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Abstract

Surveys usually suffer from non-response, which decreases the effective sample size. Item non-

response is typically handled by means of some form of random imputation if we wish to preserve

the distribution of the imputed variable. This leads to an increased variability due to the

imputation variance, and several approaches have been proposed for reducing this variability.

Balanced imputation consists in selecting residuals at random at the imputation stage, in such

a way that the imputation variance of the estimated total is eliminated or at least significantly

reduced. In this work, we propose an implementation of balanced random imputation which

enables to fully eliminate the imputation variance. Following the approach in Cardot et al.

(2013), we consider a regularized imputed estimator of a total and of a distribution function,

and we prove that they are consistent under the proposed imputation method. Some simulation

results support our findings.

Key words: balanced imputation, cube method, distribution function, imputation mechanism, imputation

model, mean-square consistency, regularized estimator

1 Introduction

Even if survey staff do their best in order to maximize response, it is unavoidable that surveys will

suffer from some degree of non-response. This makes the effective sample size smaller, which results

in an increase of the variance of estimators. More importantly, the respondents usually differ from

the non-respondents with respect to the study variables. Therefore, unadjusted estimators will tend

to be biased. In order to reduce the so-called non-response bias, it is therefore necessary to define

estimation procedures accounting for non-response. Survey statisticians usually distinguish unit
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nonresponse from item nonresponse. The former occurs when all variables are missing for some

sampled unit, which may be due to a refusal to participate to the survey, or to the impossibility

to contact the sampled unit, for example. The latter occurs when some variables, but not all,

are missing for some sampled unit, which may be due to a refusal to answer to certain delicate

questions in the survey, or to the length of the questionnaire, for example. Unit non-response is

typically accounted for by reweighting estimators. Item non-response is typically handled by means

of some form of imputation, which consists in replacing missing values with artificial values in order

to reduce the bias and possibly control the variance due to non-response. In this paper, we are

interested in imputation procedures to treat item non-response.

Imputation methods may be classified into two broad classes: deterministic and random. Deter-

ministic imputation methods yield a fixed imputed value given the sample. For example, determin-

istic regression imputation consists in using a regression model to predict the missing value for a

non-respondent, making use of auxiliary information available for the whole sample, including non-

respondents. Deterministic regression imputation leads to an approximately unbiased estimator of

the total if the regression model is correctly specified. However, deterministic imputation tends to

distort the distribution of the imputed variable, and some form of random imputation is typically

used if we wish to preserve the distribution of the imputed variable. Random imputation methods

are closely related to deterministic imputation methods, except that a random term is added to the

prediction in order to mimic as closely as possible the relationship between the variable of interest

and the explanatory variables. The main drawback of random imputation methods is that they

lead to estimators with increased variability due to the imputation variance. In some cases, the

contribution of the imputation variance to the global variance may be large, resulting in potentially

inefficient estimators.

The data collected for a given survey are typically used to estimate a variety of parameters. The

survey is often primarily designed to estimate totals over a given population of interest. For ex-

ample, this may be the total biomass of living vegetation for a region in case of a forest survey

(Gregoire and Valentine, 2008, page 3), or the total of revenues and expenses inside categories of

firms in case of business surveys (Haziza et al., 2016). On the other hand, secondary analysts may

be interested in estimating more complex parameters, some of them being directly linked to the

population distribution function like the quantiles (Boistard et al., 2016). Therefore, a same vari-

able of interest is habitually used to estimate several parameters. A random imputation method

is needed if we wish to preserve the distribution of this variable, but the imputation mechanism

should be chosen so that the imputation variance is kept as small as possible for the estimation of

the total of the variable.
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In the literature, three general approaches for reducing the imputation variance have been con-

sidered. The fractional imputation approach consists of replacing each missing value with M ≥ 2

imputed values selected randomly, and assigning a weight to each imputed value (Kalton and Kish,

1981, 1984; Fay, 1996; Kim and Fuller, 2004; Fuller and Kim, 2005). It can be shown that the

imputation variance decreases as M increases. The second approach consists of first imputing the

missing values using a standard random imputation method, and then adjusting the imputed val-

ues in such a way that the imputation variance is eliminated; see Chen et al. (2000). The third

approach that we study consists of selecting residuals at random in such a way that the imputation

variance is eliminated (Kalton and Kish, 1981, 1984; Deville, 2006; Chauvet et al., 2011; Hasler

and Tillé, 2014).

In this work, we propose an implementation of balanced random imputation that makes it possible

to fully eliminate the imputation variance for the estimation of a total. Also, we propose regularized

imputed estimators of a total and of the distribution function, following the approach in Cardot et

al. (2013), and we establish their consistency. The paper is organized as follows. Our notations in

case of full response are defined in Section 2, and the principles of balanced sampling are briefly

reminded. The imputation model is presented in Section 3, along with the imputed estimators of

the total and of the distribution function. The regularized estimator of the model parameter is also

introduced. In Section 4, we describe the proposed exact balanced random imputation method.

We give an illustration on a small dataset, and we prove the consistency of the imputed estimator

of the total and of the imputed estimator of the distribution function. The results of a simulation

study are presented in Section 5. We draw some conclusions in Section 6. The proofs are deferred

to the Appendix.

2 Finite population framework

2.1 Notation

We consider a finite population U of size N with some variable of interest y. We are interested

in estimating some finite population parameter such as the total ty =
∑

k∈U yk or the population

distribution function

FN (t) = N−1
∑

k∈U

1(yk ≤ t) (2.1)

with 1(·) the indicator function.

In order to study the asymptotic properties of the sampling designs and estimators that we treat

below, we consider the asymptotic framework of Isaki and Fuller (1982). We assume that the pop-

ulation U belongs to a nested sequence {Ut} of finite populations with increasing sizes Nt, and that
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the population vector of values yUt = (y1t, . . . , yNt)
⊤ belongs to a sequence {yUt} of Nt-vectors.

For simplicity, the index t will be suppressed in what follows and all limiting processes will be taken

as t→ ∞.

A random sample S is selected in U by means of some sampling design p(·), which is a probability

distribution defined over the subsets of the population U . That is, we have

p(s) ≥ 0 for any s ⊂ U and
∑

s⊂U

p(s) = 1. (2.2)

We assume that the sampling design is of fixed size n, which means that a subset s has a probability

of selection equal to zero if this subset is not of size n. We note Ik for the sample membership

indicator, equal to 1 if the unit k is selected in the sample S and to 0 otherwise. We note IU =

(I1, . . . , IN )⊤ for the vector of sample indicators. Since the sampling design is of fixed size n, we

have

∑

k∈U

Ik = n. (2.3)

2.2 Inclusion probabilities

The probability for unit k to be included in the sample is denoted as πk. We note πU = (π1, . . . , πN )⊤

for the vector of inclusion probabilities. All the inclusion probabilities are assumed to be non-

negative, i.e. there is no coverage bias in the population. Since πk = Ep(Ik), with Ep the expecta-

tion with respect to the sampling design p(·), we obtain from equation (2.3) that

∑

k∈U

πk = n. (2.4)

We also denote by πkl the probability that units k and l are selected jointly in the sample.

In case of equal inclusion probabilities, we have πk = n/N for any unit k ∈ U . This occurs

for example if the sample is selected by means of simple random sampling without replacement.

Another customary choice consists in using inclusion probabilities proportional to some auxiliary

non-negative variable z1k, known for any unit k ∈ U . This leads to a so-called probability propor-

tional to size (π-ps) sampling design, which is used in some business surveys (e.g., Ohlsson, 1998).

In such case, we obtain from (2.4) that

πk = n
z1k

∑

l∈U z1l
. (2.5)

If some units exhibit a large value for the auxiliary variable z1k, equation (2.5) may lead to inclusion

probabilities greater than 1. In this case, these inclusion probabilities are set to 1, which means that
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the corresponding units are selected in the sample with certainty, and the inclusion probabilities

for the remaining units are computed by means of equation (2.5) restricted to the remaining units

(see Tillé, 2006, page 18).

In a situation of full response, a design-unbiased estimator for ty is the Horvitz-Thompson estimator

t̂yπ =
∑

k∈U

dkIkyk =
∑

k∈S

dkyk (2.6)

with dk = π−1
k the sampling weight, and an approximately unbiased estimator for FN (t) is

F̂N (t) =
1

N̂

∑

k∈S

dk1(yk ≤ t) with N̂ =
∑

k∈S

dk. (2.7)

2.3 Balanced sampling

Suppose that a q-vector xk of auxiliary variables is known at the design stage for any unit k ∈ U .

A sampling design p(·) is said to be balanced on xk if the vector IU of sample indicators is such

that

∑

k∈U

xk
πk
Ik =

∑

k∈U

xk. (2.8)

In other words, the sampling design is balanced on xk if for any possible sample, the Horvitz-

Thompson estimator of the total of the auxiliary variables exactly matches the true total.

Deville and Tillé (2004) introduced a sampling design called the cube method, which enables to

select balanced samples, or approximately balanced samples if an exact balancing is not feasible.

The cube method proceeds through a random walk from the vector πU of inclusion probabilities

to the vector IU of sample indicators. This random walk proceeds in two steps. At the end of the

first one called the flight phase (see Appendix A), we obtain a random vector ĨU = (Ĩ1, . . . , ĨN )⊤

such that

∑

k∈U

xk
πk
Ĩk =

∑

k∈U

xk, (2.9)

and such that Ĩk = 0 if the unit k is definitely rejected from the sample, Ĩk = 1 if the unit k is

definitely selected in the sample, and 0 < Ĩk < 1 if the decision for unit k remains pending. From

equation (2.9), the balancing is exactly respected at the end of the flight phase, but we do not

obtain a sample per se since the decision remains pending for some units. From Proposition 1 in

Deville and Tillé (2004), it can be shown that the number of such units is no greater than q, the

number of auxiliary variables. A second step called the landing phase is then applied on the set

of remaining units, in order to end the sampling while ensuring that the balancing equations (4.2)

remain approximately satisfied. This leads to the vector of sample indicators IU .
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3 Imputed estimators

In a situation of item non-response, the variable y is observed for a subsample of units only. We

note rk for a response indicator for unit k, and φk for the response probability of unit k. We note

nr the number of responding units, and nm the number of missing units. We assume that the units

respond independently. In case of simple imputation, an artificial value y∗k is used to replace the

missing yk and leads to the imputed version of the HT-estimator

t̂yI =
∑

k∈S

dkrkyk +
∑

k∈S

dk(1− rk)y
∗
k, (3.1)

and to the imputed version of the estimated distribution function

F̂I(t) =
1

N̂

{

∑

k∈S

dkrk1(yk ≤ t) +
∑

k∈S

dk(1− rk)1(y
∗
k ≤ t)

}

. (3.2)

3.1 Imputation model

Many imputation methods used in practice can be motivated by the general model

m : yk = f(zk, β) + v
1/2
k ǫk, (3.3)

where f(·) is a given function, zk is a K-vector of auxiliary variables available at the imputation

stage for all k ∈ S, β is a K-vector of unknown parameters and vk is a known constant. The ǫk are

assumed to be independent and identically distributed random variables with mean 0 and variance

σ2, with a common distribution function denoted as Fǫ(·) and where σ is an unknown parameter.

The model (3.3) is often called an imputation model (e.g., Särndal, 1992; Chauvet et al, 2011).

In practice, most imputation techniques which are used in surveys are motivated by a particular

case of the imputation model m when f(zk, β) = z⊤k β. This is true for mean imputation, where

a missing value is replaced by the mean of respondents; for hot-deck imputation, where a missing

value is replaced by randomly selecting an observed value among the respondents; for regression

imputation, where a missing value is replaced by a prediction by regression, to which a random

noise is added in case of random regression imputation (see Haziza, 2009). In order to simplify the

presentation, we therefore focus on the linear case f(zk, β) = z⊤k β in the remainder of the paper,

which leads to the so-called regression imputation model

m : yk = z⊤k β + v
1/2
k ǫk. (3.4)

A particular case of model (3.4) called the ratio imputation model is presented in Section 4.3 for

illustration.
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In this paper, inference will be made with respect to the joint distribution induced by the im-

putation model, the sampling design and the non-response mechanism, which is known as the

Imputation Model approach (IM). We assume that the sampling design is non-informative (Särn-

dal et al, 1992, p. 33; Pfeffermann, 2009), namely that the vector of sample membership indicators

IU ≡ (I1, . . . , IN )⊤ is independent of ǫU ≡ (ǫ1, . . . , ǫN )⊤, conditionally on a set of design vari-

ables xU ≡ (x1, . . . , xN )⊤. We do not need an explicit modeling of the non-response mechanism,

unlike the Non-response Model approach (see Haziza, 2009). However, the data are assumed to

be missing at random (see Rubin, 1976, 1983) in the sense that the vector of response indicators

rU ≡ (r1, . . . , rN )⊤ is related to a set of auxiliary variables zU ≡ (z1, . . . , zN )⊤ known for any unit

k in S, but the vector rU is independent of the vector yU , conditionally on zU .

3.2 Imputation mechanism

Mimicking the imputation model (3.4), the imputed value is

y∗k = z⊤k B̂ + v
1/2
k ǫ∗k, (3.5)

with B̂ some estimator of β. Using ǫ∗k = 0 in (3.5), we obtain deterministic regression imputation

which leads to an approximately unbiased estimation for the total ty but not for the distribution

function FN (·). Therefore, we focus in the rest of the paper on random regression imputation,

where the imputed values in (3.5) are obtained by generating the random residuals ǫ∗k randomly.

For each unit k for which yk is missing, we select a donor, which is a responding unit for which the

value of the variable of interest is used to fill-in the missing value for unit k. More precisely, the

random residuals ǫ∗k are selected from the set of observed residuals

Er = {el; rl = 1} where el =
yl − z⊤l B̂

v
1/2
l

. (3.6)

The residual el is attributed to the non-respondent k with the probability

Pr(ǫ∗k = el) = ω̃l where ω̃l =
ωk

∑

l∈S ωlrl
, (3.7)

where ωl is an imputation weight attached to unit l. We assume that these imputation weights

do not depend on ǫU , IU or rU . Alternatively, the residuals ǫ∗k could be generated from a given

parametric distribution.

A possible estimator for the unknown parameter β is

B̂r = Ĝ−1
r

(

1

N

∑

k∈S

rkωkv
−1
k zkyk

)

with Ĝr =
1

N

∑

k∈S

rkωkv
−1
k zkz

⊤
k . (3.8)
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Since a matrix Ĝr close to singularity can lead to unstable estimators, we follow the approach

proposed in Cardot et al. (2013) and we introduce a regularized version of B̂r. We first write

Ĝr =

p
∑

j=1

ηjrujru
⊤
jr, (3.9)

where η1r ≥ . . . ≥ ηpr are the non-negative eigenvalues of Ĝr, with u1r, . . . , upr the corresponding

orthonormal eigenvectors. For a given a > 0, the regularized version of Ĝr as defined in Cardot et

al. (2013) is then

Ĝar =

p
∑

j=1

max(ηjr, a)ujru
⊤
jr, (3.10)

which is an invertible matrix with

‖Ĝ−1
ar ‖ ≤ a−1, (3.11)

where ‖ · ‖ stands for the spectral norm. This leads to the regularized estimator of the parameter β

B̂ar = Ĝ−1
ar

(

1

N

∑

k∈S

rkωkv
−1
k zkyk

)

. (3.12)

In the rest of the paper, we use this regularized estimator in (3.5) to generate the imputed values,

and in (3.6) to define the observed residuals.

3.3 Consistency of the regularized estimator

In order to study the asymptotic properties of the estimators that we treat below, we consider the

following regularity assumptions:

H1: There exists some constant C1, C2 > 0 such that C1 ≤ Nn−1πk ≤ C2 for any k ∈ U .

H2: There exists some constant C3 such that supk 6=l∈U

(

n
∣

∣

∣
1− πkl

πkπl

∣

∣

∣

)

≤ C3.

H3: There exists some constant C4 > 0 such that C4 ≤ mink∈U φk.

H4: There exists some constants C5, C6 > 0 such that C5 ≤ N−1nωk ≤ C6 for any k ∈ U .

H5: There exists some constants C7, C8 > 0 such that C7 ≤ vk ≤ C8 for any k ∈ U . There

exists some constant C9 such that ‖zk‖ ≤ C9 for any k ∈ U . Also, the matrix

G =
1

N

∑

k∈U

πkφkωkv
−1
k zkz

⊤
k (3.13)

is invertible, and the constant a chosen is such that ‖G−1‖ ≤ a−1.
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Assumptions (H1) and (H2) are related to the sampling design. In case of sampling with equal

probabilities, we have πk = n/N and Assumption (H1) is automatically fulfilled with C1 = C2 = 1.

The assumption (H1) means that in case of sampling with unequal probabilities, the inclusion

probabilities do not depart much from that obtained when sampling with equal probabilities. In

Assumption (H2), the quantity supk 6=l∈U

(

n
∣

∣

∣
1− πkl

πkπl

∣

∣

∣

)

is a measure of dependency in the selection

of units. This quantity is equal to zero when the units in the population are selected independently,

which is known as Poisson sampling (Fuller, 2009, p. 13). This assumption is satisfied for many

sampling designs like stratified simple random sampling or rejective sampling, see for example Car-

dot et al. (2013). Both assumptions (H1) and (H2) are classical in survey sampling.

Assumption (H3) is related to the response mechanism. It is assumed that the response probabilities

are bounded below from zero, i.e. that all units in the population have a strictly positive probability

to answer the survey. Assumption (H4) is related to the imputation mechanism. If ωk = N/n for

any unit k ∈ U , all the responding units have the same probability of being selected to fill-in a

missing value. It is thus assumed in (H4) that when selecting the random residuals, no extreme

imputation weight will dominate the others. The assumption (H5) is in particular related to the

choice of the regularizing parameter a, and is needed to guarantee the point-wise convergence of

the estimator B̂ar for the regression coefficient. A similar assumption is considered in Cardot et al.

(2013).

Proposition 1. Assume that the imputation model (3.3) holds, and that assumptions (H1)-(H5)

hold. Then:

E
{

‖B̂ar − β‖2
}

= O(n−1). (3.14)

4 Balanced random imputation

4.1 Motivation

In practice, a survey serves multiple purposes. On the one hand, the survey designer is interested

in estimating aggregate parameters such as totals, and the variance of total estimates needs to

be kept as small as possible. On the other hand, the survey data are used by secondary analysts

who are interested in other parameters of interest which may be related to the distribution of the

imputed variable, like quantiles. Therefore, a random imputation method is used to fill-in the

missing values in order to preserve the distribution of the imputed variable. In the same time, the

random residuals need to be generated in such a way that the variance of t̂yI does not suffer from

the variance imputation.

The drawback of random regression imputation lies indeed in an additional variability for the

estimation of ty, called the imputation variance. The imputed estimator of the total may be

9



written as

t̂yI =
∑

k∈S

dkrkyk +
∑

k∈S

dk(1− rk)(z
⊤
k B̂ar) +

∑

k∈S

dk(1− rk)(v
1/2
k ǫ∗k). (4.1)

The imputation variance is due to the third term on the right-hand side only. This imputation

variance is completely eliminated if the random residuals are selected so that

∑

k∈S

dk(1− rk)v
1/2
k ǫ∗k = EI

{

∑

k∈S

dk(1− rk)v
1/2
k ǫ∗k

}

=
∑

k∈S

{

dk(1− rk)v
1/2
k

}

ēr (4.2)

with ēr =
∑

j∈S ω̃jrjej.

4.2 Exact balanced random imputation

Our goal is therefore to generate the random residuals in such a way that equation (4.2) holds. A

natural idea would be to select the random residuals ǫ∗k directly with replacement from the set Er

of observed residuals. Unfortunately, to the best of our knowledge, there does not exist any general

with-replacement sampling design which enables to select the random residuals such that equation

(4.2) holds. In order to be able to use the cube method presented in Section 2.3, we follow the

approach in Chauvet et al. (2011) and proceed in 4 steps:

1. We build a population U∗ of nm × nr cells, each row being associated to one non-respondent

and each column being associated to one respondent.

2. To each cell (k, l) ∈ U∗, we associate a selection probability ψkl = ω̃l (see equation 3.7) and

a value x0kl = dkv
1/2
k ψklel.

3. We apply the flight phase of the cube method on population U∗, with inclusion probabilities

ψU∗ = (ψ11, . . . , ψnmnr
)⊤, by balancing on the variable x0kl. From equation (2.9), we obtain

at the end of the flight phase a random vector ĨU∗ = (Ĩ11, . . . , Ĩnmnr
)⊤ such that

∑

(k,l)∈U∗

x0kl
ψkl

Ĩkl =
∑

(k,l)∈U∗

x0kl. (4.3)

4. For any non-respondent k, the imputed residual is

ǫ∗k =
∑

l∈Sr

Ĩklel. (4.4)
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Table 1: Values of the guess of the amount of money, of the true amount of money and of observed

residuals for a simple random sample of n = 10 persons

Unit k 1 2 3 4 5 6 7 8 9 10

z1k 8.35 1.5 10 0.6 7.5 7.95 0.95 4.4 1 0.5

yk 8.75 2.55 9 1.1 7.5 5

ek 0.30 0.93 -0.14 0.69 0.15 -0.89

From equations (4.3) and (4.4), it is easily shown that equation (4.2) holds. Therefore, the impu-

tation variance of t̂yI is completely eliminated under the proposed imputation procedure. This is

an advantage as compared to the balanced imputation procedure in Chauvet et al. (2011), where

the balancing constraint (4.3) was not exactly respected, and the imputation variance was there-

fore not fully eliminated. A drawback of the proposed method is that a missing residual is not

necessarily replaced by an observed estimated residual, but may be replaced by a weighted mean

of observed estimated residuals, which may result in a bias in the estimation of the distribution

function. However, by adding nm balancing variables in the imputation procedure, we ensure that

ǫ∗k is an observed residual for at least nm−1 units. The additional nm-vector of balancing variables

is

x = (x1, . . . , xi, . . . , xnm)⊤, (4.5)

with xikl = ψkl1(k = i) for the cell (k, l), see Chauvet et al. (2011). We prove in Proposition 3 that

using this additional set of balancing variables in the imputation process enables to preserve the

distribution of the imputed variable.

4.3 An illustration of the proposed method

We illustrate the proposed imputation method on a small sample, based on an example presented

in Thompson (2002, p. 70). In a population U of N = 53 persons in a lecture theater, each person

k is asked to write down a guess of the amount of money (variable z1k) he/she is carrying. A

simple random sample of n = 10 persons is then selected, and each person is asked to write down

the exact amount of money (variable yk) he/she is carrying. For this illustration, we consider that

the variable yk is missing for 4 persons in the sample. The data are presented in Table 1.

We consider so-called ratio imputation, which is obtained from (3.5) in case of a single auxiliary

variable (zk = z1k) and with vk = z1k. This leads to the ratio imputation model

m : yk = βz1k + z
1/2
1k ǫk, (4.6)

which is currently used in business surveys. We use equal imputation weights ωk = 1. This leads
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Table 2: A first example of balanced random imputation

Non-respondent Observed residuals Imputed Imputed

k 0.30 0.93 -0.14 0.69 0.15 -0.89 residual ǫ∗k value y∗k
7 0 0 0 1 0 0 0.69 1.57

8 0.61 0 0 0 0 0.39 -0.17 3.80

9 1 0 0 0 0 0 0.30 1.24

10 1 0 0 0 0 0 0.30 0.68

to

y∗k = B̂rz1k + z
1/2
1k ǫ

∗
k where B̂r =

∑

k∈S rkyk
∑

k∈S rkz1k
. (4.7)

In this example, we obtain B̂r = 0.94. The observed residuals ek for respondents are given in the

last line of Table 1. We have
∑

k∈S

dk(1− rk)v
1/2
k ēr = 4.38. (4.8)

In order to impute the missing values, we create a table of 4 × 6 cells with one row for each non-

respondent and one column for each observed residual. We then draw a sample of 4 cells by means

of the flight phase of the cube method. The result is presented in Table 2. The 4-th cell on row 1

is selected, which means that we take ǫ⋆7 = e4 = 0.69. Similarly, the 1-th cell on row 3 is selected so

that ǫ⋆9 = e1, and the 1-th cell on row 4 is selected so that we take ǫ⋆10 = e1. On row 2, we obtain

Ĩ21 = 0.61 and Ĩ⋆26 = 0.39, so that we take ǫ⋆9 = 0.61 ∗ e1 + 0.39 ∗ e6 = −0.17. With these imputed

residuals, we obtain
∑

k∈S

dk(1− rk)v
1/2
k ǫ∗k = 4.38 (4.9)

so that from equation (4.8), the balancing equation is exactly respected. We present in Table 3

another possible set of imputed residuals. It can be shown that equation (4.8) holds, so that the

balancing equation is satisfied and the imputation variance for the total is eliminated.

4.4 Properties of balanced random imputation

It is shown in Proposition 2 below that the imputed estimator of the total is mean-square consistent

for the true total. Also, we prove in Proposition 3 that the imputed distribution function under

the proposed exact balanced imputation procedure is consistent for the population distribution

function.

Proposition 2. Assume that the imputation model (3.3) holds, and that assumptions (H1)-(H5)

hold. Assume that the exact balanced imputation procedure is used. Then:

E[
{

N−1(t̂yI − ty)
}2

] = O(n−1). (4.10)
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Table 3: A second example of balanced random imputation

Non-respondent Observed residuals Imputed Imputed

k 0.30 0.93 -0.14 0.69 0.15 -0.89 residual ǫ∗k value y∗k
7 0 0.83 0 0 0 0.17 0.62 1.50

8 1 0 0 0 0 0 0.30 4.78

9 0 0 0 0 0 1 -0.89 0.06

10 0 0 0 1 0 0 0.69 0.96

Proposition 3. We assume that assumptions (H1)-(H5) hold. Assume that Fǫ is absolutely con-

tinuous. Assume that the exact balanced imputation procedure is used, and that the balancing

variables in (4.5) are added. Then:

E
∣

∣

∣
F̂I(t)− FN (t)

∣

∣

∣
= o(1). (4.11)

5 Simulation study

We conducted a simulation study to test the performance of several imputation methods in terms

of relative bias and relative efficiency. We first generated 2 finite populations of size N = 10, 000,

each containing one study variable y and one auxiliary variable z1. In each population, the variable

z1 was first generated from a Gamma distribution with shape and scale parameters equal to 2

and 5, respectively. Then, given the z1-values, the y-values were generated according to the model

yk = β z1k + z
1/2
1k ǫk presented in equation (4.6). The parameter β was set to 1 and the ǫk were

generated according to a normal distribution with mean 0 and variance σ2, whose value was chosen

to lead to a coefficient of determination (R2) approximately equal to 0.36 for population 1 and 0.64

for population 2.

We were interested in estimating two parameters: the population total of the y-values, ty and

the finite population distribution function, FN (t) for t = tα, where tα is the α-th population

quantile. We considered α = 0.25 and 0.50 in the simulation. From each population, we selected

1, 000 samples of size n = 100 by means of rejective sampling also called conditional Poisson

sampling (e.g., Hajek, 1964) with inclusion probabilities, πk, proportional to zk. That is, we have

πk = nzk/tz, where tz =
∑

k∈U zk. Then, in each generated sample, nonresponse to item y was

generated according to two nonresponse mechanisms which are described below:

MCAR: uniform response mechanism, where all the units in U have the same probability of response

φ0. We used φ0 = 0.5 and φ0 = 0.75.
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MAR: the probability φk of response attached to unit k is defined as

log

(

φk
1− φk

)

= λ0 + λ1z1k, (5.1)

where the parameters λ0 and λ1 were chosen so that the average φ̄ of the φk’s was approxi-

mately equal to 0.5, or approximately equal to 0.75.

In each sample containing respondents and nonrespondents, imputation was performed according

to three methods, all motivated by the imputation model (4.6). The imputed values are given by

y∗k = B̂rz1k + z
1/2
1k ǫ

∗
k. (5.2)

For deterministic ratio imputation (DRI), the imputed values are given by (5.2) with ǫ∗k = 0 for all

k. The imputed values for random ratio imputation (RRI) are given by (5.2), where the residuals

ǫ∗k are selected independently and with replacement. The imputed values for exact balanced ratio

imputation (EBRI) are given by (5.2) where the residuals ǫ∗k are selected so that the balancing

constraint (4.2) is exactly satisfied.

Then, we computed the imputed estimator of ty given by (3.1), and the imputed estimator of FN (t)

given by (3.2). As a measure of the bias of an estimator θ̂I of a parameter θ, we used the Monte

Carlo percent relative bias

RB(θ̂I) =
EMC(θ̂I)− θ

θ
× 100, (5.3)

where EMC(θ̂I) =
∑1000

r=1 θ̂
(r)
I /1000, and θ̂

(r)
I denotes the estimator θ̂I in the r-th sample, r =

1, . . . , 1000. As a measure of variability of θ̂I , we used the Monte Carlo mean square error

MSE(θ̂I) =
1

1000

1000
∑

r=1

(θ̂
(r)
I − θ)2. (5.4)

Let θ̂
(DRI)
I , θ̂

(RRI)
I , and θ̂

(EBRI)
I denote the estimator θ̂I under deterministic ratio imputation,

random ratio imputation and exact balanced ratio imputation, respectively. In order to compare

the relative efficiency of the imputed estimators, using θ̂
(RRI)
I as the reference, we used

RE =
MSE(θ̂

(.)
I )

MSE(θ̂
(RRI)
I )

. (5.5)

Monte Carlo measures for F̂I(t) were obtained from (5.3)-(5.5) by replacing θ̂I with F̂I(t) and θN

with FN (t).

Table 4 shows the values of relative bias and relative efficiency corresponding to the imputed es-

timator t̂yI . It is clear from Table 4 that t̂yI was approximately unbiased in all the scenarios, as

14



Table 4: Monte Carlo percent relative bias of the imputed estimator and relative efficiency

DRI RRI EBRI DRI RRI EBRI

MCAR

φ0 = 0.5 φ0 = 0.75

Population 1 RB 0.47 0.50 0.47 0.30 0.33 0.30

RE 0.79 1 0.79 0.79 1 0.79

Population 2 RB 0.17 0.26 0.17 0.16 0.25 0.16

RE 0.79 1 0.79 0.79 1 0.79

MAR

φ̄ = 0.5 φ̄ = 0.75

Population 1 RB 0.28 0.30 0.28 0.45 0.62 0.45

RE 0.69 1 0.69 0.72 1 0.72

Population 2 RB 0.02 -0.06 0.02 -0.18 -0.14 -0.18

RE 0.70 1 0.70 0.74 1 0.74

expected. In terms of relative efficiency, results showed that DRI and EBRI lead to the smallest

mean square error for the estimation of a total. This result is not surprising since the imputation

variance is identically equal to zero for both imputation methods. We note that DRI and EBRI

were particulary efficient in the MAR case.

We now turn to the distribution function, FN (t). Table 5 shows the relative bias and relative

efficiency corresponding to the imputed estimator F̂I(t). As expected, the estimators under deter-

ministic ratio imputation were considerably biased, and the absolute relative bias can be as high

as 42.4%. In terms of relative bias, both RRI and EBRI showed almost no bias, except for t0.25 in

the case of balanced imputation. These results can be explained by the fact that both imputation

methods succeeded in preserving the distribution of the study variable y. Also, we note that the

imputed estimator F̂I(t) under exact balanced ratio imputation was more efficient than the cor-

responding estimator under random ratio imputation in all the scenarios with a value of relative

efficiency varying from 0.89 to 1.00. The lower values of RE were obtained in the MAR case.

6 Final remarks

In this paper, we considered estimation under item non-response. We proposed an exact balanced

random imputation procedure, where the imputation variance is completely eliminated for the es-

timation of a total. We also proved that the proposed imputation procedure leads to mean-square

consistent estimators for a total and for a distribution function.
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Table 5: Monte Carlo percent relative bias of the imputed estimator of the distribution function

and relative efficiency
DRI RRI EBRI DRI RRI EBRI

MCAR
α φ0 = 0.5 φ0 = 0.75

Population 1 0.25 RB -41.3 -1.6 -2.7 -31.3 -1.1 -2.0
RE 2.03 1 0.94 1.66 1 0.94

0.50 RB -4.7 -1.3 -0.9 -3.6 -0.7 -0.6
RE 1.22 1 0.98 1.13 1 0.97

Population 2 0.25 RB -26.7 -0.7 -1.4 -22.2 -0.5 -1.1
RE 1.45 1 0.93 1.34 1 0.94

0.50 RB -2. 7 -0.3 -0.1 -2.1 -0.1 0.1
RE 1.09 1 0.97 1.07 1 0.97

MAR
α φ0 = 0.5 φ0 = 0.75

Population 1 0.25 RB -42.4 -0.3 -0.9 -24.2 -2.5 -3.5
RE 2.11 1 0.89 1.37 1 0.90

0.50 RB 2.1 -0.0 0.2 5.6 -1.5 -0.2
RE 1.18 1 0.95 1.12 1 0.96

Population 2 0.25 RB -15.4 0.6 0.4 -3.4 1.3 2.0
RE 1.17 1 0.93 1.00 1 0.93

0.50 RB 0.2 0.1 -0.3 2.6 -0.7 -0.2
RE 1.09 1 1.00 1.02 1 0.96

We have not considered the problem of variance estimation in the context of the proposed balanced

random imputation. Variance estimation for the imputed estimator of the total is fairly straight-

forward, since the imputed estimator is identical to that under deterministic regression imputation.

Variance estimation for the imputed distribution function is currently under investigation.

When studying relationships between study variables, Shao and Wang (2002) proposed a joint ran-

dom regression imputation procedure which succeeds in preserving the relationship between these

variables, and a balanced version of their procedure was proposed by Chauvet and Haziza (2012).

Extending the exact balanced random procedure to this situation is a matter for further research.
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A Flight phase of the cube method (Tillé, 2006, p. 160)

We define the balancing matrix as A = (x1/π1, . . . , xN/πN ). We initialize with πU (0) = πU . Next,

at time t = 0, . . . , T , repeat the three following steps.

Step 1: Let E(t) = F (t) ∩KerA, where

F (t) = {v ∈ R
N : vk = 0 if πk(t) is an integer},

with πU (t) = (π1(t), . . . , πN (t))⊤. If E(t) 6= {0}, generate any vector v(t) 6= 0 in E(t), random or

not.

Step 2: Compute the scalars λ∗1(t) and λ
∗
2(t), which are the largest values of λ1(t) and λ2(t) such

that

0 ≤ πU (t) + λ1(t)v(t) ≤ 1 and 0 ≤ πU(t)− λ2(t)v(t) ≤ 1,

where the inequalities are interpreted element-wise. Note that λ∗1(t) > 0 and λ∗2(t) > 0.

Step 3: Take πU (t+ 1) = πU (t) + δU (t), where

δU (t) =







λ∗1(t)v(t) with probability
λ∗
2
(t)

λ∗
1
(t)+λ∗

2
(t) ,

−λ∗2(t)v(t) with probability
λ∗
1
(t)

λ∗
1
(t)+λ∗

2
(t) .

The flight phase ends at time T , when it is no longer possible to find a non-null vector in E(T ).

The random vector obtained at the end of the flight phase is ĨU = π(T ).

B Proof of Proposition 1

Lemma B.1. We have

Ep

[

(t̂yπ − ty)
2
]

≤

(

sup
k 6=l∈U

n

∣

∣

∣

∣

1−
πkl
πkπl

∣

∣

∣

∣

)

∑

k∈U

πk

(

yk
πk

−
ty
n

)2

, (B.1)

Ep

[

{F̂N (t)− FN (t)}2
]

≤

(

4

N2

)

(

sup
k 6=l∈U

n

∣

∣

∣

∣

1−
πkl
πkπl

∣

∣

∣

∣

)

∑

k∈U

1

πk
. (B.2)

Proof . The proof is standard, and is therefore omitted.

Lemma B.2. We have:

E(‖Ĝr −G‖2) = O(n−1). (B.3)
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Proof . We note ‖ · ‖F for the Frobenius norm. Using the fact that the spectral norm is smaller

than the Frobenius norm, we have

E(‖Ĝr −G‖2) ≤ E(‖Ĝr −G‖2F )

= E

[

1

N2

∑

k∈U

∑

l∈U

ωkv
−1
k (Ikrk − πkφk)ωlv

−1
l (Ilrl − πlφl)tr(zkz

⊤
k zlz

⊤
l )

]

= T3 + T4 (B.4)

with

T3 =
1

N2

∑

k∈U

ω2
kv

−2
k πkφk(1− πkφk)tr(zkz

⊤
k zkz

⊤
k ), (B.5)

T4 =
1

N2

∑

k 6=l∈U

ωkv
−1
k ωlv

−1
l (πkl − πkπl)φkφltr(zkz

⊤
k zlz

⊤
l ). (B.6)

Since tr(zkz
⊤
k zkz

⊤
k ) = ‖zk‖

4, we obtain from assumptions (H1), (H4) and (H5)

T3 ≤

(

(C6)
2C2

n(C7)2

)

(

1

N

∑

k∈U

‖zk‖
4

)

, (B.7)

which is O(n−1) from assumption (H5). Also, we have

T4 ≤
1

N2

(

sup
k 6=l∈U

∣

∣

∣

∣

1−
πkl
πkπl

∣

∣

∣

∣

)

∑

k 6=l∈U

ωkv
−1
k ωlv

−1
l πkπlφkφltr(zkz

⊤
k zlz

⊤
l ). (B.8)

Since

tr(zkz
⊤
k zlz

⊤
l ) = (z⊤k zl)

2 ≤ ‖zk‖
2‖zl‖

2, (B.9)

we obtain

T4 ≤
1

N2

(

sup
k 6=l∈U

∣

∣

∣

∣

1−
πkl
πkπl

∣

∣

∣

∣

)(

∑

k∈U

ωkv
−1
k πkφk‖zk‖

2

)2

≤
(C2)

2(C6)
2

n(C7)2

(

sup
k 6=l∈U

n

∣

∣

∣

∣

1−
πkl
πkπl

∣

∣

∣

∣

)(

1

N

∑

k∈U

‖zk‖
2

)2

, (B.10)

which is O(n−1) from assumptions (H2) and (H5). This completes the proof of Lemma B.2.

We now consider the proof of Proposition 1. We can write

B̂ar − β = T5 + T6, (B.11)

where

T5 = Ĝ−1
ar

{

1

N

∑

k∈S

rkωkv
−1
k zk(yk − z⊤k β)

}

, (B.12)

T6 = Ĝ−1
ar

{

(Ĝr − Ĝar)1(Ĝar 6= Ĝr)
}

β. (B.13)
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We first consider the term T5. We have:

‖T5‖
2 ≤ ‖Ĝ−1

ar ‖
2 ×

∥

∥

∥

∥

∥

1

N

∑

k∈S

rkωkv
−1
k zk(yk − z⊤k β)

∥

∥

∥

∥

∥

2

(B.14)

≤ a−2 ×
1

N2

∑

k,l∈S

rkrlωkωlv
−1
k v−1

l z⊤k zl(yk − z⊤k β)(yl − z⊤l β),

where the second line in (B.14) follows from (3.11). Since the sampling design is non-informative

and the response mechanism is unconfounded, we can write

E(‖T5‖
2) = EpqEm(‖T5‖

2), (B.15)

where Epq(·) stands for the expectation with respect to the sampling design and the response mech-

anism, and Em(·) stands for the expectation with respect to the imputation model conditionally

on IU and rU . From (B.14), (B.15), and from the assumptions on the imputation model (3.3), we

obtain

E(‖T5‖
2) ≤ Epq

{

σ2a−2 ×
1

N2

∑

k∈S

rkω
2
kv

−1
k z⊤k zk

}

≤

(

σ2a−2(C6)
2C2

nC7

)

(

1

N

∑

k∈U

‖zk‖
2

)

(B.16)

where the second line in (B.16) follows from assumptions (H1), (H4) and (H5). From assumption

(H5), this leads to E(‖T5‖
2) = O(n−1).

We now consider the term T6, by following the same lines as in Lemma A.1 of Cardot et al. (2013).

We have:

‖T6‖
2 ≤ ‖Ĝ−1

ar ‖
2 ×

∥

∥

∥
(Ĝr − Ĝar)1(Ĝar 6= Ĝr)

∥

∥

∥

2
× ‖β‖2

≤ a−2‖β‖2 ×
∥

∥

∥
(Ĝr − Ĝar)1(Ĝar 6= Ĝr)

∥

∥

∥

2
. (B.17)

Since ‖Ĝar − Ĝr‖
2 ≤ a2, we obtain

E(‖T6‖
2) ≤ ‖β‖2 × Pr(Ĝar 6= Ĝr). (B.18)

We write

G =

p
∑

j=1

ηjuju
⊤
j , (B.19)
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where η1 ≥ . . . ≥ ηp are the non-negative eigenvalues of G, with u1, . . . , up the corresponding

orthonormal eigenvectors. We have

Pr(Ĝar 6= Ĝr) = Pr(ηpr 6= a)

≤ Pr

(

|ηpr − ηp| ≥
|ηp − a|

2

)

≤
4

(ηp − a)2
E(|ηpr − ηp|

2) (B.20)

≤
4

(ηp − a)2
E‖Ĝr −G‖2 (B.21)

where equation (B.20) follows from the Chebyshev inequality, and equation (B.21) follows from the

fact that the eigenvalue map is Lipschitzian for symmetric matrices (see Bhatia (1997), chapter

3, and Cardot et al. (2013), p. 580). From (B.18) and (B.21), and using Lemma B.2, we obtain

E(‖T6‖
2) = O(n−1). This completes the proof.

C Proof of Proposition 2

From equation (B.1), we obtain under Assumptions (H1), (H2), (H5) and under the model assump-

tions that

E[
{

N−1(t̂yπ − ty)
}2

] = O(n−1). (C.1)

It is therefore sufficient to prove that

E[
{

N−1(t̂yI − t̂yπ)
}2

] = O(n−1). (C.2)

We can write N−1(t̂yI − t̂yπ) = T7 − T8, where

T7 = N−1
∑

k∈S

dk(1− rk)z
⊤
k (B̂ar − β), (C.3)

T8 = σN−1
∑

k∈S

dk(1− rk)v
1/2
k ǫk. (C.4)

We have

|T7|
2 ≤ N−2

∥

∥

∥

∥

∥

∑

k∈S

dk(1− rk)zk

∥

∥

∥

∥

∥

2

×
∥

∥

∥
B̂ar − β

∥

∥

∥

2

≤ (C9/C1)
2
∥

∥

∥
B̂ar − β

∥

∥

∥

2
, (C.5)

where the second line in (C.5) follows from Assuptions (H1) and (H5). From Proposition 1, we

obtain E(|T7|
2) = O(n−1).
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We now turn to T8. We have Em(T8) = 0, so that

E(T 2
8 ) = V (T8) = EpEqVm(T8). (C.6)

Also, we have

Vm(T8) = σ2N−2
∑

k∈S

d2k(1− rk)vk, (C.7)

which is O(n−1) from Assumptions (H1) and (H5). This completes the proof.

D Proof of Proposition 3

We can write

F̂I(t)− FN (t) =
{

F̂I(t)− F̃I(t)
}

+
{

F̃I − FN (t)
}

, (D.1)

where

F̃I(t) = N̂−1

{

∑

k∈S

dkrk1(yk ≤ t) +
∑

k∈S

dkrk1(y
∗∗
k ≤ t)

}

, (D.2)

and y∗∗k = z⊤k B̂ar + v
1/2
k ǫ∗∗k is the imputed value under the balanced random imputation procedure

of Chauvet et al. (2011).

Since the number of units such that 0 < Ĩkl < 1 at the end of the flight phase is bounded, we have

y∗k = y∗∗k for all units in Sm but a bounded number of units. Therefore, there exists some constant

C such that

|F̂I(t)− F̃I(t)| ≤ N̂−1 × C sup
k∈S

dk

≤
C C2

C1 n
, (D.3)

where the second line in (D.3) follows from Assumption (H1). Therefore,

E|F̂I(t)− F̃I(t)| = O(n−1). (D.4)

It follows from the proof of Theorem 2 in Chauvet et al. (2011) that

E|F̃I(t)− FN (t)| = o(1). (D.5)

From (D.1), the proof is complete.
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