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STUDIES OF ENTROPY MEASURES CONCERNING THE GAPS OF PRIME NUMBERS

The Shannon entropy is used as a basis for applying different lemmas and conjectures concerning the set of gaps between prime numbers Gp, thus estimating several measures of it. The same procedures are applied to artificially created number sets, to compare the size of their entropy against Gp.
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Introduction

Shannon's (information) entropy is based on probabilities. If a distribution of probabilities is known, it can be estimated using the formula for discrete distributions or for continuous distributions [START_REF] Fouque | Close to uniform prime number generation with fewer random bits[END_REF].

Why entropy bounds may not be good enough? Previous works on the generation of prime numbers, such as [START_REF] Brandt | On generation of probable primes by incremental search[END_REF][START_REF] Joye | Fast generation of prime numbers on portable devices: An update[END_REF][START_REF] Maurer | Fast generation of prime numbers and secure public-key cryptographic parameters[END_REF], provide a proof (based on rather strong assumptions) that the output distribution of their algorithm has an entropy not much smaller than the entropy of the uniform distribution. This is a reasonable measure of the inability of an adversary to guess which particular prime was output by the algorithm, but it doesn't rule out the possibility of gaining some information about the generated primes. In particular, it doesn't rule out the existence of an efficient distinguisher between the output distribution and the uniform one. For example [START_REF] Joye | Fast generation of prime numbers on portable devices: An update[END_REF], let H max ... nbit prime. n ≥ 256 (1.1) H max -H < 1 -γ log 2 = 0.609949 γ is the Euler-Mascheroni constant. The entropy loss with respect to a perfectly uniform generation is less than 0.61 bit for any prime bit length.

Therefore the central part of calculating Shannon's entropy rest upon how does one obtain the probabilities. For example [START_REF] Minculeta | The entropy of a natural number[END_REF] uses

(1.2) H(n) = log Ω(n) - 1 Ω(n) r i=1 a i log a i
where Ω(n) is the sum of the total number of prime factors of the natural number n and a i is the multiplicity of each one of those prime factors. In particular for n = 2 • 3 2 • 5 3 the entropy is estimated as

(1.3) H(n) = log 6 - 1 6 (2 log 2 + 3 log 3) ≈ 1.011
In this work it usage will be made of several measures like Eq.1.3 to prove that the entropy of a given amount of gaps between prime numbers is less than the entropy of a uniform distribution of a similar quantity of natural or real numbers.

Entropy of Real Numbers

Shannon's entropy is defined as [START_REF] Shannon | A mathematical theory of communication[END_REF] (2.1)

H(x) = - n i=1 P (x i ) log b P (x i )
where P (x i ) is the probability mass funcion of the discrete random variable X with possible values {x 1 , • • • , x n } and log b is the logarithm in base b used.

For the continuous case we have [START_REF] Park | Maximum entropy autoregressive conditional heteroskedasticity model[END_REF] (2.2)

h(X) = - X f (x) log f (x)dx
where f is a probability density function whose support is a set X For the purposes of this work, suppose it is desired to measure the entropy of a set with a uniform distribution with a given amount of real numbers (a set of random reals R real ), and in order to make it congruent to any measure of entropy with prime numbers, the support set X = [2, N p ], where N p is a given number of primes up to a given bound. Using Eq.2.2, the entropy of real numbers can be defined as

(2.3) H(R real ) = - N p 2 1 N p -2 log 1 N p -2 dR real = log(N p -2)
By the Prime Number Theorem [START_REF] Hardy | Contributions to the theory of the riemann zetafunction and the theory of the distribution of primes[END_REF], the amount of prime numbers N p up to a given bound x is (2.4)

N p ∼ x ln x ∼ π(x)
π(x) the number of primes less than or equal to x, for any Real number x. Assume that for a given, concrete, measure, we have x = x max , and using Eq.2.2

(2.5)

H(Real) = - xmax ln xmax 2 1 xmax ln xmax -2 ln 1 xmax ln xmax -2 dx = ln x max ln x max - 2 
for a chosen maximal x. Goldston, Pintz, and Yildirim [START_REF] Goldston | Primes in tuples i[END_REF] under appropiate unproved conjectures, showed that there are infinitely many primes P n , P n+1 such that: P n+1 -P n < 16. Therefore, applying Eq. (2.5) 

(3.2) G(x) ∼ log 2 (x) so H(G(x)) = - xmax 1 log 2 (x max ) log 1 log 2 (x max -1) dx = -log 2 (x max ) log 1 log 2 (x max -1) (x max -1) = log -2 (x max ) log 1 log 2 (x max -1) (x max -1) = log 1 log 2 (x max -1) (x max -1)/ log 2
For comparison, we generate randomly uniform distributions of gaps from 2 to G(x max ) so

H(Random gaps) = - G(xmax) 2 1 G(x max ) -2 log 1 G(x max ) -2 dx = - 1 G(x max ) -2 log 1 G(x max ) -2 (G(x max ) -2) = -log 1 G(x max ) -2 = log (G(x max ) -2)
Thus resulting the inequality to be questioned

(3.3) log x max log x max -2 > log (G(x max ) -2) ∀x > x min ?
using Eq. 3.1 we obtain

(3.4) log x max log x max -2 > log (log(x max ) (log(x max ) -2 log log(x max ) + c) -2)
exponentiating both sides and scratching out the outermost "2"s we get

(3.5) x max log x max > log(x max ) (log(x max ) -2 log log(x max ) + c) (3.6) x max > log 2 (x max ) (log(x max ) -2 log log(x max ) + c) solving for x max (3.7) x max > 9.17162
Meaning that for x max > 9.17162, the entropy of the largest gap from those generated with a uniform distribution, is greater than the entropy of the largest gap between primes, below a given bound x, according to Cramér's conjecture. Moreover, for a uniformly distribution of gaps from 2 to max gaps = G(x max ), we will have always

(3.8) log (G(x max ) -2)
whatever G(x max ) is; taking now G(x max ) ∼ log 2 (x max ) (Cramer's conjecture) for x >> 1 (large x) we have the inequality

(3.9) log x max log x max -2 > log log 2 (x max ) -2
and solving for x max , we obtain Using a conjecture in [START_REF] Heath-Brown | Gaps between primes, and the pair correlation of zeros of the zetafunction[END_REF] (assuming the validity of the Riemann Hypothesis), we have that log (G(x max ) -2) again, we get (4.1) log

x max log x max -2 > log (log(x max ) (log(x max ) + log log log(x max )) -2)
which is always true for x > 120.027 (or for 5.69781 < x < 8.43901).

Granville's formula

A. Granville's formula [START_REF] Granville | Harald cramér and the distribution of prime numbers[END_REF], which claims to be true for infinitely many pairs of primes P n , P n+1 for which (5.1) where the right-hand-side of Eq.(6.2) is the "size" of P n and n is the index, or the ordered position in the sequence of primes, for P n . Therefore we can take this as x max . Go back to the entropy of Reals, taking n log n as the largest number of primes, but now in terms of the index n.

P n , P n+1 = G(P n ) > 2e -γ log 2 (P n ) =
H(Real) = - # of primes 2 1 #P -2 log 1 #P -2 dReal (6.3) = - 1 #P -2 log 1 #P -2 (#P -2) = log (#P -2)
we recall that PNT also says that the number of primes is approximately (6.4) #primes ∼ x log x but now we are taking x as x max and in turn this maximal number making it equal to the size of the largest prime, that is x max = n log n, so first (6.5) log

x max log x max -2
and substituting the value of x max and by Eq.( 6.2)

(6.6) log n log n log(n log n) -2 = log P n log P n - 2 
and now this new formula for the size of entropy in terms of the index n can be used for those formulas of the gaps that are in terms of P n , being now P n ∼ n log n. We go back to Granville's formula given by Wolf, in terms of the Euler-Mascheroni constant. (6.7) which is true for n ≥ 9.

G(P n ) > 2e -γ log 2 (P n ) =

Upper bound of Jaroma 2005

Instead of Eq.( 8.2) the following can also be used [START_REF] Jaroma | An upper bound on the nth prime[END_REF] (9.1)

P n < (1.2) k < P < (1.2) k+1
Therefore P k+1 < (1.2) k+1 , which we substitute in Eq.(8.2)

(9.2) log (1.2) n log(1.2) n -2 > log log 2 (1.2) n -2 log(1.2) n+1 -2
Solving for n, we obtain n ∈ +Z ∧ n ≥ 16.

Estimations based on Tschebychef function, Robin 1983

We have been using (10.1) log

P n log P n -2 > log (G(P n ))
suppose now the following result [START_REF] Robin | Estimation de la fonction de tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω (n) nombre de diviseurs premiers de n[END_REF] (10.2)

P n ≤ n log n + n (log log n -0.9385)
for n ≥ 7022 substituing the right hand side of Eq.( 10.2) on the left hand side of Eq.(8.2) (10.3)

log n log n + n (log log n -0.9385) log n log n + n (log log n -0.9385) -2 > log log 2 P n -2 log P n+1 -2
Even if we don't have a result like Eq.(10.2) for P n+1 , let us argue like Jaroma [START_REF] Jaroma | An upper bound on the nth prime[END_REF] and suppose that (10.4) P n+1 ≤ (n + 1) log(n + 1) + (n + 1) (log log(n + 1) -0.9385) substituting Eq.(10.2) and Eq.(10.4) in Eq.( 10.1) we obtain log n log n + n (log log n -0.9385) log n log n + n (log log n -0.9385) -2 > (10.5) log log (n log n + n (log log n -0.9385))

2 -2 log(n + 1) log(n + 1) + (n + 1) (log log(n + 1) -0.9385) -2

But this is true only for 16 ≤ n ≤ 32.

11. Upper and lower bounds for gaps between primes 11.1. kontorovich-Zhang 2013. Alex Kontorovich [START_REF] Kontorovich | Levels of distribution and the affine sieve[END_REF] explains the basis of Zhang's theorem: In April 2013 Zhang [START_REF] Zhang | Bounded gaps between primes[END_REF] proved that the Bounded Gaps Conjecture is true. In particular, (11.1) lim inf

n→∞ (P n+1 -P n ) < 7 × 10 7
The average gap P n+1 -P n is of size about log P n (by PNT):

(11.2) ∀x, x >> 1, ∃ (Pn+1, Pn) (P n+1 -P n ) < 7 × 10 7
in the range [x, 2x] [START_REF] Zhang | Bounded gaps between primes[END_REF]. This will be taken as an upper limit for calculating the entropy of gaps between prime numbers. (11.9)

P |k, P >2 P -1 P -2 = 3 -1 3 -2 = 2 
8 is divided by 8, 4, 2 but 2 is the only prime, and cannot be used. We should have zero, but by definition the function resorts to 1. We have, then that (11.10)

f (k) = P |k, P >2 P -1 P -2 = O(log log k)
The right-hand-side of this last expression is our smooth "envelope", with k meaning gaps of any length. By PNT and Merten's theorem, G(x) > log(x), and using the bounds 2 and 7 × 10 7 , an estimate of the entropy of gaps between prime numbers is:

(11.11) H(G(P )) = - Again, by PNT, G(x) > log(x). The x in this last equation is the natural number, which has to be so large, we can accomodate the size of the maximum possible entropy of gaps. We can go back to the formula for entropy of reals.

(11.12)

H(Real) = log x max log x max - 2 
for a chosen maximal x. We know that maxgap = 7 × 10 7 = G(x) > log(x); solving for x, we obtain the exact number x = e 7×10 7 , meaning that, provided x ≥ exp[7 × 10 7 ], the entropy of the gaps will remain forever lower than any given real number. For a uniform distribution of gaps, the entropy is

(11.13) log (G(x max ) -2)
we know from [START_REF] Zhang | Bounded gaps between primes[END_REF] that G(x max ) = 3 × 10 7 , and that G(x) > log(x), so:

(11.14) log ((x max ) -2)
is the minimum entropy attainable by a random gap generator, which doesn't "know" about the maximal gap. The entropy is therefore: (11.15) x = e 2+e 3×10 7

and from there onwards the entropy of random gaps must be larger, and for H(Real) for H(Real) to be always greater than the entropy of the gaps between prime numbers.

(
12. H(P n+1 -P (n) = min{H(x k+1 -x k )}, k ∈ R Theorem 12.1. The entropy of the gaps between prime numbers is smaller than any similar distribution made with random gaps, and of real numbers.

Proof. Using the results of all sections, it is shown that at least above a certain measure, it can be certain that the entropy of gaps between prime numbers will remain smaller than any random distribution of gaps of similar size, or of real numbers of comparable size.

( 3 .

 3 10) x max > 93.3545 Now, let (3.11) G(x max ) = log(x max ) (log(x max ) + log log log(x max )) 4. Heath-Brown conjecture

  (k)) dk (assuming smoothness) Solving we obtain 2.57231 × 10 7 .

  1.12292... log 2 (P n )Compare with the other formula given above (G(x max ) ∼ log 2 (x max ) -Eq.3.2-); this would lead to rethink a real number, the size of P n , i.e., x max = P n ; what is the probability of P n ? As a consequence of the Prime Number Theorem (PNT), one gets an asymptotic expression for the n th prime number, denoted by P

	where γ = 0.577216... is the Euler-Mascheroni constant. The problem with Granville's, and other similar results, is that the formula (5.2) log(x max / log x max ) -2 cannot be used for comparison of the entropy with the reals, because Eq.(5.2) is Assuming the Riemann Hypothesis, Cramér proved that [20] not in terms of P 6. Using a Generalization of Cramér's conjecture (6.1) P n+1 -P n = O P 0.5 n log P n

n . Said in another way, Eq.(5.2) is not a formula saying something about how to find directly P n , i.e., how large x max must be, so that P n is found. However there might a way to interpret this P n using a generalization of Cramér's conjecture (see next section). n

[START_REF] Ribenboim | The little book of bigger primes[END_REF]

: (6.2)

P n ∼ n log n

  Solving numerically for P n ; P n ∈ R gives P n > 128.703 and the next prime to this real number is 131. The best current unconditional result for P n+1 -P n is O P 0.535 P n < log 2 P n -log P n+1 the right hand side of the inequality will be taken as G(P n ).

	We use log(G(P n ) -2) so we are saying that either
	(6.8)	log	P n log P n	-2 > log 2e -γ log 2 (P n ) -2
	or that (by 6.2)			
	(6.9)	log	n log n log(n log n)	-2 > log 2e -γ log 2 (n log n) -2
	n	due to R. Baker and G. Harman, 1996, so:
	(6.10)		log	P n log P n	-2 > log P 0.535 n	-2
	which renders P n > 3.6532 or P n > 5 or, in terms of the index n
	(6.11)	log	n log n log(n log n)	-2 > log (n log n) 0.535 -2
				7. Cramér's conjecture
	(7.1)			P n+1 -P n = O P 0.5 n log P n
	assuming the Riemann Hypothesis. so the entropy inequality will be written as
	(7.2)		log	P n log P n	-2 > log P 0.5 n log P n -2
	so P n > 5503.66 or P n > 5507.
		8. Stronger Form of Firoozbakt's Conjecture
	Sinha [20] deduces a stronger form of Firoozbakt's conjecture, from which it is
	deduced that			
	(8.1) P n+1 -Now we are saying that [17]
	(8.2)	log	P n log P n	-2 > log log 2 P n -2 log P n+1 -2
	which is true for P n ≥ 17 ∧ P n+1 ≥ 19, or
	(8.3) log	n log n log(n log n)	-2 > log log 2 (n log n) -2 log((n + 1) log(n + 1)) -2

1.12292... log 2 (P n )

  P n strictly bounds from below the size of the gaps. Eqns. 11.4 and 11.6 tell us that on average one can expect that the lower bound of gaps between prime numbers is as low as possible. Since prime numbers are odd numbers, the smallest possible gap is 2 and using 7 × 10 7 as an upper bound, we now need to estimate a smooth envelope for prime gaps.

	11.2. Kontoyiannis 2008. Ioannis Kontoyiannis [11], cites a paper of Chebyshev,
	1852 where				
	(11.3)	C(n)	P ≤n	log P P	∼ log n
	where the sum is over all primes not exceeding n, and furthermore proves that
	(11.4)	lim inf n→∞	C(n) log n	= 1,
	using as one of the arguments that the entropy contained in the the number of
	primes up to certain value, is inversely proportional to the number of primes within
	that range:				
	(11.5)	H(N ) = log	1 P (N )
	11.3. Perepelyuk 2013. In [16] it is mentioned that
	(11.6)	lim inf n→∞		P n+1 -P n log P n	= 0
	meaning that log 11.4. Smooth envelope. Using Merten's theorem [13] and PNT , it can be shown
	that				
	(11.7)	f (k) = O(log log k)
	where				
	(11.8)	f (k) =	P |k, P >2	P -1 P -2
	(k even) and compare for different k. So f (6) = 2 > 1 = f (8); so gaps of length 6
	are asymptotically twice as common as gaps of length 8.
	So, using Eq.(11.8), for 6, we only have 3 as prime:
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