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A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED
ON NITSCHE’S METHOD

Anita Hansbo1, Peter Hansbo2 and Mats G. Larson3

Abstract. In this paper we propose a finite element method for the approximation of second order
elliptic problems on composite grids. The method is based on continuous piecewise polynomial approx-
imation on each grid and weak enforcement of the proper continuity at an artificial interface defined by
edges (or faces) of one the grids. We prove optimal order a priori and energy type a posteriori error
estimates in 2 and 3 space dimensions, and present some numerical examples.

1. Introduction

Composite overlapping grids are commonly used with finite difference and difference-related finite volume
methods, e.g., as a tool for local mesh refinement [7]. In finite element and related finite volume methods, which
are inherently unstructured and thus allow for local mesh refinement, the need for overlapping mesh methods
is less obvious. However, a general finite element/volume methodology for handling overlapping meshes would
be a useful tool to deal with the often complicated mesh generation problem. Examples of specific applications
include: (a) construction of a global mesh for a complex geometry by using overlapping meshes of elementary
parts; (b) coupling of unstructured and structured meshes; and (c) coupling of boundary fitted meshes to
structured or unstructured meshes, see Figure 1.

The purpose of this paper is to introduce and analyze such a method for a model second order elliptic problem
in 2 and 3 space dimensions. Unlike composite grid methods where interpolation is performed on the boundary
of the overlap, cf. [3,7], our approach is based on weak enforcement of the proper continuity across an artificial
interface defined by edges (faces) of one of the meshes. The weak enforcement proposed here is constructed in
such a way that the resulting scheme is stable and ‘arbitrary order consistent’ in the sense the exact solution
satisfies the discrete equation. Hence we are able to prove optimal a priori error estimates for arbitrary order
of polynomial approximation under weak mesh conditions; in particular the meshes may overlap in quite an
arbitrary fashion.
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Figure 1. Overlapping mesh FEM may be used to couple a boundary fitted mesh to an un-
structured mesh (top), or to construct a global mesh by using overlapping meshes of elementary
parts (bottom).

In composite grid methods, approximations on the overlap are usually computed on all meshes. This may
be done by projections [1, 6] or interpolation [7] on the interfaces. Alternatively, one may use integration of
products of test functions living on both meshes, as in the finite element method proposed by Brezzi, Lions,
and Pironneau [5]. In contrast, in our method one only computes an approximation on one of the meshes on
the overlap; in fact, we do not require the meshes to overlap at all even though this is the situation we have in
mind.

Our method stems from the work of Nitsche [12], where a method for consistent weak enforcement of Dirichlet
boundary conditions was introduced, and is related, in particular, to Becker, Hansbo and Stenberg [2], where
the meshes were assumed to be non-matching on the interface but shape regular on both sides of this interface.
Here this last condition is relaxed, which, e.g., makes possible to use highly structured meshes in irregularly
shaped subdomains. Related work includes also the mixed penalty approach analyzed in Lazarov et al. [10,11].

An outline of the paper is as follows: in Section 2 we formulate the second order elliptic model problem
and in Section 3 we state the mesh assumptions and define the numerical method used for the approximation.
In Sections 4.1–4.2 we demonstrate the stability of the method and derive the approximation properties of its
(non-standard) finite element spaces. Optimal order a priori error estimates in a discrete energy norm, as well
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as in L2-norm, are shown in Section 4.3. Our a priori analysis is in parts akin to Hansbo and Hansbo [9],
where optimal order convergence was shown for a method where a material discontinuity interface was allowed
to cut through the elements in an arbitrary fashion. Using similar lines of arguments as in [9], a posteriori error
estimates for the control of linear functionals of the error may be derived for the present method. In this work
we instead focus our attention in Section 5 on two variants of residual based a posteriori energy norm error
estimates, where the element indicators of the second one are designed for ease of implementation, reducing the
complications due to the geometry of the mesh. These estimates do not presuppose the saturation assumption
used in [2]. Finally, in Section 6, we discuss some implementation details and present numerical examples,
including a convergence study using quadratic elements i 2D as well as examples using the a posteriori error
estimates as a basis for the implementation of an adaptive algorithm.

2. Problem formulation and preliminaries

As a model problem, we consider Poisson’s equation in a bounded domain Ω in R
n, n = 2 or n = 3, with,

for simplicity, a convex polygonal boundary ∂Ω. Find u : Ω → R such that

−Δu = f in Ω, (1)

u = 0 on ∂Ω, (2)

with f ∈ L2(Ω).
Consider two given triangulations T h

i , i = 1, 2, where h is a mesh size parameter. Assume that they together
cover Ω, so that Ω = Ω

∗
1 ∪ Ω

∗
2 where Ω

∗
i = ∪K∈T h

i
K. The meshes may overlap in an arbitrary fashion; further

assumptions are given below. We then choose an (artificial) internal interface Γ composed of edges from the
triangles in T h

1 and dividing Ω into two open disjoint sets Ωi, i = 1, 2, such that Ωi ⊂ Ω∗
i and Ω = Ω1 ∪ Ω2 ∪ Γ.

We assume that the interface Γ does not depend on h, by, i.e., assuming that the mesh family T h
1 is obtained

by refinement from a single coarse mesh, or by remeshing of a region Ω1 defined from a selected mesh.
For any sufficiently regular function u in Ω1 ∪ Ω2 we define the jump of u on Γ by [u] := u1|Γ − u2|Γ, where

ui = u|Ωi is the restriction of u to Ωi. Conversely, for ui defined in Ωi we identify the pair {u1, u2} with the
function u which equals ui on Ωi.

Our model problem may now, due to the (artificial) interface, be written as:

−Δu = f in Ω1 ∪ Ω2, (3)

u = 0 on ∂Ω, (4)

[u] = 0 on ∂Ω, (5)

[∇nu] = 0 on ∂Ω. (6)

Here n denotes the exterior unit normal to Ω1 and ∇nv = n · ∇v is the normal flux.
For a bounded open connected domain D we shall use standard Sobolev spaces Hr(D) with norm || · ||r,D

and spaces Hr
0 (D) with zero trace on ∂D. The inner products in H0(D) = L2(D) is denoted (·, ·)D. For a

bounded open set G = ∪2
i=1Di, where Di are open disjoint components of G, we let Hk(D1 ∪ D2) denote the

Sobolev space of functions in G such that u|Di ∈ Hk(Di) with norm

‖ · ‖k,D1∪D2 =

(
2∑

i=1

‖ · ‖2
k,Di

)1/2

.
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3. Finite element spaces and method

3.1. The finite element spaces

We will use the following notation for mesh related quantities. Let hK be the diameter of an element K ∈ T h
i

and h = maxK∈T h
i ,i=1,2 hK . To distinguish elements from the two meshes, we will sometimes use indexed

element notation Ki ∈ T h
i for clarity.

The nodes on Γ of the elements in T h
1 , together with the points of intersection between elements in T h

2 and Γ,
define a partition of Γ, Γ = ∪j∈Jh

Γj . Note that each part Γj belongs to two elements, one from each mesh. We
denote these elements by Kj

1 and Kj
2 , respectively. A local meshsize on Γ is defined by

h(x) = hKj
1
, x ∈ Γj . (7)

For any element K ∈ T h
i , let PK = K ∩ Ωi denote the part of K in Ωi.

We make the following assumptions regarding the meshes:
A1) The triangulations are non-degenerate, i.e.,

hK/ρK ≤ C ∀K ∈ T h
i , i = 1, 2,

where hK is the diameter of K and ρK is the diameter of the largest ball contained in K.
A2) The meshes have locally compatible meshsize over Γ. More precisely, let Kj

1 ∈ T h
1 and Kj

2 ∈ T h
2 be the

elements which contain a specific part Γj of Γ. We assume that

chKj
1
≤ hKj

2
≤ ChKj

1
∀j ∈ Jh.

Here and below, C and c denote generic constants.
We shall seek a discrete solution U = (U1, U2) in the space V h = V h

1 × V h
2 , where

V h
i = {φ ∈ H1(Ωi) : φ|K∩Ωi is a polynomial of degree p ∀K ∈ T h

i , φ|∂Ω = 0}·

Note that functions in V h are, in general, discontinuous across Γ. As for the nodal representation of polynomials
on the parts in Ω2, see Figure 2.

3.2. The finite element method

The method is defined by the variational problem: find U ∈ V h such that

ah(U, φ) = l(φ), ∀φ ∈ V h, (8)

where

ah(U, φ) = (∇U,∇φ)Ω1∪Ω2 − (〈∇nU〉, [φ])Γ − ([U ], 〈∇nφ〉)Γ + (λh−1[U ], [φ])Γ,

l(φ) = (f, φ)Ω,

with
〈∇nv〉 = ∇nv1 on Γ,

and where h is the local meshsize (7). The continuity conditions of u and ∇nu at Γ are satisfied weakly by
means of a variant of Nitsche’s method [12] for consistent weak enforcement of Dirichlet boundary conditions.
To ensure stability, the parameter λ has to be taken sufficiently large and we return to this issue in Lemma 4.4
below.

4



Figure 2. The interface Γ consists of element edges from elements in T h
1 . Each part Γj belongs

to two triangles, Kj
1 ∈ T h

1 and Kj
2 ∈ T h

2 . Nodes for representing a quadratic polynomial on
the element Kj

2 are indicated. The same nodes are used in the implementation to represent a
polynomial on the part PKj

2
= Kj

2 ∩ Ω2.

Here we use a one sided approximation of the normal flux on the interface instead of the usual symmetric
average

〈∇nv〉 = (∇nv1 + ∇nv2)/2 on Γ,

commonly used in the discontinuous Galerkin method and in the context of interfaces between meshes that are
shape regular on both sides of the interface by Becker, Hansbo and Stenberg [2]. The latter situation rules out
the possibility of arbitrary small elements in Ω2 close to the interface. As has been noted by Stenberg [14], any
convex combination of the fluxes yields consistent methods. In Hansbo and Hansbo [9], this fact was exploited
to allow for internal discontinuities along an interface in shape regular elements, chosing convex combinations
that take into account the size of the parts of the cut element to ensure stability. In fact, a one-sided flux
approximation could have been used there too, however with negligible gain in implementation complexity.
Likewise, in the case of the present work a stable two-sided variant may be defined. However, in this case such
a method becomes more complicated to construct and implement since the element parts on each side of the
interface now stems from two different meshes. This is an important practical point, and the main reason why
we use one-sided fluxes here.

With these definitions, we have the following consistency relation.

Proposition 3.1. The discrete problem (8) is consistent in the sense that, for u solving (1, 2) there holds

ah(u, φ) = l(φ), ∀φ ∈ V h,

or, equivalently,
ah(u − U, φ) = 0, ∀φ ∈ V h. (9)

Proof. Let u be the solution of the Poisson problem (1, 2). Then 〈∇nu〉 = n1∇ · u1 = −n2∇ · u2 = ∇nu and
[u] = 0. By Green’s formula it follows that

ah(u, φ) = (∇u,∇φ)Ω1∪Ω2 − (〈∇nu〉, [φ])Γ
= (−Δu, φ)Ω1∪Ω2 + (∇nu − 〈∇nu〉, [φ])Γ = (f, φ)Ω1∪Ω2 ,

which proves the result. �
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4. A PRIORI analysis

4.1. Interpolation error estimates

In the error analysis, we shall use the following mesh dependent norms:

‖v‖2
1/2,h,Γ := ‖h(x)−1/2v‖2

0,Γ =
∑
j∈Jh

h−1

Kj
1
‖v‖2

0,Γj ,

‖v‖2
−1/2,h,Γ := ‖h(x)1/2v‖2

0,Γ =
∑
j∈Jh

hKj
1
‖v‖2

0,Γj ,

and
|‖v‖|2 := ‖∇v‖2

0,Ω1∪Ω2
+ ‖〈∇nv〉‖2

−1/2,h,Γ + ‖[v]‖2
1/2,h,Γ. (10)

Note for future reference that
(u, v)Γ ≤ ‖v‖1/2,h,Γ‖v‖−1/2,h,Γ. (11)

To show that functions in V h approximates functions v ∈ H1
0 (Ω)∩Hp+1(Ω) to the order hp in the norm |‖·‖|,

we define an interpolant Ihv ∈ V h of v by Ihv = Ih
i v on Ωi, i = 1, 2. Here Ih

i is the standard Lagrange nodal
interpolant on the mesh T h

i of Ω∗
i . The following local interpolation error estimates holds, see, e.g., [4].

‖v − Ih
i v‖m,K ≤ Chp+1−m

K |v|p+1,K , m = 0, 1, p ≥ 1, K ∈ T i
h, i = 1, 2. (12)

One may note that a node of interpolation used to define Ih
2 v lies in Ω∗

2 = ∪K∈T h
2
K but not necessarily in Ω2.

The following interpolation error estimate holds.

Lemma 4.1. Let Ihv = Ih
i v on Ωi, i = 1, 2, where Ih

i is the Lagrange nodal interpolant on the mesh T h
i of Ω∗

i .
Then, for p ≥ 1, ∣∣∥∥v − Ihv

∥∥∣∣ ≤ Chp|v|p+1,Ω, ∀v ∈ H1
0 (Ω) ∩ Hp+1(Ω). (13)

In the proof of this result, we need to estimate the interpolation error at the interface. We recall the well known
trace inequality

‖w‖2
0,∂K̃ ≤ C ‖w‖0,K̃ ‖w‖1,K̃ , ∀w ∈ H1(K̃). (14)

on a reference element K̃. The following Lemma provides a scaled version of (14) which can be used to estimate
traces not only on the boundary but on arbitrary lines (planes) intersecting the element.

Lemma 4.2. Let L be the intersection between a line (plane) and an element K. Then

‖w‖2
0,L ≤ Ch−1

K ‖w‖2
0,K + hK ‖w‖2

1,K , ∀w ∈ H1(K), (15)

where the constant C is independent of L.

Proof. Map the element by an affine map to a reference element K̃ and denote by L̃ the image of L. For the
plane case, let (ξ, η) denote local coordinates on K̃ such that η = 0 on L̃. If L̃ divides K̃ into two subsets let K̃1

denote one of these sets, and else set K̃1 = K̃. Let n denote the outward pointing unit normal of K̃1 and note
that we may assume that nη = 1 on Γ̃. By the divergence theorem,

2
∫

K̃1

w
∂w

∂ζ
dV =

∫
K̃1

div
(
0, w2

)
dV =

∫
∂K̃1

n · (0, w2
)

dA

=
∫

L̃

w2 dA +
∫

∂K̃1\L̃

nηw2 dA.
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We thus find, using Cauchy–Schwarz’ inequality and (14), that

‖w‖2
0,L̃ ≤ 2 ‖w‖0,K̃1

‖w‖1,K̃1
+ ‖w‖2

0,∂K̃1\L̃

≤ 2 ‖w‖0,K̃1
‖w‖1,K̃1

+ ‖w‖2
0,∂K̃ ≤ C‖w‖0,K̃‖w‖1,K̃ .

The result of the lemma now follows by scaling. The proof in three dimensions is similar. �

Proof of Lemma 4.1. Starting from the definition of the norm (10) we have three terms to estimate. Beginning
with the interior contributions we find that

‖∇(v − Ihv)‖0,Ωi ≤ ‖∇(v − Ih
i v)‖0,Ω∗

i
≤ Chp|v|p+1,Ω∗

i
≤ Chp|v|p+1,Ω, (16)

for i = 1, 2. Here we have used the fact that Ωi ⊂ Ω∗
i ⊂ Ω and the interpolation error estimate (12).

Next, for the contribution from the jump at the interface, we note that

‖[v − Ihv]‖1/2,h,Γ ≤ ‖v − Ih
1 v‖1/2,h,Γ + ‖v − Ih

2 v‖1/2,h,Γ. (17)

and consider first the second term on the right. Let L(Γj) be the line segment (plane domain) obtained by
extending Γj to the boundary of Kj

2 ∈ T h
2 .

By the definition of the discrete 1/2-norm,

‖v − Ih
2 v‖1/2,h,Γ ≤

∑
K∈T 2

h

∑
Γj⊂K

h
−1/2

Kj
1

∥∥v − Ih
2 v

∥∥
0,L(Γj)

. (18)

By Lemma 4.2, we have that

h−1

Kj
1

∥∥v − Ih
2 v

∥∥2

0,L(Γj)
≤ ChKj

2
h−1

Kj
1

(
h−2

Kj
2

∥∥v − Ih
2 v

∥∥2

0,Kj
2

+
∥∥v − Ih

2 v
∥∥2

1,Kj
2

)
. (19)

It follows from assumption A2 that hKj
2
h−1

Kj
1
≤ C. Hence by (19) and the interpolation estimate (13) we obtain

h−1

Kj
1

∥∥v − Ih
2 v

∥∥2

0,L(Γj)
≤ Ch2p|v|2

p+1,Kj
2
. (20)

Combining (18) and (20) we arrive at the desired estimate

∥∥v − Ih
2 v

∥∥
1/2,h,Γ

≤ Chp|v|p+1,Ω∗
2
≤ Chp|v|p+1,Ω. (21)

Here we have used that by assumption A2, the number of terms in the inner sum in (18) is bounded, uniformly
with respect to the mesh size. The estimate for the first term on the right-hand side in (17) is readily found by
similar arguments.

Finally, by Lemma 4.2 with w =
〈∇n

(
v − Ihv

)〉
= ∇n

(
v − Ih

1 v
)
, we have that

hKj
1

∥∥〈∇n

(
v − Ihv

)〉∥∥2

0,L(Γj)
≤ C

(∥∥∇ (
v − Ih

1 v
)∥∥2

1,Kj
1

+ h2
Kj

1

∥∥∇ (
v − Ih

1 v
)∥∥2

2,Kj
1

)
.

We find in the same way as above, using the interpolation error estimate (13) and summing the contributions
over the interface, that

‖〈∇n(v − Ihv)〉‖−1/2,h,Γ ≤ Chp|v|p+1,Ω. (22)

The lemma now follows from (16, 21) and (22). �
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4.2. Coercivity

To prove coercivity of the bilinear form we need the following known inverse inequality. We include its proof
for completeness.

Lemma 4.3. For φ ∈ V h, the following inverse inequality holds:

‖〈∇nφ〉‖2
−1/2,h,Γ ≤ CI ‖∇φ‖2

0,Ω1
.

Proof. Recall the definition of 〈∇nφ〉 = ∇nφ1. Note that on a reference triangle (tetrahedron) K̃ which is the
image of K ∈ T h

1 under an affine map, we have

‖〈∇nφ〉‖2
Γ̃ ≤ C ‖∇φ‖2

0,K̃ .

since if the right-hand side is zero so is the left hand side, and since the space of polynomials of degree p− 1 is
finite dimensional. The result then follows by scaling, using the inverse of the affine map, and summation over
all elements with an edge on the interface Γ. �
Lemma 4.4. The discrete form ah(·, ·) is coercive on V h, i.e.,

ah(v, v) ≥ C |‖v‖|2 ∀v ∈ V h,

provided λ is chosen sufficiently large. It is also continuous, i.e.,

ah(u, v) ≤ C |‖u‖| |‖v‖| ∀u, v ∈ V.

Proof. Continuity of the discrete form follows directly from the definitions. To prove coercivity, we use (11) to
estimate the form from above:

ah(v, v) = ‖∇v‖2
0,Ω1

+ ‖∇v‖2
0,Ω2

− 2([v], 〈∇nv〉)Γ +
∥∥∥λ1/2 [v]

∥∥∥2

1/2,h,Γ

≥ ‖∇v‖2
0,Ω1

+ ‖∇v‖2
0,Ω2

− 2 ‖〈∇nv〉‖−1/2,h,Γ ‖[v]‖1/2,h,Γ + λ ‖[v]‖2
1/2,h,Γ .

It follows from the inverse inequality in Lemma 4.3 that

−2 ‖〈∇nv〉‖−1/2,h,Γ ‖[v]‖1/2,h,Γ ≥ −ε ‖{∇nv}‖2
−1/2,h,Γ − ε−1 ‖[v]‖2

1/2,h,Γ

≥ −εCI ‖∇v‖2
0,Ω1

− ε−1 ‖[v]‖2
1/2,h,Γ .

Combining these estimates we obtain

ah(v, v) ≥ (1 − εCI) ‖∇v‖2
0,Ω1

+ ‖∇v‖2
0,Ω2

+ (λ − ε−1)‖[v]‖2
1/2,h,Γ.

Taking ε = 1/(2CI), coercivity follows if λ ≥ 1/2 + 1/ε. �

4.3. A priori error estimates

Theorem 4.5. For U solving (8) and u solving (1, 2), the following a priori error estimates hold

|‖u − U‖| ≤ Chp|u|p+1,Ω, (23)

and
‖u − U‖0,Ω ≤ Chp+1|u|p+1,Ω. (24)
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Proof. For any v ∈ V h, |‖u − U‖| ≤ |‖u − v‖| + |‖v − U‖|. Further, by Lemma 4.4 and orthogonality, we have
that

|‖U − v‖|2 ≤ Cah(U − v, U − v)

= Cah(u − v, U − v)

≤ C |‖u − v‖| |‖U − v‖| ,

and it follows that
|‖u − U‖| ≤ C |‖u − v‖| ∀v ∈ V h.

Taking v = Ihu and invoking the interpolation result of Theorem 4.1, (23) follows.
For (24) we use a duality argument. Let z be defined by

−Δz = e in Ω, (25)
z = 0 on ∂Ω,

with e = u − U . Multiplying (25) with e and using Green’s formula gives

‖e‖2
0,Ω = −(Δz, e)Ω

= (∇z,∇e)Ω1 + (∇z,∇e)Ω2 − (∇nz, [e])Γ

= ah(z, e),

since [z] = 0 and ∇nz = 〈∇nz〉. Now, using the symmetry of ah(·, ·), the orthogonality relation (9), and
Theorem 4.1, we find that

‖e‖2
0,Ω = ah

(
z − Ihz, e

) ≤ C
∣∣∥∥z − Ihz

∥∥∣∣ |‖e‖| ≤ Ch ‖z‖2,Ω |‖e‖| . (26)

Finally, by elliptic regularity, we have
‖z‖2,Ω ≤ C ‖e‖0,Ω ,

and thus the estimate (24) follows from (23) and (26). �

5. A POSTERIORI error estimates

We first introduce an interpolation operator suitable for the a posteriori error analysis. From Scott and
Zhang [13] we deduce the existence of Clement type interpolation operators rh,i, i = 1, 2, defined on H1(Ω∗

i ),
which preserve Dirichlet boundary conditions on ∂Ω ∩ Ω∗

i and satisfy the following local interpolation error
estimates.

hm−1
K ‖rh,iv − v‖m,K ≤ C‖∇v‖0,ΔK , m = 0, 1, K ∈ Th,i. (27)

Here ΔK denotes a patch of elements which are neighbors of K. We then define

πv := (rh,1v1, (rh,2E2v2)|Ω2) for v ∈ H1(Ω1 ∪ Ω2). (28)

Here we have used an extension operator E2 : H1(Ω2) → H1(Ω) such that (E2w)|Ω2 = w and

|E2w|m,Ω ≤ C|w|m,Ωi ∀w ∈ Hm(Ω2), m = 0, 1. (29)

In the following lemma we collect some useful estimates for the interpolation operator π.

9



Lemma 5.1. Let π be the interpolation operator defined in (28). Under assumptions A1 and A2 the following
estimates hold for v ∈ H1(Ω1 ∪ Ω2):∑

K∈T h
i

h−2
K ‖vi − (πv)i‖2

K∩Ωi
≤ C‖∇vi‖2

0,Ωi
, i = 1, 2, (30)

‖vi − (πv)i‖1/2,h,Γ ≤ C‖∇vi‖0,Ωi , i = 1, 2, (31)∑
K∈T h

i

h−1
K ‖v − πv‖2

0,∂(K∩Ωi)\Γ ≤ C‖∇vi‖2
0,Ωi

, i = 1, 2, (32)

‖∇(πv)‖0,Ωi ≤ C‖∇v‖0,Ωi , i = 1, 2. (33)

Proof. We consider the case i = 2 as the proof for i = 1 is similar. Let v∗2 = E2v2 denote the extension of v2

to Ω and recall that v2 − (πv)2 = v∗2 − rh,2v
∗
2 on Ω2. Using (27) with m = 0 we obtain, for K ∈ T h

2 , that

h−1
K ‖v2 − (πv)2‖0,K∩Ω2

≤ ‖v∗2 − rh,2v
∗
2‖0,K ≤ C ‖∇v∗2‖0,ΔK .

As the number of elements in the patches ΔK is uniformly bounded with respect to the mesh size by assump-
tion A1, it follows that ∑

K∈T h
i

h−2
K ‖vi − (πv)i‖2

K∩Ω2
≤ C‖∇v∗2‖2

0,Ω∗
2
,

whence (30) follows by the bound for the extentions operator (29). Turning to the second inequality (31) of the
lemma, it follows from trace inequality (15) and interpolation estimate (30) that

h−1

Kj
1
‖v2 − (πv)2‖2

0,Γj ≤ Ch−2

Kj
2
‖v2 − (πv)2‖2

0,K2
+ ‖v2 − (πv)2‖2

1,K2

≤ C ‖∇v2‖2
0,ΔK2

,

where we also have used that hKj
2
h−1

Kj
1
≤ C by assumption A2. Summing over the elements and using (29) gives

‖v2 − (πv)2‖1/2,h,Γ ≤ C ‖∇v∗2‖0,Ω∗
2
≤ C ‖∇v‖0,Ω2

.

The third estimate (32) is readily shown by similar arguments. Finally, for the fourth inequality of the lemma,
it follows from (27) and (29) that

‖∇(πv)‖0,Ω2 ≤ ‖∇(v∗2 − rh,2v
∗
2)‖0,Ω∗

2
+ ‖∇v‖0,Ω2 ≤ C‖∇v‖0,Ω2 ,

and the proof is complete. �

We shall also need the following trace inequality.

Lemma 5.2. Under our mesh assumptions there holds, for all K ∈ T h
1 and Γj ⊂ ∂K,

‖∇nv1‖−1/2,Γj ≤ C
(
‖∇v1‖0,K + hK‖Δv1‖0,K

)
, v ∈ H2(K). (34)

Proof. On a reference element K̃ there holds (cf. [8], Th. 2.2)

‖n · w‖−1/2,∂K̃ ≤ C
(
‖w‖0,K̃ + ‖∇ · w‖0,K̃

)
, w ∈ L2(K̃)n : ∇ · w ∈ L2(K̃).

The result follows from this estimate, scaled by the map from the reference element, with w = ∇v. �
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We are now ready to show an a posteriori error estimate in a discrete energy norm, using the following
notation. At an edge of an element K that is common with a neighbouring element L we let [w] = w|K − w|L
denote the jump of w over the edge. Further, nP denotes the outward pointing unit normal of the boundary of
a domain P .

Theorem 5.3. Assume A1, A2, and λ ≥ 1. For U solving (8) and u solving (3), the following a posteriori
error estimate holds:

‖∇e‖2
0,Ω1∪Ω2

+ ‖[e]‖2
1/2,h,Γ ≤ C

2∑
i=1

∑
K∈T h

i

ρ2
K,i. (35)

Here the element error indicators ρK,i are defined by

ρ2
K,i = h2

K‖f + ΔU‖2
0,PK

+ hK‖[nPK · ∇U ]‖2
0,∂PK

+ h−1
K ‖[U ]‖2

0,∂PK∩Γ +
∑

Γj⊂K

‖[U ]‖2
1/2,Γj

,

where PK = K ∩ Ωi for K ∈ T h
i .

Proof. Using the definition of the method (8) we have the identity

I = (∇e,∇e)Ω1∪Ω2 = (∇e,∇(e − πe))Ω1∪Ω2 + (〈∇ne〉, [πe])Γ + ([e], 〈∇nπe〉)Γ − (λh−1[e], [πe])Γ. (36)

Integration by parts gives

I =
2∑

i=1

∑
K∈T h

i

(
(−Δe, (e − πe))PK +

1
2
([nK · ∇e], e − πe)∂PK\Γ

)

+(〈∇ne〉, [e − πe])Γ + ([∇ne], e2 − πe2)Γ

+(〈∇ne〉, [πe])Γ + ([e], 〈∇nπe〉)Γ − (λh−1[e], [πe])Γ.

(37)

Note that we may write

−(λh−1[e], [πe])Γ = (λh−1[e], [e − πe])Γ − ‖[e]‖2
1/2,h,Γ − ((λ − 1)h−1[e], [e])Γ.

Using that u and its derivatives have zero jumps over the element edges and the interface, and also that
−Δe = f + ΔU in the interior of the elements, we obtain the error representation formula

‖∇e‖2
0,Ω1∪Ω2

+ ‖[e]‖2
1/2,h,Γ =

2∑
i=1

∑
K∈T h

i

(
(f + ΔU, (e − πe))PK +

1
2
([nK · ∇U ], e − πe)∂PK\Γ

)

+([∇nU ], e2 − πe2)Γ + ([U ], 〈∇ne〉)Γ + ([U ], 〈∇nπe〉)Γ
+(λh−1[U ], [e − πe])Γ − ((λ − 1)h−1[e], [e])Γ.

(38)

Here the last term is non-positive under our assumptions. We now proceed to estimate the other terms on the
right-hand side. For ε > 0 to be chosen below we have that

(f + ΔU, (e − πe))PK ≤ ‖(f + ΔU‖0,PK‖e − πe‖0,PK

≤ 1
2ε

h2
K‖f + ΔU‖2

0,PK
+

ε

2
h−2

K ‖e− πe‖2
0,PK

.
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Treating the other term in the sum over the elements in the same way, we find by Lemma 5.1 that the first
term in (38) may be estimated as follows.

∑
K∈T h

i

(
(f + ΔU, (e − πe))PK +

1
2
([nK · ∇U ], e − πe)∂PK\Γ

)

≤ C

ε

∑
K∈T h

i

(
h2

K‖f + ΔU‖2
0,PK

+ hK‖[nK · ∇U ]‖2
0,∂PK\Γ

)

+Cε
∑

K∈T h
i

(
h−2

K ‖e − πe‖2
0,PK

+ h−1
K ‖e− πe‖2

0,∂PK\Γ
)

≤ C

ε

∑
K∈T h

i

(
h2

K‖f + ΔU‖2
0,PK

+ hK‖[nK · ∇U ]‖2
0,∂PK\Γ

)

+Cε ‖∇e‖2
0,Ωi

. (39)

Using again Lemma 5.1, we obtain for the second term ([∇nU ], e2 − πe2)Γ that

([∇nU ], e2 − πe2)Γ ≤ C‖[∇nU ]‖−1/2,h,Γ‖e2 − πe2‖1/2,h,Γ

≤ C‖[∇nU ]‖−1/2,h,Γ‖∇e‖0,Ω2

≤ C

ε
‖[∇nU ]‖2

−1/2,h,Γ + Cε‖∇e‖2
0,Ω2

≤ C

2ε

2∑
i=1

∑
K∈T h

i

hK‖[∇nU ]‖2
∂PK∩Γ + Cε‖∇e‖2

0,Ω2
. (40)

In the last step above, we have merely distributed the error indicator at Γ over the elements intersected by Γ,
using that the element sizes are compatible by assumption A2. For the third term ([U ], 〈∇ne〉)Γ, we begin by
noting that

([U ], 〈∇ne〉)Γ ≤
∑

j

‖[U ]‖1/2,Γj
‖∇ne1‖−1/2,Γj

≤
∑

j

1
2ε

‖[U ]‖2
1/2,Γj

+
ε

2
‖∇ne1‖2

−1/2,Γj
.

By the trace inequality of Lemma 5.2 we have that

‖∇ne1‖2
−1/2,Γj

≤ C(‖∇e‖2
0,Kj

1
+ h2

Kj
1
‖∇ · ∇e‖2

0,Kj
1
)

= C(‖∇e‖2
0,Kj

1
+ h2

Kj
1
‖f + ΔU‖2

0,Kj
1
),

and hence, since the number of parts Γj in each element is uniformly bounded,

([U ], 〈∇ne〉)Γ ≤ C

ε

∑
j

(
h2

Kj
1
‖f + ΔU‖2

0,Kj
1

+ ‖[U ]‖2
1/2,Γj

)
+ Cε ‖∇e‖2

0,Ω1

≤ C

ε

2∑
i=1

∑
K∈T h

i

⎛
⎝h2

K‖f + ΔU‖2
0,Kj

1
+

∑
Γj⊂K

‖[U ]‖2
1/2,Γj

⎞
⎠ + Cε ‖∇e‖2

0,Ω1
. (41)
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The fourth term ([U ], 〈∇nπe〉)Γ is bounded as follows

([U ], 〈∇nπe〉)Γ ≤ ‖[U ]‖1/2,h,Γ‖〈∇nπe〉‖−1/2,h,Γ.

Further using the inverse inequality of Lemma 4.3 and (33) we obtain

‖〈∇nπe〉‖−1/2,h,Γ ≤ C‖∇πe‖2
0,Ω1

≤ C‖∇e‖2
0,Ω1

.

Likewise, for the fifth and last term we find by Lemma 5.1 that

(h−1[U ], [e − πe])Γ ≤ ‖[U ]‖1/2,h,Γ‖[e − πe]‖1/2,h,Γ ≤ C‖[U ]‖1/2,h,Γ‖∇e‖0,Ω1∪Ω2 .

Thus we get for the fourth and fifth terms that

([U ], 〈∇nπe〉)Γ + (h−1[U ], [e − πe])Γ ≤ C‖[U ]‖1/2,h,Γ‖∇e‖0,Ω1∪Ω2

≤ C

ε

2∑
i=1

∑
K∈T h

i

h−1
K ‖[U ]‖2

0,∂PK∩Γ + Cε‖∇e‖2
0,Ω1∪Ω2

. (42)

Choosing ε small enough, the theorem now follows from (38), (39), (40), (41), and (42). �

The error indicator of Theorem 5.3 contains a term DK := h−1
K ‖[U ]‖2

0,∂PK∩Γ corresponding to a discrete
1/2-norm over Γ, as well as a term

SK :=
∑

Γj⊂K

‖[U ]‖2
1/2,Γj

with continuous 1/2-norms over the parts Γj . We shall consider the computation of SK in the special case of
linear elements in two dimensions in Section 5 below, using that for a one-dimensional interface (see, e.g., [4])

‖[U ]‖2
1/2,Γj

:= ‖[U ]‖2
0,Γj

+
∫

Γj

∫
Γj

|[U ](ξ) − [U ](η)|2
|ξ − η|2 dξ dη. (43)

In a general case, however, SK is somewhat complicated to compute and one would like to simplify the error
indicators. Indeed, SK is bounded by (but not equal to) ‖[U ]‖2

1/2,∂PK∩Γ, and it is therefore natural to ask if
an inverse inequality can be found which would make possible to remove SK from the error indicator. We note
that even though we have the inverse inequality ‖[U ]‖2

1/2,Γj
≤ C|Γj |−1‖[U ]‖2

0,Γj
, the corresponding elementwise

inverse inequality ‖[U ]‖2
1/2,∂PK∩Γ ≤ Ch−1

K ‖[U ]‖2
0,∂PK∩Γ does not follow since the parts Γj may become arbitrarily

small even when the meshsize is bounded away from zero. Nevertheless, SK and DK may, as we shall show,
both be bounded by a third quantity of the same order of magnitude. In Theorem 5.4 below we use this and
some further simplifications to obtain a less sharp but more implementation-friendly a posterori error estimate.
Integration over the parts PK is not required to compute these error indicators, nor is integration over the
parts Γj ; all terms are integrals of single polynomials over the original elements or its edges.

Theorem 5.4. For any piecewise polynomial w on the partition {Γj} of Γ, let wj denote the polynomal which
defines w on Γj. Theorem 5.3 holds with ρ2

K,i replaced by

θ2
K,i = h2

K‖f + ΔU‖2
0,K + hK‖[nK · ∇U ]‖2

0,∂K∩Ω∗
i

+
∑

j:Γj⊂K

(
hK‖[∇nU ]j‖2

0,∂Kj
1∩Γ

+ h−1
K ‖[U ]j‖2

0,∂Kj
1∩Γ

)
.
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Proof. We shall show that ρK,i ≤ CθK,i. Obviously,

‖f + ΔU‖2
0,PK

≤ ‖f + ΔU‖2
0,K . (44)

Further, for K ∈ T h
i we have that

hK‖[nPK · ∇U ]‖2
0,∂PK

= hK‖[nK · ∇U ]‖2
0,∂PK\Γ +

∑
Γj⊂K

hK‖[nPK · ∇U ]‖2
0,Γj

≤ hK‖[nK · ∇U ]‖2
0,∂K∩Ω∗

i
+ hK

∑
j:Γj⊂K

‖[n · ∇U ]j‖2
0,∂Kj

1∩Γ
. (45)

We now turn to the estimate of SK =
∑

Γj⊂K ‖[U ]‖2
1/2,Γj

. For K ∈ T h
i and Γj ⊂ K we also have Γj ⊂ K

j

1.

Consider a reference element K̃ for Kj
1 with Γj mapped onto Γ̃j in the edge (side) Ẽ. By equivalence of norms

there holds for all polynomials q of degree p

‖q‖2
1/2,Γ̃j

≤ ‖q‖2
1/2,Ẽ

≤ C‖q||2
0,Ẽ

.

Mapping back to Kj
1 and taking q = [U ]j we find that

‖[U ]j‖2
1/2,Γj

≤ Ch−1

Kj
1
‖[U ]j||20,∂Kj

1∩Γ
,

where the constant is independent of j. Hence, using assumption A2 to replace hKj
1

by hK if i = 2,

SK =
∑

Γj⊂K

‖[U ]‖2
1/2,Γj

≤ Ch−1
K

∑
j:Γj⊂K

‖[U ]j‖2
0,∂Kj

1∩Γ
. (46)

Since DK = h−1
K ‖[U ]‖2

0,∂PK∩Γ is indeed bounded by the right-hand side above, the theorem now follows
from (44, 45) and (46). �

6. Numerical examples

6.1. Implementation

For the numerical examples to be presented, we chose to make the following simplifying assumption: the
interface is assumed to be made up of straight lines that are so long that each element on the cut grid is
intersected by just one corner of the interface. We further assumed that the area enclosed by the interface lay
completely within the cut mesh. We then needed to consider only seven cases, depicted in Figures 3–5.

For the numerical integration, we divided any non-triangular cut part of an element into triangles, using
sufficiently high integration for the stiffness matrix to be exactly evaluated. On the interface we performed
exact (numerical) integration of all terms using the union of the intersection points on the cut side and the
nodes on the uncut side to define the intervals of integration.
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Figure 3. Elements containing one corner of the interface: zero nodes, one node, and two
nodes on the opposite side of the interface.

Figure 4. Elements cut by a straight segment: one node and two nodes on the opposite side
of the interface.

Figure 5. Overlapped elements: two sides and three sides cut.

6.2. Convergence study

The example was solved on the domain (−4, 4)× (−4, 4) with an overlapping domain according to Figure 6.
The locations of the corners of the overlapping domain were determined by[

x
y

]
=

[
cosφ − sin φ
sinφ cosφ

] [−2.5 0.5 0.5 −2.5
−2.5 −2.5 0.5 0.5

]
+

[
0.75
1

]
,

with φ = 1.
We imposed zero Dirichlet boundary conditions and applied a forcing term

f = 64 − 2 x2 − 2 y2,

corresponding to the exact solution

u = (x − 4) (x + 4) (y − 4) (y + 4).

We solved this problem numerically using finite elements with both a linear and a quadratic polynomial ansatz.
Elevations of the different solutions on the same mesh can be seen in Figure 7. In Figure 8, we show the
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Figure 6. Coarse triangulation of the domains.
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Figure 7. Elevation of the linear and the quadratic solutions on the coarse mesh.

convergence in L2-norm of on a sequence of refined meshes. As expected, we obtain second and third order
convergence for the linear and quadratic approximations, respectively.

6.3. Adaptive refinement

In order to evaluate the a posteriori estimate (35) we need to compute the continuous half-norm (43) of
the jump. We have implemented the error estimator for linear elements, whence we compute the half-norm as
follows: since [U ] is linear on each Γj , [U ](ξ) = aξ + b, say, we can write

|[U ](ξ) − [U ](η)|2
|ξ − η|2 =

|a (ξ − η)|2
|ξ − η|2 = a2

and thus

‖[U ]‖2
1/2,Γj

= ‖[U ]‖2
0,Γj

+ a2|Γj |2.
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Figure 8. Convergence of the different approximations.

We considered an example with exact solution

u =
1

256
e−(x2+y2) (4 − x) (4 + x) (4 − y) (4 + y),

on the same domain as in the previous example, and used the two a posteriori estimates of Theorem 5.3, called
estimate 1, and Theorem 5.4, called estimate 2. These estimates were used to control the local meshsize by a
fixed fraction refinement strategy (refining the elements containing the largest contributions). No attempt was
made to calibrate the unknown constants appearing in the estimates; instead we computed the effectivity index,
defined as

effectivity index =
estimated error

exact error
,

in order to numerically verify that it remained constant as the mesh was refined. In Figure 9, we show the mesh
obtained when using estimate 1, and in Figure 10 the corresponding result when using estimate 2. The solution
on this mesh is shown as an elevation in Figure 11. Note that the meshes in both cases has a tendency to refine
more at the interface. This is because the local error is the largest there, as has been noted previously, cf. [2,9].
This phenomenon is more noticeable using estimate 2, as expected since this estimate is more conservative at
the interface. Finally, in Figure 12, we show the effectivity index on the sequence of meshes for both estimators.
As can be seen, the effectivity index is almost constant for both estimates, which indicates that the refinement
on the interface does not much affect the global norm. We also show the ratio of the errors on the sequence of
meshes obtained with estimate 2 to that obtained with estimate 1. We note that this ratio is slightly above 1,
indicating that the degrees of freedom are put to slightly better use using estimate 1, as expected.
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Figure 9. Final adapted mesh in a sequence using Estimate 1.

Figure 10. Final adapted mesh in a sequence using Estimate 2.
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Figure 11. Elevation of the approximate solution.
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Figure 12. Effectivity index obtained on a sequence of adaptively refined meshes.
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