
HAL Id: hal-01353393
https://hal.science/hal-01353393

Submitted on 6 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chemical assembly of multiple metal cofactors: The
heterologously expressed multidomain

[FeFe]-hydrogenase from Megasphaera elsdenii.
Georgio Caserta, Agnieszka Adamska-Venkatesh, Ludovic Pecqueur,

Mohamed Atta, Artero Vincent, Souvik Roy, Edward Reijerse, Wolfgang
Lubitz, Marc Fontecave

To cite this version:
Georgio Caserta, Agnieszka Adamska-Venkatesh, Ludovic Pecqueur, Mohamed Atta, Artero Vincent,
et al.. Chemical assembly of multiple metal cofactors: The heterologously expressed multidomain
[FeFe]-hydrogenase from Megasphaera elsdenii.. Biochimica biophysica acta (BBA) - Bioenergetics,
2016, 1857 (11), pp.1734-1740. �10.1016/j.bbabio.2016.07.002�. �hal-01353393�

https://hal.science/hal-01353393
https://hal.archives-ouvertes.fr


 1 

Chemical assembly of multiple metal cofactors: the 

heterologously expressed multidomain [FeFe]-hydrogenase from 

Megasphaera elsdenii. 

Giorgio Caserta
a
, Agnieszka Adamska-Venkatesh

b
, Ludovic Pecqueur

a
, Mohamed Atta

c
, Vincent 

Artero
c
, Roy Souvik

c
, Edward Reijerse

b
, Wolfgang Lubitz

b
 and Marc Fontecave

a
*  

a
 Laboratoire de Chimie des Processus Biologiques, Collège de France, 

Université Pierre et Marie Curie, CNRS UMR 8229, 11 place Marcelin Berthelot, 

75005 Paris, France 

 

b
 Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 

45470 Mülheim an der Ruhr, Germany.  

 

c
 Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA/BIG, 

CNRS, 17 rue des martyrs, 38000 Grenoble, France 

 

* to whom correspondence should be addressed : mfontecave@cea.fr; tel : (33) 144271360 

 

 

 

 

mailto:mfontecave@cea.fr


 2 

ABSTRACT  

[FeFe]-hydrogenases are unique and fascinating enzymes catalyzing the reversible reduction of 

protons into hydrogen. These metalloenzymes display extremely large catalytic reaction rates at 

very low overpotential values and are, therefore, studied as potential catalysts for bioelectrodes 

of electrolyzers and fuel cells. Since they contain multiple metal cofactors whose biosynthesis 

depends on complex protein machineries, their preparation is difficult. As a consequence still 

few have been purified to homogeneity allowing spectroscopic and structural characterization. 

As part of a program aiming at getting easy access to new hydrogenases we report here a 

methodology based on a purely chemical assembly of their metal cofactors. This methodology is 

applied to the preparation and characterization of the hydrogenase from the fermentative 

anaerobic rumen bacterium Megasphaera elsdenii, which has only been incompletely 

characterized in the past. 

Keywords : [FeFe]-hydrogenase, Megasphaera elsdenii, synthetic maturation, H2 production 

  

ABBREVIATIONS 

β-met, β-mercaptoethanol; DTT, dithiothreitol; adt, azadithiolate; DMSO, dimethylsulfoxide; 

EPR, electron paramagnetic resonance; FTIR, Fourier transform infrared; TOF, turnover 

frequency; Tris, tris(hydroxymethyl)-aminomethane; GC, Gas chromatography; SEC, size 

exclusion chromatography; MeHydA, [FeFe]-hydrogenase from Megasphaera elsdnii; 

CrHydA1, [FeFe]-hydrogenase from Chlamydomonas reinhardtii; CpHydA, [FeFe]-hydrogenase 

from Clostridium pasteurianum; DdH, [FeFe]-hydrogenase from Desulfovibrio desulfuricans; 

CaHydA, [FeFe]-hydrogenase from Clostridium acetobutylicum; apo-MeHydA, MeHydA 
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without FeS cluters; FeS-MeHydA, MeHydA reconstituted with [4Fe4S] clusters;  Holo-

MeHydA, FeS-MeHydA maturated with [Fe2(adt)(CO)4(CN)2]
2-

; Hox, oxidized state of [FeFe]-

hydrogenase; Hox-CO, CO-inhibited oxidized state of [FeFe]-hydrogenase; Hred, reduced state of 

[FeFe]-hydrogenase; Hsred, superreduced state of [FeFe]-hydrogenase; CW, Continuous Wave; 

FID, Free Induction Decay. 

1. Introduction  

[FeFe]-hydrogenases, named HydA, are unique biocatalysts for the interconversion between 

protons and dihydrogen[1]. These metalloenzymes display extremely large catalytic reaction 

rates at very low overpotential. As a consequence, they have been well studied from structural 

and mechanistic perspectives [2–4]. Furthermore they are considered as potential alternative 

catalysts to noble metals for the development of novel bio-fuel cells and bio-electrolyzers as well 

as bio-photoelectrochemical cells [5–8]. These green technological electrochemical devices 

might contribute to solve the energy storage issue linked to the intermittency of renewable 

energies such as solar and wind energies. A large number of studies have thus been devoted to 

the investigation of the electrochemical behavior of these enzymes at carbon-based surfaces as 

well as in combination with semiconducting materials in order to optimize bio-electrodes or bio-

photoelectrodes [9,10]. These enzymes display remarkable electrocatalytic activity for proton 

reduction into H2 but also suffer from extreme oxygen sensitivity [11–15]. Finally, spectroscopic 

and structural studies provide a knowledge that is extensively exploited by synthetic chemists for 

the preparation and development of bioinspired catalysts, mimicking the unique diiron active 

center of these enzymes [16,17]. 
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  [FeFe]-hydrogenases indeed rely, for activity, on a complex inorganic site, consisting of 

an organometallic dinuclear Fe subunit, named 2Fe-subcluster, in which the two Fe atoms are 

bridged by an aza-propanedithiolate (adt
2–

) ligand and the coordination sphere is completed by 

CO and cyanide ligands [18]. This diiron complex is linked to a [4Fe-4S] cluster via a sulfur 

atom of a cysteine residue. This active site, thus containing 6 Fe atoms and named the “H-

cluster”, is buried inside the protein but is connected to the surface of the protein, for electron 

transfer, in most cases via an array of iron-sulfur [FeS] clusters (Figure 1). Interestingly, the 

number of accessory [FeS] clusters varies from one enzyme to another. For example, HydA from 

Clostridium pasteurianum [19,20] contains one [2Fe-2S] and three [4Fe-4S] clusters, HydA from 

Desulfovibrio desulfuricans [21] harbors two [4Fe-4S] clusters while HydA from the green algae 

Chlamydomonas reinhardtii [22] has no accessory [FeS] clusters.  

 

Figure 1. X ray structure of CpHydA with its protein surrounding, PDB 4XDC [28]. CpHydA has 1 [2Fe2S], 2 

[4Fe4S] clusters and the H-cluster depicted in the circle. The picture is designed using the program PYMOL. Fe 

atoms are depicted in brown, S in yellow, C in green, N in blue and O in red. 

 

 Biomolecular studies on [FeFe]-hydrogenases are unfortunately limited by the fact that 

these enzymes are difficult to prepare. First, they have to be purified and manipulated only under 

strict anaerobiosis. Second, their maturation, the process by which the [FeS] clusters and the 

2Fe-subcluster are synthesized and assembled, depends on complex and specific protein 



 5 

machineries. In particular, the system involved in the biosynthesis of the 2Fe-subcluster is still 

incompletely characterized [23]. Three enzymes are participating in the biosynthetic pathway. 

HydG and HydE are S-adenosyl-L-methionine enzymes. HydG has been shown to produce an 

{Fe-(CO)2(CN)} synthon that is the first intermediate towards the 2Fe-subcluster [24]. HydE is 

proposed to participate in the synthesis of the adt
2–

 ligand through an as yet unknown 

mechanism. HydF, is a GTPase that binds a [4Fe-4S] cluster and serves as a scaffold/carrier 

protein for assembly of a precursor of the 2Fe-subcluster of HydA. Transfer of the latter to 

HydA, containing the [Fe-S] clusters but lacking the 2Fe-subcluster, produces a fully active 

hydrogenase. The three proteins are absent from Escherichia coli which is the bacterial 

expressing system, very widely used for recombinant protein preparation [1,25]. As a 

consequence few [FeFe]-hydrogenases have been purified to homogeneity and only three have 

been structurally characterized [19–22]. There is thus a need to get easier access to more 

members of that class of enzymes. 

 Recently, we discovered that recombinant [FeFe]-hydrogenases can be prepared 

anaerobically in an inactive form containing only the [FeS] clusters and subsequently fully 

maturated by reaction with the synthetic [Fe2(adt)(CO)4(CN)2]
2–

 biomimetic complex [26,27].
 

The resulting active site has been shown to display EPR and FTIR characteristics identical to 

those of the naturally maturated enzyme, as illustrated in the case of CrHydA1 from 

Chlamydomonas reinhardtii. In case of HydA from Clostridium pasteurianum the definitive 

confirmation that the chemically synthesized active site was identical to the biosynthesized one 

came from the observation of a remarkable identity of the two three-dimensional structures [28]. 

This synthetic maturation methodology has already led to a number of very interesting 
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applications which would have been otherwise unreachable, such as specific labeling of the 

active site or preparation of artificial hydrogenases [4,29–33]. 

  Here, we go a step further towards the facile preparation of active hydrogenases in large 

amounts from standard E. coli strains lacking the HydEFG machinery. We show that it is 

sufficient to express the corresponding gene in E. coli, purify the apoprotein aerobically and 

activate it chemically, simply via, first, incorporation of the [FeS] clusters by treatment with iron 

and sulfide and, second, incorporation of the 2Fe-subunit by reaction with the 

[Fe2(adt)(CO)4(CN)2]
2–

 complex, anaerobically. This methodology is illustrated here with the 

preparation of HydA from the fermentative anaerobic rumen bacterium Megasphaera elsdenii. 

This enzyme, named MeHydA hereafter, has been previously isolated from a M. elsdenii strain 

but only partially characterized in the 1980’s, when the structure of these enzymes was not yet 

known [34–37].
 
In this report, we provide a straightforward method for preparing a highly active 

hydrogenase. Furthermore we provide the first full characterization of MeHydA using EPR and 

FTIR spectroscopy.  

 Finally, up to now only two [FeFe] hydrogenases, HydA from Desulfovibrio 

desulfuricans (DdH) and from C. reinhardtii (CrHydA1), have been thoroughly studied for their 

redox behavior [38–40]. The observed redox states differ from each other substantially. The 

bacterial enzyme DdH can be prepared under aerobic conditions and isolated in the inactive air-

stable Hox
air

 state. Reductive activation leads to an intermediate redox state Htrans which converts 

into the active oxidized state called Hox. While the Hox
air

 and Htrans are not observed in any other 

[FeFe] hydrogenase, the Hox state and its CO inhibited version Hox-CO are found in all [FeFe] 

hydrogenases (Table 2). One electron reduction of Hox (-400 mV NHE, pH 8.0) provides the 

reduced state Hred. Further reduction of DdH (-560 mV NHE, pH 8.0) is incomplete and leads 
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irreversibly to a weakly populated so called “super-reduced” Hsred state [38]. In contrast, in 

CrHydA1, lacking accessory [FeS] clusters, reduction to the super-reduced state (-460 mV NHE, 

pH 8.0) is complete and reversible [39,40]. In the current study, we also report, for the first time, 

the redox behavior of MeHydA. 

2. MATERIALS AND METHODS 

2.1. Expression and purification of apo-MeHydA 

TunerDE3pLysS cells transformed with the pT7-7-6HMeHydA plasmid [41] were grown in 

Terrific Broth medium supplemented with ampicillin and chloramphenicol at 37 °C, until the 

optical density at 600 nm reached 0.5. Protein synthesis was induced by the addition of isopropyl 

β-D-thiogalactopyranoside to a final concentration of 0.5 mM. Cells were grown for an 

additional 5 h with decreasing the temperature to 20 °C to avoid the formation of inclusion 

bodies. Cells were harvested by centrifugation and stored at -80°C until use. Cells were 

resuspended in Tris Buffer 50 mM pH 8.0 containing 5 % v/v glycerol, 1 % v/v Triton, 1 mM 

Dithiothreitol (DTT) and 5mM β-Mercaptoethanol (β-met) and discontinuously sonicated for 10-

12 min. Cellular extracts were centrifuged 1h at 193 000 g leading to a soluble fraction of HydA. 

The first chromatographic step was performed on a His Trap column (GE-healthcare) 

equilibrated with 50 mM Tris-Cl pH 8.0, 300 mM NaCl, 10 % v/v glycerol, 5 mM β-met, 1 mM 

DTT. After loading, the column was extensively washed with 10 column volumes of 50 mM 

Tris-HCl pH 8.0, 300 mM NaCl, 10 % v/v glycerol, 5 mM β-met, 1 mM DTT, 10 mM imidazole 

then eluted with a linear gradient of buffer A/buffer A supplemented with 500 mM imidazole. 

Elution fractions containing 6H-MeHydA were pooled and a pure and homogeneous protein was 

obtained after a gel filtration step with a Superdex S200 26-600 equilibrated in 50 mM Tris-HCl 



 8 

pH 8.0, 300 mM NaCl, 10 % glycerol, 5mM DTT. Protein concentrations were determined with 

the Bradford assay (Bio-Rad), using bovine serum albumin as a standard. The oligomeric state of 

the apo- and reconstituted proteins was determined in anaerobiosis via analytical gel filtration 

using a Superdex S200 10/300 column equilibrated in 50 mM Tris-HCl buffer pH 8.0, 300 mM 

NaCl, 10% v/v glycerol, 5 mM DTT. To estimate the molecular weight of apo-MeHydA, static 

light scattering measurements were performed in batch mode in a quartz cuvette on a Zetasizer 

ZSP (Malvern) using toluene as a standard. The measurements were done from apo-MeHydA 

freshly purified on a S200 10/300 GL column. The protein concentration was estimated with the 

Bradford assay. A dn/dc of 0.187 at 633 nm, calculated from the protein sequence using the 

program SEDFIT was used [42].
 
The molecular weight was extracted from the intercept of the 

linear fit with the Zimm equation for an isotropic scatterer, Kc/Rθ =1/M + 2A2c, of the Debye 

Plot. K is an optical constant, c is the concentration of the analyte, Rθ is the Rayleigh ratio, M is 

the molecular weight and A2 the second virial coefficient. 

2.2. In vitro [4Fe-4S] clusters reconstitution of apo-MeHydA  

[4Fe-4S] clusters reconstitution of apo-MeHydA was conducted under strictly anaerobic 

conditions in a glove box (MBraun) with less than 0.5 ppm O2. After incubation of apo-MeHydA 

(50-100 µM) with 10 mM DTT for 15 min at 20°C, a 17-18 molar excess of ferrous ammonium 

sulfate [(NH4)2Fe(SO4)2,6H2O] was added, followed by the addition of a 17-18 molar excess of 

L-cysteine and a catalytic amount of the E. coli cysteine desulfurase CsdA [43] (1–2 % molar 

equivalent). The reaction was monitored by recording UV–Visible absorption spectra every 30 

min. For practical reason, [4Fe-4S] clusters reconstitution was performed overnight. The 

reconstituted FeS-MeHydA was then centrifuged 20 min at 12 000 rpm and purified on Superdex 

S200 10/300 GL equilibrated with the reconstitution buffer (50 mM Tris-HCl pH 8.0, 300 mM 
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NaCl, 10% Glycerol, 5 mM DTT). The pure FeS-MeHydA was concentrated with Amicon Ultra 

30-kDa centrifugal filters (Millipore) and stored in liquid nitrogen or at -80 °C in sealed vials 

until use. Visible absorption spectra were recorded on a Cary 100 spectrophotometer (Agilent) 

connected to the cell holder located in a glovebox with optical fibers. 

For each sample, the Fe and S content was determined 3 times for 2 different protein 

concentrations according to the methods of Fish [44] and Beinert [45], respectively. 

2.3. Synthesis of (Et4N)2[Fe2(adt)(CO)4(CN)2] 

 (Et4N)2[Fe2(adt)(CO)4(CN)2], was prepared as previously described [27,46]. 

2.4. In vitro maturation of FeS-MeHydA for FTIR and EPR measurements 

(Et4N)2[Fe2(adt)(CO)4(CN)2] was dissolved at a concentration of 80 mM in DMSO, and stored 

anaerobically at -80°C in sealed vials. In a standard experiment 50 µM FeS-MeHydA were 

incubated for 1h with 10 equivalents of [Fe2(adt)(CO)4(CN)2]
2–

in the maturation buffer at room 

temperature (100 mM potassium phosphate pH 6.8). The excess of [Fe2(adt)(CO)4(CN)2]
2–

 was 

removed by a desalting column (NAP-10, GE healthcare) and the protein was concentrated to 

0.5−1 mM and stored in liquid N2 or directly used for experiments. For activity experiments, the 

concentrated holo-MeHydA was diluted to 2-3 µM.  

2.5. In vitro maturation of FeS-MeHydA for H2 production 

H2 production was determined according to published procedure [26] by using methyl viologen 

as electron mediator and sodium dithionite as reducing agent. Briefly, holo-MeHydA (5−10 µL) 

corresponding to 20 pmol of hydrogenase was added to a total amount of 1.11 mL of 100 mM 

potassium phosphate, pH 6.8, 100 mM sodium dithionite, and 10 mM methyl viologen in a 10 
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mL vial sealed under anaerobic conditions (rubber stoppers, Carl Roth). In a second test a 10-

fold excess of synthetic complex was added to monomeric FeS-MeHydA (2-3 µM), the mixture 

was incubated for 1 h at room temperature and the samples were used immediately for activity 

tests, as described above. A gas chromatogram was recorded on a GC System (Shimadzu GC-

2014 with a thermal conductivity detector and a Quadrex column) and the amount of H2 was 

quantified using a calibration curve. [Fe2(adt)(CO)4(CN)2]
2–

 and FeS-MeHydA were assayed as 

controls and did not show any activity. All activities in this study were measured at least 3 times 

on 3 different protein preparations.  

2.6. FTIR and EPR analysis: isolation of Hox, Hred and Hox-CO states. 

After FeS-MeHydA maturation with (Et4N)2[Fe2(adt)(CO)4(CN)2], an aliquot of the holoenzyme 

was flushed for 20 min with carbon monoxide to obtain Hox-CO. In the same way, 1 aliquot of 

holo-MeHydA was flushed for 1h with Argon to isolate the Hox state. To produce the Hred state 

presented in figure 3, 1 aliquot of the holoenzyme was flushed with H2 for 24 h and subsequently 

treated with different concentration of sodium dithionite. For the progressive reduction series 

presented in figure S4, 80 µl of 0.5 mM enzyme were used. For each measurement a 10 µl 

sample was used. 

Fourier Transform Infrared (FTIR) measurements were carried out using a Bruker IFS 66v/s 

FTIR spectrometer equipped with a nitrogen cooled Bruker mercury cadmium telluride (MCT) 

detector. The spectra were accumulated in the double-sided, forward-backward mode with 1000 

scans (14 minutes total) and a resolution of 2 cm
-1

 at 15 °C. The obtained interferograms were 

automatically processed by the Opus software utilizing a 32-points phase correction and a 

Blackman–Harris 3-term apodization window. Baseline correction was done using a cubic spline 
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data interpolation procedure applied to manually selected points of the experimental spectra. 

Data processing was facilitated by home written routines in the MATLAB™ programming 

environment. 

Q-band EPR spectra were recorded using free induction decay (FID) detected EPR with a 

microwave pulse length of 1 µs. All pulse experiments were performed on a Bruker ELEXYS 

E580 Q-band spectrometer with a SuperQ-FT microwave bridge and home built resonator 

described earlier [47]. Cryogenic temperatures (10-20 K) were obtained by an Oxford CF935 

flow cryostat. For the interpretation of all EPR experimental data, a home written simulation 

program (based on the EasySpin package [48])  in MATLAB™ was used. 

3. RESULTS AND DISCUSSION 

3.1 Purification of the MeHydA and iron-sulfur clusters reconstitution. 

 Expression of the MeHydA-encoding gene in E. coli resulted in a large production of 

soluble recombinant protein. As the protein is His-tagged, it could be purified to homogeneity 

with only two chromatographic steps (Figures S1). After a His tag affinity column and a gel 

filtration step using a Superdex S200 chromatographic column the protein was purified to 

homogeneity and was finally concentrated to 5-7 mg/ml. Overall 10-15 mg of MeHydA could be 

obtained from 1 L of culture. All the purification procedures were carried out aerobically. -

mercaptoethanol and dithiothreitol (DTT) were needed in the buffers in order to limit the 

formation of oligomers, certainly via disulfide bridge reduction. While a very small amount of 

iron was detected in this preparation the protein was mainly in the apo form and was named apo-

MeHydA. To incorporate the iron-sulfur clusters in apo-MeHydA, a standard protocol was used, 

consisting of the anaerobic incubation of the protein with an excess of iron ammonium sulfate 
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and cysteine in the presence of DTT. The reaction was initiated by addition of catalytic amounts 

of CsdA, a cysteine desulfurase, and monitored by light absorption spectroscopy since [FeS] 

clusters display a characteristic charge-transfer absorption band at 410 nm (Figure 2A and S2). 

Gel filtration provided evidence for the formation of large oligomers (Figure S3A), which were 

shown to be enzymatically inactive. Only the low-molecular weight protein fraction was 

collected and further characterized. While the elution volume of apo-MeHydA (13.7 mL) and 

reconstituted MeHydA (named FeS-MeHydA, 14.7 mL) were different (Figure S3B), both were 

shown to be monomers by static light scattering in batch mode to assess molecular weights using 

the Zimm equation and the Debye plot (Figure S3D). As a consequence, after [FeS] cluster 

reconstitution of MeHydA, the elution volume increased due to a change of the conformation of 

the protein, likely becoming more compact. 

 

Figure 2. Spectroscopic characterization of reconstituted FeS-MeHydA. A) UV-visible spectra of 68 µM apo-

MeHydA (dashed line) and FeS-MeHydA (solid line) in 50 mM Tris pH 8.0, 300 mM NaCl, 10% v/v glycerol, 5 

mM DTT. B) Q-band FID-detected EPR spectra (10K) of 170 µM FeS-MeHydA, before (20K) and after (10K) 

reduction with sodium dithionite, in 50mM Tris pH 8.0, 300 mM NaCl, 10% v/v glycerol, 5 mM DTT. The g values 

obtained from a simulation (2.055, 1.930, 1.885) are typical for [4Fe-4S]
1+

 clusters. The sharp signal at g ≈ 2.0 
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marked with an asterisk is due to a radical originating from the aerobic purification of apo-MeHydA in the presence 

of DTT [49].
 

 The quantitation of Fe (10.5 ± 0.2 per protein) and S (11.0 ± 0.2 per protein) as well as 

the UV-Visible spectrum (Figure 2A) of the protein were in good agreement with the expected 

presence of three [4Fe-4S] clusters within a single polypeptide chain. To our knowledge it is the 

first time that this procedure proves effective for full reconstitution of three [4Fe-4S] clusters 

within a single polypeptide chain. The type of clusters present in the protein was further 

confirmed by Q-band EPR spectroscopy (Figure 2B). The reconstituted oxidized protein was 

EPR silent. However, upon anaerobic reduction using sodium dithionite, it became EPR active 

with overlapping signals characteristic of reduced S=1/2 [4Fe-4S]
+
 clusters (Figure 2B). The 

spectrum does not indicate clear spin coupling (dipolar splitting) between the clusters as is 

observed in DdH [50] suggesting a slightly longer distance between them. These data show that 

the reconstitution process leads exclusively to S=0 [4Fe-4S]
2+

 oxidized clusters and exclude the 

presence of [3Fe-4S]
+
 and [2Fe-2S]

2+
clusters. FeS-MeHydA is an interesting novel form of M. 

elsdenii HydA as it may allow studying the electron-transfer chain specifically.  

 MeHydA indeed contains, in addition to the H-cluster, two additional [FeS] clusters 

bound to the same polypeptide chain. In Figure S5, the MeHydA amino acid sequence is aligned 

with that of C. pasteurianum, demonstrating 40 % sequence identity. CpHydA has a long N-

terminal stretch, absent in MeHydA, which chelates one [2Fe-2S] and one [4Fe-4S] cluster. 

Based on this alignment and the three-dimensional structure of CpHydA, one can easily identify 

the cysteines of MeHydA involved in binding the H-cluster (C highlighted in yellow) and the 

ancillary [FeS] clusters (C highlighted in green and magenta respectively). Such an assignment 

requires a future confirmation by site-directed mutagenesis. 
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3.2 Synthetic maturation 

 Applying the methodology recently reported [26], we next reacted FeS-MeHydA with an 

excess of the synthetically prepared diiron biomimetic complex [Fe2(adt)(CO)4(CN)2]
2– 

for one 

hour anaerobically and then purified the protein by desalting (NAP 10) in order to remove the 

excess of the mimic. Evidence for maturation of the protein, thus named holo-MeHydA, was 

obtained by enzymatic assay. Using a standard assay based on the reduction of protons by 

dithionite/methyl viologen and quantification of dihydrogen by gas chromatography, we showed 

that holo-MeHydA was highly active. A specific hydrogenase activity of 600 ± 50 µmol H2.mg
-

1
.min

-1
, that corresponds to a TOF of 550 turnovers per second (MW 54.5 kDa), was obtained for 

holo-MeHydA. In the presence of an excess of the mimic, the measured hydrogenase activity 

was lower by ~33% (400 ± 50 µmol.mg
-1

.min
-1

), possibly because of release of CO, an enzyme 

inhibitor, from the mimic in excess. An activity of 400 µmol H2.mg
-1

.min
-1

, for native MeHydA 

has been reported [34]. 

3.3 FTIR and EPR spectroscopic characterization of the active site 

 In order to confirm that the H-cluster has been assembled correctly but also to provide a 

full characterization of active M. elsdenii HydA, we used Fourier Transform Infrared (FTIR) 

spectroscopy for characterization (Figure 3A, Table 1). FTIR is appropriate for identifying the 

CO (1800-2020 cm
-1

) and CN (2040-2100 cm
-1

) vibrations associated with the CO and CN
-
 

ligands present in the 2Fe-subcluster [18]. These signals can be clearly distinguished from those 

of the [Fe2(adt)(CO)4(CN)2]
2–

 complex in solution which are much broader (Figure 3A, top) [27]. 

The narrow CO and CN FTIR bands of the H-cluster allow differentiating between the various 
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states usually coexisting in hydrogenase preparations. The paramagnetic states of the H-cluster 

(as well as the [4Fe-4S]
1+

 clusters in the unmaturated enzyme) were also studied using EPR.  

In the as-isolated sample (after chemical maturation), a mixture of mainly Hox and Hox-CO 

states, all expectedly containing a CO bridge revealed by the 1803/1804 cm
-1

 feature,  is 

observed. Under synthetic maturation, the supernumerary CO is released from the complex 

[Fe2(adt)(CO)4(CN)2]
2–

resulting in a substantial amount of the Hox-CO state. This signal is also 

often present in [FeFe]-hydrogenase preparations due to the so-called ‘‘cannibalization process’’ 

in which the CO ligands, from light- or oxygen-damaged H-clusters, are released and captured 

by H-clusters that are still intact [30,38,51]. Additional CO is “leaking” from the excess 

binuclear complex present in the maturation buffer further increasing the Hox-CO population 

(Figure 3A). To obtain a pure CO inhibited state, the sample was flushed for 20 minutes with CO 

gas. The FTIR spectrum is shown in Figure 3A and is in good agreement with previously 

obtained data from different [FeFe]-hydrogenases (Table 1). The Hox-CO state can be converted 

to the Hox state by flushing the sample with argon gas for 1 hour. The FTIR spectrum presented 

in Figure 4A again shows the typical signals of the Hox state (see Table 1) with a small 

contamination of Hox-CO and Hred. Finally, upon reduction, Hox is converted into the Hred state, It 

turns out that MeHydA cannot be fully reduced by H2 flushing, thus additional sodium dithionite 

treatment (5-10 mM) was needed (see Figure S4). The FTIR signature of MeHydA-Hred and 

DdH-Hred are very similar but different from Cr-HydA1-Hred which still contains a bridging CO 

ligand. Instead the Hred state in bacterial [FeFe] hydrogenases has an FTIR spectrum resembling 

that of CrHydA1-Hsred (see Table 1). It should be noted that before the present work, an FTIR 

spectrum of HydA isolated from M. elsdenii was reported [52]. However, while some (not all) 
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CO vibrational features characteristic of Hox and Hred were present, no CN vibrations could be 

observed. This raises uncertainties regarding the relevance of these data. 

Table 1. Collection of FTIR vibrations associated with the CO and CN ligands present in the [2Fe] subcluster for 

different HydAs. 

Organism Species Fe-CN Fe-CO Fe-CO-Fe Ref 

M. elsdenii Hox 2087, 2079 1964, 1937 1803 This work 

D. desulfuricans Hox 2093, 2079 1965, 1940 1802 [38] 

C. pasteurianum Hox 2086, 2072 1971, 1948 1802 [53] 

C. reinhardtii Hox 2088, 2072 1964, 1940 1800 [40] 

C. acetobutylicum Hox 2082, 2070 1969, 1946 1801 [54] 

M. elsdenii Hox-CO 2090 2013, 1969, 1955 1804 This work 

D. desulfuricans Hox-CO 2096, 2088 2016, 1971,1963 1810 [38] 

C. pasteurianum Hox-CO 2095, 2077 2017, 1974,1971 1810 [53] 

C. reinhardtii Hox-CO 2092, 2084 2013, 1970,1964 1810 [40] 

C. acetobutylicum Hox-CO 2090, 2075 2015, 1973, 1967 1806 [54] 

M. elsdenii Hred 2069, 2041 1956, 1916, 1891  This work 

D. desulfuricans Hred 2079, 2041 1965, 1916,1894  [38] 

C. acetobutylicum Hred 2053, 2040 1899  [54] 

C. reinhardtii Hred 2083, 2070 1935, 1891 1793 [40] 

C. reinhardtii Hsred 2070, 2026 1954, 1919, 1882  [39,40] 

 

Figure 3B shows the EPR spectra of the oxidized forms described above. The EPR 

spectrum of the pure Hox-CO state is characterized by a nearly axial signal originating from the 

low spin mixed-valence configuration of the 2Fe-subcluster Fe(I)Fe(II) while the [4Fe–4S] 

cluster is in the oxidized 2+ state. Although the redox states of Hox and Hox-CO are the same, the 

EPR signal originating from the 2Fe-subcluster in Hox is rhombic. Only the rhombic signal has 

been reported before in the literature [55]. Finally, the Hred state is EPR silent in agreement with 

the 2Fe-subcluster being in the S=0 Fe(I)Fe(I) state. 
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Figure 3. EPR and FTIR spectra of chemically maturated MeHydA. A)FTIR spectra of [Fe2(adt)(CO)4(CN)2]
2-

, 

holo-MeHydA as isolated, Hox, Hox-CO and Hred states in 100 mM potassium phosphate pH 6.8. B) Q-band FID-

detected EPR-spectra (T = 10K) of 0.5 mM holo-MeHydA in the Hox-CO and Hox states in 100 mM potassium 

phosphate pH 6.8 and their simulations. Information about FTIR and EPR signal positions for each redox state is 

presented at the top of the panels (A, B) and in Table 1 and Table 2, respectively. 

 The different states of the H-cluster Hox-CO, Hox, and Hred in MeHydA have thus been 

prepared following procedures similar to those reported for other bacterial [FeFe] hydrogenases 

[38,56]. The spectral features of the H-cluster in these three states can be compared with those 

found for HydA from the organisms D. desulfuricans, C. pasteurianum, and C. reinhardtii 

(Table 1 and 2). It turns out that the FTIR bands and EPR g-values of Hox and Hox-CO are very 

similar in all species. Only the g1-value of Hox-CO shows some variability where M. elsdenii is 

closest to D. desulfuricans. Also the FTIR signature of the EPR silent Hred state of MeHydA is 
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very similar to that of the other bacterial [FeFe]-hydrogenases. While for C. reinhardtii (lacking 

the extra clusters) the (semi) bridging CO ligand is still present, it is a terminal CO in 

hydrogenases from M. elsdenii and the other bacterial species. On the other hand, the doubly 

reduced state Hsred observed in algae (Cr) is not stable and undetectable in bacterial [FeFe]-

hydrogenases. 

Table 2. Collection of EPR g values of the H cluster for HydA in different species. 

Organism Species g1 g2 g3 Ref 

M. elsdenii Hox 2.093 2.041 1.999 This work 

D. desulfuricans Hox 2.100 2.040 1.998 [51] 

C. pasteurianum Hox 2.097 2.039 1.999 [57] 

C. reinhardtii Hox 2.104 2.042 1.998 [26] 

C. acetobutylicum Hox 2.089 2.036 1.995 [54] 

M. elsdenii Hox-CO 2.061 2.007 2.002 This work 

D. desulfuricans Hox-CO 2.065 2.007 2.001 [51] 

C. pasteurianum Hox-CO 2.072 2.006 2.006 [57] 

C. reinhardtii Hox-CO 2.054 2.009 2.009 [26] 

C. acetobutylicum Hox-CO 2.075 2.009 2.009 [54] 

C. reinhardtii Hsred 2.073 1.935 1.880 [26] 

D. desulfuricans Htrans 2.060 1.960 1.890 [51] 

 

4. CONCLUSIONS 

We present a very efficient method for producing an [FeFe]-hydrogenase by heterologous 

expression in E. coli of the structural gene, aerobic purification in two steps, chemical 

reconstitution of [FeS] clusters and subsequent chemical maturation with a synthetic 

organometallic active site mimic. Straightforward high-yield aerobic purification affords the apo-

enzyme without any metallic cofactors. Subsequent reconstitution of the (oxygen sensitive)  

[4Fe-4S] clusters is carried out chemically from iron salt and sulfide under anaerobic conditions. 

We show in the case of MeHydA that this is efficient even for the case of a protein containing 

three [4Fe-4S] clusters. Treatment with the [Fe2(adt)(CO)4(CN)2]
2–

 mimic complex completes 
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the activation process, as it generates a fully assembled catalytically competent H-cluster – 

including the 2Fe-subcluster. In the case of MeHydA this procedure is highly efficient since we 

obtain for this enzyme a high specific activity (600 µmol H2.mg
-1

.min
-1

).  FTIR and EPR 

spectroscopic characterization confirms that the redox states of the MeHydA enzyme are very 

similar to the bacterial [FeFe] hydrogenases from D. desulfuricans and C. pasteurianum. With 

this proof of concept we hope that this methodology can be applied to other hydrogenases from 

other living organisms for large scale production of an active enzyme.  It is one of the many 

possible applications of the discovery that simple chemical reactants, iron and sulfide as well as 

[Fe2(adt)(CO)4(CN)2]
2–

,
 
can fully replace the complex metallocofactor biosynthetic machineries 

within the same hydrogenase, the [FeS] cluster assembly machinery and the HydEFG machinery, 

respectively.  

Appendix A. Supplementary material 

Aerobic protein purification (Figure S1), in vitro [4Fe-4S] clusters reconstitution (Figure S2), 

anaerobic purification of FeS-MeHydA (Figure S3), progressive reduction of maturated 

MeHydA(adt) observed by FTIR (Figure S4), sequence alignment of MeHydA with CpHydA. 
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