present the results. The Mourre estimate is the key relation
in the theory developed by Mourre [\o]. We refer to | | and references therein for a thorough
overview of the improved theory. The position operator N = (Ny, ..., Ng) is defined by

(1.4) (N;u)(n) := nju(n), D(N;):= {u e 2(7%) : Z | ( },

nez4
and the shift operators S; and S to the right and to left respectively act on H by
(1.5) (S;u)(n) == u(ni,....,n; —1,...,ng), forallneZ%and ueH,

and correspondingly for S;. The shift operators allow us to rewrite the Laplacian as A =
Z;-i:l(Q — S —S;). The generator of dilations A is the closure of the operator Ay given by

(1.6) A0_122 (SF+8;) — (SF — N:—122 (SF + S;) + Ni(Sf — )

with domain D(Ag) = £o(Z?), the collection of sequences with compact support. It is well-known
that A is a self-adjoint operator, see e.g. | |. Let T be an arbitrary bounded self-adjoint
operator on H. If the form

(u,v) — (u, [T, Alv) := (Tu, Avy — (Au, Tv)

defined on D(A) x D(A) extends to a bounded form on H x H, we denote by [T, A], the bounded
operator extending the form, and say that T is of class C*(A) (cf. | |[Lemma 6.2.9]). We
refer the reader to | ||[Theorem 6.2.10] for equivalent definitions of this class. We have that

d d
(L.7) [AiA]s = DT A4 = Ay) = Y (2 - (5)* = (5:)%)
1=1

i=1

is a non-negative operator. As for the commutator between V and A, we have for u, v € £o(Z%),
(u, [V,iA]v) = Z(u YWV =7V 4+ (N; — 27DV = 75)SF o).

Assuming V to be bounded, note that [V,iA], exists if and only if Hypothesis 1 holds. Assuming
[H,iA], to exist, we say that the Mourre estimate holds at A € R if there exists an open interval
>} containing A, a constant ¢ > 0 and a compact operator K such that

(1.8) Es(H)[H,iAl,Bs(H) > cBx(H) + K,

in the form sense on H x H. Here Ex(H) is the spectral projector of H onto the interval X.
Denote O(H) the set of points where a Mourre estimate (1.8) holds for H with respect to A. In
other words, R\O(H) is the set of thresholds of H. Finally, define for («, ) € [0,00) x [0, 1], the
following operator of multiplication on H:

(1.9) Vo, i= €Xp (a (1+ |N|2)7/2> ,  with domain
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D(Vay) = {u eH: Z exp (2@ (1+ |n|2)ﬁ//2) lu(n)|? < oo} .
nezd

In this manuscript, we will say that ¢ € H decays sub-exponentially (resp. exponentially) if

1) € D(Vq,) for some v < 1 (resp. for v = 1) and some a > 0. Write ¥y := ¥4,1. The main

result of the paper concerning the one-dimensional operator H is :

Theorem 1.1. Assume Hypotheses 1 and 2, and d = 1. If Hiy = Ev) with ¢ € £*(Z), then if

(1.10) 00— sup{2 + (£ —2)/cosha:a >0 and € D(Vs)}, for E <2
) E = inf {2+ (F —2)/cosha:a>=0 and € D(V,)}, for E>2,

one has that either 0 € R\O(H) or 0 = 2. If E = 2, the statement is that either 1 € D(V4)
for alla =0 or2e R\O(H). Moreover, if 1 € D(¥) for all a = 0, then ¢ = 0.

Remark 1.1. The function Rt 3 a — 0g(a) := 2+ (E—2)/cosh(a) € [E,2) is strictly increasing
to two when E < 2 so that E < 0 < 2, whereas the function is strictly decreasing to two when
E > 2 in which case E = 0 = 2.

If F is both an eigenvalue and a threshold, the above result does not give any information
about the rate of decay of the corresponding eigenfunction, whereas if F is not a threshold,
the corresponding eigenfunction decays at a rate at least of cosh ! ((E —2)/(6g —2)). As in the
continuous operator setting, the possibility of 1) € D(1J,) for all @ = 0 can be eliminated. The last
part of the Theorem implies the absence of eigenvalues in the middle of the band o(A) = [0,4],
i.e. between 2 and the nearest threshold to 2 on either side this value. The absence of eigenvalues
has already been shown in similar contexts. For example, in [S] a one-dimensional discrete version
of Weidmann’s Theorem is proven, namely if V' is compact and of bounded variation, then the
spectrum of A + V is purely absolutely continuous on (0,4). Another closely related result is
that of [JS] where it is shown that the spectrum of the half-line discrete Schrodinger operator
A+W +V is purely absolutely continuous on (0,4)\{2+2cos(k/2)}, where W (n) = gsin(kn)/n”
with ¢,k € R, 3 € (1/2,1] and (V(n)) € £}(Z). Note that an application of Theorem 1.1 is in
conformity with their example when 8 =1 and V = 0.

The main result concerning the multidimensional discrete Schrédinger operator H is:

Theorem 1.2. Let d = 1. Suppose that Hypothesis 1 holds for the potential V. If Hy = Ev
with ¢ € £2(Z%) and E € ©O(H), then 1) € D(Vq,,) for all (a,7) € [0,0) x [0,2/3).

Although Theorem 1.2 does not yield exponential decay of eigenfunctions, the result is useful
for applications in Mourre theory. It appears that the method of Froese and Herbst adapts quite
well for the one-dimensional discrete operator; however, there seems to be a non-trivial difference
between the dimensions d > 2 and d = 1 in the discrete setting as far as the method is concerned.
The exponential decay of eigenfunctions in higher dimensions remains an open question because
our proof does not attain it.

From a perspective of Mourre theory and in an abstract setting, a related question is to show
that the eigenfunction ¢ € D(A™) for some n > 1. The first results of this kind were obtained
in [Ca] and | |, where it was shown that if Hiy = Ev with F embedded in the continuous
spectrum of H, and the iterated commutators adZ(H ) are bounded for k = 1,...,v together
with appropriate domain conditions being satisfied by H and A, then ¢ € D(A"™) for all n > 0
satisfying n + 2 < v, whenever the Mourre estimate holds at . Here A is the conjugate operator
to the Hamiltonian H in the abstract framework, and the iterated commutators are defined by
ady (H) := [H, A], and ad¥(H) := [ad%"'(H), A],. So in the simplest case, one would obtain
Y € D(A) provided ad’ (H) exists. Then in | |, the authors reduce by one, from n + 2 to
n + 1 the number of commutators that need to be bounded in order to obtain ¢ € D(A™), and
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show that the result is optimal. In counterpart of these abstract results, we should point out
that in the framework of Schrédinger operators, minimal hypotheses yield much stronger results.
Indeed, a direct consequence of Theorem 1.2 is that ¢ € D(A™) for all n > 0 assuming only
[H, A], bounded.

The notion of the C'(A) class of operators also exists for unbounded operators. It appears
to us that the results of this paper could also apply to Schrodinger operators with unbounded
potentials satisfying the C'*(A) condition. A simple criterion to check if the potential belongs to
this class is given in [V |[Lemma A.2|. This criterion is straightforward to verify in the setting of
this paper. It is however doubtful to us if the generalization of the result to unbounded potentials
is significant.

To further motivate Theorem 1.2, we give an application to discrete Schrodinger operators
with Wigner-von Neumann potentials.

Example. (from [Ma]) Let W be the discrete Wigner-von Neumann potential given by
(W) (n) = W(n)u(n) = 1500 (”1|;| 1) ). forall me 2% ue H,

for some (¢, k) € R x (—m, ), and let V' be a multiplication operator satisfying for some p > 0,
sup (n)?|V(n)| < oo, and max sup{(n)’|n;||(V —7,V)(n)| < 0.
nezZ4 SISC pezd
Here (n) := /1 + |n|?. Now let H := A+ W + V be the Schrodinger operator on #, and let
P and P be the spectral projectors onto the pure point subspace of H and its complement
respectively. Let FE(k) := 4 — 4sign(k) cos(k/2), and consider the sets
w(H) :=(0,4)\{2 + 2cos(k/2)}, ford=1,
w(H) := (0, E(k)) v (4d — E(k),4d), for d = 2.
By combining Theorem 1.2 with [Ma, Theorem 1.1], one can remove the abstract assumption
ker(H — E) < D(A) that appears in the latter Theorem. We get the following improved result:

Theorem 1.3. We have that u(H) < O(H). For all E € p(H) there is an open interval X
containing E such that for all s > 1/2 and all compact intervals ¥’ < X, the reduced limiting
absorption principle for H holds for with respect to (¥',s, A), that is,
sup |[(AY(H -z — iy) "' PHAYS| < o0,
el y#0

In particular, the spectrum of H is purely absolutely continuous on X' whenever P = 0 on X/,
and for d =1, H does not have any eigenvalues on (2 — 2 cos(k/2),2 + 2 cos(k/2)).

The plan of the paper is as follows: in Section 2, we prove the main result for the multidimen-
sional Schrédinger operator, namely Theorem 1.2. In section 3, we further develop the method
of Section 2 in the case of the one-dimensional operator, and prove Theorem 1.1. Finally Section
4 is the appendix and contains a long technical calculation proving a key relation required for
both Sections 2 and 3.

Acknowledgments: It is a pleasure to thank my thesis director Sylvain Golénia for his nu-
merous useful comments and advice, and also Thierry Jecko and Milivoje Lukic for enlightening
conversations. I am grateful to the University of Bordeaux for funding my studies.

2. THE MULTIDIMENSIONAL CASE : SUB-EXPONENTIAL LOWER BOUNDS

We begin this section by fixing more notation, and build on the one introduced above. Let
Ai 222—5;—52' and
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A()J' = —1i (2_1(S;k + Sz) + NZ(SZ* — Sl)) =1 (2_1(S;k + SZ) — (S:‘ — SZ)NZ) .
Let

d
(2.1) Aji=idg,;, A=) Aj=idy with D(A') = D(A).
=1

Then the following is a non-negative operator on H:

[Ai, Alo = Ai(4 = Ay) =2 (SF)* = (Si)?
A useful identity relating the shift operators and the potential is:
(2.2) S,V =(rV)S; and SV = (r7V)SF.

Consider an increasing function F' € C3([0,0)) with bounded derivative away from the origin.
Examples to keep in mind for a later application are Fy o~ : [0,00) — [0,0), where (s,,7) €
[0,00) x [0,00) x [0,2/3) and

(2.3) Fyaq(x) = Ys(az?).

Here Y, is an interpolating function defined for s = 0 by

(2.4) T, (x) = j (sty2dt.
0

Then Y4(x) 1 = as s | 0, and

(2.5) To(x) <c, for s>0, and [T ()] <™,

where the first constant in (2.5) is dependent of s and the second constant is independent of s.
It is readily seen that there are constants C' > 0 independent of s and + such that

(2.6) |Fg ()] < Cz?™' and |Fy 0 ()] < Cz 2,
We also have that for all x > 0,
(2.7) Fi () =20 and F/, (z)<0.

So Fj o~ is increasing and concave.

For n = (ny,...,ng) € Z%, let (n) := 4/1 + |n|2. The function F induces a radial operator of
multiplication on H, also denoted by F' and acting as follows: (Fu)(n) := F({n))u(n), for all
u € H. For ¢ =1,...,d, we introduce the multiplication operators on H:

(2.8) oo, = (riel —ef)jel" = e 1 and o, 1= (1l — e fel = et FF

(2'9) 9e; = (PZZ'/NZ' and Gri = (Pm/Ni'
In other words, if U; : Z¢ — 7% denotes the flow (ny,...,ng) = (n1,...,n; — 1,...,ng) and UZ-_1
its inverse, then ¢, and ¢,, are multiplication at n respectively by ¢y, (n) = F(Um)-F((m) _ 1
and @, (n) = P WU = F((m) _ 1, while g,, and g,, are multiplication at n respectively by
ge,(n) = @, (n)/n; and g¢,,(n) = @, (n)/n;. Since gy, (n) and g, (n) are not well-defined when
n; =0, set g, (n) = gr,(n) := 0 in that case. We will need the operator g on H given by

/
(20) (gu)(n) = glmun) = 5y

(n)
Three remarks are in order. First, by the mean value theorem, F’ bounded away from the origin
ensures that ¢y, ©r,;, g¢,, and g,, are bounded operators on H; secondly, F' increasing implies
sign(n;)er,(n) = 0, sign(n;)ee, (n) < 0, gr,(n) = 0, go,(n) < 0 and g(n) > 0; and thirdly, we
remark that F, ¢y, ¢, and g are radial potentials on H.
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Proposition 2.1. Suppose that Hypotheses 1 holds for the potential V. Let F be a general
function as described above and suppose that for all 1,7 =1,...,d,

11 lgr,l€O() and |gs| € O(1),

- T2 |mig—g|N; € O(1),

© 13 Tier, — el Njs  |Tige, — we Ny, |Tier; — @ INiand | Tipe; — e |IN; € O(1),
- Ta (g, — 9) — (ge;, + g)|NiNj € O(1).

Suppose that Hip = E1, with ) € H. Let ¥p := ef'y, and assume Yp € H. Then ¢p € D(,/gA")
and there exist bounded operators (Wi);-i:l, L, M and G on H depending on F such that

d
(pp, [H, A'lo¥p) = —QH\/§A/1/1FH2 - Z VA4 — Az’)WinH2

+ 2_1<¢F, (L+ M+ g)ﬂ)p>

The W; are multiplication operators given by W; = Wp,; := \/COSh(TZ’F — F)—1. The expres-
sions of L, M and G are involved; they are given by (4.6), (4.7) and (4.8) respectively. The
relevant point is that these operators are a finite sum of terms, each one of the form

(2.12) Py(S1, ..., Sg, S¥, .., SEYT Py(Sy, ..., Sq, S¥, ..., S%),

where Py and Py are multivariable polynomials in Si, ..., 54,55, ..., S; and T are multiplication
operators that satisfy one of the assumptions listed in 1 — f4.

(2.11)

Remark 2.1. Formula (2.11) has an additional negative term compared to the corresponding
formula for the continuous Schrodinger operator, cf. [F'1, Lemma 2.2]:

o, [H, A'lovor) = —4|/gAYr|* + (r, Qvr), with Q= (z-V)’9—z-V(VF)%.

Remark 2.2. As mentionned in [F'H], if we consider the Virial Theorem disregarding operator
domains, it is reasonable to expect (3, [H,e!" A'ef |y = 0. This idea underlies (2.11).

Proof. Let ¢ € £o(Z%), the sequences with compact support, and ¢ := ef'¢. The first step of
the proof consists in establishing the following identity :

(¢, [" A" Aoy = (o, [A, Alér) - 2|v/gA ér |
2.13) - Z |/ A4 — Ai)Wi¢F“2 + 27X pp, (L + M+ G)gr).

1<i<d
The proof of (2.13) is technical and long, so it is done in the appendix. The assumptions of this
Proposition and F’ bounded away from the origin imply that the W;, £, M and G stemming
from this calculation are bounded operators. Exactly where these assumptions are applied are
indicated in the appendix by (). The second step consists in using (2.13) to prove (2.11). For
m > 1, define the cut-off potentials x,,(n) := x((n)/m) on 7%, where x € C*(R) and x equals
one in a neighborhood of the origin. Then (2.13) holds with ¢ = x,,% and ¢ = e 1. Adding
Oxmt, [eF Aer Vxmtp) = {eF xmth, [A', V]eF xmt) to each side of (2.13), and introducing the

constant E in the commutator on the left, we obtain
2
ity [ A'e™, H — Elxmtr) = " xmth, [A', Hle" xmt) — 2|vgA'e" x|

(2.14) - > WAGE=2)Wie |’

1<i<d

+ 271<6Fxm¢, (L+ M+ g)eFqu/)>.
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Since ety — Y in H as m — o, the first, third and fourth terms on the right side of (2.14)
converge. The left side of (2.14) is handled in the same way as in | , Proposition 4.16]:

Xm ¥, [efAlel’ H — Elxmip) = —2§R(<eFAleFXm¢, (H — E)xm?))
= 2R (((NY T A P X b (N Y (H — E)ximib)).

Since supp(xm) < [—2m, 2m]?, supp((H—E)xm1)) < K := [-2m—1,2m+1]% and so commuting
Xm with (H — E) gives

<N>6F(H — E)xmt = <N>6F1K(H — E)Xm¥
(2.15) = Z (NY(Xm — TiXm)eFSﬂ/} + N (Xm — Ti*Xm)eFwa-
1<i<d

An application of the Mean Value Theorem shows that [{(N)(xom — TiXm)| and [{N)(xXm — 77 xm)|
are bounded by a constant independent of m. Moreover, ) € H and F’ bounded imply that
ef'Sip = SieTi*F*FwF and eFS;"w = S;‘eTiF*FwF € H. Thus the sequence (2.15) is uniformly
bounded in absolute value in H. Furthermore, it converges pointwise to zero. By Lebesgue’s
Dominated Convergence Theorem,

(2.16) ||<N>eF(H — E)xm?¢| >0 as m — 0.

Since (N)"1A’ is a bounded operator on H, the left side of (2.14) converges to zero as m — 0.
The only remaining term in (2.14) is 2||\/gA’e" x;n1p|%, hence it must also converge as m — 0.
To finish the proof, it remains to show that ¢r € D(,/gA’). Let ¢ € £o(Z). Then

[ AVg)| = Tim [P xmp A'Vg0)] < (lim [v/gA'e xmt] )[4

m—00
This shows that ¢p € D((—A'\/g)*) = D(,/gA’). Then it must be that [/gA'e" xv|? —
Iv/gA' ¥r|? and the proof is complete after rearranging the terms accordingly in (2.14). O

As mentionned in the last Proposition, £, M and G are a finite sum of terms of the form
Pi(S1,...,84, ST, ..., S))T Py(S1, ..., Sa, ST ..., ST)

for some polynomials P; and P». Going forward, it is essential that the multiplication operators
T = T(n) decay radially at infinity. In other words, for the minimal assumptions t; — t4, we will
need o(1) instead of O(1). The following Lemma shows that this is the case for F' = Fj , .

Lemma 2.2. Let F' = Fy o, be the function defined in (2.3). Consider its corresponding func-
tions ©r;, Yo, Gri> 9o, and g. The following estimates hold uniformly with respect to s and ~y:

e gnl and ge] € Oa((n)77?),

-t |mg — gl € Oa((n)’™?),

s Tier, —on| and |7 — @i, ] € Oa((n)7?),

1 1(9r = 9) = (90, + 9)| € Oa((m) ™),

- is |(RF = F) = 7(iF — F)| € Oa((n)772).
Therefore I; tmprove T; fori = 1,2, 3,4 respectively.

Proof. These estimates are simple applications of the Mean Value Theorem (MVT). Let
n = (ni,..,ng) and fix ¢ € {1,...,d}. There is n’ = (n},...,n)) with n} € (n;,n; + 1) and
n; = nj for j # i such that
A
gT’i (n) = / F({n
(n'y  nefm)
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This, together with (2.6), and an analogous calculation for gy, (n) shows f;. Define g : R¢ — R,
g(z) := F'({x)){x)~!. Then i follows from

dg ()= 2 F ")) x) — F'((x))

0 () (x)? '

Now fix i,5 € {1,...,d}. First there is n’ = (n},...,ny) with n; € (nj,n; + 1) and nj, = ny, for
k # j such that

OF _n_;- "((n/ wi (x) = x
%j(n)—<n,>F(< )), with  F(z) = F({z)).

Then there is n” = (nf,...,n})) with n} € (n},n, + 1) and n} = n), for k # i such that

277

(7jF — F)(n) =

O F OF (1)
(Ti*‘:prj - @rj)(n) = dz:0z; (n//)ea J .

This proves I3 since
0 F
(9.’1'7;(91']'

P @@ s
@) < S+ ()

The latter estimate on 02F/(0x;0x;) also implies 5. Finally, for 14, we start with
1 ok

_ ! Wt (0 F @) gy ) | "
gm(”) —g(n) = W[WF ((n"))e - @F ((n))e = ma—xl(” )

where .

L F () el @)
ZSF (@)

/

1) and n;’ = n; for j # 1. We compute

Ok () = <F (@) _ afF' (@)  aiF"()  «i(F ’(<w>))2> @)

6 s
m m nm

(z) (@) (@)? (@)?
Thus for some n” = (n7,...,ng) with nj" € (n; — 1,n; + 1) and n} = n; for j # 4, we have
1 &k m
(gri(n) — g(n)) = (9e;(n) + g(n)) = Wﬁ—xf(n ).

k:RESR, k(z):=

and n” = (nf,...,n})) with n} € (n;,n

A calculation of 0%k/dz? yields the required estimate. O
We are now ready to prove the main result concerning the multidimensional operator H:

Proof of Theorem 1.2.  Let ¢p, . := o9 andlet Uy := ¢p, . /|vp, .. |. We suppose that
for some (v, v) € [0,0) x [0,2/3), ¢ ¢ D(Ja,y) and derive a contradiction. Of course, ¥r, , € H
for all s > 0, but by the Monotone Convergence Theorem, |[¢F, .| — +00 as s | 0. Thus, for
any bounded set B c 7¢,

. 2
(2.17) h?g;? [T, (n)2 = 0.

In particular, ¥, converges weakly to zero. As « and ~ are fixed, we shall write F instead of
F o~ for simplicity. Introduce the operator Hp, := ef* He=¥s. Then Hp, is a bounded operator
and Hp Uy = EV,. We claim that

(2.18) 111%1 I(H — E)¥g| = 0.
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To see this, write Hp, as follows:
Hp, = H + Z Si(1— eTi*FS_FS) + Sz*(l _ eTiFs—FS).
1<i<d

To show (2.18), it is therefore enough to show that
(2.19) lim (1 — 7 B=F) 0| = lim || (1 — €™~ F)w | = 0
sl0 510

Let B(N) = {ne 7% :(n) < N}, and B(N)® the complement set. For all ¢ > 0, there is N > 0
such that

sup |1 — eGFF=FIm] = qup |1 = eor@) M) ¢
neB(N)¢ neB(N)¢
s>0 s>0

(here n" = (nf,...,ny) with n; € (ni,n; + 1) and n; = n; for j # i). Combining this with (2.17)
proves the first limit in (2.19), and the second one is shown in the same way. Thus the claim is
proven. Because E € O(H), there exists an interval ¥ := (F —§, E + ¢) with 6 > 0, 7 > 0 and a
compact K such that

(2.20) Ex(H)[H,A'|cEx(H) = nEx(H) + K.
By functional calculus,
(2.21) lim | B s (H) @ | < lim 67" | By (H) (H — E) ¥ = 0.

It follows by the Mourre estimate (2.20) and (2.21) that
(2.22) limi%nf (U, Ex(H)[H,A'|cEx(H)¥,) > nliml%)nf |Ex(H)V,|* =7 > 0.

We now look to contradict this equation. We start with
(2.23) (Vs, Bs,(H)[H, Ao Ex(H) W) = (¥, [H, Al ¥s) — fi(s) — fa(s), where
fi(s) =¥y, Eps(H)[H, Al Ex;(H)¥,s) and  fas) = (¥, [H, Ao Er 5 (H)Vs).

Applying (2.21) gives

li = li = 0.

i [f1.(s)] = Tina | fa(s)] = 0
Now apply (2.11) with F = Fj 4 -, and after dividing this equation by |¥s]?, we have

limsup (¥, [H, A']o¥,) < 0.

sl0

Here we took advantage of the negativity of the first two terms on the right side of (2.11),
and used the uniform decay of £L + M + G together with the weak convergence of Wy to get
(Ue, (L+M+G)Us) — 0as s | 0. To check this thoroughly, one needs to apply the estimates of
Lemma 2.2 to where indicated in the appendix by a (f). Note that £ given by (4.6) is the most
constraining term; it has the necessary decay provided 3y —4 < —2, i.e. v < 2/3. Note also that
I5 allows to conclude, by continuity of the map = — 4/cosh(x) — 1, that (¥, (Wg,; —7iWr,.i)¥s)
and like terms converge to zero. Thus by (2.23),

limsup (g, Ex,(H)[H, A'|.Ex(H)¥,) < 0.
50
This is in contradiction with (2.22), so the proof is complete. O

3. THE ONE-DIMENSIONAL CASE: EXPONENTIAL LOWER BOUNDS

In this section we deal with the one-dimensional Schrédinger operator H on H = ¢?(Z). We
follow the same definitions as in the introduction and the previous section, but since i = 1, we will
drop this subscript. We shall write S and S* instead of S; and S}, N instead of IV;, etc...Consider
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an increasing function F' € C?([0,00)) with bounded derivative away from the origin. This
function induces a radial operator on H as in the previous section : (Fu)(n) := F({n))u(n) for

all ue H.

Proposition 3.1. Suppose that Hypothesis 1 holds for the potential V. Let F' be as above, and
suppose additionally that

(3.1) |z F"(z)| < C, for x away from the origin.

Suppose that Hvp = Evp, with ¢ € H. Let ¥p := ef'y, and assume that Yp € H. Then

Yr € D(\/gr — geA’) and there exist bounded operators W, M and G depending on F such that
2 2 _

(32) (¥r, [H,AWr) = ~[Vgr = geAVr|” = |V AMA - A)Wor|" + 27 (vr, (M + G)er).

The exact expressions of W, M and G are given by (4.10), (4.11) and (4.12) respectively.

Proof. The proof is done in two steps. The first step consists in proving that
(¢, [e" A'e", Alpy = (bp, [A, Alor) — [Var — geA ¢r |
— [VA@A = 2)Wor|? + 27 bk, (M + G)dr).

The proof of this is in the appendix starting from (4.9). That F’ is bounded away from the
origin ensures that W and (g, — g¢) are bounded. The additional assumption (3.1) ensures that
(7*¢r — ¢r)N and like terms are bounded. The second step is the same as that of Proposition
2.1, and the proof is identical. O

(3.3)

Lemma 3.2. Suppose that Hip = Evp with 1) € £2(Z). Let F be a general function as above, and
assume that ¥p = ef'1p € £2(Z). Define the operator

(3.4) Hp:=el'He ¥,
Then Hp is bounded, Hpyp = Evr and there exist bounded operators Cr and Rp such that
(3.5) Hp = CpH + (2—2Cr) + 27 'Rp, where
(3.6) Cp:=2"1 <eF77F + eFfT*F> and
(3 7) Rp = V(2 — 2CF) + (T(,Dr — QOT)(S* — S) + ((pz — T*(pg)(s* — S)
' +(gr —90)A" =27 (g, — g0)(S* + 9).
Proof. Because F’ is bounded away from the origin, both efSeF¢ = Se™F~F¢ and

ef'S*e=F¢p = S*e™"=F¢ belong to ¢2(Z) whenever ¢ € ¢2(Z). Thus Hp is bounded, and
Hpyp = Eyp follows immediately. Now

Hp=2+V —ef7Fg =" Fgx,
Rewriting this relation in two different ways, we have
Hp =" FH + 2+ V)1 =) 4 (77 — ) g%,
Hp =" FH 4+ 2+V)(1- eF_T*F) + (eF_T*F — el s,
Adding these two relations gives

(3.8) 9Hp = 2CpH + (2+ V)(2 = 2Cp) + (eF ™ — =T F) (5% — §).
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We further develop the third term on the right side:
(770 = T (8~ 5) = (1 — 700 (5™ - )
= (Tr — ) (S* = 8) + (e = T 0e) (8™ = ) + (¢r — 0)(S* = 5)
= (Tor — o) (8% = 5) + (e = T70e) (5™ = 5)
+ (g0 — 90) A" — 27 (g, — 90)(S* + 5) + (& — 90)S(n—0} (* — 9).

Here, dp is the projector onto B < Z. Note that (¢, —¢¢)dgn—oy = 0, and thus (3.5) is shown. [
We are now ready to prove the main result concerning the one-dimensional operator H:

Proof of Theorem 1.1, the first part. We first handle the case F # 2. Suppose that the
statement of the theorem is false. Then 0 = 0g(ag) = (F — 2)/cosh(ag) + 2 € O(H)\{+2} for
some o € [0,00), and there is an interval

(3.9) Yo = (HE(CMQ) — 26, QE(Oéo) + 25)
such that the Mourre estimate holds there, i.e.
(3.10) Es,(H)[H, A']oEs,(H) > nEs,(H) + K

for some 7 > 0 and some compact operator K. For the remainder of the proof, §, n and K are
fixed. If ap > 0, choose a; > 0 and v > 0 such that

(3.11) o <oap <oap .
If however ag = 0, let a1 = 0 and v > 0. By continuity of the map 0g(a) = (E —2)/cosh(a) + 2,
Op(ar) — Or(ap) as a; — ayg, so taking a; close enough to oy we obtain intervals

Y= (HE(OQ) — 9, HE(al) + (5) c Yo

with the inclusion remaining valid as a3 — «ap. Multiplying to the right and left of (3.10) by
Ex, (H), we obtain
(3.12) Ey, (H)[H, A'|oEx, (H) > nEs, (H) + Ex, (H)K Ex, (H).

Later in the proof c; will be taken even closer to o allowing 7 to be as small as necessary in order
to lead to a contradiction (in this limiting process, 6, 7 and K are fixed). Before delving into the
details of the proof, we expose the strategy. For a suitable sequence of functions {Fs(z)}s=0, let

(3.13) U, o= e/
With F; and V¥ instead of F' and ¥p respectively, we apply Proposition 3.1 to conclude that
(3.14) limsup (¥, [H, A'].0,) < limsup [(¥s, 27 (Mg, + Gr,)Us)|.

sl0 sl0

Notice how the the negativity of the first two terms on the right side of (3.2) was crucial. We
have also written Mp, and G, instead of M and G to show the dependence on F. The first
part of the proof consists in showing that

(3.15) limsup (¥, [H, A'lo¥,) < limsup [(¥s, 27 (Mp, + Gr,) V)| < ce,
s}0 sl0
for some €, > 0 satisfying €, — 0 when v — 0. Here and thereafter, ¢ > 0 denotes a constant

independent of s, a; and «y. The second part of the proof consists in showing that
(3.16) limsup |(H — 0g(aq1))Vs| < ce,.
sl0
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Roughly speaking (3.16) says that ¥4 has energy concentrated about fg(«aq) and so localizing
(3.15) about this energy will lead to
(3.17) limsup (U, B, (H)[H, Ao Ex;, (H) V) < ce,.
sl0

However, the Mourre estimate (3.12) holds on ¥;. In the end, the contradiction will come from
the fact that the Mourre estimate asserts that the left side of (3.17) is not that small.

We now begin in earnest the proof. Notice that 1) € D(4,) but 1 ¢ D(¥q,4). Let Ty be the
interpolating function defined in (2.4), and for s > 0 let
(3.18) Fi(z) = a1z + yYs(x).
As explained in the multidimensional case, Fy induces a radial potential as follows : (Fyu)(n) :=
F,((n))u(n), for all u e £3(Z). By (2.5), ef*¢p € £2(Z) for all s > 0, but |ef*¢)|| — c0 as s | 0. To
ease the notation, we will be bounding various quantities by the same constant ¢ > 0, a constant
that is independent of a1, 7y, s and of position z (or n).
Part 1. We use Proposition 3.1 with Fs replacing F', and so we verify that F; satisfies the
hypotheses of that proposition. Since

Fi(z) = a1 +9Y(z) and F(z) =yY((2),
indeed |F!(z)| < ¢, |¢F"(x)| < c¢. Dividing (3.2) by |lefs9[? throughout we obtain (3.14) as
claimed. To prove (3.15), we need two ingredients First, for any bounded set B c Z,
(3.19) lim DT (n
neB

In particular, ¥, converges weakly to zero. What’s more, we also have for any k£ € N
(3.20) hm DSk, =0, and hm DTS w) () = 0.

neB neB

Now Mp, and GF, are a finite sum of terms of the form P; (S, S*)TP(S, S*), where P, and Py
are polynomials and the T' = T'(n) are sequences. The second item to show is that,

(3.21) TM)] < ey~ +e,).
In other words we want smallness coming from decay in position n or from . Outside a suf-
ficiently large bounded set, decay in position can be converted into smallness in v by using
(3.19) while P;(S,S5*) and P(S,S*) get absorbed in the process thanks to (3.20). Consider
first M = Mp, given by (4.11). Applying the Mean Value Theorem (MVT) gives the uniform
estimates in s
(3.22) |TFs — Fs| and |7%Fs — Fs| € O(1).
It follows that
loe| and [pr|€O(1), and g, — gl € O(Un)™).

To handle the term (7%@y — @), define the function f(z) := efs(@=)=F(®)  Then (7%p, —
we)(n) = f(n+1) — f(n). Applying twice the MVT gives

|(T*00 = o) (n)] < c((n)™> + (ny™H).
The same estimate holds for the similar terms like (¢, — 7¢;,), (7%¢, — ;) and so forth. We turn
our attention to G = G, given by (4.12). By (3.22), |[Wg,| € O(1). To estimate (Wg, — Wyxp,),
let g(x) = ~/cosh(Fa((x — 1)) — Fa((@))) — 1, so that (Wi, — Wyap)(n) = g(n) — g(n + 1),

Moreover
(Fi(z = 1)) = Fi({z))) sinh(Fs ({z — 1)) — s(<$>))_
2¢/cosh(Fs((z — 1)) — Fs((x))) —

g'(x) =
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If ag > 0, then |Fy({x — 1>) Fs({x))| = daq for some constant ¢ > 0 independent of z and s,
and so cosh( s((x — 1)) — Fs({x))) — 1 is uniformly bounded from below by a positive number.
Applying the MVT to (F.((x — 1)) — F.({x))) yields the estimate

(Wr, = W) ()] < e((n)™> + <)),
If however oy = 0, then
(3.23) (TFs = F)(n) — (Fs = 7*F)(n)| < ex(n)~".
By continuity of the function  — 4/cosh(z) — 1 we have that for any e, > 0,
\Wg, — Wrspg,| = |\/cosh(TFs — Fy) — 1 — y/cosh(Fs — 7#F;) — 1| < ¢,

whenever (3.23) holds. A similar argument works for (Wg, — W;p,). Thus (3.21) is proven, and
this shows (3.15) when combined with the fact that ¥, converges weakly to zero.
Part 2. We now prove (3.16). Consider Lemma 3.2 with Fy instead of F. We claim that

(3.24) lim H (Cp.H+2—E—20p) 0, =

By (3.5) of Lemma 3.2, this is equivalent to showing that
lim | Rp, ¥, = 0.
sl0

Dividing each term in (3.2) by |efs%|?, we see that |\/g, — grA’¥s| < c. Let yn denote the
characteristic function of the set {n € Z : (g, — gs) < N~'}. Then

imsup | (g — g) A ] < limsup Ny = 9Tl + (1= ) = 90 AWl < e,
sl0

Here we used the fact that 1 — yn has support in a fixed, bounded set as s | 0. Since N is
arbitrary, this shows that [(g, — g/)A’¥s| — 0 as s | 0. The other terms of Rp, are handled
similarly. Note that for the term containing V we use the fact it goes to zero at infinity, and
from Part 1, (1o, — ¢r), (pe — 7*¢g) and (g, — ge) also go to zero at infinity. Hence (3.24) is
proved. Let k := k(n) = sign(n). From the expression of F}, we have the estimates :

|(Fs=7Fy)(n) —k(n)ai| < e(an(ny™ +7) and  |(Fs—7*F)(n) = (=k(n)an)| < e(ar(n)™ +7).
Therefore, outside a fixed bounded set we have

(3.25) |(Fs — 7F5) —kai| < ¢y and |(Fs — 7%Fs) — (—kaq)| < .
By continuity of the exponential function, we have for any e, > 0 that
|er —TFs ena1| € and |er —T7*Fs e—mx1|

€y
whenever the respective terms of (3.25) hold. It follows from (3.24) that

lim sup H[2*1 (eal + e*al) H+2—-F— (eal + e*al) ]\I/ H < cey.
sl0

Dividing this expression by cosh(ay) proves (3.16).
Part 3. By functional calculus and (3.16), we have

(3.26) limlsoup | Erys, (H)W| < limlsoup5—1”ER\Zl(H)(H Op(on)) V| < ces.
We have
(3.21) (W, Bx (H)[H, A, Es, (H) 0,5 — (U, [H, AT 0,5 — fi(s) — fo(s), where

fl(s) = <\I/87 E[R\Zh (H)[H7 A/]OEZI (H)\I/8>7 and f2<3) = <\Il87 [H7 AI]OE[R\XH (H)\Il8>
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By (3.26),
max limsup | f;(s)| < ce,.
1=1,2 510
This together with (3.15) and (3.27) implies
(3.28) limsup (¥, B, (H)[H, A'|oEx;, (H) V) < ce,.

sl0
On the other hand, by the Mourre estimate (3.12), we have that
(3'29) <\Il87 Ey, (H) [H7 A/]OEXH (H)\Il8> = 77HE21 (H)\IIS H2 + <\Il87 Ey, (H)KEZI (H)\Il8>
Thus, since ¥ converges weakly to zero and Ex, (H)K Ex, (H) is compact, we have, using (3.26)

(3.30) hmsqi inf (W, By, (H)[H, A'loEs, (H)Ws) = n(1 — ce2).

Recall that e, — 0 as v — 0. Taking first oy sufficiently close to g, we can then take v small
enough to see that (3.30) contradicts (3.28). The proof is complete for the case E # 2.
Part 4. Case F = 2: the proof is almost the same as before but a bit simpler. We briefly go
over the proof to point out the small adjustments. Assuming the statement of the theorem to
be false, we have that 2 € ©(H), and also that ¢ ¢ D(¥,) for some « € (0,00). Since O(H) is
open, there is an interval

Y:=(2-6,2+9)
such that the Mourre estimate holds there, i.e.

(3.31) Bx(H)[H, A'|oEx(H) > nBs,(H) + K

for some 1 > 0 and some compact operator K. Let ag := inf{aw = 0 : ¢ ¢ D(V,)}. As before,
let a1 and v be such that a; < ag < ay +vif ag > 0; if ag = 0, let @y = 0. Let Fys and ¥, be
defined as before (see (3.18) and (3.13)), so that ¥4 has norm one but converges weakly to zero.
The calculation of Part 1 shows that

limsup (¥, [H, A'].¥s) < ce,
sl0

whereas the calculation of Part 2 shows that
lim |(H — 2)¥,| < CEy.
sl0

The functional calculus then gives

limlsup | Ers(eny ¥s| < limlsup 5 Ers(H)(H — 2)U|| < ce,y.
sl0 sl0

As in Part 3, we get inequalities (3.28) and (3.30) with 3 instead of 3. Taking «; very close to
«q in order to take  sufficiently small, these two inequalities disagree. The proof is complete. [
It remains to show however that

(3.32) Hy = Ey, and ¢ eD(¥,) forall a>0 implies 1 =D0.
We slightly modify the notation we have been using so far. Let
(3.33) F,(n):=aln| and tu(n) := eMy(n) = e2My(n), forallne Z.

Proof of Theorem 1.1, the second part. — The proof is by contradiction, and the strategy is as
follows: we assume that ¥ # 0 and define ¥, := 1, /|14 ]. It is not hard to see that ¥, converges
weakly to zero as o — o0 (use the fact that the difference equation Hy = Et implies ¢)(n) # 0
infinitely often). In the first part we apply Proposition 3.1 with F,, replacing F'. In this case we
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can exactly compute terms to show that
(3.34) 0 = cosh(a) N, [V, A']s¥,) + 2tanh(a)|+/|N|(S* — S)T, |
+ |VAE = A, - tanh(a) (wim) + (Wa(-1) = Ta(1)?).

In the second part, we apply Lemma 3.2 again with F, replacing F'. We show that
(3.35) lim VA4 - A)T, 1> = Jim R (Wa, A(d = A)Tq) = 2.

The conclusion is then imminent: taking the limit o — o0 in (3.34), and recalling that [V, A'],
exists as a bounded operator and ¥, converges weakly to zero leads to a contradiction.
Part 1. From the proof of (4.9),

(3.36) (o [H, ANoa) = ~[Vor = geAbal? + (o, 271 (M + Gy + o))
where M = M, + M is given by (4.11) and G, + G by (4.15). All terms are computed exactly:
(3.37) elTFa—Fa)(n) _ ¢ ifn>1 and (T Fa=Fa)(n) _ e ifn=0
e* ifn<0 e”® ifn < —1,
(3.38) eFa=Fa)(n) _ 8 fn=1 and eFa—T Fa)(n) _ e inz0
e ifn<0 e* ifn< -1
Let dp be the projector onto B < Z. Therefore
T — ¢ = —2sinh(a)dg,—oy, pe — T = —2sinh(@) 8- 11y,
Tor — ¢r = —2sinh(a)dg,—oy, Or — T pp = —2sinh(a)dg,— 1y,
0y — %20 = 2sinh(a)dg,—_1y, Ty — T2 = 2sinh(a)dg— 413

We expand the first term on the right side of (3.36), using A’ = 271(S* + ) + N(S* — S):
—Ivgr — QZAIT/)Q||2 = —~(A%a, (9r — 90) A'ba) = _471<¢a’ (5™ + 5)(gr — 90)(S* + S)ay

(3.39) = 278" + S)tpas (9r — 9N (S* = S)a)
(3.40) — 27N (S* — S)a, (gr — 90)(S* + S)a)
(3.41) - <N(S* - S)Tl)aa (gr - QZ)N(S* - S)¢a>-
First,

(9r — ge)N = 2sinh(a)dy, 20ysign(N) implies (3.41) = —2sinh(a H\/W S)ape |2

As for (3.39) and (3.40), we have
(3.39) + (3.40) = — sinh(@)[(Wa, (S* + 5)d(nr0psign(N)(S* — S)ta)
£ (o (8 = 9)0pusoysign(N)(S* + S)6a)]
The following commutation formulas hold
(3.42) S*(8gnr0y8ign(N)) = [6gn-0y8ign(N) + dgr—0) + Ogp——13]5™

(3.43) S(6gnzoysign(N)) = [0gnr08ign(N) — 00y — Sfn=+13]5-
Hence we commute S and S* with dy,.0ysign(/V) and cancel terms. We get

(3.39) + (3.40) = 2sinh()Wa, 2010y + Sne 1) + Opnr13]%a)-
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We therefore have

(3.44) —IVar = g A Pl = =47 (Was (S* + S)(gr — 90)(S™ + S)tba)
(3.45) + 2sinh(a){tq, [25{n o} + 5{n_,1} + 5{n:+1}]¢a>
(3.46) — 2sinh(a)|+/|N|(S* — 1/)(1\\2

We analyze the second term on the right side of (3.36). A straightforward calculation gives
(3.47) 27'M =47Y(S* + 5)(gr — g0)(S* + S) — sinh(a)[20{n—0y + Ofn=41} + Ofn=—23], and

(3.48) 277G, + Gy) = —sinh(a)[0gue115*% + 8z 11)5%] — (cosh(ar) — 1)A(4 — A).
Assembling (3.44)-(3.46), (3.47) and (3.48) to create (3.36) gives
(has [H, A'lotbay = =2sinh(@)[/IN[(S* = S)ta|? = (ta, (cosh(er) = 1)A(4 — A)ga)
+ sinh(a) (2%(0) + (a(=1) = Ya(1))?).

Cancelling (o, [A, A'|Y0) = (o, A4 — A)hy) on both sides and dividing throughout by
cosh ()|t |? yields (3.34) as required.
Part 2. From (3.38),

91 (eFaTFa | (Fa=T*Fa) _ {COSh(a) %f In| > 1
e @ if n =0,
9~ (eFa—Fa _ gFa=m"Fay sinh(a)dg,.01sign (V).
We apply (3.8) of Lemma 3.2:
Hp, = cosh(a)A + 6,y (e™ — cosh(a))A + V' + 2(1 — cosh(a))
+ 2040} (cosh(a) — e™*) + sinh(@)dg, 2 sign(N)(S* — ).
The goal is to square Hp,. Divide throughout by cosh(a) and let ¢, := (e~*cosh(a)™! — 1):
(3.49) cosh(a) ' Hp, = A + Cadfn—0} A + cosh(a) ™'V + 2(cosh(a) ™t — 1) — 2Ca0{p—0}
(3.50) + tanh(a)dg,.0ysign(N)(S* — 9).

Note that sup,>q|ca| < 2. Since (S* — §) is antisymmetric, by (3.42) and (3.43), we see that
Ogn-0y8ign(IN)(S* — S) is antisymmetric up to a couple of rank one projectors. The same goes
for Adg,.ysign(N)(S* —5) and dy,,.0y8ign(N)(S* — S)A. Therefore

lim R (W, [ 0sign(NV) (5% — 5)]T0) = 0,

a—00

lim R (W, AlBr0sign(NV)(S* — §)]¥s) = 0,

a—00
hngoﬂ? (Wa, [0gnz0ysign(N)(S* — S)]A¥,,) = 0.
We compute [ tanh(cr)dy,.o3sign(N)(S* — S)]2 using (3.42) and (3.43):
(3.50) = tanh?(a) [5{#0}(52 +(5%)2 = 2) + 61y (1= (5%)?) + e i1y (S = 1)].

Thus squaring cosh(a) ! Hp, given by (3.49)-(3.50) and recalling that A(4—A) = 2— 8% — (5*)?
we get
cosh(a) 2Hf. = A(A —4) + 4 — tanh*(@)A(4 — A) + P,

where P, is a bounded operator satisfying

lim R (Uy, P,U,) = 0.
a—00

Rearranging and recalling that Hp ¥, = EV,, yields (3.35) as required. O
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4. APPENDIX : TECHNICAL CALCULATIONS

The appendix is devoted to proving the key relations (2.13) and (3.3) that appear in Propo-
sitions 2.1 and 3.1 respectively. Recall that for B < Z%, §5 denotes the projector onto B. We
start with the proof of the multidimensional formula

(p,[eF Al Alo) = (op,[A, Alor) — 2 vgA or
d
S IWVAE = A Widr|® + 27 bp, (L + M+ G)or),
=1

where ¢ € £o(Z%) and ¢ := ef¢. To jump to the proof of the 1d relation, go to (4.9).
Proof. It is understood that the operators are calculated and the commutators developed
against ¢ € £o(Z%), so we omit the ¢ for ease of notation. Usual commutation relations give

[ef' Aef | A] = e [A/, Alel + ef" A'[el, A] + [eF, A]AeT.

We now concentrate on the second and third terms on the right side of the latter relation. The

(4.1)

goal is to pop out ef A’gA’e” and control the remainder. As pointed out in [I'11] and | |,
this is the key quantity to single out. The following commutators will be used repeatedly:
[ef',S;] = —(me! — ') S; = Si(rif el — ') = —ef ¢y, S; = Sipr,el,

[el', SF¥] = —(rFel” — ef)SF = S;‘(Tie —ef'y = —elf',,SF = SFppel.
Part 1 : Creating e’ A’gA’e’ in a first way. We have
[e", Ai] = ¢r,€" 5F + " S;
= g, Nie" SF + 90711-5{%:0}61?5;‘ + e’ S;
= gr, Nie" (S} — ) + 07,8, O}GF(S?k — i)+ (or, +00,)e"S;
Ni(SF = Sp)et + g Nile", (SF — Si)] + ¢ribmmoe” (SF — Si) + (¢r, + 00,) e’ S;

= gNi(Sf — Si)e” + (gr, — 9)Ni(SF — Si)e" + 01, 0,—0y (S — Si)e”

+ o [eF (ST = 51 + (on + 0e,) ™S
= gAle" —271g(SF + S)e + (gr, — 9)Ni(Sf — Si)e" + ©ri0¢n,—0y (S; — Si)er

+ or[e, (SF = S)] + (s + @i, ) el S

[eFv AZ] = _SieF(pTi - S;‘EFQD&'
= —S-eFNign. — SiCF(,Dri(S{niz()} — S;‘GF(,D&-

= ( )eFNigT’i + (Sz* - Si)eFﬁprié{ni:O} - S;keF (‘Pm + 90&)
= EF( = Si)Nigr; + [(S] — Si), eF]Nigm +(SF - Si)eF‘Pn‘S{ni:O} - S;‘GF (QDM + ‘P&-)
= e (Sf = Si)Nig + €"(SF — Si)Ni(gr, — 9) + " (Sf = Si)pr,0(n,—0)

— e, (SF = Si)ler, — Sie (or, + 1,)

e Alg + 27" (S + Si)g + €7 (SF — Si)Nilgr, — 9) + €" (SF — 85)@r.S(ni0

— [, (SF = Si)ler = SFe" (ors + 02,)-

Therefore we have obtained

(4.2) el Alle” A] + [el', A]Ael = ZeFA/gA/eF +ef (L, + M, + G + Hy)el",  where
ZA/ 9r; — 9N (ST = S5) + (SF = Si)Ni(gr; — 9) A},
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M, = 2*12 _A;g(sj* + S]) + (Sz* + SZ)QA;7

ZA’ pr,[e", (S5 = S)le™ + (or; +0g,)e" Sje™")
— Z — Si)ler, + e*FSZ-*eF (cpn. + 9%)) A;-, and

ZAz(pTJé{nJ—O}(S _S) (S S)(pma{nz O}A
7]

We split M, as follows: M, = M,.; + M,.2, where

My =270 Ag(S] + 5)) + (57 + Si)g A},
i#]

r2 =2 12 A S* + S (Sz* + Sl)gA; = Mr;2;1 + MT;Q;Q, with
My i= 2 12 —Alg,. (SF + Si) + (SF + S)gr, AL,

Mr;2;2 =27 12 _A; 9 - 97‘1-)(5;k + Si) + (Sz* + Si)(g - gn)A;'

We calculate M,;1 by expanding A} and A’:

=271 ) =N, )9(S5 + Sj) + (57" + Si)gN;(57 — ;)
1#]
=27 Y = Ni[(779)S; — (ig)Si] (ST + S;) + [(r (9N;) S} + (7i(gN;))S:] (S5 — S;)
i#]
= —ZN 79— 7j9]SiS; + Ni[1Fg — 77 g| S} S¥ + [Ni(r39 — 77'9) + Nj(r9 — 779)]S;8;.5)
1#]

Again expanding A’:
M0 =27 12 (S5 + Si)gr (SF + i) — (S = 8i)r,0(n, 20y (57 + Si)

+27 12 (S + i) @riOpn; 20y (SF — Si)

= Z 271 (SF + S0)gr, (S + Si) + SiriSF — SF0rSi + (SF0rOtni—0ySi — SispriOpny =0y SF)

= M,.20.1.1+ My.01.0, where

14y Ly 14y Ly

T’2’1’1 B 22 S* + S gT’z<S + S) (Ti(p?“i - Ti*ﬁpri)a(il’is)

MT§2§1§2 = Z(Tz (pri)é{ni=—l} - (Ti(pm)é{m=+1}-

We calulate G,.. We note that
(4.3) (Tior)pe, = @u,(Titpr,) = —(Titor, +01,), and (7700, )er, = or, (77 00,) = — (770, +0r,).
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= 245 (pr; (ST e, = Sjoon,) + (or, + 00,) 8 (i, +1))

- Z —orSF+ 00,8 pr, + (r, + 1) SF (or, + 00)) 4
= ZA’ H(1i0r; )00, — Si(TF0r; Yo, + S5(TF 0 ) (pr; + 1) + 85(75 00, (or; + 1))

+Z ori (700 ) S = 0, (Ti0r ) Si = (pr, + 1)(7700,) ST = (pr, + 1)(7700,)S]) 4]

= ZA/ (e, + Tior,) + Si(TF0r, = 00))) + D ((0r, — TF0r)SE + (00, + Titor,)Si) A
i7j
= Gr;l + Gy, Wwhere

Gr = ZA/ T Pr; = #ry) + (Pri — Ti*‘Pm)S;A;v(is)

7“2 _Z Az j (105 +TJ(10TJ) (@Zi_'_Ti(:DTi)SiA;"

To end this section we note that we are left to deal with L, + M;.0.1.0 + My.2.0 + G0 + H,.
Part 2 : Creating e’ A’gA’e’” a second way. We repeat the calculation with a variation.

[e", Ai]l = r,e" Si + ¢r,e" S}
= go, Nie!'S; + @gié{nizo}eFSi + o el SF
= —gu, Nie"' (S} — ) + @0, 0(n,—0ye” (Si — SF) + (ior; + 00,) € S
= —go,Ni(S; — Si)e" — ge. Nile", (SF — Si)] + u,0pn,—oye” (Si — S§) + (or, + 02,) " S}
= gNi(SF — Si)e" — (gu, + 9)Ni(SF = Si)e" + @1, 0(n, =0} (Si — Si)e”
—p[e", (SF = 5)] + (‘Pn + 1) el S}
= gAje" —27g(SF + Si)e” — (gr, + 9)Ni(SF = Si)e" + @1, 6(n, -0 (Si — Si)e”
— e[, (S5 = Si)] + (r, + 01,)e" ST
[e", Ai] = =SFel oy, — Sie" oy,
= —57e" Nige, — Sie" 01,6 (n,—0y — Sie" or,
—(SF — Si)eF Nige, + (Si — SF)e" 00, 6(n,—0y — Sie™ (or, + ©1,)
" (S} — Si)Nige, — [(SF — Si), " INige, + (Si = SF)e" 01,6n,—0y — Sie™ (or, + 01,
= " (SF = Si)Nig — " (S = Si)Ni(ge, + 9) + €7 (Si = 5F),6n, =0y
+[e", (SF — Si)]ee, — Sie” (er; + ©2,)
= el Ajg + 271" (SF + Si)g — " (SF — Si)Ni(ge, + 9) + € (Si — S) 0,6 4ni0y
+[e, (SF — 5)pe, — Sie” (er; + 1,
Therefore we have obtained
(4.4) el Al A] + [ef, AlA%el = 2eF Alg A’ + eF (L + My + Gy + Hy)e!',  where
— D Allge, + 9)N; (ST = Sj) + (SF = Si)Nilge, + 9) A7,

1,J
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My = 91 Z _A;g(sj* + S]) + (Sz* + Si)gA;'7

G —ZA’ (85 = 81 + (or, + )87 )
+Z (57 = Sl — e Sie" (o + p1)) A and

Hy:= Z Aiwj 5{nj=0}<5j —57) +(Si— Sz?k)wié{m:O}A;'
4,3

We split M, as follows: M, := M.y + Mjy.2, where

My =271 Y1 —Alg(SF + ;) + (Sf + Si)g A,
1#]
Mgg =27 Z —Al g S* + S) (S* + S)gA; = Mg;Q;l + Mg;g;g, with
My =27 ZA’ (SF +S;) — (SF + Si)ge, AL,
Moo =271 Y = Ai(g + g0,)(SF + Si) + (SF + 8i) (g + ge) Al
We calculate My, by expanding A; and A’:
My =271 Z —N;i(S; — Si)g(S; + S;) + (S] + Si)gN;(S; — S))

i#]
=271 Y —Ni[(779) S — (7i9)Si] (S + ;) + [(7 (gN))SF + (ri(gN;))S:](SF = ;)
1]
:—ZN [7ig — 7j9]SiS; + Ni[}g — 779)SFSF + [Ni(r59 — 77'9) + Nj(m59 — 779)] Si S;.(42)
1]

Again expanding A’:
Mo =27 Z (87 + 8i)ge, (S7 + Si) + (S — Si) e, 01,20y (S + Si)

— 27 12 (S5 + Si)6,0pn, 20y (S — S5)

= Z Y(SF + 8i)ge, (SF+ Si) + Sfee,Si — Sipe, Sit + (8600, 04ni=0y S5 — S 04,6 ni=01.5)

—M£211+Me212, where

Moo, = Z —27H(SF + S)) g, (SF + Si) + (1700, — Titpy,),F1¥2)
i

M2 = Y (7:06,) 8~ 1y — (77 00,) 5, ——1}-

i
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We calculate Gy:
Gy = ZA —o1, (87 pe; = Sjor) + (r, +04;) S5 (100, + 1))

+ Z 907’151' + SD&SZ')SD&' - ((pfi + 1)5Z ((lpri + (pfi)) A;
= ZA' T (1j0e,)pe; + Si(T] 00 )or; + S5 (100, 0y + 1) + S5 (Tjpe; ) (pe; + 1))
+ Z —0r; (75 00,) S + 00, (Tipe,)Si — (0o, + 1)(Tipr,)Si — (0o, + 1)(7ispe,)Si) Aj

= Z A’ (e, — puy) — Si(TF e, + 0ny)) + Y (e, — Titpe)Si + (7 e, + 0r,)SF) A]
i7j
= Gg;l + G2,  where
Gea = > AiSH(1j0, — pe,) + (0, — Tispe,) Si A, )
i7j
Gea 1= > —AiSi(tF e, + or,) + (100, + 00, ST A}
i7j
Note that we are left to deal with Ly + Mjy.0.1.2 + My,0.2 + G2 + Hp.
Part 3 : Adding the terms of Parts 1 and 2. Take the average of (4.2) and (4.4):
[efA'el’ A] = e [A/, Alef + 2" A'gAler

(4.5) R P
+27%¢" (Ly+ L+ M, +My+G,+Gy+ H, + Hy)e

Applying ¢ € £o(Z?) to this equation and taking inner products leads to (4.1). We go into details.
The terms that still have to be dealt with are L, + M;.2.1.2 + M;.2.0 + Gr.2 + H, from the first

34yt

part and Ly + My.2.1.2 + My.2.2 + G2 + Hy from the second part. Slnce

(750, = T 00.)0fni=—130 = (Tive; — Ti0r;)0gn,—+13¢ = 0, and  (or, — ©¢,)0¢n,—0}¢ = 0,
it follows that
(Mr2152 + Meg1;2)¢ = 0, and  (H, + Hy)dp = 0.
We add L, and L, and define this to be L:
L:=L+ L= ZA'- 9r; — 9) — (g9¢; + 9)IN; (S7 — S;)
(4.6)
+ Z S — [(gr, — 9) — (g0, + g)] A0

We add M,.2.2 and Mp.o.0:
My + My = 271> Ail(gr, — 9) — (g0, + 91(SF + 85) = (SF + 8)[(gr, — 9) — (g2, + 9)] 4709

We can now define M:
(4.7) M= M, + My = My + My + Mgy + Moo + (Mrggi2 + Megao).

14y Ly
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The final step is to add G2 and Gy.o:
GT’;2 + Gf;2 = Z _AZS; (QO[j + TjQOT’j) + (9051 + TZQOM)SZA]

1,J

+Z —AiSi(5 0, + ;) + (7700, + 0r,) ST A

_ _Z Y(SE + Si) + Ni(Sf — Si)]SH (e, + Tior,)
+Z (pe, + T )Si[=271(S] + 85) + (5] = Sj)Nj]
— Z L(SF + Si) + Ni(Sf — S)1S;(F e, + o))
+ Z 700 + o )ST=271 (ST + 85) + (SF — S5)N;]

,J
=G1+ Gy +Gg + G4+ G5+ Gg, where

Gy = Z —NiS;‘S;(ngj + Tj(prj) + (Ti*(pzi + (pm)S;kS;Nj,

i,
Gy := Y NiSiSj(tFu, + or;) — (pr, + Tior,) SiSiNj,
2
Gs = Z NZSZS]* (prj +Tj90rj)_NiS;<Sj(T;90€j +(707‘j) - (Ti*(pfi +90Ti)S£ijNj + (SDZZ- +Ti¢ri)SiS;Nj’
2%
Gy:= =271 ) SFS¥ (00, + Tior,) + (TFpu, + 0r,)SE S,
2%
G5 := =27 > (r, + 7ipr,)SiS; + SiS; (e, + or)),
]

Gg := —2’1251-5;‘(9053. + Tior;) + (0o, + Tir;)SiS] + S8 (5 e, + o) + (T e + o) 57 S5

(2]
We calculate G; for ¢ = 1...6. G1 = G1.1 + Gi.2 + G1.3, with
G1§1 = Z[(T;‘k(pfj - Ti*T;'ngfj) + ((107“]‘ - TZ*QDT])]NZS:‘Sj*v(iS)
2
G1;2 Z(T Pe; -l-(,DrZ)S*S* and Glg —22 T we; +907’1)(S*)
i#] A
Gy = G2;1 + GQ;Q + Gg;g, where
Go = Y [(Ti0e, — pu;) + (TiTjior; — Tjepr; ) INiS:S;,0)
,J
Gayo 1= Z(Wi + Tipr,)9iS;  and  Goz = 22(9% + 7Tior, ) (5i)%.

1#] i
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i#]
+ Y Nilpe, + Tior,) = Ni(pu, + n) — (700, + 0r)Ni + (1, + Titpr )Ny

(2
= Z(Tﬂfwj + Tisor, )NiSiS; — (750, + 77 Tjepr, )N S;° S

i#]

+ = (7 e, + @r)NiSES; + (pa; + Tispr )N 8iS
i#]

+ Z Ti e+ or) S Si + (@e, + Titor,)Si S + 22 — 7 pe) + (Tipr, — 1) NG
1]

= G31 + G2 + Gg;3,  where
Ga1 i= Y [(1imF 00, =7 00,) + (Tipr; —0r ) INiSiS5 +[ (00, =75 pe, )+ (Tjpr; =750, ) INiSF S, 09

i#]
G3.o 1= Z(Ti*ﬁpfi + 1) S5 S + (pe; + Tiﬁpri)sisjv
i#j
Gys = 2 = 700) + (Tier, — r ) IO

G4 = _271 Z[(Ti*Tj Pe; +7 ()07"]') (Ti pe; + (Pn)]sz*sg* = G4;1 + G4;27 with

G4;1 = _271 Z[(Ti*T;SDZj + Ti*(p?“j) + (Ti*(pfi + (107“1)]51*53*7
1#]
Gu = —2_12[(%'*7}'*9% + 7500 + (7o, + 0r)1(SF)2.

=—27 12 @o; + Titer,) + (Tipe, + TiTipr;)]9iS; = Gsa + G, with

G5;1 =271 Z (e, + Tior;) + (Tiwj + TiTj(PT’j)]SiSjy
i#]
G5§2 = _271 Z[((Pfi + Ti(pﬁ‘) + (Ticpfi + TiTi(PT’i)] (SZ)2
i
Ge = _2_1 Z[(TiT;QOZj + Ting’j) + ((10& + TZSDTz)]SZS_;k + [(Ti*gpéj + Ti*T]'QOT’j) + (Ti*gofi + 907’1)]52*5]
,J
= G;1 + Gg2, with
Gon = =27 Y [(ifou, +7ir,) + (po, + 7o) 1SS + [(77 00, + 7 7500,) + (701, +02.)157 S5,
i#]
G6;2 = _Z((’Déi + 7—2'90”) + (Ti*(p&' + @n)-
7
We add Gl;g and G4;1:
G1§2 + G4;1 = Z(Ti*(pfi + (prl)S'l*S_;k -2t Z[(Ti*T;(sz + Ti*(pT’j) + (Tz’*(pfi + (pn)]sz*sj*
i#] i#]
=27 Z[(T;’k(pfj - Ti*T;Qij) + ((107“]‘ - TZ*QDT])]S;S]*@S)
i#]
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We add G113 and Gy.2:
Gis + Gz = 2D (100, + 00 (SF)? = 27 Y (77 n, + 70n) + (7 pu, + 00)1(SF)°

= G7 + Gg, where
Gr = 27 Yl on, — 270 + (r — 20 ISTV ) and G 1= N, + 0n) (ST

We add Ga.2 and Gs.1:
Gaa + Gsa = Y (pe, +Tipr)SiS; — 27 Y [(u, + Tispr,) + (Tior; + Timiepr; )19,
i#] 1#]

=271 Y [(¢e, — Tipr) + (T50r; — TiTjior;)]9i8;. )
1#]
We add G2.3 and Gi.2:

Gas + Gs2 = 2 (0, + Titpr)(5:)* = 27 Y [(pe, + Tier,) + (Tipr, + Tamispr)](S)?
= Gg + Gy19, where
Go := 27 Y [(pe, — Titpe,) + (Tipr, — Timior)1(8i)* ®) and - Guo := ) (r, + Titpr,)(Si)*.

i

We add (3.2 and Ge.1:

Gaa+Gea = =27 Y\ [(7i7) 0, = 75 00,) + (Tispr, — ) + (500, — p1,) + (75 Titpr, — Tispr, )13 . 12)
i#]
We are left to deal with Gg.2, G's and G1o:
Gs + Gro + Ge = Y. (700, + 00)SE ST + (01, + Tir,)SiSi — (pu, + Titpr)) — (100, + or,)
= Z (7 0, + ) (SF)? = 1) + (e, + Tipr ) ((S3)? = 1)
= Z 00 — o0) + (o = Tipr)1((SF)? = 1) + (e, + i) ((SF)? + 57 - 2)

= GH + G2, where
Gi1 i= Y [(7F 00, ~pe )+ (or,—Titpr ) 1((S7)?=1)5) and Gy 1= =2 ) (cosh(r; F— F)—1)A;(4-A,).

i

Let Wp.; = \/COSh(TZ'F — F) — 1. Commuting Wp.,; with A; gives
Wiili = AiWpy + Si(Wryi — 75 Wey) + Sf (Weyi — iWey).

Thus
WI%;iAi (4 — A,’) = WF;Z'AZ'(ZI — A,’)Wp;i + RF;i; where

Rpii = —WpidiSi(Wri — 75 Wry) — WralAiSf (Weyi — iWey)
+ WF;iSi(WF;i — T,'*WF;i) (4—A;) + Wp, S (WF ) TiWF;i) (4 - Ai)is'
A final accounting job gives the expression of G:

G = Gp1 + Gp1 + Gi1 + Goq + Ga1 + Gaz + (Gr2 + Ga)
(4.8) + G7 4 (Gag2 + Gs;1) + Gg + (G2 + Ge,1) + G1 — 2ZRF;i7

or equivalently, G = G, + Gy + 2>, WpiAi(4 — Ay) W O
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* * *

We now turn to the proof of relation (3.3) that is key in Proposition 3.1. Here d = 1. For
convenience we rewrite the relation we want to show. For ¢ € £y(Z), ¢r := ef'¢ :

<¢7 [eFA,eFv A]¢> = <¢F7 [Alv A]¢F> - H V3r — ggA/(Zﬁsz

4.9

. - H\/mW(ﬁF’F + 2_1<¢F, (M + G)¢F>, where
(4.10) W =Wpg:= \/COSh(TF - F)—1,

(4_11) M = Mp := 271<S*+S)(gr_gf)(5*+5)

+ [(7* 00 — o) + (e — T90) + (Tor — o) + (or —T¥¢p)],  and
G=Gp:=AS(T*p, —¢r) + (or — 750 ) ST A" + A'S* (100 — 1) + (0 — T0)SA’
+ [(TF 00 — T200) + (0r — TF ) [NS* + [(20r — Tr) + (T00 — o) | NS

(4.12) * %UT*W = 7%00) + (pr = TF0n)](5%)% + %[(Tsor — 7%0r) + (e — T00) |52
+2[(pe = T 00) + (1r — 9r) [N + [(T5 00 = 90) + (r — T0,)]((S*)* = 1)
+ QWFAS(WF — W’T*F) + 2WpAS* (WF — W’TF)
—2WpS(Wp — Weap) (4 — A) = 2WpS*(Wp — Wrp) (4 — A).

Proof of (4.9). For the most part, the proof of this relation is the same as that of (4.1) when d > 1.
However, the main difference is that here we do not introduce the function g(n) := F'({(n))/{(n).
We go over the proof done just above and point out the differences. As before we start with

[ef A'ef" Al = P [A7, Aler + eF A'lef, A] + [eF, A] A’
and develop the last two terms of this relation.

Part 1 : Creating ef"A’g, A’e".

1
[el',A] = g, Alel — §gr(5* +S)el” + Orlfn—0} (S* — S)er + o [ef, (S* = 9)] + (or + r)el'S.

1
[6F7 Al = eFA/gT, + 56F(S* +S)gr + eF<S* - S)ﬁpr5{n=0} - [6F7 (S* = 8)]pr — S*eF(SOT + (PZ)-
Therefore we have obtained
(4.13) Al A] + [eF, A]A el = 2eF Alg Aler” + eI (M, + G, + H,)e!",  where
M, = —27'A'g.(S* + 8) +271(S* + S)g,. A/,
G, = Alp,[el (8% —S)le T + A(or + gog)eFSe_F
— e Flef, (5% — 9)]p, A" — e F'S*eF (¢ + ) A/, and
H, = A/90r5{n:o} (S* - S) + (S* - S)(,Dré{nzo}A/.
We calculate M,
1 1 1 1
M, = —= <—— (S*+8)+ (5" — S)N) gr(S*+5) + 3 (S*+95) g, <§ (S*+5)+ N(S* — S)>

= 2_1(5* + S)g-(S* + S) — 2! (S* = 9) ©rdin20 (S*+9) + 21 (S*+9) Ordin20) (S*—9)
= 2_1(5* + 8)gr(S* + S) + (S, S* — S*p,.S) + (S*goré{nzo}S — S(pr5{n=0}5*)
= M,.1 + M,.2, where
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M, = 2_1(S*~I—S)gr(5*+5)~l—[(Tgor—gpr)wL(gDr—T*gpr)] and M. := ¢, (0) (O0gn——1} — Ofn1y) -
Part 2 : Creating e/ A’g,A’el.

1
[e", A] = —geA'e” + Sg0(S + S)e” = pud(n—0y (5™ = S)e’ —pele”, (5 = S)] + (pr + pr)e” 5.

/ 1 * * *
[, A] = —eFAlg, — §€F(5 +8)ge — €7 (S* = S)eb—oy — [(S* — 5), eFlr — SeF (¢r + ¢4).

Therefore we have obtained
(4.14) el Al A] + [ef, AlA%el = —2eF AlgAlet + eF' (My + Gy + Hy)el',  where
M, = 2_1A/gg(5* + S) - 2_1(5* + S)ggA/,
Gyi= —Aple”, (S* = 9)]e " + A'(pr + )l S*e™F

+e el (S* — 9)]pe A’ — e FSe (o + o)A/, and

Hyi= =A'pidn_y(S* = ) = (8" = S)pedn-nyA'.
We calculate M;:

My = My + Mys, where
Mg;l = —2_1(S*+S)gg(5*+5)+[(T*(pz—(pz)—i-((pg—ﬂpg)] and Mg;Q = (pg(O) (5{n:1} - 5{n:,1}) .
Part 3 : Adding the terms of Parts 1 and 2. Take the average of (4.13) and (4.14) to get :
[ef Al Al = el [A Alel" + P Al (g, — go)A'el + 271l (M, + My + G, + Gy + H, + Hy) eF'.
Applying ¢ € £y(Z) to this equation and taking inner products will yield (4.9). Let us elaborate
exactly how this is achieved. First, let
M := M, + M, = Mr;l + Mg;l.

The latter equality holds because (M,.2 + My.2)¢ = 0. Second, note that G, Gy, H, and H, are
exactly the same as in the preceding proof when ¢ = j = 1, which corresponds to d = 1. These

terms are handled in the same way. In particular (H, + Hy)¢ = 0. Finally, we investigate G.
Referring to the preceding proof with ¢ = j =1, let

G := Gr;l + Gg;l + G1;1 + G2;1 + 03;3 + G7 + Gy + G171 — QRF;l.

Terms that do not contribute here are: Gs.1, G1.2 + Ga.1, G2.2 + Gs.1, G2 + Gg,;1. We warn the
careful reader that G is not simply G, + Gy, because somewhere hidden in G2 + Gy.2 is the term
—2W A(4 — A)W which needs to be extracted. After taking inner products, this term ultimately
produces —|v/A(4 — A)W¢p|?. Alternatively, G = G, + Gy + 2WA(4 — A)W. O
We also note that

G, + Gy = Gr;l + Gz;l + Gl;l + G2;1 + Gg;g + G7 + Gy + G171 + Gr2

=2[(m*¢¢ — 7%00) + (¢ — 7""<,pr)]NS*2 —2[(ror — T20p) + (90 — 7o) |[NS?
+2[(pe — T70) + (T%0r — 1) + (00 — T"00) + (Te0r — 1) [N

(4.15)
+ [(T*0e = T%00) + 2(0r = T*0)]S* + (T — T70r) + 200 — T0) ] S?
+ [(re = ¢0) + (T%0r — 01)] + [(T*00 — 00) + (0r — T0,)] (S** = 1)
—2(cosh(r7F — F) —1)A(4 — A).
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