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Introduction

Even if survey staff do their best in order to maximize response, it is unavoidable that surveys will suffer from some degree of non-response. This makes the effective sample size smaller, which results in an increase of the variance of estimators. More importantly, the respondents usually differ from the non-respondents with respect to the study variables. Therefore, unadjusted estimators will tend to be biased. In order to reduce the so-called non-response bias, it is therefore necessary to define estimation procedures accounting for non-response. Survey statisticians usually distinguish unit 1 nonresponse from item nonresponse. The former occurs when all variables are missing for some sampled unit, which may be due to a refusal to participate to the survey, or to the impossibility to contact the sampled unit, for example. The latter occurs when some variables, but not all, are missing for some sampled unit, which may be due to a refusal to answer to certain delicate questions in the survey, or to the length of the questionnaire, for example. Unit non-response is typically accounted for by reweighting estimators. Item non-response is typically handled by means of some form of imputation, which consists in replacing missing values with artificial values in order to reduce the bias and possibly control the variance due to non-response. In this paper, we are interested in imputation procedures to treat item non-response.

Imputation methods may be classified into two broad classes: deterministic and random. Deterministic imputation methods yield a fixed imputed value given the sample. For example, deterministic regression imputation consists in using a regression model to predict the missing value for a non-respondent, making use of auxiliary information available for the whole sample, including nonrespondents. Deterministic regression imputation leads to an approximately unbiased estimator of the total if the regression model is correctly specified. However, deterministic imputation tends to distort the distribution of the imputed variable, and some form of random imputation is typically used if we wish to preserve the distribution of the imputed variable. Random imputation methods are closely related to deterministic imputation methods, except that a random term is added to the prediction in order to mimic as closely as possible the relationship between the variable of interest and the explanatory variables. The main drawback of random imputation methods is that they lead to estimators with increased variability due to the imputation variance. In some cases, the contribution of the imputation variance to the global variance may be large, resulting in potentially inefficient estimators.

The data collected for a given survey are typically used to estimate a variety of parameters. The survey is often primarily designed to estimate totals over a given population of interest. For example, this may be the total biomass of living vegetation for a region in case of a forest survey (Gregoire and Valentine, 2008, page 3), or the total of revenues and expenses inside categories of firms in case of business surveys [START_REF] Haziza | Doubly robust imputation procedures for finite population means in the presence of a large number of zeros[END_REF]. On the other hand, secondary analysts may be interested in estimating more complex parameters, some of them being directly linked to the population distribution function like the quantiles [START_REF] Boistard | Doubly robust inference for the distribution function in the presence of missing survey data[END_REF]. Therefore, a same variable of interest is habitually used to estimate several parameters. A random imputation method is needed if we wish to preserve the distribution of this variable, but the imputation mechanism should be chosen so that the imputation variance is kept as small as possible for the estimation of the total of the variable.

In the literature, three general approaches for reducing the imputation variance have been considered. The fractional imputation approach consists of replacing each missing value with M ≥ 2 imputed values selected randomly, and assigning a weight to each imputed value (Kalton andKish, 1981, 1984;[START_REF] Fay | Alternative paradigms for the analysis of imputed survey data[END_REF][START_REF] Kim | Fractional hot deck imputation[END_REF][START_REF] Fuller | Hot deck imputation for the response model[END_REF]. It can be shown that the imputation variance decreases as M increases. The second approach consists of first imputing the missing values using a standard random imputation method, and then adjusting the imputed values in such a way that the imputation variance is eliminated; see [START_REF] Chen | Efficient random imputation for missing data in complex surveys[END_REF]. The third approach that we study consists of selecting residuals at random in such a way that the imputation variance is eliminated (Kalton andKish, 1981, 1984;[START_REF] Deville | Random imputation using balanced sampling[END_REF][START_REF] Chauvet | On balanced random imputation in surveys[END_REF][START_REF] Hasler | Fast balanced sampling for highly stratified population[END_REF].

In this work, we propose an implementation of balanced random imputation that makes it possible to fully eliminate the imputation variance for the estimation of a total. Also, we propose regularized imputed estimators of a total and of the distribution function, following the approach in [START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF], and we establish their consistency. The paper is organized as follows. Our notations in case of full response are defined in Section 2, and the principles of balanced sampling are briefly reminded. The imputation model is presented in Section 3, along with the imputed estimators of the total and of the distribution function. The regularized estimator of the model parameter is also introduced. In Section 4, we describe the proposed exact balanced random imputation method. We give an illustration on a small dataset, and we prove the consistency of the imputed estimator of the total and of the imputed estimator of the distribution function. The results of a simulation study are presented in Section 5. We draw some conclusions in Section 6. The proofs are deferred to the Appendix.

Finite population framework

Notation

We consider a finite population U of size N with some variable of interest y. We are interested in estimating some finite population parameter such as the total t y = k∈U y k or the population distribution function

F N (t) = N -1 k∈U 1(y k ≤ t) (2.1)
with 1(•) the indicator function.

In order to study the asymptotic properties of the sampling designs and estimators that we treat below, we consider the asymptotic framework of [START_REF] Isaki | Survey design under the regression superpopulation model[END_REF]. We assume that the population U belongs to a nested sequence {U t } of finite populations with increasing sizes N t , and that the population vector of values y U t = (y 1t , . . . , y N t ) ⊤ belongs to a sequence {y U t } of N t -vectors. For simplicity, the index t will be suppressed in what follows and all limiting processes will be taken as t → ∞.

A random sample S is selected in U by means of some sampling design p(•), which is a probability distribution defined over the subsets of the population U . That is, we have p(s) ≥ 0 for any s ⊂ U and s⊂U p(s) = 1.

(2.2)

We assume that the sampling design is of fixed size n, which means that a subset s has a probability of selection equal to zero if this subset is not of size n. We note I k for the sample membership indicator, equal to 1 if the unit k is selected in the sample S and to 0 otherwise. We note I U = (I 1 , . . . , I N ) ⊤ for the vector of sample indicators. Since the sampling design is of fixed size n, we have

k∈U I k = n.
(2.3)

Inclusion probabilities

The probability for unit k to be included in the sample is denoted as π k . We note π U = (π 1 , . . . , π N ) ⊤ for the vector of inclusion probabilities. All the inclusion probabilities are assumed to be nonnegative, i.e. there is no coverage bias in the population. Since π k = E p (I k ), with E p the expectation with respect to the sampling design p(•), we obtain from equation (2.3) that k∈U π k = n.

(2.4)

We also denote by π kl the probability that units k and l are selected jointly in the sample.

In case of equal inclusion probabilities, we have π k = n/N for any unit k ∈ U . This occurs for example if the sample is selected by means of simple random sampling without replacement. Another customary choice consists in using inclusion probabilities proportional to some auxiliary non-negative variable z 1k , known for any unit k ∈ U . This leads to a so-called probability proportional to size (π-ps) sampling design, which is used in some business surveys (e.g., [START_REF] Ohlsson | Sequential Poisson Sampling[END_REF].

In such case, we obtain from (2.4) that

π k = n z 1k l∈U z 1l
.

(2.5)

If some units exhibit a large value for the auxiliary variable z 1k , equation (2.5) may lead to inclusion probabilities greater than 1. In this case, these inclusion probabilities are set to 1, which means that the corresponding units are selected in the sample with certainty, and the inclusion probabilities for the remaining units are computed by means of equation (2.5) restricted to the remaining units (see Tillé, 2006, page 18).

In a situation of full response, a design-unbiased estimator for t y is the Horvitz-Thompson estimator

tyπ = k∈U d k I k y k = k∈S d k y k (2.6)
with d k = π -1 k the sampling weight, and an approximately unbiased estimator for F N (t) is

FN (t) = 1 N k∈S d k 1(y k ≤ t) with N = k∈S d k .
(2.7)

Balanced sampling

Suppose that a q-vector x k of auxiliary variables is known at the design stage for any unit k ∈ U . A sampling design p(•) is said to be balanced on x k if the vector I U of sample indicators is such that

k∈U x k π k I k = k∈U x k . (2.8)
In other words, the sampling design is balanced on x k if for any possible sample, the Horvitz-Thompson estimator of the total of the auxiliary variables exactly matches the true total. [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF] introduced a sampling design called the cube method, which enables to select balanced samples, or approximately balanced samples if an exact balancing is not feasible. The cube method proceeds through a random walk from the vector π U of inclusion probabilities to the vector I U of sample indicators. This random walk proceeds in two steps. At the end of the first one called the flight phase (see Appendix A), we obtain a random vector ĨU = ( Ĩ1 , . . . , ĨN ) ⊤ such that

k∈U x k π k Ĩk = k∈U x k , (2.9) 
and such that Ĩk = 0 if the unit k is definitely rejected from the sample, Ĩk = 1 if the unit k is definitely selected in the sample, and 0 < Ĩk < 1 if the decision for unit k remains pending. From equation (2.9), the balancing is exactly respected at the end of the flight phase, but we do not obtain a sample per se since the decision remains pending for some units. From Proposition 1 in [START_REF] Deville | Efficient balanced sampling: the cube method[END_REF], it can be shown that the number of such units is no greater than q, the number of auxiliary variables. A second step called the landing phase is then applied on the set of remaining units, in order to end the sampling while ensuring that the balancing equations (4.2) remain approximately satisfied. This leads to the vector of sample indicators I U .

Imputed estimators

In a situation of item non-response, the variable y is observed for a subsample of units only. We note r k for a response indicator for unit k, and φ k for the response probability of unit k. We note n r the number of responding units, and n m the number of missing units. We assume that the units respond independently. In case of simple imputation, an artificial value y * k is used to replace the missing y k and leads to the imputed version of the HT-estimator

tyI = k∈S d k r k y k + k∈S d k (1 -r k )y * k , (3.1)
and to the imputed version of the estimated distribution function

FI (t) = 1 N k∈S d k r k 1(y k ≤ t) + k∈S d k (1 -r k )1(y * k ≤ t) . (3.2)

Imputation model

Many imputation methods used in practice can be motivated by the general model

m : y k = f (z k , β) + v 1/2 k ǫ k , (3.3) 
where f (•) is a given function, z k is a K-vector of auxiliary variables available at the imputation stage for all k ∈ S, β is a K-vector of unknown parameters and v k is a known constant. The ǫ k are assumed to be independent and identically distributed random variables with mean 0 and variance σ 2 , with a common distribution function denoted as F ǫ (•) and where σ is an unknown parameter.

The model (3.3) is often called an imputation model (e.g., [START_REF] Särndal | Method for estimating the precision of survey estimates when imputation has been used[END_REF][START_REF] Chauvet | On balanced random imputation in surveys[END_REF].

In practice, most imputation techniques which are used in surveys are motivated by a particular case of the imputation model m when f (z k , β) = z ⊤ k β. This is true for mean imputation, where a missing value is replaced by the mean of respondents; for hot-deck imputation, where a missing value is replaced by randomly selecting an observed value among the respondents; for regression imputation, where a missing value is replaced by a prediction by regression, to which a random noise is added in case of random regression imputation (see [START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF]. In order to simplify the presentation, we therefore focus on the linear case f (z k , β) = z ⊤ k β in the remainder of the paper, which leads to the so-called regression imputation model

m : y k = z ⊤ k β + v 1/2 k ǫ k . (3.4)
A particular case of model (3.4) called the ratio imputation model is presented in Section 4.3 for illustration.

In this paper, inference will be made with respect to the joint distribution induced by the imputation model, the sampling design and the non-response mechanism, which is known as the Imputation Model approach (IM). We assume that the sampling design is non-informative (Särndal et al, 1992, p. 33;[START_REF] Pfeffermann | Inference under informative sampling[END_REF], namely that the vector of sample membership indicators

I U ≡ (I 1 , . . . , I N ) ⊤ is independent of ǫ U ≡ (ǫ 1 , . . . , ǫ N ) ⊤ ,
conditionally on a set of design variables x U ≡ (x 1 , . . . , x N ) ⊤ . We do not need an explicit modeling of the non-response mechanism, unlike the Non-response Model approach (see [START_REF] Haziza | Imputation and inference in the presence of missing data[END_REF]. However, the data are assumed to be missing at random (see [START_REF] Rubin | Inference and missing data[END_REF][START_REF] Rubin | Conceptual issues in the presence of nonresponse[END_REF] in the sense that the vector of response indicators r U ≡ (r 1 , . . . , r N ) ⊤ is related to a set of auxiliary variables z U ≡ (z 1 , . . . , z N ) ⊤ known for any unit k in S, but the vector r U is independent of the vector y U , conditionally on z U .

Imputation mechanism

Mimicking the imputation model (3.4), the imputed value is

y * k = z ⊤ k B + v 1/2 k ǫ * k , (3.5)
with B some estimator of β. Using ǫ * k = 0 in (3.5), we obtain deterministic regression imputation which leads to an approximately unbiased estimation for the total t y but not for the distribution function F N (•). Therefore, we focus in the rest of the paper on random regression imputation, where the imputed values in (3.5) are obtained by generating the random residuals ǫ * k randomly. For each unit k for which y k is missing, we select a donor, which is a responding unit for which the value of the variable of interest is used to fill-in the missing value for unit k. More precisely, the random residuals ǫ * k are selected from the set of observed residuals

E r = {e l ; r l = 1} where e l = y l -z ⊤ l B v 1/2 l . (3.6)
The residual e l is attributed to the non-respondent k with the probability P r(ǫ * k = e l ) = ωl where ωl =

ω k l∈S ω l r l , (3.7)
where ω l is an imputation weight attached to unit l. We assume that these imputation weights do not depend on ǫ U , I U or r U . Alternatively, the residuals ǫ * k could be generated from a given parametric distribution.

A possible estimator for the unknown parameter β is where • stands for the spectral norm. This leads to the regularized estimator of the parameter β

Br = Ĝ-1 r 1 N k∈S r k ω k v -1 k z k y k with Ĝr = 1 N k∈S r k ω k v -1 k z k z ⊤ k . ( 3 
Bar = Ĝ-1 ar 1 N k∈S r k ω k v -1 k z k y k . (3.12)
In the rest of the paper, we use this regularized estimator in (3.5) to generate the imputed values, and in (3.6) to define the observed residuals.

Consistency of the regularized estimator

In order to study the asymptotic properties of the estimators that we treat below, we consider the following regularity assumptions:

H1: There exists some constant

C 1 , C 2 > 0 such that C 1 ≤ N n -1 π k ≤ C 2 for any k ∈ U .
H2: There exists some constant

C 3 such that sup k =l∈U n 1 -π kl π k π l ≤ C 3 .
H3: There exists some constant C 4 > 0 such that C 4 ≤ min k∈U φ k .

H4: There exists some constants

C 5 , C 6 > 0 such that C 5 ≤ N -1 nω k ≤ C 6 for any k ∈ U .
H5: There exists some constants

C 7 , C 8 > 0 such that C 7 ≤ v k ≤ C 8 for any k ∈ U .
There exists some constant C 9 such that z k ≤ C 9 for any k ∈ U . Also, the matrix

G = 1 N k∈U π k φ k ω k v -1 k z k z ⊤ k (3.13)
is invertible, and the constant a chosen is such that G -1 ≤ a -1 .

Assumptions (H1) and (H2) are related to the sampling design. In case of sampling with equal probabilities, we have π k = n/N and Assumption (H1) is automatically fulfilled with

C 1 = C 2 = 1.
The assumption (H1) means that in case of sampling with unequal probabilities, the inclusion probabilities do not depart much from that obtained when sampling with equal probabilities. In Assumption (H2), the quantity sup k =l∈U n 1 -π kl π k π l is a measure of dependency in the selection of units. This quantity is equal to zero when the units in the population are selected independently, which is known as Poisson sampling (Fuller, 2009, p. 13). This assumption is satisfied for many sampling designs like stratified simple random sampling or rejective sampling, see for example [START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF]. Both assumptions (H1) and (H2) are classical in survey sampling.

Assumption (H3) is related to the response mechanism. It is assumed that the response probabilities are bounded below from zero, i.e. that all units in the population have a strictly positive probability to answer the survey. Assumption (H4) is related to the imputation mechanism. If ω k = N/n for any unit k ∈ U , all the responding units have the same probability of being selected to fill-in a missing value. It is thus assumed in (H4) that when selecting the random residuals, no extreme imputation weight will dominate the others. The assumption (H5) is in particular related to the choice of the regularizing parameter a, and is needed to guarantee the point-wise convergence of the estimator Bar for the regression coefficient. A similar assumption is considered in [START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF].

Proposition 1. Assume that the imputation model (3.3) holds, and that assumptions (H1)-(H5) hold. Then:

E Bar -β 2 = O(n -1 ). (3.14)
4 Balanced random imputation

Motivation

In practice, a survey serves multiple purposes. On the one hand, the survey designer is interested in estimating aggregate parameters such as totals, and the variance of total estimates needs to be kept as small as possible. On the other hand, the survey data are used by secondary analysts who are interested in other parameters of interest which may be related to the distribution of the imputed variable, like quantiles. Therefore, a random imputation method is used to fill-in the missing values in order to preserve the distribution of the imputed variable. In the same time, the random residuals need to be generated in such a way that the variance of tyI does not suffer from the variance imputation.

The drawback of random regression imputation lies indeed in an additional variability for the estimation of t y , called the imputation variance. The imputed estimator of the total may be written as

tyI = k∈S d k r k y k + k∈S d k (1 -r k )(z ⊤ k Bar ) + k∈S d k (1 -r k )(v 1/2 k ǫ * k ). (4.1)
The imputation variance is due to the third term on the right-hand side only. This imputation variance is completely eliminated if the random residuals are selected so that

k∈S d k (1 -r k )v 1/2 k ǫ * k = E I k∈S d k (1 -r k )v 1/2 k ǫ * k = k∈S d k (1 -r k )v 1/2 k ēr (4.2)
with ēr = j∈S ωj r j e j .

Exact balanced random imputation

Our goal is therefore to generate the random residuals in such a way that equation (4.2) holds. A natural idea would be to select the random residuals ǫ * k directly with replacement from the set E r of observed residuals. Unfortunately, to the best of our knowledge, there does not exist any general with-replacement sampling design which enables to select the random residuals such that equation (4.2) holds. In order to be able to use the cube method presented in Section 2.3, we follow the approach in [START_REF] Chauvet | On balanced random imputation in surveys[END_REF] and proceed in 4 steps:

1. We build a population U * of n m × n r cells, each row being associated to one non-respondent and each column being associated to one respondent.

2. To each cell (k, l) ∈ U * , we associate a selection probability ψ kl = ωl (see equation 3.7) and a value

x 0 kl = d k v 1/2 k ψ kl e l .
3. We apply the flight phase of the cube method on population U * , with inclusion probabilities ψ U * = (ψ 11 , . . . , ψ nmnr ) ⊤ , by balancing on the variable x 0 kl . From equation (2.9), we obtain at the end of the flight phase a random vector ĨU * = ( Ĩ11 , . . . , Ĩnmnr ) ⊤ such that From equations (4.3) and (4.4), it is easily shown that equation (4.2) holds. Therefore, the imputation variance of tyI is completely eliminated under the proposed imputation procedure. This is an advantage as compared to the balanced imputation procedure in [START_REF] Chauvet | On balanced random imputation in surveys[END_REF], where the balancing constraint (4.3) was not exactly respected, and the imputation variance was therefore not fully eliminated. A drawback of the proposed method is that a missing residual is not necessarily replaced by an observed estimated residual, but may be replaced by a weighted mean of observed estimated residuals, which may result in a bias in the estimation of the distribution function. However, by adding n m balancing variables in the imputation procedure, we ensure that ǫ * k is an observed residual for at least n m -1 units. The additional n m -vector of balancing variables is x = (x 1 , . . . , x i , . . . , x nm ) ⊤ , (4.5) with x i kl = ψ kl 1(k = i) for the cell (k, l), see [START_REF] Chauvet | On balanced random imputation in surveys[END_REF]. We prove in Proposition 3 that using this additional set of balancing variables in the imputation process enables to preserve the distribution of the imputed variable.

(k,l)∈U * x 0 kl ψ kl Ĩkl = (k,l)∈U * x 0 kl . ( 4 

An illustration of the proposed method

We illustrate the proposed imputation method on a small sample, based on an example presented in Thompson (2002, p. 70). In a population U of N = 53 persons in a lecture theater, each person k is asked to write down a guess of the amount of money (variable z 1k ) he/she is carrying. A simple random sample of n = 10 persons is then selected, and each person is asked to write down the exact amount of money (variable y k ) he/she is carrying. For this illustration, we consider that the variable y k is missing for 4 persons in the sample. The data are presented in Table 1.

We consider so-called ratio imputation, which is obtained from (3.5) in case of a single auxiliary variable (z k = z 1k ) and with v k = z 1k . This leads to the ratio imputation model

m : y k = βz 1k + z 1/2 1k ǫ k , (4.6)
which is currently used in business surveys. We use equal imputation weights ω k = 1. This leads .

(4.7)

In this example, we obtain Br = 0.94. The observed residuals e k for respondents are given in the last line of Table 1. We have

k∈S d k (1 -r k )v 1/2 k ēr = 4.38. (4.8)
In order to impute the missing values, we create a table of 4 × 6 cells with one row for each nonrespondent and one column for each observed residual. We then draw a sample of 4 cells by means of the flight phase of the cube method. The result is presented in Table 2. The 4-th cell on row 1 is selected, which means that we take ǫ ⋆ 7 = e 4 = 0.69. Similarly, the 1-th cell on row 3 is selected so that ǫ ⋆ 9 = e 1 , and the 1-th cell on row 4 is selected so that we take ǫ ⋆ 10 = e 1 . On row 2, we obtain Ĩ21 = 0.61 and Ĩ⋆ 26 = 0.39, so that we take ǫ ⋆ 9 = 0.61 * e 1 + 0.39 * e 6 = -0.17. With these imputed residuals, we obtain

k∈S d k (1 -r k )v 1/2 k ǫ * k = 4.38 (4.9)
so that from equation (4.8), the balancing equation is exactly respected. We present in Table 3 another possible set of imputed residuals. It can be shown that equation (4.8) holds, so that the balancing equation is satisfied and the imputation variance for the total is eliminated.

Properties of balanced random imputation

It is shown in Proposition 2 below that the imputed estimator of the total is mean-square consistent for the true total. Also, we prove in Proposition 3 that the imputed distribution function under the proposed exact balanced imputation procedure is consistent for the population distribution function.

Proposition 2. Assume that the imputation model (3.3) holds, and that assumptions (H1)-(H5) hold. Assume that the exact balanced imputation procedure is used. Then: Proposition 3. We assume that assumptions (H1)-(H5) hold. Assume that F ǫ is absolutely continuous. Assume that the exact balanced imputation procedure is used, and that the balancing variables in (4.5) are added. Then:

E[ N -1 ( tyI -t y ) 2 ] = O(n -1 ). (4.10)
E FI (t) -F N (t) = o(1). (4.11)

Simulation study

We conducted a simulation study to test the performance of several imputation methods in terms of relative bias and relative efficiency. We first generated 2 finite populations of size N = 10, 000, each containing one study variable y and one auxiliary variable z 1 . In each population, the variable z 1 was first generated from a Gamma distribution with shape and scale parameters equal to 2 and 5, respectively. Then, given the z 1 -values, the y-values were generated according to the model

y k = β z 1k + z 1/2
1k ǫ k presented in equation (4.6). The parameter β was set to 1 and the ǫ k were generated according to a normal distribution with mean 0 and variance σ 2 , whose value was chosen to lead to a coefficient of determination (R 2 ) approximately equal to 0.36 for population 1 and 0.64 for population 2.

We were interested in estimating two parameters: the population total of the y-values, t y and the finite population distribution function, F N (t) for t = t α , where t α is the α-th population quantile. We considered α = 0.25 and 0.50 in the simulation. From each population, we selected 1, 000 samples of size n = 100 by means of rejective sampling also called conditional Poisson sampling (e.g., [START_REF] Hajek | Asymptotic theory of rejective sampling with varying probabilities from a finite population[END_REF] with inclusion probabilities, π k , proportional to z k . That is, we have π k = nz k /t z , where t z = k∈U z k . Then, in each generated sample, nonresponse to item y was generated according to two nonresponse mechanisms which are described below: MCAR: uniform response mechanism, where all the units in U have the same probability of response φ 0 . We used φ 0 = 0.5 and φ 0 = 0.75.

MAR: the probability φ k of response attached to unit k is defined as

log φ k 1 -φ k = λ 0 + λ 1 z 1k , (5.1) 
where the parameters λ 0 and λ 1 were chosen so that the average φ of the φ k 's was approximately equal to 0.5, or approximately equal to 0.75.

In each sample containing respondents and nonrespondents, imputation was performed according to three methods, all motivated by the imputation model (4.6). The imputed values are given by

y * k = Br z 1k + z 1/2 1k ǫ * k .
(5.2)

For deterministic ratio imputation (DRI), the imputed values are given by (5.2) with ǫ * k = 0 for all k. The imputed values for random ratio imputation (RRI) are given by (5.2), where the residuals ǫ * k are selected independently and with replacement. The imputed values for exact balanced ratio imputation (EBRI) are given by (5.2) where the residuals ǫ * k are selected so that the balancing constraint (4.2) is exactly satisfied.

Then, we computed the imputed estimator of t y given by (3.1), and the imputed estimator of F N (t) given by (3.2). As a measure of the bias of an estimator θI of a parameter θ, we used the Monte Carlo percent relative bias I denote the estimator θI under deterministic ratio imputation, random ratio imputation and exact balanced ratio imputation, respectively. In order to compare the relative efficiency of the imputed estimators, using θ(RRI)

RB( θI ) = E M C ( θI ) -θ θ × 100, (5.3) 
I
as the reference, we used

RE = MSE( θ(.) I ) MSE( θ(RRI) I ) .
(5.5)

Monte Carlo measures for FI (t) were obtained from (5.3)-(5.5) by replacing θI with FI (t) and θ N with F N (t).

Table 4 shows the values of relative bias and relative efficiency corresponding to the imputed estimator tyI . It is clear from Table 4 that tyI was approximately unbiased in all the scenarios, as expected. In terms of relative efficiency, results showed that DRI and EBRI lead to the smallest mean square error for the estimation of a total. This result is not surprising since the imputation variance is identically equal to zero for both imputation methods. We note that DRI and EBRI were particulary efficient in the MAR case.

We now turn to the distribution function, F N (t). Table 5 shows the relative bias and relative efficiency corresponding to the imputed estimator FI (t). As expected, the estimators under deterministic ratio imputation were considerably biased, and the absolute relative bias can be as high as 42.4%. In terms of relative bias, both RRI and EBRI showed almost no bias, except for t 0.25 in the case of balanced imputation. These results can be explained by the fact that both imputation methods succeeded in preserving the distribution of the study variable y. Also, we note that the imputed estimator FI (t) under exact balanced ratio imputation was more efficient than the corresponding estimator under random ratio imputation in all the scenarios with a value of relative efficiency varying from 0.89 to 1.00. The lower values of RE were obtained in the MAR case.

Final remarks

In this paper, we considered estimation under item non-response. We proposed an exact balanced random imputation procedure, where the imputation variance is completely eliminated for the estimation of a total. We also proved that the proposed imputation procedure leads to mean-square consistent estimators for a total and for a distribution function. We have not considered the problem of variance estimation in the context of the proposed balanced random imputation. Variance estimation for the imputed estimator of the total is fairly straightforward, since the imputed estimator is identical to that under deterministic regression imputation.

Variance estimation for the imputed distribution function is currently under investigation.

When studying relationships between study variables, [START_REF] Shao | Sample correlation coefficients based on survey data under regression imputation[END_REF] proposed a joint random regression imputation procedure which succeeds in preserving the relationship between these variables, and a balanced version of their procedure was proposed by [START_REF] Chauvet | Fully efficient estimation of coefficients of correlation in the presence of imputed survey data[END_REF].

Extending the exact balanced random procedure to this situation is a matter for further research.

A Flight phase of the cube method (Tillé, 2006, p. 160) We define the balancing matrix as A = (x 1 /π 1 , . . . , x N /π N ). We initialize with π U (0) = π U . Next, at time t = 0, . . . , T , repeat the three following steps.

Step 1: Let E(t) = F (t) ∩ KerA, where

F (t) = {v ∈ R N : v k = 0 if π k (t) is an integer}, with π U (t) = (π 1 (t), . . . , π N (t)) ⊤ . If E(t) = {0}, generate any vector v(t) = 0 in E(t), random or not.
Step 2: Compute the scalars λ * 1 (t) and λ * 2 (t), which are the largest values of λ 1 (t) and λ 2 (t) such that

0 ≤ π U (t) + λ 1 (t)v(t) ≤ 1 and 0 ≤ π U (t) -λ 2 (t)v(t) ≤ 1,
where the inequalities are interpreted element-wise. Note that λ * 1 (t) > 0 and λ * 2 (t) > 0.

Step 3: Take π

U (t + 1) = π U (t) + δ U (t), where δ U (t) =    λ * 1 (t)v(t) with probability λ * 2 (t) λ * 1 (t)+λ * 2 (t) , -λ * 2 (t)v(t) with probability λ * 1 (t) λ * 1 (t)+λ * 2 (t) .
The flight phase ends at time T , when it is no longer possible to find a non-null vector in E(T ).

The random vector obtained at the end of the flight phase is ĨU = π(T ).

B Proof of Proposition 1

Lemma B.1. We have

E p ( tyπ -t y ) 2 ≤ sup k =l∈U n 1 - π kl π k π l k∈U π k y k π k - t y n 2 , (B.1) E p { FN (t) -F N (t)} 2 ≤ 4 N 2 sup k =l∈U n 1 - π kl π k π l k∈U 1 π k . (B.2)
Proof . The proof is standard, and is therefore omitted.

Lemma B.2. We have:

E( Ĝr -G 2 ) = O(n -1 ). (B.3)
Proof . We note • F for the Frobenius norm. Using the fact that the spectral norm is smaller than the Frobenius norm, we have

E( Ĝr -G 2 ) ≤ E( Ĝr -G 2 F ) = E 1 N 2 k∈U l∈U ω k v -1 k (I k r k -π k φ k )ω l v -1 l (I l r l -π l φ l )tr(z k z ⊤ k z l z ⊤ l ) = T 3 + T 4 (B.4) with T 3 = 1 N 2 k∈U ω 2 k v -2 k π k φ k (1 -π k φ k )tr(z k z ⊤ k z k z ⊤ k ), (B.5) T 4 = 1 N 2 k =l∈U ω k v -1 k ω l v -1 l (π kl -π k π l )φ k φ l tr(z k z ⊤ k z l z ⊤ l ). (B.6) Since tr(z k z ⊤ k z k z ⊤ k ) = z k 4
, we obtain from assumptions (H1), (H4) and (H5)

T 3 ≤ (C 6 ) 2 C 2 n(C 7 ) 2 1 N k∈U z k 4 , (B.7)
which is O(n -1 ) from assumption (H5). Also, we have

T 4 ≤ 1 N 2 sup k =l∈U 1 - π kl π k π l k =l∈U ω k v -1 k ω l v -1 l π k π l φ k φ l tr(z k z ⊤ k z l z ⊤ l ). (B.8) Since tr(z k z ⊤ k z l z ⊤ l ) = (z ⊤ k z l ) 2 ≤ z k 2 z l 2 , (B.9) we obtain T 4 ≤ 1 N 2 sup k =l∈U 1 - π kl π k π l k∈U ω k v -1 k π k φ k z k 2 2 ≤ (C 2 ) 2 (C 6 ) 2 n(C 7 ) 2 sup k =l∈U n 1 - π kl π k π l 1 N k∈U z k 2 2 , (B.10)
which is O(n -1 ) from assumptions (H2) and (H5). This completes the proof of Lemma B.2.

We now consider the proof of Proposition 1. We can write Bar -β = T 5 + T 6 , (B.11)

where

T 5 = Ĝ-1 ar 1 N k∈S r k ω k v -1 k z k (y k -z ⊤ k β) , (B.12) T 6 = Ĝ-1 ar ( Ĝr -Ĝar )1( Ĝar = Ĝr ) β. (B.13) 20 
We first consider the term T 5 . We have:

T 5 2 ≤ Ĝ-1 ar 2 × 1 N k∈S r k ω k v -1 k z k (y k -z ⊤ k β) 2 (B.14) ≤ a -2 × 1 N 2 k,l∈S r k r l ω k ω l v -1 k v -1 l z ⊤ k z l (y k -z ⊤ k β)(y l -z ⊤ l β),
where the second line in (B.14) follows from (3.11). Since the sampling design is non-informative and the response mechanism is unconfounded, we can write

E( T 5 2 ) = E pq E m ( T 5 2 ), (B.15)
where E pq (•) stands for the expectation with respect to the sampling design and the response mechanism, and E m (•) stands for the expectation with respect to the imputation model conditionally on I U and r U . From (B.14), (B.15), and from the assumptions on the imputation model (3.3), we obtain

E( T 5 2 ) ≤ E pq σ 2 a -2 × 1 N 2 k∈S r k ω 2 k v -1 k z ⊤ k z k ≤ σ 2 a -2 (C 6 ) 2 C 2 nC 7 1 N k∈U z k 2 (B.16)
where the second line in (B.16) follows from assumptions (H1), (H4) and (H5). From assumption (H5), this leads to E( T 5 2 ) = O(n -1 ).

We now consider the term T 6 , by following the same lines as in Lemma A.1 of [START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF].

We have: We now turn to T 8 . We have E m (T 8 ) = 0, so that E(T 2 8 ) = V (T 8 ) = E p E q V m (T 8 ).

(C.6) Also, we have

V m (T 8 ) = σ 2 N -2 k∈S d 2 k (1 -r k )v k , (C.7)
which is O(n -1 ) from Assumptions (H1) and (H5). This completes the proof.

D Proof of Proposition 3

We can write From (D.1), the proof is complete.

  θI in the r-th sample, r = 1, . . . , 1000. As a measure of variability of θI , we used the Monte Carlo mean square error MSE

≤

  a -2 β 2 × ( Ĝr -Ĝar )1( Ĝar = Ĝr ) η 1 ≥ . . . ≥ η p are the non-negative eigenvalues of G, with u 1 , . . . , u p the corresponding orthonormal eigenvectors. We have P r( Ĝar = Ĝr ) = P r(η pr = a)≤ P r |η pr -η p | ≥ |η p -a| 2 ≤ 4 (η p -a) 2 E(|η pr -η p | 2 ) (B.20) ≤ 4 (η p -a) 2 E Ĝr -G 2 (B.21) where equation (B.20) follows from the Chebyshev inequality, and equation (B.21) follows from the fact that the eigenvalue map is Lipschitzian for symmetric matrices (see Bhatia (1997), chapter 3, and Cardot et al. (2013), p. 580). From (B.18) and (B.21), and using Lemma B.2, we obtainE( T 6 2 ) = O(n -1). This completes the proof.C Proof of Proposition 2From equation (B.1), we obtain under Assumptions (H1), (H2), (H5) and under the model assumptions thatE[ N -1 ( tyπ -t y ) 2 ] = O(n -1 ). (C.1)It is therefore sufficient to prove thatE[ N -1 ( tyItyπ ) 2 ] = O(n -1 ). (C.2)We can write N -1 ( tyItyπ ) = T 7 -T 8 , whereT 7 = N -1 k∈S d k (1 -r k )z ⊤ k ( Bar -β), line in (C.5) follows from Assuptions (H1) and (H5). From Proposition 1, we obtain E(|T 7 | 2 ) = O(n -1 ).

  FI (t) -F N (t) = FI (t) -FI (t) + FI -F N (t) , (D.1)whereFI (t) = N -1 k∈S d k r k 1(y k ≤ t) + k∈S d k r k 1(y * * k ≤ t), k is the imputed value under the balanced random imputation procedure of[START_REF] Chauvet | On balanced random imputation in surveys[END_REF].Since the number of units such that 0 < Ĩkl < 1 at the end of the flight phase is bounded, we have y * k = y * * k for all units in S m but a bounded number of units. Therefore, there exists some constant C such that| FI (t) -FI (t)| ≤ N -1 × C supk∈S line in (D.3) follows from Assumption (H1). Therefore, E| FI (t) -FI (t)| = O(n -1 ). (D.4) It follows from the proof of Theorem 2 in Chauvet et al. (2011) that E| FI (t) -F N (t)| = o(1). (D.5)

  .8) Since a matrix Ĝr close to singularity can lead to unstable estimators, we follow the approach proposed in[START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF] and we introduce a regularized version of Br . We first write 1r ≥ . . . ≥ η pr are the non-negative eigenvalues of Ĝr , with u 1r , . . . , u pr the corresponding orthonormal eigenvectors. For a given a > 0, the regularized version of Ĝr as defined in[START_REF] Cardot | Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data[END_REF] is then

			p	
	Ĝr =	η jr u jr u ⊤ jr ,	(3.9)
			j=1	
	where η Ĝar =	p	max(η jr , a)u jr u ⊤ jr ,	(3.10)
		j=1		
	which is an invertible matrix with			
		Ĝ-1	

ar ≤ a -1 ,

(3.11) 

Table 1 :

 1 Values of the guess of the amount of money, of the true amount of money and of observed residuals for a simple random sample of n = 10 persons

	.3)

Table 2

 2 

		: A first example of balanced random imputation
	Non-respondent			Observed residuals			Imputed	Imputed
	k	0.30 0.93 -0.14 0.69 0.15 -0.89 residual ǫ * k	value y * k
	7	0	0	0	1	0	0		0.69	1.57
	8	0.61	0	0	0	0	0.39	-0.17	3.80
	9	1	0	0	0	0	0		0.30	1.24
	10	1	0	0	0	0	0		0.30	0.68
	to								
		y * k = Br z 1k + z 1k ǫ * 1/2 k	where Br =	k∈S r k y k k∈S r k z 1k

Table 3

 3 

		: A second example of balanced random imputation	
	Non-respondent		Observed residuals		Imputed	Imputed
	k	0.30 0.93 -0.14 0.69 0.15 -0.89 residual ǫ * k	value y * k
	7	0	0.83	0	0	0	0.17	0.62	1.50
	8	1	0	0	0	0	0	0.30	4.78
	9	0	0	0	0	0	1	-0.89	0.06
	10	0	0	0	1	0	0	0.69	0.96

Table 4 :

 4 Monte Carlo percent relative bias of the imputed estimator and relative efficiency

	DRI RRI EBRI DRI RRI EBRI
			MCAR		
		φ 0 = 0.5			φ 0 = 0.75	
	Population 1 RB 0.47 0.50	0.47	0.30 0.33	0.30
	RE 0.79	1	0.79	0.79	1	0.79
	Population 2 RB 0.17 0.26	0.17	0.16 0.25	0.16
	RE 0.79	1	0.79	0.79	1	0.79
			MAR		
		φ = 0.5			φ = 0.75	
	Population 1 RB 0.28 0.30	0.28	0.45 0.62	0.45
	RE 0.69	1	0.69	0.72	1	0.72
	Population 2 RB 0.02 -0.06 0.02 -0.18 -0.14 -0.18
	RE 0.70	1	0.70	0.74	1	0.74

Table 5 :

 5 Monte Carlo percent relative bias of the imputed estimator of the distribution function

	and relative efficiency			
		DRI RRI EBRI DRI RRI EBRI
	Population 1 Population 2	α 0.25 RB -41.3 -1.6 φ 0 = 0.5 RE 2.03 1 0.50 RB -4.7 -1.3 RE 1.22 1 0.25 RB -26.7 -0.7 RE 1.45 1 0.50 RB -2. 7 -0.3 RE 1.09 1	MCAR -2.7 -31.3 -1.1 φ 0 = 0.75 0.94 1.66 1 -0.9 -3.6 -0.7 0.98 1.13 1 -1.4 -22.2 -0.5 0.93 1.34 1 -0.1 -2.1 -0.1 0.97 1.07 1	-2.0 0.94 -0.6 0.97 -1.1 0.94 0.1 0.97
	Population 1 Population 2	α 0.25 RB -42.4 -0.3 φ 0 = 0.5 RE 2.11 1 0.50 RB 2.1 -0.0 RE 1.18 1 0.25 RB -15.4 0.6 RE 1.17 1 0.50 RB 0.2 0.1 RE 1.09 1	MAR -0.9 -24.2 -2.5 φ 0 = 0.75 0.89 1.37 1 0.2 5.6 -1.5 0.95 1.12 1 0.4 -3.4 1.3 0.93 1.00 1 -0.3 2.6 -0.7 1.00 1.02 1	-3.5 0.90 -0.2 0.96 2.0 0.93 -0.2 0.96