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Abstract

Clustering is the usual way of classifying data when there is no a priori knowledge,

especially about the number of classes. Within the frame of big data analysis, the

computational effort needed to perform the clustering task may become prohibitive

and motivated the construction of several algorithms or the adaptation of existing
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ones, as the well known K-means algorithm [12]. Recently, Rodriguez and Laio [17]

proposed an algorithm that clusters efficiently by fast searching local density peaks

that are sufficiently distant one from the others. However it is able to work on small

datasets only and is highly sensitive to the value of tunable parameters. In this paper

we propose Improved Density Peak Clustering (IDPC), a new algorithm designed for

large datasets based on [17] which corrects the shortcomings mentioned above. Thanks

to our Cover Map (CM) procedure iterated with a decreasing locally-adaptive window

(ICMDW), we are able to build both a localisation map and a multidimensional

density map. The nature of the density map, which fits perfectly with the approach

of [17], allows us to compute the different steps with much less operations. It carries

unsensitive parameters, supports last improvements on cluster centers selection and

potentially allows new improvements.

Keywords: Clustering algorithm; density-based clustering; large datasets;

1 Introduction

Clustering is a commonly used tool that aims to identify similar samples in a dataset.

It can be viewed both from the machine learning and the statistics point of view, with

classical algorithms pertaining to each domain. When considered from the algorithmic

standpoint, the complexity of the clustering problem is known to be NP hard, even for the

usual K-means, when the number of clusters is not fixed.

Presented in [17], the innovative fast density peak detection (FDPC) algorithm is able

to cope with non-convex clusters and gives a convenient decision rule to find the correct

number of clusters. As in the mean shift algorithm [3], clusters centers are defined as local

density maxima. More specifically, a cluster center is defined as a point surrounded by

neighbours with lower local density and away from any other local maxima. In order to

detect them, a distance dc is first selected and is used to define neighborood. Densities ρi

are calculated at each data point xi by counting the number of sample points closer than

2



dc to xi (1). Next, for each data point, the nearest point with a higher density is found

and the distance δi separating them is recorded (2). Cluster centers are then defined as

the points xi that have both high density ρi and high distance δi. Other points receive the

same label than their nearest neighbor of higher density (3).

This innovative method has promising results but shows some limitations. In step (1),

the distances between all sample points are calculated, leading to an O(N2) complexity

and memory footprint, not to mention other steps. This issue limits it to small datasets.

Furthermore, choosing a good threshold distance dc is non-trivial and critical since it has

a major impact on the final clustering.

Our new algorithm aims to overcome the drawbacks mentioned above. The general idea

of IDPC is to start by the construction of a density map trough the procedure Iterated Cover

Map with a Decreasing Window (ICMDW), reducing the dimension N of the problem, and

then to use the localisation information it provides to construct a very fast version of steps

(2) and (3).

In the second Section we review the work related to [17]. In the third Section we detail

the implementation of the ICMDW algorithm. In the fourth Section we explain how the

results provided by ICMDW are used to greatly reduce the computations in cluster centroid

selection and labelisation. And finally, we present experimental results in the fifth Section.

2 Related work

2.1 Fast Density Peak Clustering

Let (xi)i=1...N be the sample points. In the first step of FDPC the Euclidean distances dij

between each data points are computed. Then a distance dc is chosen to finally compute,

for each xi, the number of data points that are closer than dc to the point xi. Local densities
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are then obtained according to the formula:

ρi := ρ(xi) =
N∑
j=1

(1R−(dij − dc)).

Please note that the expression is of the form
∑N

j=1K (xi − xj), where K is the so-called

kernel function, that reduces here to the characteristic function of a ball 1B(0,dc).

In the second step, the minimum distance between the point xi and any other point with

higher density is calculated as δi = minj:ρj>ρi(dij). Finally, cluster centers are found as out-

liers in the decision graph formed by (δ, ρ), where outliers are the points sharing anoma-

lously large density-delta values. Conventionally, for the point xk with highest density,

δk = maxj(dij).

Finally, other points are assigned to the same cluster than their Nearest Point with

Higher Density (NHPD). Its algorithmic is detailed in Algorithm 1.

Many researchers worked on this algorithm in order to improve and/or use it on a specific

Algorithm 1 FDPC
procedure FDPC(dc)

for all (i, j) ∈ { 1, ..., N}2 do
dij ← distance(xi, xj)

end for
for all i ∈ {1, ..., N} do

ρi ←
∑N

j=1(1x<0(dij − dc))
end for
for all j ∈ {1, ..., N} do

nhpdj ← argmink:ρ(xk)>ρ(xj)(djk)
δj ← dj,nhpdj

end for
Cluster centers ← outliers in decision graph
∀j, Labelj ← Labelnhpdj

end procedure

problem. It has been used successfully on clustering of electricity consumption behaviour

[22], text clustering [10], unsupervised acoustic subword units discovery pompage [25],

batch process modelling and on-line monitoring [16], medical data [7] and it has been
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slightly modified to work on image segmentation [1, 2, 18], outliers detection [4] and hyper

spectral band selection [6]. K-means and FDPC have been compared in [15] and FDPC

has shown more accurate than K-means.

However, FDPC has proved to be slower than K-means and suffers from three other

shortcomings:

• First of all, due to its inherent computational complexity, it cannot handle large data

sets.

• Secondly, the choice of dc has to be made empirically whereas it highly impacts every

steps of the clustering algorithm.

• Finally, no decision rule is given to determine the outliers in the decision graph,

leading to a manual or poor automatic selection of the cluster centers.

2.2 Improvements of FCDP

To overcome the limitations underlined above, a lot of work was done to derive improved

versions of the original algorithm. Most of them deals only with one issue, due to the

application:

Ability to handle large datasets

An extension of FDPC [9] has been proposed in order to manage large taxi fleet datasets.

Data sample is first projected to a density image which is processed to obtain the densities

ρi and the contours of clusters. This method works well on large datasets, but for 2-

dimensional data only.

Choice of dc

The baseline choice of dc is to take the one that produce an average density count equal

to 2% of N (ρ̄ = 2%N)[4]. A non-trivial entropy-based choice of dc has been brought in

[20], but it is computationally difficult to perform, even more in large scale contexts. There
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exist two methods that replace the density estimation (1) by a non-parametric one, avoiding

the choice of dc. In [21] the local density is estimated with a non-parametric multivariate

kernel estimator. For each point xi, the local density is calculated throughout the formula

ρi =
1

n
d∏
l

hl

.

n∑
j=1

K(
xi1 − xj1

h1
, ...,

xid − xjd
hd

),

where d is the dimension, K is a Gaussian kernel and {h1, ..., hd} are the bandwidths which

are automatically and locally chosen. Moreover an automatic cluster centroid selection

method is also developed through maximizing an average silhouette index. In [14], density

estimation is done with an another non-parametric density estimator, based on the heat

equation, which is more accurate but computationally expensive.

Cluster centers selection

In [11] data points are arranged according to their γi = δi.ρi values in descending order

and the first m points are selected. Then centers are the points that possess a higher γi

than the turning-point defined as

argmaxi∈{1,...,m}(
k1i
ki−11

), where kni =
γi+n − γi

n
.

Regarding [13], cluster centers are supposed to possess large δi (δi > 2Var(δ) in [13],

δi > 3Var(δ) in [4]) and large ρi (ρi > mean(ρ)). Furthermore, a merge step is added: two

clusters are merged if it exists a point x belonging to one cluster and a point y belonging

to the other one that are closer than dc. [23] also merges recursively the clusters based on

their relative inter-connectivity and relative closeness.

An another dc-based algorithm is presented in [8]. The concepts of DBSCAN [5] (density

reachable, core objects..) are coupled with the divide-and-conquer strategy to produce a

better cluster centers selection. Potential centroids obtained by the decision graph are
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tested recursively and ignored if there is density-reachability between it and any other

cluster centroid.

A k-nearest neighbors (KNN) based algorithm [19] is proposed as a rigorous way to

detect cluster centers automatically. KNN is used to define ρi = [K]∑
j=1Kdij

. The product

γ = ρ.δ is proven to follow a fat tailed distribution and a statistical test is proposed to find

its outliers, which will define the cluster centers.

Other improvements

In [24], KNN is used to improve the assignment rule of the remaining points, right after

the cluster centers detection step. First, outlier points (with a large δKi = maxi∈KNNi(dij))

are deleted. Secondly, remaining points are assigned through a restrictive strategy called

"strategy 1". Roughly speaking, the label of a centroid xc is propagated to the unlabelled

points closer than
∑

j∈KNNc dcj/K and those newly labelled points propagates recursively

the label by the same way. Unassigned points by the strategy 1 are managed by the second

strategy. The key aspect of strategy 2 is to learn the probability pci that a point xi belongs

to cluster c, then assign the point i to its most similar cluster c with the highest value of

pci .

In [26], a derivative of FDPC that can manage uneven density datasets is proposed. The

differences occurs for densities ρi and distances δi that are replaced by quantities with a

similar behavior. The notion of mutual attraction of two points is introduced and is given

by

fij = min(fi→j, fj→i), where fi→j = e−
d(i,j)2

2σ2 .

The parameter σ, controlling the width of the kernel function, is locally calculated by

σi =

∑
j∈J d(i, j)

Card(J)
, where J = {j|d(i, j) ≤ dc}.
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The densities ρi are then replaced by the influence scores

ρi =

∑
j∈A fi,j

card(A)

and the δi are calculated with δi = minj:ρj>ρi
d(i,j)

min(σi,σj)
.

3 Building density map and localisation map

In order to address the issue of large databases, instead of evaluating the densities at every

single point xi ∈ N × P , we propose to evaluate the densities ρi at a reduced number of

points covering the domain of the data. Data sample is randomized and pseudo normalized

(normalized but with a small part of the dataset). The densities ρi are calculated with an

adaptive windows dgc , smaller when the local density is high. To do so, the procedure Cover

Map (CM) is iterated with a decreasing window size dgc . At each iteration g the results

obtained from the last CM iteration are used to perform a cheaper CM than the one that

would be directly performed with dgc .

3.1 Procedure Cover Map

For a given fixed window dc, the Cover Map procedure covers the domain of the dataset

with balls of radius equal to dc.

The first observation is used to construct the first ball B1(x1, dc). Then for each observation

xi it checks if the data point belongs to at least one existing ball. If yes, then those balls

increase their density count by one. Else, a new ball B(xi, dc) is created (see algorithm 2).

Thanks to this procedure we obtain a subset of points, possessing much fewer points

that the original one, with their associated local density ρi covering the whole domain. But

it remains the difficult choice of dc, and the reduced set of balls can still be too large for

the second step.
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Algorithm 2 Cover Map
1: procedure CM(dc)
2: S ← B1(x1, dc) . Create the first ball
3: ρ1(B1(x1, dc))← 1
4: for all xi, i > 1 do
5:

−→
d ← distance(xi, S)

6: J ← {j|
−→
d [j] < dc}

7: if J 6= ∅ then
8: ∀j ∈ J, ρj(Bj)← ρj(Bj) + 1
9: else

10: S ← S ∪Bk(xi, dc) . Create new ball
11: ρk(Bk(xi, dc))← 1
12: end if
13: end for
14: return {S, {ρk}k}
15: end procedure

3.2 Iterative CM procedure with a decreasing window (ICMDW)

A modified version of the CM procedure described above is iterated with a decreasing

window dgc = dg−1c .R, R ∈]0, 1[. At each consecutive CM iteration it uses the results of

the last one in order to reduce the number of distances to be calculated. The modified

CM algorithm mainly differs in the construction and use of a family-tree Ftree which holds

the localisation information of the balls, allowing much less computations. This algorithm

creates a collection of balls with different size {Bg
j }g,j, the corresponding local densities

and the family-tree Ftree. The various terms used in the sequel are summarized below.

Terminology:

Terminal ball: A terminal ball is a ball that contains less than Nmin data points.

Attached: A ball Bg(x, dc × R) is attached to a previous generation ball Bg−1(y, dc) if

d(x, y) < dc.(R + 1).

Daughters of B:D(B), the daughters of the ball B are the next generation balls attached

to it.

Mother of Bg(x,dc): M(Bg(x, dc)), the mother of B is the closest ball of generation g−1
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containing x.

Mother of x: When the current generation is g, the mother of the data point x is the

closest ball of generation g − 1 containing x. It is denoted by M(x).

Familly-tree: The family-tree contains the balls created at each generation and their links.

We enforce that if a data point xi belongs to a ball Bg of generation g then it cannot

belong to a ball of next generation g + 1 unattached to Bg. Formally, if xi ∈ Bg
j and

xi ∈ Bg+1
k then Bg+1

k is attached to Bg
j .

This implies that when we check a new observation at generation g in the CM pro-

cedure, we do not need to calculate the distances between it and all existing balls (their

number can be very high), but we only need to compute the distances between it and the

few balls of generation g attached to the mother ball (generation g − 1) of xi.

The first step of ICMDW (see Algorithm 3) is a standard CM iteration with a very large

initial d1c . Then the modified CM algorithm (see Algorithm 4) is iteratively applied with a

smaller window d2c = d1c .R, where R ∈]0, 1[ is the coefficient which controls the decreasing

speed of the window. At a given iteration g, the modified CM procedure works as follow.

For each xi it first constructs J , the set of indexes of existing balls to which xi belongs

to. But for that purpose, instead of comparing xi with the whole set S of existing balls, it

only searches among the reduced set s. s is constructed by loading the mother m = M(xi)

of xi and then by loading s = D(m), the daughters balls of m. J can then be obtained

by calculating the distances between xi and the reduced set of balls s only. If J 6= ∅, the

balls pointed by J increase their density count by one. Else, a new ball B(xi, d
g
c) is created

and Ftree is updated by indicating to which balls B(xi, d
g
c) is attached. For this update,

which happens only when a ball is created, we need to compute the distance between xi

and all the current generation existing balls to retain those closer than dgc .(1 +R). Finally,

J is stored to be able to load its mother and to know if xi belongs to terminal balls in the
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next CM iteration. After all observations xi has been processed, the balls with less than

Nmin points are set terminals and data points that belongs to only terminal balls are frozen

(not used in the next iterations), reducing the number of data points processed at next the

rounds. The frozen points from the last round are nevertheless used one last time. Indeed,

data points frozen at iteration g are used at iteration g + 1 to increase the density count

of the ρg+1
i , but not to create new balls. This procedure is iterated and stops when there

remain only terminal balls.

Density counts are re-evaluated through a last pass of the dataset. To do so, for each

point xi, we find the balls of first generation to which xi belongs to, increase their density

count by one, load the daughters of the closer one and repeat the process until xi doesn’t

belong to any of the daughter balls. From those operations we can also obtain cci, for each

data-point xi, the closest and smaller terminal ball containing it (used for the labelisation

phase). This re-evaluation is necessary since some balls that are created lately comes after

the drawing of many points that should belong to them, implying an artificial small density

count. Finally densities are rescaled with respect to the volume of the balls.

In [4] dc is chosen such as ρ̄ = 2%N . However, here it is the width of the window dgc

which is indirectly defined by Nmin. Since we work in a large scale context and since the

window is adaptive, we can choose Nmin much lower than 2%N . From our experience, we

propose Nmin = 0.1%N but it can be modified. It can be raised for faster but less accurate

results, or parsimoniously lowered for expensive but more accurate results. Note that the

accuracy is not of much importance for the cluster centers selection, but is determinant for

the labelisation phase.

R ∈]0, 1[ controls the decreasing speed of the radius. When R is small, the balls will

decrease faster implying better performances, but will increase the risks of creating balls

that possess low ρi while the area may be dense. To overcome this problem Nmin can be

raised but it will imply a loss in details since many balls will not be deployed. Setting
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Algorithm 3 Iterated CM With Decreasing Window
1: procedure ICMDW(dc, Nmin, R)
2: d1c ← R
3: {{B1

k}k, {ρ1k}k} ← CM(d1c)
4: g ← 1
5: while it remains at least a non-terminal ball do
6: g ← g + 1
7: dgc ← dg−1c .R
8: {Ftree, {ρgk}k, Sg, TBg} ← CMmodif(dc, Nmin, R, Ftree, g, S

g−1)
9: end while

10: . Density re-evaluation:
11: for all xi ∈ {1, ..., N} do
12: s← {B1

k}k
13: g ← 1
14: while J 6= ∅ do
15:

−→
d ← distance(xi, s)

16: J ← {j|
−→
d [j] < dgc}

17: ∀j ∈ J , ρgj ← ρgj + 1
18: cci ← Bg

J [1]

19: g ← g + 1
20: s← D(J [1])
21: end while
22: end for
23: {ρgk} ← {ρ

g
k/Volumeg}

24: return {Ftree, {ρgk}g,k, {Sg}g, {TBg}g, {cci}i∈{1,...,N}}
25: end procedure
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Algorithm 4 CM modified
1: procedure CMmodif(dc, Nmin, R, Ftree, g)
2: S ← ∅
3: for all not frozen xi do
4: m←M(xi) . Load mother of xi
5: s← D(m) . Load daughters of M
6:

−→
d ← distance(xi, s)

7: J ← {j|
−→
d [j] < dc}

8: if J 6= ∅ then
9: ∀j ∈ J, ρgj (B

g
j )← ρgj (Bj) + 1

10: else
11: Sg ← Sg ∪Bg

k(xi, dc) . Create new ball
12: ρgk(B

g
k(xi, dc))← 1

13: L← {l|distance(Bk(xi, dc), S
g−1[l]) < dc.(1 +R))}

14: Update F g
tree . Record that B(xi, dc) is attached to {Bl}l∈L

15: J ← k
16: end if
17: Store J in F g

tree
18: end for
19: for all xi frozen at last iteration do
20: m←M(xi) . Load mother of xi
21: s← D(m) . Load daughters of M
22:

−→
d ← distance(xi, s)

23: ∀j ∈ J, ρgj (B
g
j )← ρgj (B

g
j ) + 1

24: end for
25: TBg ← {Bg

l |ρ
g
l (B

g
l ) < Nmin}l

26: return {Ftree, {ρgk}k, Sg, TBg}
27: end procedure
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R = 3
4
appeared to be a good trade-off according to the conducted experiments.

In order to quickly cover the domain with few balls in the first iteration, d1c can be set

to 1. It is justified by the fact that, since the dataset is normalized, d1c = 1 is equal to

the standards deviations {σj}j=1,...,p in each dimension. Moreover the choice d0 has little

impact then we do not need an accurate normalization. Therefore, we can only pseudo

normalize the dataset, that is to say, estimate {µ̂j}j=1,...,p then ˆ{σj}j=1,...,p with a small

subset part of the sample only and compute xij =
xij
σ̂j
,∀(i, j) ∈ N × P .

4 Cluster centers selection and labelisation using Ftree

This step mainly consists in finding, for each terminal ball, the closest one with higher

density. Even if the number of points to be treated is decreased, it can remain too large

to be directly processed by the standard peak detection presented in [17]. Instead of

computing all the distances between all terminal balls, we use the localisation information

provided by Ftree to compute distances for a few of them only.

This part is based on the following observation. Consider the kth ball BG−1
k of generation

G− 1 (where G is the last generation) and also consider its daughters AGk = D(BG−1
k ). We

define CG−1
k the "champion" of BG−1

k , the ball of AGk who has the higher density. Then,

excepted for the champion CG−1
k , every daughter ball BG

j ∈ AGk possess a neighbor of higher

density that is also belonging to AGk . For these ones, we can restrict the search to those

few sister balls. However, for the champion CG
k , we need to search farther. To do so, we

apply quite similar steps between the champions: We first search among the sisters balls of

BG−1
k and find BG−1

l (if it exists), the closest one which contains a higher density champion.

We then search for the NHPD among the daughter balls of BG−1
l . If there isn’t any sister

ball containing a higher density champion, we have to search farther again with the same

procedure.

The complete algorithm of cluster center selection and labelisation consists in the fol-
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lowing steps:

1) Champions election (see Algorithm 5)

This procedure constructs two new objects that share the same structure than Ftree: For

each ball Bg
k , ρ

g
champ,k := ρgchamp(Bg

k) provides the density of its champion. cgk ∈ {0, ..., G−1}

indicate the champion’s level of Bg
k . First, the cgk are initialized according to their gener-

ation (cgk = G − g). Then we begin at generation G − 1. For each ball BG−1
k , we find

among its daughters the ball BG
c which hold the highest density then we set the cham-

pion’s level cGc of BG
c to G − (G − 1) = 1 and update the champion-densities by setting

ρG−1champ(BG−1
k )← ρG(BG

c ). Afterwards, for each ball BG−2
k of the generation G− 2, we find

among its daughters the ball BG−1
c which hold the highest champion-density then set the

champion’s level of the champion carried by BG−1
c to G − (G − 2) = 2 and update the

champion-densities by setting ρG−2champ(BG−2
k ) ← ρG−1champ(BG−1

c ). This procedure is repeated

for generations G− 3, ..., 1.

2) Constructions of δi

For each terminal ball, the Tree-Dive procedure (see Algorithm 6) is applied in order to

obtain its NHPD and the distance δ separating them. For a level c champion ball B, this

algorithm executes the following steps. It first load the ball BG−c
i that has promoted B to

the level c. Afterwards, the mother BG−c−1
k = M(BG−c

i ) of BG−c
i and then the daughters

s = D(BG−c−1
k ) of BG−c−1

k are loaded. BG−c
j ∈ s, the closest one with higher champion-

density than ρ(B), is retained. There always exist a ball with higher champion’s density,

otherwise its champion’s level should be at least c+ 1. If BG−c
j is a terminal ball then the

algorithm stops, if not the daughters of BG−c
j are loaded and the closest one from B with

higher champion-density is selected. If it is terminal then it stops, if not it keep diving into

the tree until it falls into a terminal ball with higher density. The distance δ(B) separating

this terminal ball and B is finally returned.
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3) Cluster center selection and labelisation

γgi = δgi .ρ
g
i are computed, sorted and the turning-point-based decision rule from [11]

presented in related work is applied to obtain the cluster centers. The selected centroids

take each an unique label and the remaining balls receive the same label than their NHPD.

Finally, each data point are labelled as the closest terminal ball containing it.

The complete procedure of IDPC is summarized in Algorithm 7.

Algorithm 5 Champions election
1: procedure ChampElect(Ftree, {ρgk}g,k, {B

g
k}g,k)

2: for g ∈ {G− 1, ..., 1} do
3: for all Bg

l do
4: if Bg

l is terminal then
5: ρgchamp,l(B

g
l )← ρgl (B

g
l )

6: cgl ← G− g . Upgrade champions level
7: else
8: Bg+1

j ← argmaxBg+1
i ∈D(Bgl )

(ρg+1
champ,i(B

g+1
i ))

9: ρgchamp,l(B
g
l )← ρg+1

champ,j(B
g+1
j )

10: cg+1
j ← G− g

11: end if
12: end for
13: end for
14: return ({ρgchamp,k}g,k, {c

g
k}k,g)

15: end procedure

5 Experimental results

The generated dataset is composed by 1024508 bidimensional points in the rectangular

domain [−300, 300] × [−300, 300]. It contains 13 clusters, its distribution can be seen in

the figure 1. The ICMDW has been applied with Nmin = 0.1%N and R = 3
4
.

It produced a set of 9224 balls (figure 2), including the 4622 terminal balls (figure 3),

all generations confounded. The total number of generations was 16.
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Algorithm 6 Tree-dive
procedure Tree-Dive(B,Ftree, c, {ρgchamp,k}g,k)

T ← False
Load BM . mother of the ball that promoted B to level c
while T == False do

Load s← D(BM) . daughters of BM

sc+ ← {Bc
i |ρcchamp,i(B

c
i ) > ρ(B)}

j ← argmini(distance(B, s+[i]))
if Bc

j is a terminal Ball then
T ← True

else
BM ← Bc

j

c← c+ 1
end if

end while
nhpd← Bc

j

δ ← distance(B,Bc
j)

return {δ, nhpd}
end procedure

The density map is represented in the figure 4 over two different points of view. To

construct this graphic we have created a grid of points covering the domain and associated,

for each point of the grid, the density of the closest terminal ball containing it, to finally

plot the surface. The density is well represented however there is some moderatly dense

balls wich are supposed to carry a null or very low density. This problem that we call

aliasing occurs in low density areas located near an abrupt peak. An aliasing ball is a ball

that has been created lately (at a given generation), preventing it to increase its density

count with the points that have been drawn before its creation. Therefore it is set terminal

and get back its density at the density reevaluation phase. Even if the density map doesn’t

reflect perfectly the true density, the aliasing can only create relatively low density balls

(because of the large width of the window dgc) near a much higher density peak. So its

impact on clustering is almost inexistent.

The cluster centers can now be selected. We can see in the decision graph (figure 5)

13 points standing out the others. They are automatically detected with the turning-point
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Algorithm 7 IDPC
procedure IDPC

Nmin ← 0.1%N
d1c ← 1
Pseudo Normalize
Randomize
{{Bg

k}g,k, Ftree, {ρgk}g,k, {TBg}g, {cci}i} ← ICMDW (d1c , Nmin, R)
{{ρgchamp,k}g,k, {c

g
k}k,g} ← CHAMPELECT(Ftree, {Bg

k}g,k, {ρ
g
k}g,k)

for all (g, k) do
{δgk, nhpdg,k} ← TREE-DIVE(Bg

k , Ftree, c
g
k, {ρ

g
champ,k}g,k)

end for
γ ← sort(δ.ρ)
for i← {1, ...,m} do

k1i ←
γi−γ1
i−1

ki−11 ← γi+1−γi
1

end for
tp← argmaxi∈{1,...,m}(

k1i
ki−1
1

) . Turning-point
for all j ≤ tp do

Label[j]← j
end for
for all j ≥ tp+ 1 do . Labelise Balls

Label[j]← Label[nhpdj]
end for
for i← {1, ..., N} do . Labelise datapoints

Label[i]← Label[cci]
end for
return Label

end procedure

procedure. The sorted gamma values are represented in the figure 5 and the selected cluster

centers are represented in red and their location and the corresponding clustering results

obtained by propagation of the label are showed in the figure 6.

Note that we didn’t have generated any flat clusters (like an uniform) because the original

algorithm, and so our, isn’t able to deal with. In those situations, the algorithm may detect

several peaks for only one real cluster. In a future work, we will benefit from the reduced

set of pretender centroids and their localisation information provided by our algorithm to

develop a better cluster center selection. To do so we might not only take into account the

distance separating two peaks but rather the density connectivity between them. In other

18



Figure 1. Generated dataset

words, searching if there is a dense trajectory to reach one peak from an another one.
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Figure 2. All the balls
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Figure 3. Terminal balls only
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Figure 4. Density map
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Decision graph Turning point

Figure 5. Center selection

Cluster centers Labelled dataset

Figure 6. Clustering results
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6 Conclusion and future work

Many extensions of FDPC have been developed but none is able to deal with multidimen-

sional and large datasets that arise in many pratical data analysis applications. In this

paper we have presented an efficient algorithm able to manage those kind of data.

For that purpose, we have designed an iterative procedure which creates both localisa-

tion and density map which gives, in a computationaly efficient way, the densities ρi and

the distances δi.

It is adaptive, the results being barely influenced by the few free parameters to be

tuned, so that the automatic choice is often satisfactory. This last point is a dramatic

improvement over most of the existing algorithms that tend to depend critically on the

initial conditions.

An important remaining work to be performed is the recoding of the procedure in a

compiled language with optimized data structures, from which a gain of at least an order

of magnitude is expected. Moreover we aim to develop a better cluster selection unlocked

by our intermediate results, able to manage flat distributions. Finally, we expect to delete

the aliasing in the density map.
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