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Abstract

A distinguishing r-labeling of a digraph G is a mapping λ from the set of vertices of G
to the set of labels {1, . . . , r} such that no nontrivial automorphism of G preserves all the
labels. The distinguishing number D(G) of G is then the smallest r for which G admits a
distinguishing r-labeling. Albertson and Collins conjectured in 1999 that D(T ) ≤ 2 for every
cyclic tournament T of (odd) order 2p + 1 ≥ 3, with V (T ) = {0, . . . , 2p}, and, more precisely,
that the canonical 2-labeling λ∗ given by λ∗(i) = 1 if and only if i ≤ p is distinguishing.

We prove that whenever one of the subtournaments of T induced by vertices {0, . . . , p} or
{p+ 1, . . . , 2p} is rigid, T satisfies Albertson-Collins Conjecture. Using this property, we prove
that several classes of cyclic tournaments satisfy Albertson-Collins Conjecture. Moreover, we
also prove that every Paley tournament satisfies Albertson-Collins Conjecture.

Keywords: Distinguishing number; Automorphism group; Cyclic tournament; Albertson-
Collins Conjecture.
MSC 2010: 05C20, 20B25.

1 Introduction

An r-labeling of a graph or digraph G is a mapping λ from the set of vertices V (G) of G to the
set of labels {1, . . . , r}. An automorphism φ of G is λ-preserving if λ(φ(u)) = λ(u) for every
vertex u of G. An r-labeling λ of G is distinguishing if the only λ-preserving automorphism of
G is the identity, that is, the labeling λ breaks all the symmetries of G. In [4], Albertson and
Collins introduced the distinguishing number of G, denoted D(G), defined as the smallest r for
which G admits a distinguishing r-labeling.

A digraph G is rigid (or asymmetric) if the only automorphism of G is the identity. There-
fore, D(G) = 1 if and only if G is rigid.

In the last decade, distinguishing numbers have been studied for several families of graphs,
such as trees [11, 23], interval graphs [12], planar graphs [5], hypercubes [6], Cartesian products
of graphs [1, 9, 13, 16, 18] and of complete graphs [14, 15], Kneser graphs [2, 10], or infinite
graphs [7, 17, 22] for instance. On the other hand, distinguishing numbers of digraphs have
been less frenquently considered since the paper of Albertson and Collins [3] (see [19, 20, 21]).

1LaROMaD, Faculty of mathematics, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32
El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.

2Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France.
3CNRS, LaBRI, UMR5800, F-33400 Talence, France.

1



We denote by Zn the group of residues modulo n. Let p be an integer, p ≥ 1, and S be a
subset of Z2p+1 \ {0} such that for every k ∈ Z2p+1 \ {0}, |S ∩ {k, 2p+ 1− k}| = 1. The cyclic
tournament T = T (2p + 1;S) is the tournament of order 2p + 1 defined by V (T ) = Z2p+1 and
ij is an arc in T if and only if j − i ∈ S. Cyclic tournaments are sometimes called circulant or
rotational tournaments in the literature.

Albertson and Collins proposed the following conjecture [3]:

Conjecture 1 (Albertson-Collins) For every cyclic tournament T = T (2p+ 1;S), D(T ) =
2. Moreover, the 2-labeling λ∗, given by λ∗(i) = 1 if 0 ≤ i ≤ p and λ∗(i) = 2 otherwise, is
distinguishing.

In the rest of this paper, we will call the above defined 2-labeling λ∗ the canonical labeling.
Symmetry breaking in tournaments has been studied by Lozano [21] who considered other

ways of distinguishing vertices, namely by means of determining sets [8] (sometimes called fixing
sets) or resolving sets.

In this paper, we study the distinguishing number of cyclic tournaments and prove that
several classes of cyclic tournaments satisfy Albertson-Collins conjecture. We first give some
definitions, notation and basic results in Section 2. We then consider the so-called pseudo-cyclic
tournaments in Section 3 and prove our main results in Section 4. We finally propose some
directions for future work in Section 5.

2 Preliminaries

We denote by V (G) and E(G) the set of vertices and the set of arcs of a digraph G, respectively.
Let G be a digraph and u a vertex of G. The outdegree of u in G, denoted d+G(u), is the
number of arcs in E(G) of the form uv, and the indegree of u in G, denoted d−G(u), is the
number of arcs in E(G) of the form vu. The degree of u, denoted dG(u), is then defined by
dG(u) = d+G(u) +d−G(u). If uv is an arc in G, u is an in-neighbour of v and v is an out-neighbour
of u. Let v and w be two neighbours of u. We will say that v and w agree on u if either both
v and w are in-neighbours of u, or both v and w are out-neighbours of u, and that v and w
disagree on u otherwise.

An automorphism of a digraph G is an arc-preserving permutation of its vertices, that is, a
one-to-one mapping φ : V (G)→ V (G) such that φ(u)φ(v) is an arc in G whenever uv is an arc
in G. The set of automorphisms of G is denoted Aut(G). The order of an automorphism φ is the
smallest integer k > 0 for which φk = Id, where Id denotes the identity. An automorphism φ of
a digraph G is nontrivial if φ 6= Id. A vertex u of G is fixed by φ if φ(u) = u, and a subdigraph
H of G is fixed by φ if every vertex of H is fixed by φ. If u is a vertex of G, the orbit of u
with respect to φ is the set {u, φ(u), . . . , φq−1(u)}, where q is the order of u with respect to φ,
that is the smallest integer for which φq(u) = u (note that the order of u necessarily divides the
order of φ). A tournament cannot admit an automorphism of order 2 (such an automorphism
would interchange the ends of some arc) and thus the automorphism group of a tournament has
odd order and every orbit of an automorphism of a tournament contains either 1 or at least 3
elements. Note also that if v is fixed by an automorphism φ and the orbit of u with respect to φ
is of size at least 3, then all vertices in the orbit of u agree on v. Moreover, if the orbits of u and
u′ with respect to φ are of size at least 3 (these two orbits being not necessarily distinct), then
all vertices in the orbit of u have the same number of in-neighbours (and thus of out-neighbours)
in the orbit of u′.

The transitive tournament of order n, denoted TTn, is defined by V (TTn) = {0, . . . , n− 1}
and, for every i, j ∈ V (TTn), ij is an arc whenever i < j. Clearly, every transitive tournament
is rigid (all its vertices have distinct indegrees) and thus D(TTn) = 1 for every n. The almost
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transitive tournament of order n, denoted TT ∗n , is obtained from TTn by reversing the arc from
0 to n − 1. The tournament TT ∗n is thus Hamiltonian. It is also known that every almost
transitive tournament is rigid, and thus D(TT ∗n) = 1 for every n.

Let p be an integer, p ≥ 1, and S be a subset of Z2p+1\{0} such that for every k ∈ Z2p+1\{0},
|S ∩ {k, 2p+ 1− k}| = 1. Let

S+ = S ∩ {1, . . . , p}, and S− = {1, . . . , p} \ S+.

We call the elements of S+ the positive connectors of the cyclic tournament T (2p + 1, S) and
the elements of S− the negative connectors of T (2p+ 1, S). Note that knowing either S+ or S−

is enough to determine S since

S = S+ ∪
{
−s : s ∈ {1, . . . , p} \ S+

}
.

Therefore, we will preferably denote the cyclic tournament T = T (2p+1;S) by T = T (2p+1;S−)
whenever we deal with an explicit set S. In that case, for every i, j ∈ Z2p+1, i < j, ij is an arc
in T = T (2p+ 1;S−) if and only if j − i /∈ S−.

Note that for any cyclic tournament T = T (2p + 1;S) and every vertex u ∈ T , d−T (u) =
d+T (u) = p = |S|.

The converse T c of a tournament T is obtained from T be reversing all the arcs. Clearly, the
converse of any cyclic tournament T = T (2p+ 1;S) is the cyclic tournament T c = T (2p+ 1;Sc)
with Sc = {1, . . . , 2p} \ S. Moreover, T and T c are isomorphic, via the mapping γ defined by
γ(0) = 0 and γ(i) = 2p+ 1− i for every i ∈ V (T ) \ {0}.

3 Pseudo-cyclic tournaments

Let T = T (2p + 1;S) be a cyclic tournament and i, j two vertices of T with i < j. We denote
by Ti,j the subtournament of T induced by the set of vertices {i, i + 1, . . . , j}. Note that the
subtournament Ti,j is not necessarily a cyclic tournament. Hence, the canonical 2-labeling λ∗

defined in Conjecture 1 assigns label 1 to vertices of T0,p and label 2 to vertices of Tp+1,2p.
Since the tournament T = T (2p+ 1;S) is cyclic, the subtournaments Tp+1,2p and T0,p−1 are

isomorphic. Recall that the set S is characterized by the set S− of its negative connectors. In
the following, we will thus study (not necessarily cyclic) tournaments of the following form:

Definition 2 Let N be a subset of Zp+1 \ {0}, p ≥ 2. The pseudo-cyclic tournament P =
P (p;N) is the tournament of order p+ 1 defined by V (P ) = Zp+1 and ij, i > j, is an arc in P
if and only if i− j ∈ N .

Note that if T = T (2p + 1;S) is a cyclic tournament then T0,p = P (p;S−), and Tp+1,2p =
T0,p−1 = P (p− 1;S−) (if p /∈ S−) or Tp+1,2p = T0,p−1 = P (p− 1;S− \ {p}) (if p ∈ S−).

We first prove that T = T (2p+ 1;S) satisfies Albertson-Collins Conjecture whenever T0,p or
Tp+1,2p is rigid.

Proposition 3 Let T = T (2p+ 1;S) be a cyclic tournament. If T0,p is rigid or Tp+1,2p is rigid
then the canonical 2-labeling λ∗ of T is distinguishing.

Proof. Let φ be a λ∗-preserving automorphism of T , that is, λ∗ ◦ φ = λ∗, and let φ1 and φ2
denote the restriction of φ to T0,p and Tp+1,2p, respectively. Since λ∗ ◦ φ = λ∗, both φ1 and φ2
are automorphisms. Moreover, since T0,p is rigid or Tp+1,2p is rigid, we get φ1 = Id or φ2 = Id.
We will prove that we necessarily have φ1 = φ2 = Id, which gives φ = Id so that λ∗ is a
distinguishing labeling of T .
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Suppose first that φ1 = Id and assume to the contrary that φ2 6= Id. Let a1 ∈ {p+1, . . . , 2p}
be the “smallest” non-fixed vertex of Tp+1,2p. Since T is cyclic, we can assume without loss of
generality a1 = p+1. (If a1 6= p+1, by using the “shift” automorphism α : i 7→ i+a1−p−1, the
subtournaments T0,p and Tp+1,2p are shifted to Ta1−p−1,a1−1 and Ta1,a1−p−2, respectively. The
two restricted automorphisms φ1 and φ2 become φ′1 = αφ1α

−1 and φ′2 = αφ2α
−1, respectively,

and we still have φ′1 = Id.) Since the order of a1 with respect to φ2 is odd, a1 necessarily
belongs to a cycle in Tp+1,2p and thus to a 3-cycle in Tp+1,2p, say a1a2a3.

Since a1a2a3 is a 3-cycle, we get {a2−a1, a3−a2, a1−a3} ⊆ S. If a2 < a3, let w = a1−a3+a2,
so that wa1 is an arc of T . We then have w ∈ V (T0,p) and thus, since w is fixed by φ, wa1 and
wa2 are both arcs of T , a contradiction since a2 − w = a3 − a1 and a3 − a1 /∈ S. If a2 > a3,
we get a similar contradiction by considering the vertex w = a1 + a3 − a2: a1w is an arc of T ,
again w ∈ V (T0,p), which implies that a1w and a3w are both arcs of T , a contradiction since
w − a3 = a1 − a2 /∈ S.

The case φ2 = Id is similar. �

It should be noticed that the condition in Proposition 3 is sufficient for a cyclic tournament
to satisfy Albertson-Collins Conjecture but not necessary, as shown by the following example.

Example 4 Consider the cyclic tournament T = T (13; {2, 5, 6}). The automorphism group of
T only contains rotations (that is, mappings φ : i 7→ i+ b, 0 ≤ b ≤ 12), so that the canonical 2-
labeling λ∗ is clearly distinguishing, and thus T satisfies Albertson-Collins Conjecture. However,
none of the subtournaments T0,6 and T7,12 is rigid. The subtournament T0,6 = P (6; {2, 5, 6})
admits an automorphism of order 3, namely φ′ = (0, 3, 6), and the subtournament T7,12 =
P (5; {2, 5}) also admits an automorphism of order 3, namely φ′′ = (0, 1, 2)(3, 4, 5).

Moreover, we have the following:

Proposition 5 Let T = T (2p+ 1;S) be a cyclic tournament and λ∗ be the canonical 2-labeling
of T . If φ is a nontrivial λ∗-preserving automorphism of T , then neither T0,p nor Tp+1,2p has a
unique orbit with respect to φ.

Proof. Suppose first that T0,p has a unique orbit with respect to φ, which implies that p is even.
No vertex a of Tp+1,2p can be fixed by φ, since otherwise we would have either d−T (a) ≥ p+ 1 or
d+T (a) ≥ p+ 1, in contradiction with the definition of T . Therefore, there is an even number of
orbits in Tp+1,2p, of respective odd sizes p1, . . . , p2`, ` ≥ 1, with pi ≥ 3 for every i, 1 ≤ i ≤ 2`,

and
∑2`

i=1 pi = p. Since p1 < p, the automorphism φ1 = φp1 is λ∗-preserving and T0,p has a
unique orbit with respect to φ1. But φ1 fixes p1 vertices of Tp+1,2p, contradicting the above
remark.

Suppose now that Tp+1,2p has a unique orbit, which implies that p is odd. As before, we
claim that no vertex of T0,p is fixed by φ. Assume to the contrary that a is such a vertex. We
then have either d−T (a) = 0 or d−T (a) = p, which implies |S−| = 0 or |S−| = p, respectively. In
both cases, we get that T0,p is transitive, and thus rigid, which implies φ = Id by Proposition 3,
a contradiction. Therefore, there is an odd number of orbits of size at least 3 in T0,p (this
number is at least 3, as proved before), and a contradiction arises as in the previous case. �

Let P = P (p;N) be a pseudo-cyclic tournament. The indegree sequence of P is the sequence
defined by:

σ(P ) = (d−P (0), . . . , d−P (p)).

The value of d−P (i) for any vertex i of P is given by the following:
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Proposition 6 The indegree d−P (i) of any vertex i of the pseudo-cyclic tournament P = P (p;N),
0 ≤ i ≤ p, is given by

d−P (i) =

{
i+ |N ∩ {i+ 1, . . . , p− i}| if 0 ≤ i ≤

⌊p
2

⌋
,

p− d−P (p− i) otherwise.

Proof. By definition of P , there is an arc from j to i, j > i, if and only if j − i ∈ N . Hence,

d−P (i) = (i− |N ∩ {1, . . . , i}|) + |N ∩ {1, . . . , p− i}|.

Therefore, we get
d−P (i) = i+ |N ∩ {i+ 1, . . . , p− i}|

if 0 ≤ i ≤
⌊p
2

⌋
(with, in particular, d−P (p2) = p

2 if p is even), and

d−P (i) = i− |N ∩ {p− i+ 1, . . . , i}| = p− d−P (p− i)

if
⌈p
2

⌉
≤ i ≤ p. �

From Proposition 6, we get that for every pseudo-cyclic tournament P = P (p;N), d−P (0) =
|N | and d−P (p) = p − |N |, and that the indegree sequence σ(P ) admits a central symmetry.
Moreover, the difference of the indegrees of any two consecutive vertices is either -1, 0 or 1:

Proposition 7 For any two consecutive vertices i and i + 1 of the pseudo-cyclic tournament
P = P (p;N), 0 ≤ i ≤ p− 1, d−P (i+ 1)− d−P (i) ∈ {−1, 0, 1}. More precisely, we have

1. d−P (i+ 1)− d−P (i) = 1− |N ∩ {i+ 1, p− i}|,
2. if p is odd, d−P

(⌈p
2

⌉)
− d−P

(⌊p
2

⌋)
= 1− 2

∣∣N ∩ {⌊p2⌋+ 1
}∣∣.

Proof. By Proposition 6, if 0 ≤ i <
⌊p
2

⌋
we have

d−P (i+ 1)− d−P (i) = i+ 1 + |N ∩ {i+ 2, . . . , p− i− 1}|
− i− |N ∩ {i+ 1, . . . , p− i}|

= 1− |N ∩ {i+ 1, p− i}|.

Since 0 ≤ |N ∩ {i+ 1, p− i}| ≤ 2, we get d−P (i+ 1)− d−P (i) ∈ {−1, 0, 1}.
If
⌈p
2

⌉
≤ i < p then, by Proposition 6, we get

d−P (i+ 1)− d−P (i) = p− d−(p− i− 1)− p+ d−(p− i)
= d−(p− i)− d−(p− i− 1)
= 1− |N ∩ {p− i− 1 + 1, p− p+ i+ 1}|
= 1− |N ∩ {i+ 1, p− i}|.

Finally, if p is odd, we have

d−P
(⌈p

2

⌉)
− d−P

(⌊p
2

⌋)
= p− (

⌊p
2

⌋
+
∣∣N ∩ {⌊p2⌋+ 1

}∣∣)− (
⌊p
2

⌋
+
∣∣N ∩ {⌊p2⌋+ 1

}∣∣)
= 1− 2

∣∣N ∩ {⌊p2⌋+ 1
}∣∣ .

This completes the proof. �

Note that is p is odd, the value of d−P
(⌈p

2

⌉)
− d−P

(⌊p
2

⌋)
is either 1 or −1.

We can then define three types of vertices as follows:
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Definition 8 Let P = P (p;N) be a pseudo-cyclic tournament. A vertex i ∈ V (P ), 0 ≤ i ≤
p− 1, is said to be:

1. an ascent-vertex if d−P (i+ 1) = d−P (i) + 1, that is, N ∩ {i+ 1, p− i} = ∅,
2. a descent-vertex if d−P (i+ 1) = d−P (i)− 1, that is, {i+ 1, p− i} ⊆ N , or

3. a plateau-vertex if d−P (i+ 1) = d−P (i), that is, |N ∩ {i+ 1, p− i}| = 1.

A pseudo-cyclic tournament P = P (p;N) is cyclic if and only if all its vertices have the same
indegree, which implies p is even and |N | = p

2 , and the set N is such that i ∈ N if and only
p+ 1− i /∈ N . In other words:

Observation 9 A pseudo-cyclic tournament P = P (p;N) is cyclic if and only if every vertex
i ∈ V (P ), 0 ≤ i ≤ p− 1, is a plateau-vertex.

Moreover, we have the following:

Observation 10 Let P c = (p;N c) be the converse pseudo-cyclic tournament of P = (p;N),
that is, N c = {1, . . . , p} \N . If i is an ascent-vertex (resp. a descent-vertex, a plateau-vertex)
in P then i is a descent-vertex (resp. an ascent-vertex, a plateau-vertex) in P c.

This observation directly follows from the fact that d−P c(i) = p− d−P (i) for every vertex i.
We will denote by α(P ), δ(P ) and π(P ) the number of ascent-vertices, descent-vertices and

plateau-vertices in σ(P ), respectively. Moreover, according to the three above types of vertices,
we define three types of subsequences of the indegree sequence σ(P ):

Definition 11 Let P = P (p;N) be a pseudo-cyclic tournament. A sequence of k ≥ 2 consecu-
tive vertices (i, . . . , i+ k − 1), i ≤ n− k + 1, of P is called

1. an ascent of size k if d−P (i+ j + 1) = d−P (i+ j) + 1 for every j, 0 ≤ j ≤ k − 2,

2. a descent of size k if d−P (i+ j + 1) = d−P (i+ j)− 1 for every j, 0 ≤ j ≤ k − 2,

3. a plateau of size k if d−P (i+ j + 1) = d−P (i+ j) for every j, 0 ≤ j ≤ k − 2.

Note here that an ascent, a descent or a plateau of size k contains k − 1 ascent-vertices,
descent-vertices or plateau-vertices, respectively.

Example 12 The pseudo-cyclic tournament P = P (8; {2, 4, 5}) is depicted on Figure 1(a) (only
arcs corresponding to negative connectors are drawn, every missing arc is thus directed from
left to right). The indegree sequence of P is given by

σ(P ) = (3, 4, 4, 5, 4, 3, 4, 4, 5)

and is represented by the (centrally symmetric) indegree path of P depicted on Figure 1(b). We
then have π(P ) = 2, δ(P ) = 2 and α(P ) = 4.

The number of descent-vertices and the number of plateau-vertices are related to the cardi-
nality of the set N as follows:

Proposition 13 For every pseudo-cyclic tournament P = P (p;N),

δ(P ) +
1

2
π(P ) = |N |.
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0 1 2 3 4 5 6 7 8

(a) The pseudo-tournament P (8; {2, 4, 5})

i

d−P (i)

2 4 6 8

3

5

(b) The indegree path of P (8; {2, 4, 5})

Figure 1: The pseudo-tournament P (8; {2, 4, 5}) and its indegree path

Proof. If N = ∅ then σ(P ) = (0, 1, . . . , p) (P is transitive), so that δ(P ) = π(P ) = 0 and we
are done.

Otherwise, let N = {a1, . . . , aq}, so that |N | = q ≥ 1. We claim that each ai generates
either a descent-vertex or two plateau-vertices. Indeed, for each ai, either p+ 1−ai 6∈ N , which
implies that both vertices ai−1 and p−ai are plateau-vertices, or p+1−ai ∈ N , which implies
that ai − 1 is a descent-vertex. We thus get |N | = δ(P ) + 1

2π(P ), as required. �

The following proposition shows that vertices with same indegree in a pseudo-cyclic tourna-
ment are necessarily “not too far” from each other:

Proposition 14 Let P = P (p;N) be a pseudo-cyclic tournament. If i and j are two vertices
of P with i < j and d−P (i) = d−P (j) then:

1. if 0 ≤ i < j ≤
⌊p
2

⌋
or
⌈p
2

⌉
≤ i < j ≤ p, then j ≤ i+ |N |,

2. if 0 ≤ i ≤
⌊p
2

⌋
< j ≤ p, then j ≤ i+ 2|N |.

Proof. Let i and j be such that 0 ≤ i < j ≤
⌊p
2

⌋
and j > i+ |N |. By Proposition 6, we have

d−P (j)− d−P (i) = j + |N ∩ {j + 1, . . . , p− j}|)− i− |N ∩ {i+ 1, . . . , p− i}|)
= j − i− |N ∩ ({i+ 1, j} ∪ {p− j + 1, p− i}) |
> |N | − |N | = 0.

Therefore, d−P (i) 6= d−P (j). Since the indegree path of P is centrally symmetric, the result also
holds when

⌈p
2

⌉
≤ i < j ≤ p.

Suppose now that 0 ≤ i ≤
⌊p
2

⌋
< j ≤ p and j > i+ 2|N |. By Proposition 6, we have

d−P (j)− d−P (i) = j − |N ∩ {p− j + 1, . . . , j}|)− i− |N ∩ {i+ 1, . . . , p− i}|)
= j − i− (|N ∩ {p− j + 1, . . . , j}|+ |N ∩ {i+ 1, . . . , p− i}|)
> 2|N | − (|N |+ |N |) = 0.
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Again, we get d−P (i) 6= d−P (j). �

Finally, a property that will be useful in the sequel is the following:

Proposition 15 Let P = P (p;N) be a pseudo-cyclic tournament. If a vertex i is fixed by every
automorphism of P , then the vertex p− i is also fixed by every automorphism of P .

Proof. Suppose to the contrary that i is fixed by every automorphism of P and that there
exists an automorphism φ of P such that φ(p− i) 6= p− i.

Let φ∗ : V (P ) −→ V (P ) be the mapping defined by φ∗(i) = p− φ(p− i) for every i ∈ V (P ).
We claim that φ∗ ∈ Aut(P ). Let ij be an arc in P with i > j, that is i − j ∈ N . We then

have
φ∗(i)− φ∗(j) = p− φ(p− i)− p+ φ(p− j) = φ(p− j)− φ(p− i).

Since p− j > p− i and p− j−p+ i = i− j ∈ N , (p− j)(p− i) is an arc in P . Since φ ∈ Aut(P ),
φ(p− j)φ(p− i) is an arc in P .

Suppose first that φ(p− j) > φ(p− i), which implies φ(p− j)− φ(p− i) ∈ N . In that case
φ∗(j) = p− φ(p− j) < p− φ(p− i) = φ∗(i) and, since φ∗(i)− φ∗(j) = φ(p− j)− φ(p− i) ∈ N ,
φ∗(i)φ∗(j) is an arc in P .

Suppose now that φ(p− j) < φ(p− i), which implies φ(p− i)− φ(p− j) /∈ N . In that case
φ∗(i) = p− φ(p− i) < p− φ(p− j) = φ∗(j) and, since φ∗(j)− φ∗(i) = φ(p− i)− φ(p− j) /∈ N ,
φ∗(i)φ∗(j) is an arc in P .

The case of an arc ij with i < j is similar, and thus φ∗ ∈ Aut(P ).
We then have φ∗(i) = p − φ(p − i) 6= i, contradicting the fact that i is fixed by every

automorphism of P . �

This immediately gives the following:

Corollary 16 Let P = P (p;N) be a pseudo-cyclic tournament. If all vertices i ≤
⌊p
2

⌋
of P are

fixed by every automorphism of P then P is rigid.

4 Cyclic tournaments satisfying Albertson-Collins

Conjecture

In this section, we will prove that several classes of cyclic tournaments T (2p + 1;S) satisfy
Albertson-Collins Conjecture. We first propose a few sufficient conditions for a cyclic tourna-
ment to satisfy Albertson-Collins Conjecture and then consider several specific classes of cyclic
tournaments, depending on the structure of the set S of connectors.

4.1 Simple sufficient conditions

By Proposition 5, for every nontrivial λ∗-preserving automorphism φ of T = T (2p+ 1;S), none
of T0,p and Tp+1,2p has a unique orbit with respect to φ. Using this property, we can prove the
following:

Lemma 17 The cyclic tournament T = T (2p + 1;S) satisfies Albertson-Collins Conjecture
whenever one of the following conditions is satisfied:

1. Aut(T ) is of order 2p+ 1,

2. p is even, |S−| = p
2 , p+ 1− s /∈ S− for every s ∈ S−, and |Aut(T0,p)| = p+ 1,

3. p is odd, |S− \ {p}| = p−1
2 , p− s /∈ S− for every s ∈ S−, and |Aut(Tp+1,2p)| = p.
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Proof. Recall that for every cyclic tournament Tn of order n, the n rotations of Tn form a
subgroup of Aut(Tn).

In Case 1, Aut(T ) contains only rotations, so that λ∗ is clearly distinguishing. In Case 2, T0,p
is a cyclic tournament and every automorphism of T0,p is a rotation. Therefore, the restriction
φ1 to T0,p of any λ∗-preserving automorphism φ of T is a rotation and thus φ1 = Id. The result
then follows by Proposition 5. Case 3 is similar, using Tp+1,2p instead of T0,p. �

Let T be a tournament. We denote by Vd(T ), d ≥ 0, the set of vertices of T with indegree d.
Since any automorphism maps every vertex to a vertex with same degree, we have the following:

Lemma 18 Let P = P (n;N) be a pseudo-cyclic tournament. If the subtournament P [Vd(P )]
of P , induced by Vd(T ), is rigid for every d, d ≥ 0, then P is rigid.

This lemma directly gives the following results:

Theorem 19 Let T = T (2p + 1;S) be a cyclic tournament, P1 = T0,p and P2 = Tp+1,2p.
If P1[Vd(P1)] is rigid for every d, or P2[Vd(P2)] is rigid for every d, d ≥ 0, then T satisfies
Albertson-Collins Conjecture.

Proof. The result directly follows from Lemma 18 and Proposition 3. �

Theorem 20 Let T = T (2p + 1;S) be a cyclic tournament with S− 6= ∅ and let min(S−)
denote the smallest negative connector of S. If min(S−) ≥ 2|S−| then T satisfies Albertson-
Collins Conjecture.

Proof. Consider the pseudo-cyclic subtournament P = T0,p. By Proposition 14, we know that
if two vertices i and j, i < j, have the same indegree in P then j − i ≤ 2|S−|. Since min(S−) ≥
2|S−|, we get that the subtournament P [Vd(P )] is either transitive or almost transitive, and
thus rigid, for every d, d ≥ 0. The result then follows by Theorem 19. �

4.2 Cyclic tournaments with few negative connectors

We consider in this subsection the case of cyclic tournaments with at most two negative con-
nectors. We prove that every such tournament satisfies Albertson-Collins Conjecture.

Theorem 21 If T = T (2p + 1;S) is a cyclic tournament with p ≥ 2 and |S−| ≤ 2 then T
satisfies Albertson-Collins Conjecture.

Proof. We will prove that one of the two subtournaments P1 = T0,p or P2 = Tp+1,2p is rigid, so
that the result follows by Proposition 3.

If S− = ∅ then P1 is transitive and thus rigid.
If |S−| = 1, say S− = {a}, then, by Proposition 6, the indegree of any vertex i of P1 is as

follows:

d−P (i) =


i if a /∈ {i+ 1, . . . , p− i} and 0 ≤ i ≤

⌊p
2

⌋
,

i+ 1 if a ∈ {i+ 1, . . . , p− i} and 0 ≤ i ≤
⌊p
2

⌋
,

p− d−P (p− i) otherwise.

Therefore, d−(i) = d−(j), i < j ≤
⌊p
2

⌋
, if and only if j = i + 1 and j = a. If a 6=

⌊p
2

⌋
then the

number of vertices in P1 with degree d is at most 2 for every d. In that case, P1 satisfies the
conditions of Lemma 18 and is thus rigid. If a =

⌊p
2

⌋
the same property holds except if p is even

(in that case, we have |V p
2
(P1)| = 3 and |Vd(P1)| = 1 for every d 6= p

2). But then, P2 satisfies

the conditions of Lemma 18 (since p− 1 is odd) and we are done too.
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Assume now that |S−| = 2 and let S− = {a1, a2}. If p = 2 then P2 has order 2 and is thus
rigid. If p = 3 then either S− = {1, 2}, S− = {1, 3} or S− = {2, 3}. It is then easily checked
that |V1(P1)| = |V2(P1)| = 2 in all cases, so that P1 satisfies the conditions of Lemma 18 and
we are done.

Suppose thus that p > 3 and, moreover, that p is even (if p is odd we simply consider P2

instead of P1). By Proposition 13, we know that δ(P1) + 1
2π(P1) = 2. We thus have three cases

to consider:

1. δ(P1) = 2 and π(P1) = 0.
In that case, the sequence σ(P ) has no plateau and exactly two descent-vertices, say d1 and
d2. Since σ(P1) is centrally symmetric and p is even, we necessarily have d2 = p− d1 − 1
which implies in particular that the difference d2 − d1 is necessarily odd.

If d2 − d1 = 1, we necessarily have d2 = p
2 (see Figure 2(a)). Moreover, since p > 3, the

vertex 0 cannot be a descent-vertex (this would imply p
2 = 1) and thus 1 /∈ S−. The only

set Vd(P1) containing more than two elements is thus V p
2
(P1) = {p2−2, p2 ,

p
2 +2}. But since

the vertex p
2 − 1 is fixed by every automorphism of P1 and vertices p

2 − 2 and p
2 disagree

on p
2 − 1 (as 1 /∈ N), p

2 − 2 and p
2 are also fixed so that P1 is rigid by Corollary 16.

If d2 − d1 > 3 (see Figure 2(b)), then every set Vd(P1) contains at most two elements and
Lemma 18 again allows us to conclude.

Suppose finally that d2−d1 = 3 (see Figure 2(c)). This case is similar to the case d2−d1 = 1:
again, the only set Vd(P1) containing more than two elements is V p

2
(P1) = {p2 −2, p2 ,

p
2 +2}

while the vertex p
2 − 1 is fixed by every automorphism of P1 and vertices p

2 − 2 and p
2

disagree on p
2 − 1. Again, P1 is rigid thanks to Corollary 16.

2. δ(P1) = 1 and π(P1) = 2.
Since δ(P1) = 1, we cannot have two consecutive descent-vertices in P1. Therefore, since
σ(P1) is centrally symmetric, if i is a descent-vertex then p−(i+1) is also a descent-vertex.
As δ(P1) = 1, we must have i = p− (i+ 1), in contradiction with our assumption on the
parity of p. Hence, this case cannot happen.

3. δ(P1) = 0 and π(P1) = 4.
Since p is even and σ(P1) is centrally symmetric, we have four possibilities: (a) P1 contains
four plateaus of size 2, (b) P1 contains two plateaus of size 3, (c) P1 contains one plateau
of size 3 (centered at p

2) and two plateaus of size 2, or (d) P1 contains a unique plateau of
size 5 (centered at p

2), see Figure 3(a), (b), (c) or (d), respectively.

(a) If P1 contains four plateaus of size 2, then P1 satisfies the conditions of Lemma 18
and we are done.

(b) If P1 contains two plateaus of size 3, then the plateau-vertices are necessarily of the
form i, i + 1, p − i − 2 and p − i − 1, with i ≤ p

2 − 3, so that N = {a1, a2}, with
a1 ∈ {i + 1, p − i}, a2 ∈ {i + 2, p − i − 1}, and d−P1

(i) = 2 + i. We then have
V2+i(P1) = {i, i + 1, i + 2} and all other sets Vd(P1), 2 ≤ d ≤ p

2 , d 6= 2 + i, are
singletons.
If i > 0 and i + 1 ∈ N then, since i /∈ N , vertices i and i + 1 disagree on 0. Since
vertex 0 is fixed by every automorphism of P1, i and i+ 1 cannot belong to the same
orbit and thus, by Corollary 16, P1 is rigid. If i > 0 and p− i ∈ N , we get the same
conclusion since, in that case, either i+2 ∈ N , which implies that i and i+2 disagree
on 0, or p− i− 1 ∈ N , which implies, since p− i− 2 /∈ N , that i and i+ 2 disagree on
p (and p is fixed by every automorphism of P1). Suppose finally that i = 0. Since p is
even, the vertex 3 is not a plateau-vertex and thus is fixed by every automorphism of
P1. If 0, 1 and 2 disagree on 3, these three vertices cannot belong to the same orbit
and P1 is rigid thanks to Corollary 16. Otherwise, since 3 cannot be an in-neighbour
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i

d−P (i)

d2d1

2

p− 2

(a) δ(P1) = 2, π(P1) = 0, d2 − d1 = 1

i

d−P (i)

p
2

d1 d2

2

p− 2

(b) δ(P1) = 2, π(P1) = 0, d2 − d1 > 3

i

d−P (i)

p
2

d1 d2

2

p− 2

(c) δ(P1) = 2, π(P1) = 0, d2 − d1 = 3

Figure 2: Indegree paths for the proof of Theorem 21
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of 0, 1 and 2 (this would imply |N | ≥ 3), 3 is an out-neighbour of 0, 1 and 2, so that
1, 2 /∈ N , which implies that P1[{0, 1, 2}] is transitive, and P1 is rigid by Lemma 18.

(c) if P1 contains one plateau of size 3 and two plateaus of size 2, then the plateau-vertices
are necessarily of the form i, p

2−1, p
2 and p−i−1, with i ≤ p

2−3, so that N = {a1, a2},
with a ∈ {i+1, p− i}, a2 ∈ {p2 ,

p
2 +1}, and d−P1

(p2) = p
2 . Therefore, the only set Vd(P1)

containing more than two elements is V p
2
(P1) = {p2 − 1, p2 ,

p
2 + 1}. Since N contains

either p
2 or p

2 + 1, vertices p
2 and p

2 + 1 disagree on 0. Since vertex 0 is fixed by every
automorphism of P1,

p
2 − 1, p

2 and p
2 + 1 are also fixed and thus, by Corollary 16, P1

is rigid.

(d) if P1 contains a unique plateau of size 5, then the plateau-vertices are necessarily p
2−2,

p
2 − 1, . . . , p

2 + 1, so that N = {a1, a2}, with a1 ∈ {p2 − 1, p2 + 2}, a2 ∈ {p2 ,
p
2 + 1}, and

d−P1
(p2) = p

2 . Moreover, if p > 4 then every set Vd(P1) except V p
2
(P1) is a singleton.

Suppose first that p > 4, so that 1 /∈ N (otherwise, this would imply 1 = p
2 − 1).

If {2, 3}∩N = ∅ (which happens in particular if p ≥ 10), the subtournament V p
2
(P1) is

either transitive or almost transitive, and thus rigid, so that P1 is rigid by Lemma 18
(this also follows from Theorem 20).
Suppose now that p ∈ {6, 8}, so that vertices 0 and p are fixed by every automorphism
of P1. If all vertices belonging to the plateau are fixed by every automorphism of P1

then P1 is rigid by Lemma 18. Otherwise, some of these vertices may form an orbit,
say O, of size 3 or 5. Considering the structure of the set N , we get that the vertex
0 has three out-neighbours and two in-neighbours in {p2 − 2, p2 − 1, p2 ,

p
2 + 1, p2 + 2}.

Therefore, the size of the orbit O must be 3. Moreover, since 0(p2 −x) is an arc if and
only if (p2 + x)p if an arc for every x ∈ {0, 1, 2}, we get that this orbit, if it exists, is
necessarily O = {p2 − 2, p2 ,

p
2 + 2}, and thus N = {p2 − 1, p2 + 1}. Moreover, O must

induce a 3-cycle in P1, which implies either 2 ∈ N and 4 /∈ N , or 2 /∈ N and 4 ∈ N .
This forces N = {4, 6} and thus {2, 3}∩N = ∅ for which we have seen before that P1

is rigid.
Suppose finally that p = 4. Without loss of generality, we can suppose that 1 /∈ N
(otherwise, we consider P c instead of P and we have |N c| = |N |, so that either
N = {2, 4} or N = {3, 4} and, in both cases, P1 is a cyclic tournament. Due to
our initial assumption on the parity of p, this case occurs either if T = T (9;N), in
which case P (4;N) = P1, or T = T (11;N), in which case P (4;N) = P2, so that
P1 = P (5;N).
In the former case, the pseudo-tournament P2 is then either P (3; {2}) or P (3; {3}),
respectively. In both cases, P2 is rigid since |N | = 1.
In the latter case, we will prove that P = P (5;N) is rigid. We consider two subcases,
according to the set N :

i. N = {2, 4}.
In that case, we have V2(P ) = {0, 2, 4} and V3(P ) = {1, 3, 5}. Since both sub-
tournaments P [V2(P )] and P [V3(P )] are transitive, P is rigid by Lemma 18.

ii. N = {3, 4}.
In that case, we have V2(P ) = {0, 3, 4} and V3(P ) = {1, 2, 5}. Again, both sub-
tournaments P [V2(P )] and P [V3(P )] are transitive, P is rigid by Lemma 18.

This completes the proof. �

For proving Theorem 21, we showed that whenever |S−| ≤ 2, at least one of the two subtour-
naments T0,p or Tp+1,2p of the cyclic tournament T = T (2p+ 1;S) is rigid. It should be noticed
that this property does not hold in general when |S−| ≥ 3, as shown by the cyclic tournament
T = T (13; {2, 5, 6}) given in Example 4.
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(a) Four plateaus of size 2
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d−P (i)
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p
2

(c) Two plateaus of size 2
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p
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(d) One plateau of size 5

Figure 3: Indegree paths for the proof of Theorem 21 (Cont.)
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Since any tournament T is isomorphic to its converse, Theorem 21 gives the following:

Corollary 22 If T = T (2p + 1;S) is a cyclic tournament, such that |S−| ≥ p − 1, then T
satisfies Albertson-Collins Conjecture.

4.3 The set S− forms an interval

Observe first the following easy result:

Theorem 23 For every p ≥ 1, if S = {1, . . . , p} or S = {1, . . . , p− 1} then the cyclic tourna-
ment T (2p+ 1;S) satisfies Albertson-Collins conjecture.

Proof. This directly follows from Theorem 21 since we have either |S−| = 0 or |S−| = 1. �

In fact, we can prove that whenever the set S− of negative connectors forms an interval of
integers, the corresponding cyclic tournament T (2p+1;S) satisfies Albertson-Collins Conjecture.

We first prove two lemmas. The first one says that for every pseudo-cyclic tournament P ,
if vertices 0, . . . , i − 1 are fixed by every automorphism of P , i is the first vertex of a plateau
whose corresponding negative connectors form an interval and every vertex outside the plateau
having the same indegree as the vertices of the plateau is fixed by every automorphism of P ,
then all vertices of the plateau are also fixed by every automorphism of P .

Lemma 24 Let P = P (p;N) be a pseudo-cyclic tournament, and i a vertex of P with i < p
2 ,

satisfying all the following conditions:

(i) every vertex j, 0 ≤ j < i, is fixed by every automorphism of P ,

(ii) i− 1 is an ascent vertex,

(iii) (i, i+ 1, . . . , i+ k − 1) is a plateau of size k ≥ 2 such that either

(a) i+ k − 1 < p
2 and either [i+ 1, i+ k − 1] ⊆ N , or [p− i− k + 2, p− i] ⊆ N , or

(b) i+ k − 1 > p
2 and either [i+ 1, p2 ] ⊆ N , or [p2 + 1, p− i] ⊆ N ,

(iv) |Vd(P )| ≥ k, for d = d−P (i), and, if k > |Vd(P )|, every vertex in Vd(P )\{i, i+1, . . . , i+k−1}
is fixed by every automorphism of P .

Then, every vertex in {i, i+ 1, . . . , i+ k − 1} is fixed by every automorphism of P .

Proof. Suppose that P and i satisfy the conditions of the lemma. According to condition (iv),
it is enough to prove that no two vertices in {i, i+ 1, . . . , i+k−1} can belong to the same orbit
with respect to any automorphism of P . Observe that i /∈ N since i− 1 is an ascent-vertex.

We consider two cases, according to the position of the plateau:

1. i+ k − 1 < p
2 .

We consider two subcases, depending on the corresponding interval of negative connectors:

(a) [i+ 1, i+ k − 1] ⊆ N .
In that case, P contains arcs 0i, (i + 1)0, . . . , (i + k − 1)0, so that i and all other
vertices of the plateau disagree on 0, and thus i cannot belong to the same orbit of
another vertex of the plateau with respect to any automorphism of P . Similarly, for
every j = i+ 1, . . . , i+k−1 (in that order), j and vertices j+ 1, . . . , i+k−1 disagree
on j − i (which is fixed by every automorphism of P ), so that j cannot belong to the
same orbit of another vertex of the plateau with respect to any automorphism of P .
Therefore, all vertices of the plateau are fixed by every automorphism of P .
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(b) [p− i− k + 2, p− i] ⊆ N .
If N contains no negative connector a < i, then the subtournament induced by the
plateau is transitive (since we then have min(N) > i + k − 1), so that all vertices of
the plateau are fixed by every automorphism of P .
Otherwise, let a be the largest negative connector such that a < i. We then have
[a + 1, i + k − 1] ∩N = ∅, so that i and all other vertices of the plateau disagree on
i − a, and thus i cannot belong to the same orbit of another vertex of the plateau
with respect to any automorphism of P Similarly, for every j = i + 1, . . . , i + k − 1
(in that order), j and vertices j + 1, . . . , i+ k− 1 disagree on j − a (which is fixed by
every automorphism of P ), so that cannot belong to the same orbit of another vertex
of the plateau with respect to any automorphism of P . Therefore, all vertices of the
plateau are fixed by every automorphism of P .

2. i+ k − 1 > p
2 .

In the case, p is necessarily even. Since σ(P ) is centrally symmetric, we have (i, i+1, . . . , i+
k − 1) = (p2 − q, . . . ,

p
2 + q), for some q ≥ 1.

If
[p
2 − q + 1, p2

]
⊆ N then, using the same proof as in Case 1a above, we get that no two

vertices in {p2 − q, . . . ,
p
2} can belong to a same orbit with respect to any automorphism

of P . Symmetrically, starting with vertex p instead of vertex 0 (recall that p− j, j ≥ 0, is
fixed whenever j is fixed, by Proposition 15), we can prove similarly that no two vertices
in {p2 , . . . ,

p
2 + q} can belong to a same orbit with respect to any automorphism of P .

Therefore, no vertex of the plateau can belong to an orbit of size at least 3, which implies
that every vertex in {p2 − q, . . . ,

p
2 + q} is fixed by every automorphism of P and we are

done.

If
[p
2 + 1, p2 + q

]
⊆ N then we proceed as in Case 1b above: if the vertices of the plateau do

not induce a transitive tournament then (i) using the largest negative connector a < p
2 −q,

we get that no two vertices in {p2 − q, . . . , p2} can belong to a same orbit with respect
to any automorphism of P , and (ii) symmetrically, using the smallest negative connector
a′ > p

2 + q, we get that no two vertices in {p2 , . . . ,
p
2 + q} can belong to a same orbit with

respect to any automorphism of P and thus, again, every vertex in {p2 − q, . . . ,
p
2 + q} is

fixed by every automorphism of P .

This concludes the proof. �

The second lemma says that every pseudo-cyclic tournament containing either ascent-vertices
and no descent-vertices, or descent-vertices and no ascent-vertices, is rigid whenever every
plateau, if any, is produced by an interval of negative connectors.

Lemma 25 If P = P (p;N) is a pseudo-cyclic tournament such that

(i) α(P ) + δ(P ) > 0,

(ii) α(P )δ(P ) = 0,

(iii) for every plateau (i, i+1, . . . , i+k−1) of size k ≥ 3, with i+k−1 < p
2 , either [i+1, i+k−1] ⊆

N , or [p− i− k + 2, p− i] ⊆ N , and

(iv) for every plateau (p2−q, . . . ,
p
2 +q), p even, q ≥ 1, of size 2q+1, either

[p
2 − q + 1, p2

]
⊆ N ,

or
[p
2 + 1, p2 + q

]
⊆ N ,

then P is rigid.

Proof. If π(P ) = 0, then P is a transitive tournament and is thus rigid.
Assume now that π(P ) > 0 and suppose first that P has no descent-vertices, that is δ(P ) = 0

and α(P ) > 0. We will prove by induction on i that every vertex i ≤
⌊p
2

⌋
is fixed by every

automorphism of P , so that the result follows by Corollary 16.
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If 0 is an ascent-vertex or the first vertex of a plateau of size 2, then 0 is fixed by every
automorphism of P . If 0 is the first vertex of a plateau (0, . . . , k − 1) of size k ≥ 3, then
the subtournament induced by this plateau is transitive since we have either [1, k − 1] ∈ N or
[p− k + 2, p] ∈ N . Therefore, all vertices 0, . . . , k − 1 are fixed by every automorphism of P .

Suppose now that all vertices 0, . . . , i− 1 <
⌊p
2

⌋
are fixed by every automorphism of P . If i

is an ascent-vertex then i is fixed by every automorphism of P , otherwise i is the first vertex of
a plateau and the result follows from Lemma 24.

The case α(P ) = 0 and δ(P ) > 0 follows from Observation 10, considering P c instead of P
(we then have δ(P c) = 0 and α(P c) > 0). �

Note that conditions (iii) and (iv) in Lemma 25 are both necessary. For instance, the
pseudo-cyclic tournament P = P (5; {2, 5}) has only ascent-vertices and plateau-vertices (we
have σ(P ) = (2, 2, 2, 3, 3, 3)) while (0, 1, 2)(3, 4, 5) is an automorphism of P so that P is not
rigid, and thus condition (iii) is necessary. On the other hand, the pseudo-cyclic tournament
P = P (8; {2, 3, 5}) has only ascent-vertices and plateau-vertices, but a unique central plateau
(we have σ(P ) = (3, 4, . . . , 4, 5)) while (1, 4, 7) is an automorphism of P so that P is not rigid,
and thus condition (iv) is necessary.

We are now able to prove the following:

Theorem 26 If T = T (2p+ 1;S) is a cyclic tournament, such that S− = [a, b], 1 ≤ a ≤ b ≤ p,
then T satisfies Albertson-Collins Conjecture.

Proof. We will prove that P = P (p; [a, b]) is rigid whenever p is even. Therefore, considering
either T0,p or Tp+1,2p depending on the parity of p, the result will follow by Proposition 3.

If b ≤ a+ 1, the result follows from Theorem 21, so that we can assume b ≥ a+ 2. Suppose
now that p

2 ≥ b or p
2 < a. If [a, b] 6=

[
1, p2
]

and [a, b] 6=
[p
2 + 1, p

]
then T0,p is rigid by Lemma 25.

Otherwise, Tp+1,2p is rigid by Lemma 25 (since σ(Tp+1,2p) = (p2 , . . . ,
p
2 ,

p
2 − 1, . . . , p2 − 1) if

[a, b] =
[
1, p2
]
, and σ(Tp+1,2p) = (p2 − 1, . . . , p2 − 1, p2 , . . . ,

p
2) if [a, b] =

[p
2 + 1, p

]
).

From now on, we thus assume that a ≤ p
2 < b. We consider three subcases, depending on

the size of [a, b].

1. b− a+ 1 > p
2 .

In that case, d−P (0) = b − a + 1 > p − (b − a + 1) = d−P (p). We consider three subcases,
corresponding to the three possible forms of the indegree path of P .

(a) a+ b = p+ 1.
In that case, no vertex in P can be a plateau-vertex, and thus the indegree path of P
contains an ascent, a descent and an ascent (see Figure 4(a)). Therefore, each set
Vd(P ) has cardinality at most 2 and P is rigid by Lemma 18.

(b) a = 1 or b = p.
In that case, vertices 0, . . . , p− b− 1 (if a = 1) or 0, . . . , a− 1 (if p = b) are plateau-
vertices, and thus the indegree path of P contains a plateau of size p− b+ 1 or a+ 1,
a descent and a plateau of size p− b+ 1 or a+ 1 (see Figure 4(b) for the case a = 1).
In both cases, the subtournaments induced by these plateaus are transitive, so that
every vertex of P is fixed by every automorphism of P and P is rigid by Corollary 16.

(c) 1 < a, b < p and a+ b 6= p+ 1.
In that case, the indegree path of P contains an ascent, a plateau, a descent, a plateau
and an ascent (see Figure 4(c)). Every vertex not belonging to a plateau belongs to
a set Vd(P ) with cardinality 2 and is thus fixed by every automorphism of P . By
Lemma 24, every vertex belonging to a plateau is also fixed by every automorphism
of P . Using now Corollary 16, we get that P is rigid.
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Figure 4: Indegree paths for the proof of Theorem 26, case b− a+ 1 > p
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2. b− a+ 1 = p
2 .

Note first that since a ≤ p
2 < b, we necessarily have a > 1 and b < p. The indegree path

of P contains an ascent, possibly a plateau, a descent, possibly a plateau and an ascent.
More precisely, σ(P ) contains a plateau if and only if a+b 6= p+1 (see Figure 5(a) and (b)).
Moreover, since d−P (0) = d−P (p) = p

2 , we get V p
2
(P ) = {0, p2 , p} (and the subtournament

induced by V p
2
(P ) is a 3-cycle). Only two other sets Vd(P ) may have cardinality at least 3,

namely those two sets corresponding to the two plateaus.

We consider three subcases, depending on the values of a and b.

(a) a > 2 and b < p− 1.
We first prove that every vertex in V p

2
(P ) = {0, p2 , p} is fixed by every automorphism

of P . Since the vertex 1 is an ascent-vertex with d−P (1) = p
2 + 1 and |V p

2
+1| = 2, it is

fixed by every automorphism of P . Since p− 1 /∈ [a, b], vertices 0 and p disagree on 1,
so that 0 and p cannot belong to a same orbit and we are done.
Moreover, by Lemma 24, all vertices of the first plateau (whenever a + b 6= p + 1)
are fixed by every automorphism of P . Hence, all vertices i ≤ p

2 are fixed by every
automorphism of P and the result follows by Corollary 16.

(b) b = p− 1.
In that case, we thus have a = p

2 . The first plateau contains vertices 1 to p
2−1 and thus

induces a transitive tournament, so that all its vertices are fixed by every automor-
phism of P . Now, since vertices p

2 and p disagree on p
2 − 1, the three vertices {0, p2 , p}

are all fixed by every automorphism of P and the result follows by Corollary 16.

(c) a = 2.
In that case, we thus have b = p

2 + 1. The first plateau contains vertices 1 to p
2 − 1

and is isomorphic to the pseudo-cyclic tournament PC = P (p2 − 2; [2, p2 − 2]). Since
PCc is rigid by Theorem 21, PC is rigid. Now, since vertices 0 and p disagree on 1,
the three vertices {0, p2 , p} are all fixed by every automorphism of P and, again, the
result follows by Corollary 16.

3. b− a+ 1 < p
2 .

The indegree path of P contains an ascent, possibly a plateau (if a 6= p+ 1− b), a descent,
possibly a plateau and an ascent. If a ≤ p + 1 − b, the first vertex of the first plateau is
a−1 and its last vertex is p−b (so that there is no plateau if a = p+1−b). If a > p+1−b,
the first vertex of the first plateau is p− b and its last vertex is a− 1.

We will prove that every vertex of P is fixed by every automorphism of P . Note that
d−P (0) = b− a+ 1, so that d−P (p) = p− b+ a− 1 > d−P (0) since b− a+ 1 < p

2 .

We consider two subcases, depending on whether σ(P ) contains a plateau or not.

(a) a = p+ 1− b.
In that case, σ(P ) does not contain any plateau, the first vertex of the descent is a−1
and its last vertex is b. Moreover, d−P (a − 1) = b and d−P (b) = p − b. Let us consider
the vertex b. If d−P (b) = p− b ≥ b−a+1 = d−P (0) (see Figure 6(a)) then |Vp−b(P )| = 2
and thus b is fixed by every automorphism of P . If p− b > b− a+ 1 (see Figure 6(b))
then |Vp−b(P )| = 1 and thus, again, b is fixed by every automorphism of P .
Now, we claim that every set Vd(P ) with |Vd(P )| = 3 contains three fixed vertices.
Each such set is of the form {i, j, k}, i < j < k, with j + k = 2b. Then, j and k
disagree on b (since b− j = k− b < p− b, so that jb and bk are arcs in P ) and, as b is
fixed by every automorphism of P , i, j and k are also fixed by every automorphism
of P . The result then follows by Corollary 16.

(b) a 6= p+ 1− b.
In that case, the vertex a− 1 is either the first or the last vertex of the first plateau
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Figure 6: Indegree paths for the proof of Theorem 26, case b− a+ 1 < p
2
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and d−P (a − 1) = b or d−P (a − 1) = p − a + 1, respectively. Similarly, the vertex b is
either the first or the last vertex of the last plateau and d−P (b) = p−b or d−P (b) = a−1,
respectively.
We first claim that whenever 0 is fixed by every automorphism of P , all vertices
belonging to a set Vd(P ) with |Vd(P )| = 3 are also fixed by every automorphism of P .
Indeed, for any such set {i, j, k} with i < j < k, we have i < a−1 and a−1 < j < b, so
that i and j disagree on 0. Therefore, i, j and k are all fixed by every automorphism
of P .
We now consider three subcases, depending on the values of d−P (b) and d−P (0).

i. d−P (b) > d−P (0).
In that case (see Figure 7(a)), the vertex 0 is fixed by every automorphism of P ,
so that all vertices belonging to a set Vd(P ) with |Vd(P )| = 3 are also fixed by
every automorphism of P .
If a− 1 is the first vertex of the first plateau, let x > p

2 be the unique vertex with
d−P (x) = d−P (a − 1). We then have Vb(P ) = {a − 1, a, . . . , p − b, x}. Since a − 1
and x are the only in-neighbours of 0 in Vb(P ), both of them are fixed by every
automorphism of P . Therefore, by Lemma 24, every vertex belonging to the first
plateau is fixed by every automorphism of P .
Suppose now that a− 1 is the last vertex of the first plateau. Similarly, let x < p

2
be the unique vertex with d−P (x) = d−P (b), so that Va−1(P ) = {x, p−a+ 1, . . . , b}.
Since x is the unique out-neighbour of 0 in Va−1(P ) (as x < a and p− a+ 1 > a,
which gives Va−1(P ) ∩ S− = {p−a+1, . . . , b}), x is fixed by every automorphism
of P and, by Proposition 15, p − x is also fixed by every automorphism of P .
Therefore, by Lemma 24, every vertex belonging to the first plateau is fixed by
every automorphism of P .
The result then follows by Corollary 16.

ii. d−P (b) = d−P (0).
Suppose first that a−1 is the last vertex of the first plateau (that is, a > p+1−b),
so that b is the last vertex of the second plateau. In that case, the vertices
of the second plateau induce a transitive tournament and they all agree on 0.
Therefore, the subtournament induced by vertices of Vb−a+1(P ) is rigid, so that
all its vertices, and in particular 0, are fixed by every automorphism of P . Hence,
all vertices belonging to a set Vd(P ) with |Vd(P )| = 3 are also fixed by every
automorphism of P . By Proposition 15, all vertices of the first plateau are also
fixed by every automorphism of P and, again, the result follows by Corollary 16.

Suppose now that a−1 is the first vertex of the first plateau (that is, a < p+1−b),
so that b is the first vertex of the second plateau (see Figure 7(b)).
We first prove that the vertex 0 is fixed by every automorphism of P . Suppose
to the contrary that with respect to some automorphism φ of P , 0 belongs to
an orbit of size at least 3. Among the vertices of the second plateau, b is the
only in-neighbour of 0. Therefore, the orbit must be of size 3 (recall that the
subtournament induced by an orbit must be regular) and thus a 3-cycle b0x.
Note that since xb is an arc of P , we then have x − b ≥ a. Consider now the
set Vb−a+2 = {1, b − 1, p − a + 2}. The vertex 0 has only one in-neighbour in
Vb−a+2, namely b − 1, since b − 1 ∈ S−, 1 /∈ S− and p − a + 2 /∈ S− (since
p − a + 2 > b). On the other hand, b has at least two in-neighbours in Vb−a+2,
namely 1 (since b − 1 ∈ S−) and p − a + 2 (since p − a + 2 − b > x − b ≥ a and
p− a+ 2− b < p

2 < b). This implies that Vb−a+2 cannot be an orbit with respect
to φ, so that, in particular, 1 is fixed by φ. Now, note that 1 is an in-neighbour
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of x (since x− 1 ≥ b+a− 1 > b) and an out-neighbour of 0, a contradiction since
all vertices in {0, b, x} should agree on every vertex fixed by φ.
Therefore, 0 is fixed by every automorphism of P , so that all vertices belonging
to a set Vd(P ) with |Vd(P )| = 3 are also fixed by every automorphism of P .
By Proposition 15, p is also fixed by every automorphism of P and thus, by
Lemma 24, every vertex of the first plateau is fixed by every automorphism of P .
The result then follows by Corollary 16.

iii. d−P (b) < d−P (0).
Suppose first that a−1 is the last vertex of the first plateau (that is, a > p+1−b),
so that b is the last vertex of the second plateau (see Figure 7(c)). In that
case, the vertices of each plateau induce a transitive tournament and thus all
vertices of these plateaus are fixed by every automorphism of P . Consider the set
Vb−a+1 = {0, x, y} = {0, p−b+a−1, 2b−2a+2}. Vertices 0 and p−b+a−1 disagree
on p−a+1 (since p−a+1 ∈ S− and q = p−a+1−(p−b+a−1) < p−b < a−1 so
that q /∈ S−), which is fixed by every automorphism of P , and thus 0, p−b+a−1
and 2b− 2a+ 2 are all fixed by every automorphism of P .
Therefore, all vertices belonging to a set Vd(P ) with |Vd(P )| = 3 are also fixed by
every automorphism of P , and the result follows by Corollary 16.

Suppose now that a−1 is the first vertex of the first plateau (that is, a < p+1−b),
so that b is the first vertex of the second plateau.
We first prove that the vertex 0 is fixed by every automorphism of P . Suppose
to the contrary that with respect to some automorphism φ of P , 0 belongs to an
orbit of size 3, say a 3-cycle 0xy, with a < x < b and y > b + 1, so that x0, 0y
and yx are arcs in P , implying in particular a ≤ y − i ≤ b. Consider now the
set Vb−a+2 = {1, x − 1, y + 1}. Since 1 < a, a ≤ x − 2 (as a − 1 < p

2 < x) and
x < b, we get that 01, x1, (x− 1)0 and (x− 1)x are all arcs in P , so that 1 and
x − 1 disagree on the orbit of 0. This implies that Vb−a+2 cannot be an orbit
with respect to φ, so that, in particular, 1 is fixed by φ. Now, note that 1 is an
in-neighbour of y (since y − 1 > b) and an out-neighbour of 0, a contradiction
since all vertices in {0, x, y} should agree on every vertex fixed by φ.
Therefore, 0 is fixed by every automorphism of P , so that all vertices belonging
to a set Vd(P ) with |Vd(P )| = 3 are also fixed by every automorphism of P . By
Lemma 24, every vertex of the first plateau is fixed by every automorphism of P
and the result follows by Corollary 16.

This concludes the proof. �

Again, since any tournament T is isomorphic to its converse, Theorem 26 gives the following:

Corollary 27 If T = T (2p + 1;S) is a cyclic tournament, such that S− = [1, a] ∪ [b, p], 1 ≤
a ≤ b ≤ p, then T satisfies Albertson-Collins Conjecture.

4.4 Paley tournaments

Let n be a prime, n ≡ 3 (mod 4), so that n = 2p + 1 with p odd. The Paley tournament is
the cyclic tournament QRn = T (n;Sn) where S+

n is the set of non-zero quadratic residues of n.
That is, for every i, j, i < j, ij is an arc in QRn if and only if j − i is a non-zero square in Zn.
Paley tournaments are arc-transitive and the set Aut(QRn) is the set of mappings i 7→ ai + b,
where a, b ∈ Zn and a is a non-zero square. Since the number of non-zero squares in Zn is
p =

⌊
n
2

⌋
, we thus have |Aut(QRn)| = np.
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In [3], Albertson and Collins showed that the paley tournament QR7 satisfies their conjec-
ture. In fact, it is not difficult to see that every Paley tournament has distinguishing number 2.
In addition, we prove that Paley tournaments satisfy Albertson-Collins Conjecture:

Theorem 28 For every prime n, n ≡ 3 (mod 4), D(QRn) = 2. Moreover, QRn satisfies
Albertson-Collins Conjecture.

Proof. Let λ be the 2-labeling defined by λ(0) = λ(1) = 1 and λ(i) = 2 for every i ∈ Zn\{0, 1}.
We claim that λ is distinguishing, which implies D(QRn) = 2. Let φ : i 7→ ai + b be any λ-
preserving automorphism of QRn. Since the only two vertices with label 1 are 0 and 1, we
necessarily have φ(0) = 0 and φ(1) = 1, which gives b = 0 and a = 1, so that φ = Id and we
are done.

In order to prove that QRn satisfies Albertson-Collins Conjecture, we need to prove that
the canonical labeling λ∗ of QRn is also a distinguishing 2-labeling. Suppose to the contrary
that there exists a λ∗-preserving nontrivial automorphism φ : i 7→ ai + b, with a, b ∈ Zn and a
is a non-zero quadratic residue and let ` denote the order of φ.

Consider the action on V (QRn) of the group H = < φ > = {φk : 1 ≤ k ≤ `}. Note that |H|
divides |Aut(QRn)| = np and, since φ is λ∗-preserving, |H| divides p. Moreover, p cannot be
prime, since otherwise the subtournament T2 of QRn induced by vertices {p+ 1, . . . , 2p} would
have a unique orbit with respect to φ, in contradiction with Proposition 5.

We claim that we necessarily have b = 0. Assume to the contrary that b 6= 0 and let r be
the size of the orbit of 0 with respect to φ. We have φ(0) = b, φ2(0) = ab+ b and so on, so that

φr(0) = ar−1b+ ar−2b+ · · ·+ ab+ b = 0

and φr+1(0) = φ(0) = b. On one other hand, we have

φr+1(0) = arb+ ar−1b+ · · ·+ ab+ b = arb.

Therefore, arb = b and thus ar = 1. Since a is a non-zero quadratic residue in Zn, its order in
the multiplicative group Z∗n is p and thus p | r. Moreover, since φ is λ∗-preserving, we have r = p.
Hence, the subtournament T1 of QRn induced by vertices {0, . . . , p} contains a fixed vertex x
such that all vertices of the orbit of 0 agree on x, which implies either d+T1

(x) = 0 or d+T1
(x) = p

in contradiction with the definition of QRn since both sets {1, . . . , p} and {p+1, . . . , 2p} contain
non-zero quadratic residues.

We thus have b = 0, so that 0 is fixed by φ. Moreover, the orbit of 1 with respect to φ
is {1, a, a2, . . . , ap−1} (recall that the order of a in the multiplicative group Z∗n is p) and its
size is p. Since φ is λ∗-preserving, the orbit of 1 is thus {1, . . . , p}. Therefore, all vertices in
{1, . . . , p} agree on 0 and we obtain a contradiction as above. �

5 Discussion

In this paper, we proposed several sufficient conditions for a cyclic tournament to satisfy
Albertson-Collins Conjecture. Proposition 3 says that the cyclic tournament T = T (2p+ 1;S)
satisfies Albertson-Collins Conjecture whenever any of the subtournaments T0,p or Tp+1,2p is
rigid (however, this condition is not necessary, as shown by Example 4). Using this property,
we then got several sufficient conditions on the structure of the set S− of negative connectors
for at least one of these two subtournaments to be rigid.

We finally propose some directions for future research.

1. The main question following our work is obviously to prove, or disprove, Albertson-Collins
Conjecture.
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2. In [8], Collins introduced the notion of a determining set of a graph G, that is, a subset
X of V (G) such that, for every two automorphisms φ1, φ2 ∈ Aut(G), φ1 = φ2 whenever
φ1(x) = φ2(x) for every vertex x ∈ X. Albertson and Boutin proved in [2] that D(G) ≤ d
if and only if G has a determining set X with D(X) ≤ d− 1. Therefore D(G) = 2 if and
only if the subgraph of G induced by X is rigid.

For each cyclic tournament T of order 2p + 1 for which we proved Albertson-Collins
Conjecture, we exhibited a rigid determining set of size at most

⌈p
2

⌉
. We also proved that

every Paley tournament has a rigid determining set of size 2. In [21], Lozano proved that
every tournament contains a (not necessarily rigid) determining set of size

⌊p
3

⌋
.

It would thus be interesting to determine the minimal size of a rigid determining set in
a cyclic tournament satisfying Albertson-Collins Conjecture. Note here that proving that
every cyclic tournament contains such a rigid determining set would settle Albertson-
Collins Conjecture.

3. In [9, 10], Boutin also defined the cost of distinguishing a graph G such that D(G) = 2,
denoted ρ(G), as the minimum size of a label class in a 2-distinguishing labeling of G.
We proved in particular that ρ(QRn) = 2 for every Paley tournament QRn. It would
be interesting to determine ρ(T ) for every cyclic tournament T = T (2p + 1;S) satisfying
Albertson-Collins Conjecture, or to characterize cyclic tournaments T with ρ(T ) = 2.
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tinguishing Cartesian products of countable graphs. Discuss. Math. Graph Theory (2016),
in press.

[14] Michael Fisher and Garth Isaak. Distinguishing colorings of Cartesian products of complete
graphs. Discrete Math. 308 (2008), 2240–2246.

[15] Wilfried Imrich, Janja Jerebic and Sandi Klavžar. The distinguishing number of Cartesian
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