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2 rue de la Houssiniere, Université de Nantes, 44 322 Nantes France.

Abstract

A new frequency-domain test statistic is introduced to test for short memory versus long mem-
ory. We provide its asymptotic distribution under the null hypothesis and show that it is consistent
under any long memory alternative. Some simulation studies show that this test is more robust than
various standard tests in terms of empirical size when the normality of observed process is lost.
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1 Introduction

Let us consider a stationary process (Xt) with a spectral density of some semi-parametric form:

f(λ) = |λ|−2dg(λ) (1)

with 0 ≤ d < 1/2 and g is an even, positive, continuous function on [−π, π]. We say that the process
(Xt) is of short memory if d = 0 (i.e. the spectral density f is continuous over [−π, π]), and we say
that the process is of long memory if 0 < d < 1/2 (i.e. the spectral density is unbounded at zero).
In time-domain terms, short memory means that the covariance function is summable (i.e. covariance
function γ(h) = Cov(Xi, Xi+h) goes to zero fast as the lag h increases) and long memory means that
the covariance function is not summable (i.e. the covariance function goes to zero slowly as the lag
increases). Literature is full of real world examples of both types of processes. Under mild conditions,
the switch between time-domain and frequency-domain is easily made via the two representations

f(λ) =
1

2π

∞∑
h=−∞

e−ihλγ(λ) =
1

2π

[
γ(0) + 2

∞∑
h=1

cos(λh)γ(h)

]
,

and reciprocally

γ(h) =

∫ π

−π
eihλf(λ)dλ =

∫ π

−π
cos(λh)f(λ)dλ.
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Since the so-called re-scaled range statistic R/S was introduced by Hurst (1951), many authors have
come with several time-domain statistics for testing long memory, such as modified R/S, KPSS (Kwiatkowsk-
Phillips-Schmidt-Shin), rescaled variance statistic V/S (See Mandelbrot (1969), Kwiatkowski et al.
(1992), Lee and Schmidt (1996), Giraitis et al. (2003), Giraitis et al. (2006)). See Beran et al. (2013)
for a full description of all of these statistics. According to the simulation results provided in Giraitis et
al. (2003), V/S statistic produces testing procedure with better empirical size and power as compared
to the other time domain statistics. A detailed description of V/S statistic is given in Section 3. One
common drawback in these statistics is the difficulty to calibrate the window parameters in order to
ensure the right empirical size ( in particular for the small sample) which comes with the heavy price of a
very weak power. Also, evaluation of their limiting distributions often involves approximating stochastic
integrals. Time-domain based tests often suffer from the so-called high empirical size (i.e. the ratio of
wrongly rejecting the null hypothesis is much bigger than the nominal level α). Here we address this
problem by introducing a very promising frequency-domain statistic, for testing long memory versus
short memory. This turns out to be very convenient and yields very simple limiting distributions. Our
test statistic can be viewed as a contribution to this approach initiated by Lobato and Robinson (1998
(see Section 3 for a detailed description) and more recently by Bailey and Giraitis (2016) in testing unit
root. However, our method bears many differences as will be explained later. The main interest of our
approach is to preserve a good empirical size even when the underlying distribution is not Gaussian.
From a sample X1, . . . , Xn of the process (Xt), we are interested in building a testing procedure to
discriminate between short and long range dependence. The proposed statistic is inspired from the
well-known fact (see for example Giraitis et al. Theorem 5.3.1 (2012) or Moulines and Soulier 2003,
section 3.1) that, for a large class of weakly dependent stationary processes, at any Fourier frequency,
the normalized periodogram is asymptotically exponentially distributed. That is, for any fixed j, with
λj = 2πj/n,

In(λj)

f(λj)

d−→ E, as n→∞ (2)

where E has exponential distribution with mean 1, and where In is the periodogram

In(λ) =
1

2πn

∣∣∣∣∣∣
n∑
j=1

Xje
ijλ

∣∣∣∣∣∣
2

.

Moreover, for different Fourier frequencies, the variables on the left hand side of (2) are asymptot-
ically independent (see same references above). Since under short memory, the periodogram is an
asymptotically unbiased estimator of the spectral density f , we estimate f(λj) by a sample average of
periodograms. The procedure is as follows: we split our initial sample X1, . . . , Xn into m blocks (or
epochs), each of size `, and we construct the periodogram In,i on the ith block X(i−1)`+1, . . . , Xi`. The
construction of this averaging of periodograms is known as Bartlett method to estimate the spectral
density. Then we define our test statistic as follows:

Qn,m(s) =
s∑
j=1

In(λj)
1
m

∑m
i=1 In,i(λj)

. (3)

where s is the number of Fourier frequencies we want to include in the test.
We assume that m = m(n), and ` = `(n) → ∞ as n → ∞. It is very important to emphasize the fact
that m and ` increase with n and are not constant, and that m = n/`. We are simply using notation
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m and ` rather than m(n) and `(n) only for the sake of simplicity. We should mention that our context
is different from that of Reisen et al (2010), where the number of epochs is fixed.

2 Main results

In this section we give the two asymptotic distributions of Qn,m(s) under (a) the null hypothesis ”the
process has a short memory, i.e. d = 0” and under (b) the alternative of ”the process has a long memory,
i.e. 0 < d < 1/2”.
Before we state our theorem, we set its context. Let (Xt) be a linear process of the form

Xt =

∞∑
j=0

ajεt−j (4)

where (εj) are i.i.d. random variables with zero mean, variance σ2, and finite fourth moment η, and
where

∑∞
j=0 a

2
j <∞.

Theorem 1 Let Xt be as defined in (4), Qn,m(s) be as defined in (3) where s ≥ 1 is fixed and
m→∞, m = o(n).
(a) If Xt is a short memory process in the sense that

∞∑
j=1

|aj | <∞,

and that its spectral density f satisfies (1) with d = 0, then

Qn,m(s)
d−→ Q(s),

where Q(s) has Gamma distribution with parameters (s, 1).
(b) If Xt is a long memory process in the sense that f is of the form (1) with 0 < d < 1/2, then

Qn,m(s)
P−→∞.

Comments: (a) According to the convergence result in (a), the approximated critical region of the
testing procedure d = 0 versus 0 < d < 1/2 at significance level α is of the form {Qn,m(s) > Γα(s)}
where Γα(s) is the quantile of order 1 − α of Gamma distribution with parameters (s,1). This makes
the test easy to implement as the critical values are available in all statistical softwares.
(b) Under the condition b) of Theorem 1, our testing procedure is consistent, i.e. the power converges
to 1 under any long memory alternative 0 < d < 1/2.

Proof of Part a) of Theorem 1. From (3) we get

Qn,m(s) =
s∑
j=1

In(λj)/f(λj)
1
m

∑m
i=1 In,i(λj)/f(λj)

.

Applying Giraitis et al. Th 5.3.1 (2012), we have(
In(λ1)

f(λ1)
, · · · , In(λs)

f(λs)

)
d→ (E1, · · · , Es)
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where E1, · · · , Es are i.i.d. exponentially distributed with mean 1, and since clearly Q(s)
d
= E1+· · ·+Es,

using Slutsky Lemma, it will then be enough to show that, for each fixed j, as n→∞,

1

m

m∑
i=1

In,i(λj)

f(λj)

P−→ 1,

or equivalently (since f is continuous, and λj = 2πj
n , then f(λj)→ f(0)),

1

m

m∑
i=1

In,i(λj)
P−→ f(0) =

1

2π

(
γ(0) + 2

∞∑
k=1

γ(k)

)
. (5)

Denoting

γ̂n,i(h) =
1

`

i`−|h|∑
k=1+(i−1)`

XkXk+h,

we can write

In,i(λ) =
1

2π`

∣∣∣ i∑̀
k=1+(i−1)`

Xke
iλk
∣∣∣2 =

1

2π

i∑̀
s,t=1+(i−1)`

XsXte
i(s−t)λ =

1

2π

∑
|h|<`

e−ihλγ̂n,i(h)

=
1

2π
γ̂n,i(0) +

1

π

`−1∑
h=1

cos(λh)γ̂n,i(h).

Hence the LHS of (5) is made of two parts. Firstly,

1

2πm

m∑
i=1

γ̂n,i(0) =
1

2π

1

m

1

`

m∑
i=1

i∑̀
k=1+(i−1)`

X2
k =

1

2πn

n∑
u=1

X2
u
a.s.→ γ(0)

2π
, as n→∞ (6)

by virtue of the ergodic theorem. Secondly, we prove the following L2 convergence, as n→∞

1

2πm

m∑
i=1

`−1∑
h=1

γ̂n,i(h) cos(λjh)
L2

→ 1

π

∞∑
k=1

γ(k). (7)

Observing that (γ̂n,1(h), . . . , γ̂n,m(h) are identically distributed),

1

π
E

(
1

m

m∑
i=1

`−1∑
h=1

γ̂n,i(h) cos(λjh)

)
=

1

π

`−1∑
h=1

E(γ̂n,1(h)) cos(λjh)

=
1

π

`−1∑
h=1

γ(h)(1− h/`) cos(λjh)

n→∞−→ 1

π

∞∑
k=1

γ(k),
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by the dominated convergence theorem, it suffices to prove that, as n→∞,

Var

(
1

m

m∑
i=1

`−1∑
h=1

γ̂n,i(h) cos(λjh)

)
→ 0. (8)

The LHS of (8) can be written as

1

m2

m∑
s=1

m∑
t=1

Cov

(
`−1∑
h=1

γ̂n,s(h) cos(λjh),

`−1∑
h=1

γ̂n,t(h) cos(λjh)

)

=
1

m

m∑
u=−m

(
1− |u|

m

)
Cov

(
`−1∑
h=1

γ̂n,1(h) cos(λjh) ,

`−1∑
h=1

γ̂n,1+|u|(h) cos(λjh)

)

=
1

m

m∑
u=−m

(
1− |u|

m

) `−1∑
p=1

`−1∑
q=1

cos(pλj) cos(qλj)Cov
(
γ̂n,1(p) , γ̂n,1+|u|(q)

)
The first equality is due to the stationarity of the process(

`−1∑
h=1

γ̂n,s(h) cos(λjh)

)
s

.

Therefore it will be enough to show that for u ≥ 2,

∑̀
p=1

∑̀
q=1

Cov

(
γ̂n,1(p), γ̂n,1+u(q)

)
→ 0, as n, (or equivalently `)→∞, (9)

which is done in Lemma 1 in the appendix.
Proof of Part b) of Theorem 1. As Qn,m(s) is the sum of nonnegative terms, it will be enough to
show that for each fixed j = 1, . . . , s

In(λj)/f(λj)
1
m

∑m
i=1 In,i(λj)/f(λj)

P→∞. (10)

Using Deo (1997), the numerator in (10) converges in distribution to a non degenerated positive random
variable. Therefore it will be enough to show that

1

m

m∑
i=1

In,i(λj)

f(λj)

P→ 0 as n→∞. (11)

It is well known that if Zn ≥ 0 and E(Zn) → 0 as n → 0 then Zn → 0 in probability. Therefore, since
the variables involved in (11) are nonnegative, it suffices to show that

1

m
E

(
m∑
i=1

In,i(λj)

f(λj)

)
→ 0 as n→∞. (12)



6

Since In,1, . . . , In,m are identically distributed, the LHS of (12) is simply equal to

E

(
In,1(λj)

f(λj)

)
=
`−1

∑`
s,t=1 γ(s− t)ei(s−t)λj

f(λj)
=

∑`
h=−`

(
1− |h|`

)
γ(h) cos(λjh)

f(λj)
. (13)

Under (1), f(λ) ∼ cλ−2d near zero (0 < d < 1/2), thus f(λj) ∼ cn2d, and the numerator above is
bounded by ∑̀

h=−`
|γ(h)| ≤ C1

∑̀
h=1

h2d−1 ∼ C2`
2d

for some positive constants c, C1, C2. Hence the ratio (13) is O
(
(`/n)2d

)
→ 0 as n → ∞ since d > 0

and `
n = 1

m → 0.

3 Simulation Studies

In this section we illustrate the performance of our test based on Qn,m(s) statistic and we compare
it with the well known spectral domain test proposed by Lobato and Robinson (1998) and the time
domain one based on VS statistic, briefly introduced below.

Lobato Robinson test (LR test).

In a one-dimensional case, Lobato and Robinson test statistic is LM = t2, where

t =
√
m

∑m
j=1 νj(I(λj))∑m
j=1(I(λj))

,

and

νj = log j − 1

m

m∑
j=1

log j.

Under certain conditions on the bandwidth m, if the spectral density is twice boundedly differentiable
near 0 and d = 0, the statistic t converges in distribution to the standard normal distribution. Our
approach is different since we use a blocking method rather than estimating f(0) and we do not assume
such smoothness conditions on the spectral density near zero, except the continuity of g in (1), or on
the tuning parameters except that the epoch length, `(n) = o(n). In the simulation (Figure 3) we select
for m the optimal value given in Lobato and Robinson (1998).

V/S test.

This test is defined as the ratio Mn = Vn/s
2
n,q, where

Vn =
1

n2

[
n∑
k=1

(S∗k)2 − 1

n

(
n∑
k=1

S∗k

)2 ]
,
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with S∗k =
∑k

j=1(Xj − X̄n), ŝ2n,q = γ̃0 + 2
∑q

j=1

(
1− j

q

)
γ̃j , and where γ̃ is the sample covariance

γ̃j = n−1
n−j∑
i=1

(Xi − X̄n)(Xi+j − X̄n), 0 ≤ j < n

where X̄n is the sample mean of X1, . . . , Xn.
The null hypothesis of V/S test consists in the short memory case (which is our case (a) in theorem
1). Under some technical conditions on the bandwidth q and the fourth order cumulants (see Giraitis
et al. (2003) for the exact hypotheses), Mn converges to a non degenerated distribution with cdf
FV S(x) = FK(π

√
x) where FK is the asymptotic cdf of the standard Kolmogorov statistic. The authors

suggest the use of q = n1/3 for optimal results. This is the chosen value in our simulation (see Figure
3).

Choice of window parameters m and s in Qn,m(s) defined in (3)

The choice of m is done to ensure that the empirical size will be close to the nominal size of the test. To
do this we simulate independent copies of AR(1) and we evaluate for each sample the pvalue associated
to Qn,m-test. Then we draw the empirical cumulative distribution function of pvalues. Under the null
hypothesis this cdf should match the cdf of the uniform distribution.

Figure 1 represents these empirical cdfs of Qn,m(s) for several Gaussian AR(1) models. We take m = nb,
b = .3, .4, .5, , .6 and n = 1000, 5000 and 10 000. Figure 1 shows a good fitting between the line y = x
and the empirical cdf associated with the choice m =

√
n. We also note that this choice remains good

showing some robustness against deviation from normality of the innovations εt (see Figure 3).

As for the parameter s, our simulation (with m =
√
n) studies have shown that the choice of s de-

pends on the sample size (See Figure 2). For small to moderate sample size, a small choice of s (such
as s = 2, 3) would be preferable. This might be due to the fact that if e.x. we take n = 1000, each
sub-periodogram is made of ` = 32 observations, and therefore only the very first Fourier frequencies
(closest to frequency zero) will have a significant contribution in determining whether a data set come
from a short or long memory process. We also note that when the sample size is quite large, we can
still obtain a good empirical size while increasing s. Figure 3 again shows e.x., that a good choice of s
would be s ≤ 5 for n = 5000 and s ≤ 10 for n = 10, 000 We suggest that if the sample is very large,
then we should slihhtly increase s.

Non Gaussian innovations

Simulations have shown that under normality assumption LR test tends to outperform all time domain
tests such as V/S, KPSS, RS etc. Here we compare our Qn,m(s) test with LR test and V/S test under
the null hypothesis when the innovations of AR(1) are non Gaussian. (we generated innovations from
heavily skewed exponential and log normal distributions, but we only reported the results for exponential
distribution.
Figure 3 shows a lack of robustness to non-normality of V/S and LR tests in the sense that these tests
seem to suffer from high empirical size (the ratio of rejecting the null is much bigger than the nominal
level α = .05, .1 etc). On the opposite, Qn,m(s) test seems to have a more reasonable empirical size
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(very much close to the nominal level α = .05, .1 etc). Similar conclusions hold for innovations with
log-normal distributions as well.

Power of Qn,m(s) test.

Figure 4 illustrates the behavior of the empirical power of this test when s varies. We only represent the
graphs for a non-Gaussian case (innovations with log normal distribution) but there are no noticeable
differences with the Gaussian case. As expected, it shows an increase in the power function with the
parameter s. Since LR and V/S empirical sizes are quite high, as seen in the previous section, as
compared to Qn,m(s) test, the former tests will tend to be more powerful than Qn,m(s) test especially in
Gaussian case. This is very much anticipated and for this reason we did not report the power comparison
graphs between V/S and LR on one side and Qn,m(s) on the other side.

In conclusion, our findings confirm that, mainly due to its relatively easy implementation and large
sample properties, frequency-domain approach should be used more often in combination with classical
time domain methods when it comes to testing for long memory or for unit root (as AR(1) coefficient
tends to 1) in the time series analysis.

Figure 1: P-values of Qn,m(2); 5000 independent replications of AR(1) model with AR coefficient
a = −0.5, 0.5, 0.8 and Gaussian innovations.
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Figure 2: P-values of Qn,
√
n(s); 5000 independent replications of AR(1) model with AR coefficient

a = 0.5 and Gaussian innovations.

Figure 3: P-values of Qn,
√
n(2); 5000 independent replications of AR(1) model with AR coefficient

a = −0.5, 0.5, 0.8 and non gaussian innovations: εt = ξt − 1 where ξt are i.i.d. standard exponentials
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Figure 4: P-values of Qn,
√
n(s); 5000 independent replications from long memory model ARFIMA(0,d,0):

Xt = (1 − B)dεt, with long memory parameter d = 0.2, 0.3, 0.4, and non gaussian innovations: εt =
(ζt −

√
e)/
√

(e− 1)e where ζt has log normal distribution, LogN (0, 1)

4 Appendix

In this appendix we state and prove the convergence (9) used in the proof of Theorem 1-a.

Lemma 1 Under the hypotheses of Theorem 1-a,

∑̀
p=1

∑̀
q=1

Cov

(
γ̂n,1(p), γ̂n,1+u(q)

)
→ 0, as n, (or equivalently `)→∞.

Proof We recall that σ2 is the variance of εt and η is its fourth moment. We have with the vari-
able change s = z − `u,

Cov

(
γ̂n,1(p), γ̂n,1+u(q)

)
=

1

`2

`−p∑
t=1

`(u+1)−q∑
z=1+`u

E[XtXt+pXzXz+q]−
(`− p)(`− q)

`2
γ(p)γ(q)

=
1

`2

`−p∑
t=1

`−q∑
s=1

[E[XtXt+pXs+`uXs+`u+q]− γ(p)γ(q)]

=
1

`2

`−p∑
t=1

`−q∑
s=1

[E[XtXt+pXt+s−t+`u−p+pXt+s−t+`u−p+p+q]− γ(p)γ(q)] .
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Similarly to the computation used in the proof of Proposition 7.3.1 of Brockwell and Davis (1991) we
then obtain,

Cov

(
γ̂n,1(p), γ̂n,1+u(q)

)

=
1

`2

`−p∑
t=1

`−q∑
s=1

[
γ(p)γ(q) + γ(s− t+ `u)γ(s− t+ `u+ q − p)

+γ(s− t+ `u+ q)γ(s− t+ `u− p)

+(η − 3)σ4
∞∑
i=0

aiai+pai+s−t+`uai+s−t+`u+q − γ(p)γ(q)

]

=
1

`

`−p+1∑
h=1+q−`

(
1− |h|

`

)
T`,u(h, p, q),

where
T`,u(h, p, q) = T

(1)
`,u (h, p, q) + T

(2)
`,u (h, p, q) + T

(3)
`,u (h, p, q),

with
T
(1)
`,u (h, p, q) = γ(`u− h)γ(`u− h+ q − p),

T
(2)
`,u (h, p, q) = γ(`u− h+ q)γ(`u− h− p),

and

T
(3)
`,u (h, p, q) = (η − 3)σ4

∞∑
i=0

aiai+pai+h+`uai+h+`u+q.

Next for u ≥ 2, putting k = q − p,

1

`

∑̀
p=1

∑̀
q=1

∑̀
h=−`

∣∣T (1)
`,u (h, p, q)

∣∣ =
∑̀
h=−`

∑̀
k=−`

(
1− |k|

`

)
|γ(`u− h)γ(`u− h+ k)|

≤
∑̀
h=−`

∑̀
k=−`

|γ(`u− h)γ(`u− h+ k)|

=
∑̀
h=−`

|γ(`u− h)|

( ∑̀
k=−`

|γ(`u− h+ k)|

)

≤ 2

∞∑
i=`

|γ(i)|

(
2

∞∑
j=0

|γ(j)|

)
→ 0 as `→∞,

since the covariances are summable in short memory. Similar computation shows also that

1

`

∑̀
p=1

∑̀
q=1

∑̀
h=−`

∣∣T (2)
`,u (h, p, q)

∣∣→ 0, as `→∞.
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As for the last term, permuting the order of summation, and using the variable change s = i+ h+ `u,
and without loss of generality, considering the coefficients ai ≥ 0.

∑̀
h=−`

T
(3)
`,u (h, p, q) = (η − 3)σ4

∞∑
i=0

aiai+p

i+(u+1)`∑
s=i+(u−1)`

asas+q

≤ (η − 3)σ4
∞∑
i=0

aiai+p

∞∑
s=`

asas+q = γ(p)o(1), as `→∞,

and therefore, as the covariances are summable in short memory,

1

`

∑̀
p=1

∑̀
q=1

∑̀
h=−`

T
(3)
`,u (h, p, q) =

o(`)

`
→ 0, as `→∞,

which completes the proof of the lemma.
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