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3D Face Recognition using eLBP-based 
Facial Description and Local Feature Hybrid 

Matching 
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Yunhong Wang, Member, IEEE, and Liming Chen, Member, IEEE 

Abstract—This paper presents an effective method for 3D face recognition using a novel geometric facial representation along 

with a local feature hybrid matching scheme. The proposed facial surface description is based on a set of facial depth maps 

extracted by multi-scale extended Local Binary Patterns (eLBP) and enables an efficient and accurate description of local shape 

changes; it thus enhances the distinctiveness of smooth and similar facial range images generated by preprocessing steps. The 

following matching strategy is SIFT-based and performs in a hybrid way that combines local and holistic analysis, robustly 

associating the keypoints between two facial representations of the same subject. As a result, the proposed approach proves to 

be robust to facial expression variations, partial occlusions and moderate pose changes, and the last property makes our 

system registration-free for nearly frontal face models. The proposed method was experimented on three public datasets, i.e. 

FRGC v2.0, Gavab and Bosphorus. It displays a rank-one recognition rate of 97.6% and a verification rate of 98.4% at a 0.001 

FAR on the FRGC v2.0 database without any face alignment. Additional experiments on the Bosphorus dataset further highlight 

the advantages of the proposed method with regard to expression changes and external partial occlusions. The last experiment 

carried out on the Gavab database demonstrates that the entire system can also deal with faces under large pose variations 

and even partially occluded ones, when only aided by a coarse alignment process. 

Index Terms—3D face recognition and verification, geometric facial description, extended LBP, SIFT, hybrid matching 

——————————      —————————— 

1 INTRODUCTION

HE face has its own advantages over other biometrics 
for people identification and verification-related ap-
plications, since it is natural, non-intrusive, contact-

less etc. Unfortunately, all human faces are similar to each 
other in their configurations and hence offer low distinc-
tiveness, unlike other biometrics, e.g. the iris and finger-
print. [1]. Furthermore, intra-class variations, due to fac-
tors as diverse as pose and facial expression etc. are usual-
ly greater than inter-class ones. The past decades have 
witnessed tremendous efforts firstly focused on 2D face 
images [2] and more recently on 3D face models or scans 
[3]. Despite great progress achieved so far within the field 
[2], face recognition (FR) using 2D facial texture images is 
still not reliable enough [4], especially in the presence of 
pose and lighting variations [5]. With the rapid develop-
ment in 3D imaging systems, 2.5D and 3D facial scans 
have emerged as a major alternative in dealing with the 
unsolved issues in 2D face recognition, i.e. changes of il-
lumination and pose [3], [6]. Meanwhile, even though 3D 
facial scans capture exact shape information of facial sur-
faces, and are thereby theoretically reputed to be robust 
to variations in illumination, they are likely to be more 

sensitive to expression changes. Furthermore, they gener-
ally require an accurate registration step before 3D shape-
based face matching. 
1.1 Related Work 

Generally, how to describe facial surface is a core topic in 
3D face recognition. “Good” features of facial surfaces 
should have the following properties [7]: first, they can 
tolerate within-class variations while discriminating dif-
ferent classes well; second, they can easily be extracted 
from raw facial data to allow fast processing; finally, they 
should lie in a space with moderate dimensionality to 
avoid high computational cost in matching. As a result, 
3D face recognition techniques can be firstly classified 
according to the features they use: (1) original feature-based 
techniques make use of the entire face region as input to 
compute similarity. Several works have explored PCA 
directly on facial range images [8], [9], [10]; while some 
have applied the ICP (Iterative Closest Point) algorithm 
[11] or its modified version on facial point-clouds to 
match surfaces [12], [13], [14], [15]. The Hausdorff dis-
tance has also been investigated for face matching [16], 
[17]; (2) region or point feature based detects representative 
facial areas or points to construct feature spaces. The eye 
and nose areas are used in [18]; segmented facial regions 
and lines are utilized in [19]; anthropometric facial fiduci-
al keypoints are employed in [20]; (3) curve feature based 
extracts discriminative surface curves for facial represen-
tation. In [21], three facial curves are found to intersect 
the facial surface using horizontal and vertical planes as 
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well as a cylinder; the central profile with maximal pro-
trusion as well as two parallel profiles are searched in [22]; 
a union of the level curves of a depth function is pro-
posed to represent 3D facial surfaces [23]; (4) shape feature 
based focuses on the attributes of local surfaces, such as 
curvatures [18], point signature [24], Extended Gaussian 
Image (EGI) [25], Signed Shape Difference Map (SSDM) 
[26], etc. 

3D face recognition techniques can also be categorized 
according to the nature of their matching strategies, even 
though it is highly dependent on the facial features used. 
Zhao et al. [2] have roughly classified 2D face recognition 
approaches into three main streams: holistic, e.g. PCA [27] 
and LDA [28]; feature-based such as Elastic Bunch Graph 
Matching (EBGM) [29]; hybrid like Component Eigenfaces 
[30]. This taxonomy can be extended to 3D face recogni-
tion. The holistic stream contains ICP-based matching [12], 
annotated deformable model [31], and isometry invariant 
description [32] etc. This matching scheme is based on 
holistic facial features and hence generally requires an 
accurate normalization step with respect to pose and scale 
changes. Furthermore, it has proved sensitive to expres-
sion variations and partial occlusions. The feature-based 
one utilizes local features of 3D facial scans and has been 
explored in several works in the literature, including 
point signature [24], and more recently keypoint detec-
tion and local feature matching for textured 3D face 
recognition by Mian et al. [33]. In this last work, an origi-
nal keypoint detection method on a 3D facial surface was 
introduced, and a graph-based matching scheme along 
with a dynamic fusion strategy performed at score level. 
As also highlighted in [33], feature-based matching has 
the potential advantage of being robust to facial expres-
sion, pose and lighting changes and even to partial occlu-
sions. The downside of this scheme is the difficulty in 
extracting sufficient informative feature points from simi-
lar or smooth 3D facial surfaces. Some studies also exist 
which present hybrid matching combining global facial 
features with local ones: Region-ICP [34], multiple region-
based matching [35] and the component and morphable 
model-based approach [36]. As this scheme tends to com-
bine facial configuration information with local properties 
of faces, it is theoretically the most powerful [2]. However, 
it also risks inheriting both types of shortcomings: sensi-
tivity to pose variations, difficulty in generating sufficient 
stable descriptive features, etc. 

1.2 Motivation and Approach Overview 

In this paper, our basic assumption, as the one behind 
feature-based face recognition algorithms, is that, when a 
variation such as an expression or an occlusion occurs on 
a probe 3D facial scan, there still exist some small local 
areas, e.g. the nose region during a facial expression, that 
change slightly or remain invariant as compared to the 
corresponding 3D facial scan in the gallery set. Once lo-
cated and characterized accurately, these local regions can 
be utilized to identify 3D faces, thereby providing robust-
ness to facial expressions and partial occlusions through a 
proper matching process. 

Motivated by this intuition, this paper proposes a nov-

el approach to 3D face recognition, making use of a geo-
metric facial representation along with a local feature hy-
brid matching strategy. Our main contributions can be 
summarized as follows: 

(1) Because after basic preprocessing, e.g. spike remov-
al and hole filling, 3D facial surfaces to be identified are 
generally smooth and similar, to achieve accurate repre-
sentations of facial surfaces and enhance their distinctive-
ness, we propose a 3D shape based geometric facial de-
scription, consisting of a set of Multi-Scale extended Local 
Binary Pattern Depth Faces (MS-eLBP-DFs). This method 
improves the discriminative power of LBP for 3D facial 
surface description by two solutions, i.e. encoding exact 
gray value differences between the central pixel and the 
neighboring ones as well as embedding a Multi-Scale (MS) 
scheme. 

(2) In order to extract sufficient repeatable local fea-
tures on smooth facial surfaces, we propose to apply SIFT 
[46] to these Multi-Scale extended LBP-based facial repre-
sentations, i.e. MS-eLBP-DFs, interpreted as simple gray 
level images, for the detection of keypoints and the char-
acterization of local geometric properties. 

(3) A hybrid matching approach is designed to meas-
ure similarities between gallery and probe facial scans 
once they are represented in terms of the geometric facial 
description i.e. MS-eLBP-DFs. This matching method in-
herits the principles of local feature matching along with 
graph based matching as in [33], and it also extends the 
latter by incorporating a facial component constraint. 

(4) Thanks to the local feature-based approach and the 
hybrid matching scheme, the proposed 3D face recogni-
tion algorithm is robust to facial expression changes and 
partial occlusions whilst remaining tolerant of moderate 
pose variations. The last property makes our method a 
registration-free technique for recognizing nearly frontal 
3D facial scans as can be the case of most user cooperative 
biometric applications, e.g. access control. This is clearly 
in contrast to the overwhelming majority of state-of-the-
art 3D face recognition algorithms requiring the costly 3D 
face alignment step before face matching. 

As a local feature-based 3D face recognition algorithm, 
the proposed method and that of Mian et al. in [33] share 
some similarities, including in particular the overall local-
feature oriented framework (though the features used in 
each of the two approaches are very different), the use of 
the SIFT method (though SIFT is applied to extended LBP 
based shape representations, i.e. MS-eLBP-DFs, instead of 
texture), the matching strategy combining local feature 
matching and graph based matching that is further ex-
tended to include a facial component constraint-based 
matching, and finally the weighted fusion scheme at score 
level with dynamic weight calculation. 

The proposed method was evaluated on three public 
databases, namely FRGC v2.0 [48], Bosphorus [68] and 
Gavab DB [39]. As experimented on the FRGC v2.0 data-
base for both the tasks of 3D face recognition and verifica-
tion, our approach achieves a rank-one recognition rate of 
97.6% and a 98.4% verification rate with a FAR of 0.1% 
respectively. Since the 3D facial scans in FRGC are nearly 
frontal, the costly step of 3D face alignment was not re-
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quired. The experiment carried out on the Bosphorus da-
taset further highlights the ability of the proposed meth-
od to identify nearly frontal 3D face models owning ex-
pression changes and external occlusions. When it han-
dles large pose variations including left and right profiles 
which probably lead to self-occlusions, a coarse alignment 
based on a few landmarks is sufficient as a preprocessing 
step of this approach. This is demonstrated by the exper-
iments on the Gavab dataset. 

The preliminary experimental results of this work ap-
peared in [50] and [64]. The remainder of this paper is 
organized as follows. The proposed geometric facial de-
scription, MS-eLBP-DFs, is shown in section II, and sec-
tion III presents SIFT-based local feature extraction. The 
hybrid matching step is introduced in section IV. Experi-
mental results of both face recognition and verification 
are described and analyzed in section V. Section VI con-
cludes the paper. 

2 MULTI-SCALE EXTENDED LBP DEPTH FACES 

Due to their descriptive power of micro-texture structures 
and computational simplicity, Local Binary Patterns (LBP) 
are among the most successful descriptors for 2D texture 
based face analysis [65]. In literature, LBP has been also 
investigated for 3D face recognition [37], [38]; however, 
LBP is not as discriminative as we expected for 3D facial 
representation since it cannot correctly distinguish similar 
local surfaces because of its thresholding strategy. To ad-
dress this problem, two solutions are considered. First, 
extended LBP (eLBP), generalized from the task on 3DLBP 
[38] and capable of handling different numbers of sam-
pling points and various scales, is used. It not only ex-
tracts the relative gray value differences from the central 
pixel and its neighbors provided by LBP, but also focuses 
on their absolute differences that prove critical to describe 
range faces as well. Secondly, a multi-scale strategy is 
introduced to represent local surfaces to different extents 
which are then combined for a comprehensive descrip-
tion. Additionally, previous works simply repeated the 
histogram based manner as did in 2D facial analysis that 
firstly divides the face into a number of sub-regions, 
where LBP based histograms are extracted; then concate-
nates all these local histograms into a global one to con-
struct a final facial feature. Unlike these tasks, we adopt 
an image based approach by applying eLBP directly to a 
facial range image to generate a set of Multi-Scale extend-
ed LBP Depth Faces (MS-eLBP-DFs) which retain all 2D 
spatial information of range faces. Finally, this approach 
inherits the property of computational simplicity from 
LBP and achieves fast processing. 

In this section, we firstly recall the basics of LBP and 
analyze its descriptive ability for local facial surface rep-
resentation. We then present extended LBP (eLBP) and the 
multi-scale scheme to generate a novel 3D geometric faci-
al description, called MS-eLBP Depth Faces (MS-ELBP-
DFs) that comprehensively encodes local shape variations 
of range faces. 

2.1 LBP and Its Descriptive Power for Local Shape 
Variations 

LBP, a non-parametric algorithm [40], was first proposed 
to describe local texture in 2D images. The most im-
portant properties of LBP are its tolerance to monotonic 
illumination variations and computational simplicity, so 
it has been extensively adopted for 2D face recognition in 
the past few years [41]. 

Specifically, the original LBP operator labels each pixel 
of a given 2D image by thresholding in a 3×3 neighbor-
hood. If the values of the neighboring pixels are no lower 
than that of the central pixel, their corresponding binary 
bits are assigned to 1; otherwise they are assigned to 0. A 
binary number is hence formed by concatenating all the 
eight binary bits, and the resulting decimal value is used 
for labeling. Figure 1 illustrates the LBP operator by a 
simple example. 

 
Fig. 1.  An example of the original LBP operator. 

Formally, given a pixel at (xc, yc), the derived LBP dec-
imal value is: 

8

0

1 0
( , ) ( )2 ; ( )

0 0

n

c c n c

n

if x
LBP x y s i i s x

if x


   




 

(1)

 

where n covers the eight neighbors of the central pixel, ic 
and in are the gray level values of the central pixel and its 
surrounding pixels respectively. 

According to equation (1), the LBP code is invariant to 
monotonic gray-scale transformations, preserving their 
pixel orders in local neighborhoods. When LBP operates 
on the images formed by light reflection, it can be used as 
a texture descriptor. Each of the 256 (28) LBP codes can be 
regarded as a micro-texton. Local primitives codified by 
the bins include different types of curved edges, spots, 
flat areas etc. Fig. 2 shows some examples. Similarly, as 
LBP works on range images which are based on depth 
information, it can also describe local shape structures, 
such as flat, concave, convex etc., as shown in Fig. 3. 
 

 

Fig. 2. An example of texture patterns which can be encoded by LBP 
(white circles represent ones and black circles zeros). 

Unfortunately, the direct application of LBP to depict 
the shapes of 3D surfaces also leads to unexpected confu-
sion when distinguishing similar yet different local 
shapes. Fig. 4 lists two similar shapes with different 
Shape Index (SI) values [42] while indeed sharing the 
same LBP code: shape (A) is a spherical cap; shape (B) is a 
dome. This lack of descriptive power is problematic when 
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one needs to derive a facial description to enhance dis-
tinctiveness for the task of face recognition. 

In order to address such a problem, we propose to 
adopt two complementary solutions. The first solution 
aims to improve the discriminative ability of LBP with the 
eLBP coding method, and the other one focuses on 
providing a more comprehensive geometric description 
of a given neighborhood by applying a multi-scale strate-
gy. Each solution is discussed in the following two sub-
sections respectively. 

 

Fig. 3.  Examples of local shape patterns encoded by the basic LBP 
operator (white circles represent ones and black circles zeros). 

 

Fig. 4.  A confusion case of LBP when it encodes similar but different 
local geometric shapes. 

2.2 Extended Local Binary Patterns 

The fact that LBP is not competent to distinguish simi-
lar local shapes is due to its operation mode. It only en-
codes relative differences between a central pixel and its 
neighboring ones. In this section, we introduce eLBP in 
order to better describe local surface properties. Instead of 
the original LBP, eLBP not only extracts the relative gray 
value difference between the central pixel and its neigh-
bors provided by LBP, but also focuses on their absolute 
differences which are also critical to describe local shapes. 
eLBP is a generalized version of the 3DLBP [38] originally 
proposed for histogram-based 3D face recognition. 

Specifically, the eLBP code consists of several LBP 
codes in multiple layers that encode the exact gray value 
differences (GD) between the central pixel and its neigh-
bors. The first layer of eLBP is actually the original LBP 
code encoding the GD sign. The following layers of eLBP 
then encode the absolute value of GD. Basically, each ab-

solute GD value is firstly encoded in its binary represen-
tation and then all the binary values at a given layer re-
sult in an additional local binary pattern. The example of 
Fig. 1 can be expressed by eLBP as shown in Fig. 5. The 
first layer of eLBP code is simply the original LBP code 
that encodes the sign of GD, thus yielding a decimal 
number of 211 from its binary form (11010011)2. The abso-
lute values of GD, i.e. 1, 5, 3, 2, 1, 2, 3, 0, are first encoded 
in their binary numbers: (001)2, (101)2, (011) 2, (010) 2 , …, 
etc. Using the same weighting scheme of LBP on all the 
binary bits, we generate the eLBP code of its correspond-
ing layer, e.g., L2 is composed of (01000000)2 and its deci-
mal value is 64; L3 is composed of (00110110)2 and its dec-
imal value is 54; finally L4 is composed of (11101010)2 and 
its decimal value is 234. As a result, when describing two 
similar local shapes, although the first layer LBP is not 
discriminative enough (both marked by the decimal value 
of 211), the information encoded in their additional layers 
can be used to distinguish them so long as the values of 
the two shapes in all corresponding layers are not exactly 
the same. 

 

Fig. 5.  An example of the eLBP operator. 

Theoretically, in one image, the maximum value of 
GDs is 255 (between 0 and 255), which means that 8 addi-
tional binary units are required to code GDs (28-1=255), 
and thus 7 additional layers should be produced. Never-
theless, we do not need so many layers in eLBP. Prepro-
cessed range faces are indeed very smooth; the GDs in a 
local surface generally do not vary dramatically. Some 
preliminary statistical work reveals that more than 80% 
GDs are smaller than 7 between points within eight pixels. 
Therefore, the number of additional binary units, k, is 
determined by GD. Meanwhile k can also be exploited to 
control the trade-off between the description expressive-
ness of local shapes and the computational simplicity of 
eLBP. All the GDs which are larger than 2k-1 can be as-
signed to 2k-1 to decrease computational cost. In this 
study, three additional layers are extracted and analyzed 
to illustrate their contributions to the final accuracy. 

2.3 Multi-Scale Strategy 

The original LBP operator was extended later with differ-
ent sizes of local neighborhood to deal with various scales 
[40]. The local neighborhood of the LBP operator is de-
fined as a set of sampling points evenly spaced on a circle 
centered on the pixel to be labeled. These sampling points 
which do not fall exactly on the pixels are expressed us-
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ing bilinear interpolation, thus allowing any radius value 
and any number of points in the neighborhood. Figure 6 
shows different LBP neighborhoods. The notation (P, R) 
denotes the neighborhood of P sampling points on a circle 
of radius R. By adopting the same protocol, the eLBP op-
erator can handle different sampling points and scales as 
well. 
 

 
Fig. 6.  LBP operator examples: circular (8, 1), (16, 2), and (8, 2). 

Some LBP histogram-based tasks change the neighbor-
hood of the LBP operator for improved performance. By 
varying the value of radius R, the LBP of different resolu-
tions is thus obtained. The multi-scale strategy was first 
used for texture classification [40], and it was also intro-
duced to 2D face recognition [43] [44]. In [45], Shan and 
Gritti studied MS-LBP for facial expression recognition by 
firstly extracting MS-LBP histogram- based facial features 
and then using AdaBoost to learn the most discriminative 
bins. They reported that the boosted classifiers of MS-LBP 
consistently outperform those based on single-scale LBP, 
and the selected LBP bins distribute at all scales. MS-LBP 
can hence be regarded as an efficient method for facial 
representation. When considering it in 3D face analysis, 
this multi-scale technique can be applied to enhance the 
descriptive power of LBP. 

2.4 Multi-Scale Extended LBP Depth Faces (MS-
eLBP-DFs) 

LBP facial representation can be achieved in two ways: 
one is by LBP histogram; the other is by LBP face. The 
general idea of the former is that a human face can be 
regarded as a composition of micro-patterns described by 
LBP. The images are divided into a certain number of lo-
cal regions, from which LBP histograms are extracted. 
These histograms are concatenated and thus contain both 
local and global information about faces. The second 
method is to generate LBP based maps. It regards the dec-
imal number of the LBP code as the pixel values of an LBP 
map, and thus produces the corresponding LBP face. Due 
to its own strategy, an LBP histogram loses some 2D spa-
tial information for representing faces. In this study, the 
second, eLBP face, is investigated. 

For a facial range image, we generate a set of MS-eLBP-
DFs for facial representation, i.e. an original LBP map (de-
scribing relative gray value differences between the cen-
tral pixel and its neighbors) as well as its additional maps 
(representing exact gray value differences between the 
central pixel and its neighbors). These MS-eLBP-DFs can 
be achieved by varying the neighborhood size of the eLBP 
operator, or by first down-sampling range faces and then 
adopting an eLBP operator with a fixed radius. Some face 
samples are shown in Fig.7. In that figure, the number of 
sampling points is 8, and the radius value varies from 1 
pixel to 8 pixels. As we can see, the preprocessed range 

face is very smooth, whilst the resulting MS-eLBP-DFs 
contain much more detail of local shape variations. 
 

 

Fig. 7.  MS-eLBP-DFs of a range face image with different radii from 
1 to 8 (from left to right). 

3 LOCAL FEATURE EXTRACTION 

Once the MS-eLBP-DFs have been produced, the widely-
used SIFT features [46] are extracted from them and ex-
ploited to calculate a similarity score between two 3D 
facial scans in the subsequent matching process. 

SIFT applies the Difference-of-Gaussian (DOG) scale-
space to detect keypoints in 2D images. The raw images 
are repeatedly convolved with Gaussians of different 
scales separated by a constant factor k to produce an oc-
tave in scale space. As for an input image, I(x, y), its scale 
space is defined as a function, L(x, y, σ), produced by con-
volution of a variable scale Gaussian G(x, y, σ) with the 
input image I, and the DOG function D(x, y, σ) can be 
computed from the difference of two nearby scales: 

( , , ) ( ( , , ) ( , , ))* ( , )

( , , ) ( , , )

D x y G x y k G x y I x y

L x y k L x y

  

 

 

 
 

(2) 

Then, extremes of D(x, y, σ) are detected by comparing 
each pixel with its 26 neighbors in 3×3 regions at current 
and adjacent scales (see Fig. 8). At each scale, gradient 
magnitude, m(x, y), and orientation, θ(x, y), are computed 
using pixel differences in (3) and (4). 

 

 
Fig. 8. Extremes (maxima or minima) of the difference-of-Gaussian 
images are detected by comparing a pixel (marked with “X”) to its 26 
neighbors in 3×3 regions at current and adjacent scales (marked 
with circles) [46]. 

2 2

2

( , ) ( ( 1, ) ( 1, ))

( ( , 1) ( , 1))

m x y L x y L x y

L x y L x y

   

   
 

(3) 
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(4) 

For each detected keypoint, a feature vector is extract-
ed as a descriptor from the gradients of the sampling 
points within its neighborhood. See Fig. 9 for more details. 
To achieve orientation invariance, coordinates and gradi-
ent orientations of sampling points in the neighborhood 
are rotated relative to keypoint orientation. Then a Gauss-
ian function is used to assign a weight to the gradient 
magnitude of each point. The points close to the keypoint 
are given more emphasis than the ones far from it (see [46] 
for SIFT parameter settings). The orientation histograms 
of 4×4 sampling regions are calculated, each with eight 
orientation bins. Hence a feature vector with a dimension 
of 128 (4×4×8) is produced. 

 
Fig. 9.  Computation illustration of the keypoint descriptor [46]. 

The SIFT operator works on each MS-eLBP-DF sepa-
rately. Because each MS-eLBP-DF highlights the local 
shape changes of an original smooth facial range image 
by encoding local binary patterns at different scales and 
thus providing various details, many more SIFT-based 
keypoints can be detected for the following matching step 
than in the original smoothed range face. Some statistical 
work was done using all the 3D facial scans in the FRGC 
v2.0 database. The average number of descriptors extract-
ed from each of MS-eLBP-DFs is 553, while that of each 
original facial range image is limited to 41 and the detect-
ed keypoints are often located on the edge of the face. As 
a result, the number of detected keypoints is increased by 
10 times more on MS-eLBP-DFs as compared to the origi-
nal face range image; and the number of keypoints only 
covers 0.3% of pixels in each MS-eLBP-DF that has an av-
erage resolution of 400x400. Figure 10 shows the SIFT-
based keypoints extracted from one facial range image 
and its four associated eLBP-DFs respectively. 

Meanwhile, we also studied the repeatability of these 
keypoints detected on MS-eLBP-DFs across different 
scans of the same subject based on three manually labeled 
facial landmarks, i.e. the nose tip and two inner corners of 
eyes. 25 subjects that have more than 4 facial scans were 
randomly selected in FRGC v2.0 for this experiment. To 
each keypoint K detected on an MS-eLBP-DF, we can 
compute a vector of three distances, (a, b, c), each of which 
is the one between the keypoint and one of these three 
landmarks. These three distances are then used as the 
coordinates of K. Now a keypoint X detected by SIFT on 
an MS-eLBP-DF with the coordinates (ax, bx, cx) is consid-
ered as in correspondence or matched with the keypoint 
Y detected from another MS-eLBP-DF possessing the co-

ordinates (ay, by, cy), as long as the difference between each 
pair of coordinates, i.e. ax-ay, bx-by, cx-cy, falls within 4 mm 
in absolute value. This definition is similar to the one as 
in [33] which considers that two keypoints are matched 
when their distance falls within 4 mm on two registered 
facial surfaces. Based on such a definition, the repeatabil-
ity reaches 84.2% for neutral facial scans. For expressive 
faces, this repeatability at 4mm drops to 79.4% due to the 
3D face shape changes. Note that these figures are compa-
rable to that in [33] which proposed an original keypoint 
detection method based on local shape changes as well. 
Their repeatability is 86% for neutral facial scans and 
75.6% for non-neutral facial scans. Our following experi-
ments in section 5 show that this level of repeatability is 
quite sufficient to distinguish intra-class variations from 
inter-class ones for 3D facial scans with moderate pose 
changes, facial expressions and even partial occlusions 
when the hybrid matching scheme developed in the fol-
lowing section is applied. 

4 THE HYBRID MATCHING PROCESS 

Once local features have been extracted from MS-eLBP-
DFs, a hybrid matching process is carried out, which 
combines a local matching step using the SIFT-based fea-
tures with a global one under the facial component and 
configuration constraints. 

4.1 Local Feature-Based Matching 

Given local facial features extracted from each MS-eLBP-
DF pair of the gallery and the probe face scan respectively, 
two facial keypoint sets can be matched. Matching one 
keypoint to another is accepted only if the matching dis-
tance is less than a predefined threshold, t times the dis-
tance to the second closest match. Here, NLi(P, R) denotes 
the number of matched keypoints in the ith layer of an 
eLBP-DF pair, generated by eLBP from range face images 
with a parameter setting of (P, R). 

4.2 Holistic Facial Matching 

Unlike the samples used in the domain of object detection, 
all human faces have the same physical components and 
share a similar global configuration. Holistic matching is 
thus carried out to constrain the matched local features 
with respect to the facial components and configuration. 

1) Facial Component Constraint: we propose to divide 
the entire facial range image into non-overlapped sub-
regions, each of which contains roughly one component 
of nearly frontal faces. Different from the division scheme 
used for histogram statistics, the one in our method is to 
restrict the matched keypoints of gallery and probe face 
scans only to those with similar physical meaning. That 
means the matched keypoints from the same facial region 
should be more important. Instead of the costly clustering 
process [47] to automatically construct sub-regions based 
on keypoint locations from training samples, we simply 
use facial component position, and divide the face area 
into 3×3 rectangle blocks of the same size. The similarity 
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Fig. 10.  The SIFT-based keypoints of an original facial range image and its four associated eLBP-DFs. 

measurement of the facial component constraint is de-
fined from this facial composition scheme. An MS-eLBP-
DF, I, is represented as (m1, m2, ..., mk); k is 9 in our case 
and mi is the number of detected SIFT keypoints that fall 
within the ith component. The local SIFT-based descriptors 
in all the k components can be denoted by: 

1 21 1 1

1 1 2 2( ,..., , ,..., ,..., ,..., )kmm m

k kI f f f f f f

 

(5) 

where fi
j means the jth descriptor in the ith facial compo-

nent. Then the similarity between a gallery face Ig and a 
probe face Ip is computed by: 
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where x ∈ [1, ..., mpi]; y ∈ [1, ..., mgi]. <·> denotes the 
inner product of two vectors, and║·║denotes the norm 
of one vector. A bigger C indicates the most similar at-
tributes of the two faces represented by MS-eLBP-DFs. 
We thus obtain similarity values, CLi(P, R) for each MS-
eLBP-DF. 

2) Facial Configuration Constraint: the former constraint 
on facial component emphasizes the importance of the 
matching score between local features of the same facial 
component-based area in the gallery and probe set, and 
we further improve the holistic constraint by facial con-
figuration inheriting the local feature based graph match-
ing implemented in [33]. 

All facial range images are normalized to a certain size 
to build a public 2D coordinate system. For each 3D face 
scan, the MS-eLBP-DFs are extracted from the range im-
age. Therefore, all the keypoints of the proposed facial 
surface representations share the same XY-plane with the 
range face image, and the pixel values of the correspond-
ing facial range image can be regarded as the Z-axis val-
ues of these keypoints. Hence, each keypoint has its posi-
tion in 3D space. After local feature-based matching, a 3D 
graph is formed for each MS-eLBP-DF of a probe Fp, by 
simply linking every two keypoints which have a match-
ing relationship with keypoints detected on the corre-
sponding MS-eLBP-DF of a gallery face Fg. The matched 
keypoints of Fg also construct a corresponding graph of Fp. 
Since all the facial range images are of the same scale, 
intuitively, if faces Fg and Fp are from the same subject, 
their corresponding graphs should have similar shapes in 
3D space. 

The similarity measure between the two graphs can be 
defined as: 
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where dpi and dgi are the lengths of corresponding edges in 
the probe and gallery graphs respectively. The value ne is 
the total number of edges. If the number of matched key-
points is nn, ne will be nn*(nn -1)/2. Equation 7 is an effi-
cient way to measure the spatial error between the 
matched keypoint pairs of probe and gallery features. As 
in the facial component constraint, here, DLi(P, R) denotes 
the similarity score of each MS-eLBP-DF. 

4.3 Similarity Fusion 

In summary, the matching process of gallery and probe 
facial range images contains three types of similarities: 
the number of matched keypoint pairs N, similarity C of 
the facial component constraint and similarity D of the 
facial configuration constraint. Except for D, all the other 
similarity measures have a positive polarity (a bigger val-
ue means a better matching relationship). A range face of 
the probe set is matched with every face in the gallery, 
resulting in three vectors SN, SC and SD. The nth element of 
each score vector corresponds to the similarity score be-
tween the probe and the nth gallery face. Each vector is 
normalized to the interval of [0, 1] using the min-max rule. 
Elements of SD are subtracted from 1 to reverse its polari-
ty. The final similarity of the probe face with the ones in 
the gallery is calculated using a basic weighted sum rule: 

* * *(1 )N N C C D DS w S w S w S   

 

(8) 

We further make use of the original weight calculation 
as proposed by Mian et al. in [33] to dynamically deter-
mine their corresponding weights: wN, wC, and wD during 
the online step: 
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(9) 

where i corresponds to the three similarities: N, C, and D, 
and operators max1(Si) and max2(Si) produce the first and 
second maximum value of vector Si. The gallery face 
which has the maximum value in vector S is declared as 
the identity of the probe face image when the decision is 
to be made on each MS-eLBP-DF independently. 

5 EXPERIMENTAL RESULTS 

To demonstrate the effectiveness of the proposed method, 
we utilized three public datasets for experiments, i.e. 
FRGC v2.0 [48], Bosphorus [68] and Gavab DB [39]. The 
first is for evaluating performance with large number of 
subjects that have slight pose variations and various facial 
expression changes; the second is to further observe its 
robustness to expression variations as well as external 
occlusions; while the last one is to analyze its accuracy on 
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3D face samples with extreme pose changes (left and right 
profiles). 

5.1 Experiments on the FRGC v2.0 Dataset 

5.1.1 Database and protocol description 

Some experiments were evaluated on FRGC v2.0 [48], one 
of the most comprehensive and popular datasets, contain-
ing 4007 3D face scans of 466 different subjects. One facial 
range image was extracted from each 3D face model. A 
preprocessing step was applied to remove noises with a 
median filter and fill holes using cubic interpolation, and 
the technique details can be found in [57]. Thanks to the 
relative tolerance to moderate pose changes of hybrid 
matching, we did not perform any registration on these 
3D face models, in contrast to most works such as [31], 
[49], [56] etc. The facial range images were automatically 
cropped using a basic bounding box, which was roughly 
located according to the vertical and horizontal integral 

projection of the mask provided by a 3D scanner indicat-
ing if the point was valid or not in that position. Cropped 
faces have moderate pose, expression changes, as well as 
partial occlusions caused by hair. All the faces are nor-
malized to 150×150 pixels. Fig. 11 shows some prepro-
cessed samples for the following recognition step. 
 

 

Fig. 11. Examples of preprocessed 3D facial scans of the same sub-
ject from the FRGC dataset. 

The proposed method was evaluated by face recogni-
tion and verification tasks. In order to compare our meth-
od with the state of the art, we followed the same experi-
mental protocol that the first 3D face scan with a neutral 
expression from each subject makes up a gallery of 466 
samples and the remaining face scans (4007-466=3541) are 
treated as probes. The probe face scans were divided into 
two subsets according to their facial expression labels to 
evaluate its robustness to facial expression variations. The 
first subset is made up of facial scans with a neutral ex-
pression; whilst the other one with facial scans possessing 
non-neutral facial expressions. Besides the experiment of 
Neutral vs. All, two additional experiments: Neutral vs. 
Neutral and Neutral vs. Non-Neutral were also included. 
In the Neutral vs. Neutral and Neutral vs. Non-Neutral 
experiments, only the neutral and non-neutral subsets 
were used, respectively. 

Based on its default setting in SIFT matching [46], we 
compared the values of t from 0.5 to 0.9 with an increas-
ing step of 0.05, and in the range of [0.6, 0.8], the perfor-
mance basically keeps stable and outperforms the others. 
We thus set t at 0.6 in the following experiments. 

5.1.2 The influences of eLBP parameters (Experiment A) 

The four sub-tables in Table I list the results based on 
depth faces of each eLBP layer with different parameters. 
Recall that P is the number of sampling points and R is 
the radius value. 

In these sub-tables, all eLBP accuracies at different 
scales with different numbers of sampling points display 
recognition rates better than 90%, greatly outperforming 
the ones based on original LBP operators (eLBP L1). The 
accuracies displayed in the last row labeled as the ‘eLBP’ 
performance are fusion results according to the weighted 
sum rule in (8) combining the scores provided by the first 
three layers (L1, L2 and L3) using the same parameter set-
ting; similarity scores at L4 are omitted because of their 
low performance. As we can see from Table I, using 8 
sampling points achieves better results on L1, and L2 for 
almost all radius values (except R = 2, 3), respectively; 
whilst the setting with 16 sampling points results in better 
performance on L3 (except R=2) and L4, respectively. 

TABLE I 
RANK-ONE RECOGNITION RATES BASED ON EACH ELBP LAYER 

OF THE DEPTH FACES WITH DIFFERENT PARAMETERS IN FRGC 

V2.0. 

(A) 

P=4 R=2 R=3 R=4 R=5 R=6 R=7 R=8 

eLBP L1  81.6%  84.8%  86.9%  87.7%  87.6%  86.2%  85.9%  

eLBP L2  75.2%  83.3%  85.7%  87.1%  87.6%  87.3%  87.0%  

eLBP L3  76.9%  74.7%  71.6%  68.8%  67.4%  63.7%  61.9%  

eLBP L4    4.5%     8.0%  12.7%  16.0%  25.9%  33.2%  40.6%  

eLBP  90.0%  90.9%  92.0%  92.6%  92.4%  92.3%  92.3%  

(B) 

P=8 R=2 R=3 R=4 R=5 R=6 R=7 R=8 

eLBP L1  86.1%  87.8%  88.5%  88.3%  87.7%  86.6%  86.0%  

eLBP L2  73.6%  84.6%  88.6%  89.2%  89.2%  89.3%  89.9%  

eLBP L3  80.1%  78.3%  76.4%  76.3%  75.6%  76.6%  76.3%  

eLBP L4    6.6%  11.1%  17.8%  29.8%  40.3%  50.8%  55.6%  

eLBP  91.3%  92.5%  93.5%  93.4%  93.0%  92.7%  92.6%  

 (C) 

P=12 R=2 R=3 R=4 R=5 R=6 R=7 R=8 

eLBP L1  85.3%  86.1%  86.2%  87.2%  85.8%  85.4%  84.6%  

eLBP L2  71.7%  84.4%  87.3%  88.6%  89.3%  88.9%  88.4%  

eLBP L3  81.9%  78.7%  78.1%  76.6%  78.5%  78.9%  79.6%  

eLBP L4    6.2%  12.3%  22.1%  35.6%  48.7%  57.4%  63.2%  

eLBP  90.9%  92.1%  92.9%  93.3%  92.3%  92.3%  91.5%  

(D) 

P=16 R=2 R=3 R=4 R=5 R=6 R=7 R=8 

eLBP L1  82.1%  82.9%  85.3%  84.2%  84.3%  83.5%  82.7%  

eLBP L2  73.7%  86.1%  87.9%  88.6%  88.2%  87.5%  87.7%  

eLBP L3  81.6%  80.0%  78.7%  78.4%  79.4%  79.1%  79.7%  

eLBP L4   7.2%  11.8%  27.7%  42.3%  52.3%  60.0%  66.1%  

eLBP  90.6%  91.9%  92.4%  92.4%  91.8%  91.6%  91.6%  

5.1.3 Face identification performance (Experiment B) 

Using the weighted sum rule described in (8), we then 
fused the similarity measurements of eLBP with 8 sam-
pling points and different values of radius from 2 to 8, 
and compared the rank-one face recognition rate achieved 
with the state of the art in Table II.  Except for ICP, all the 
results are cited from the original papers. 

In order to test the discriminative power of LBP and 
eLBP to characterize local geometric shapes, Shape Index 
(SI) faces are also produced and associated with the pro-
posed hybrid matching for comparison in 3D face recog-
nition. Recall that an SI face is generated by computing 
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the shape index value on each pixel location from a facial 
range image and quantizing that values to the range of 
gray level images, i.e. [0, 255]. Further technique details 
can be found in [50]. With a rank-one recognition rate of 
91.8% as indicated in table II, SI faces outperform any of 
the single scale LBP-DFs (i.e. the layer of eLBP L1). Mean-
while, most of the results based on single scale eLBP-DF 
surpass that of SI faces; furthermore, when fusing the 
matching scores of the eLBP-DFs at different scales to 
achieve MS-eLBP-DFs, the rank-one recognition rate is 
increased by more than 5 points, from 91.8% for SI face to 
97.6% for MS-eLBP-DFs. These results clearly indicate 
how well Multi-Scale eLBP describes geometric shape 
variations. On the other hand, from the comparison with 
the state of the art, we can see that our result is compara-
ble to the best results reported in literature. 

TABLE II 
RANK-ONE RECOGNITION RATES USING THE PROTOCOL OF 

NEUTRAL VS. ALL ON THE FRGC V2.0 DATASET. 

 Rank-one RR 

(1) ICP 72.2% 

(2) SI Faces 91.8% 

(3) MS-LBP-DFs 94.1% 

(4) Chang et al. 2005 [52] 91.9% 

(5) Cook et al. 2006 [55] 94.6% 

(6) Mian et al. 2007 [49] 96.2% 

(7) Wang et al. 2007 [51] 87.7% 

(8) Mian et al. 2008 [33] 93.5% 

(9) Kakadiaris et al. 2007 [31] 97.0% 

(10) Faltemier et al. 2008 [56] 98.1% 

(11) Huang et al. 2010 [50] 96.1% 

(12) Alyüz et al. 2010 [67] 97.5% 

(13) Queirolo et al. 2010 [66] 98.4% 

(14) Wang et al. 2010 [26] 98.4% 

(15) MS-eLBP-DFs 97.6% 

5.1.4 Robustness to facial expression changes 
(Experiment C) 

Using the same experimental protocol, we also compared 
the performance of the proposed approach with those in 
the literature for robustness analysis on facial expression 
changes (see Table III). The results of our approach are 
99.2% and 95.1% for the Neutral vs. Neutral and Neutral 
vs. Non-Neutral experiment, respectively. The recogni-
tion rates on Subset I and subset II are comparable to the 
best ones of the state-of-the-art (Subset I in [33] and Sub-
set II in [67]). Moreover, Table III also indicates that the 
MS-eLBP-DFs outperform the SI face in both the addi-
tional experiments on Subset I and II, and the perfor-
mance degradation of MS-ELBP-DFs is much lower than 
that of SI face. These accuracies hence suggest that our 
approach tends to be insensitive to facial expression 
changes. 

5.1.5 Face verification performance (Experiment D) 

The proposed approach was evaluated for face verifica-
tion as well using the three protocols, i.e. Neutral vs. All, 
Neutral vs. Neutral, Neutral vs. Non-Neutral, and the 
results are displayed in Table IV. From the first column 

(VR I), we can see that our accuracy is also among the 
best ones of the state of the art, while the results in the 
third column (VR III) illustrate once again that the pro-
posed method performs quite well when recognizing ex-
pressive faces. Both the facts match the phenomenon in 
face recognition. Fig. 12 indicates the verification rates by 
the ROC curves in the three experiments in Table IV. 

TABLE III 
RANK-ONE PERFORMANCE USING THE EXPRESSION PROTOCOL 

ON THE FRGC V2.0 DATASET. 

 SUBSET I SUBSET II Degradation 

SI Faces 97.2% 84.1% 13.1% 

MS-LBP-DFs 97.7% 88.9% 8.8% 

MS-eLBP-DFs 99.2% 95.1% 4.1% 

Huang et al. 2010 [50] 99.1% 92.5% 6.6% 

Alyüz et al. 2010 [67] 98.4% 96.4% 2.0% 

Mian et al. 2008 [33] 99.0% 86.7% 12.3% 

Mian et al. 2008 [33] 99.4% 92.1% 7.3% 

Kakadiaris et al. 2007 [31] 99.0% 95.6% 3.4% 

SUBSET I: NEUTRAL VS. NEUTRAL 

SUBSET II: NEUTRAL VS. NON-NEUTRAL 

TABLE IV 
COMPARISON OF VERIFICATION RATES AT 0.001 FAR USING 

THE EXPRESSION PROTOCOL ON THE FRGC V2.0 DATASET. 

 VR I VR II VR III 

SI  Faces 94.4% 98.9% 87.5% 

MS-LBP-DFs 96.1% 99.1% 91.9% 

MS-eLBP-DFs 98.4% 99.6% 97.2% 

Maurer et al. 2005 [15] 92.0% 97.8% NA 

Passalis et al. 2005 [53] 85.1% 94.9% 79.4% 

Husken et al. 2005 [54] 89.5% NA NA 

Cook et al. 2006 [55] 95.8% NA NA 

Mian et al. 2008 [33] 97.4% 99.9% 92.7% 

Mian et al. 2007 [49] 98.5% NA NA 

Wang et al. 2010 [26] 98.6% NA NA 

VR I: NEUTRAL VS. ALL 
VR II: NEUTRAL VS. NEUTRAL 

VR III: NEUTRAL VS. NON-NEUTRAL 

TABLE V 
COMPARISONS OF VERIFICATION RATES AT 0.001 FAR USING 

ROC I, ROC II, ROC III AND ALL VS. ALL PROTOCOL ON THE 

FRGC V2.0 DATASET. 

 ROC I ROC II ROC III All vs. All 

Maurer et al. [15] NA NA 92.0% 87.0% 

Cook et al. [55] 93.7% 92.9% 92.0% 92.3% 

Husken et al. [54] NA NA 89.5% NA 

Faltemier et al. [56] NA NA 94.8% 93.2% 

Kakadiaris et al. [31] 97.3% 97.2% 97.0% NA 

Mian et al. [49] NA NA NA 86.6% 

Alyüz et al. [67] 85.4% 85.6% 85.6% NA 

Queirolo et al. [66] NA NA 96.6% 96.5% 

Wang et al. [26] 98.0% 98.0% 98.0% 98.1% 

MS-eLBP-DFs 95.1% 95.1% 95.0% 94.2% 

5.1.6 Evaluation by aging factors (Experiment E) 

Further experiments were carried out on ROC I, ROC II, 
and ROC III, and these three ROC curves are based on the 
three masks provided by the FRGC database. They are 



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.  MANUSCRIPT SUBMISSION 

 

defined over the square similarity matrix with a dimen-
sionality of 4007×4007, and they are of increasing diffi-
culty reflecting the time elapsed between the probe and 
gallery acquisition sessions. The comparisons are shown 
in Table V. 

 
     (A) 

 
(B) 

 
(C) 

Fig. 12.  ROC curves using SI Faces, MS-LBP-DFs, and MS-eLBP-
DFs respectively in the experiments with neutral faces enrolled. (A) 
Neutral vs. All. (B) Neutral vs. Neutral. (C) Neutral vs. Non-neutral. 

As we can see from Table V, the performance of the 
proposed method on ROC I, ROC II and ROC III is slight-
ly lower but still close to the best of ones in the literature. 
Meanwhile, it is noteworthy that our method does not 
require any registration for nearly frontal face scans such 

as those in the FRGC dataset. This is clearly in contrast to 
works [26], [31] and [66]. In [31], Kakadiaris et al. used 
ICP-based alignment with a coarse to fine strategy for 
preprocessing, and two kinds of features, i.e. Haar and 
Pyramid were extracted from both normal and geometry 
maps. In [26], a self-dependent registration step was em-
ployed, and a large training database with neutral and 
non-neutral facial scans is required to learn inter-class 
and intra-class changes, and fused Haar-, Gabor- and 
LBP-based facial features for the final decision. In [66], a 
Simulated Annealing based approach was adopted for 
range image registration and similarity calculation for 
corresponding regions of different facial surfaces which 
were segmented in the previous step. 

5.2 Experiments on the Bosphorus Dataset 

5.2.1 Database and protocol description 

To further confirm the effectiveness of the proposed ap-
proach to identify nearly frontal faces without any regis-
tration and prove its robustness to expression and pose 
variations as well as partial occlusions, the Bosphorus 
database is considered as well, consisting of a large num-
ber of 3D face models with extreme pose changes, expres-
sion variations (both emotions and action units), and typ-
ical occlusions that may occur in real life. The database 
includes totally 4666 scans collected from 105 subjects, 
each of whom possesses around 34 expressions, 13 poses, 
and 4 occlusions. In our experiments, a subset of the da-
taset containing only nearly frontal face model is collected, 
and it thus has a total of 3301 scans with roughly 34 dif-
ferent expressions and 4 external occlusions per subject. 
Since each subject from Bosphorus only has one or two 
neutral samples while the others are the scans with facial 
expressions or partial occlusions as we can see in Fig. 13, 
this subset is potentially much more challenging than 
FRGC v2.0 to the proposed approach. With rare excep-
tions like [67] and [69], so far very few works in 3D face 
recognition have tested their approach on this dataset. 
 

 

Fig. 13.  Some example 3D facial scans of the same subject from the 
Bosphorus dataset. 

Similar to the preprocessing step that was carried out 
on FRGC v2.0, we only conducted spike removal and hole 
filling. As the experimental protocol, we constructed a 
gallery set containing the first neutral facial scan for each 
subject, and the remaining ones made up of the probe set. 
Hence, the sizes of gallery and probe set are 105 and 3196, 
respectively. As in the experiments on the FRGC dataset, 
there was no registration of 3D face scans. 

5.2.2 Experiments on nearly frontal faces with expression 
changes and occlusions (Experiment F) 

In the identification scenario, we computed the rank-one 
recognition rate. Table VI lists the performance of differ-
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ent approaches for comparison. It can be seen from Table 
VI that the proposed method achieved a recognition rate 
up to 97.0%, further illustrating its effectiveness to recog-
nize nearly frontal faces without registration and high-
lighting its robustness to facial expression variations and 
external occlusions. In comparison with the state of the 
art by using a similar experimental protocol, the recogni-
tion rate is comparable to the one in [69], both of which 
are slightly inferior to that reported by [67]. The differ-
ence between our experimental setup and the one in [67] 
lies in that the probe set used in [67] excluded the faces 
with occlusions. Moreover, as the method in [67] also 
made use of a training set formed by scans from 20 sub-
jects in order to learn LDA subspaces, their probe set was 
formed by the 3D facial scans of 85 subjects. 

TABLE VI 
RANK-ONE RECOGNITION RATES ON THE BOSPHORUS DATASET. 

Approaches Rank-one RR 

(1) SI Faces 89.7% 

(2) MS-LBP-DFs 93.4% 

(3) MS-eLBP-DFs 97.0% 

(4) Maes et al. 2010 [69] 97.7% 

(5) Alyüz et al. 2010 [67] 99.3%* 

* The experimental protocol in [67] has some differences from that in this 

study and [69]. 

5.3 Experiments on the Gavab Dataset 

5.3.1 Database and protocol description 

To analyze the performance on severe pose changes and 
even partially occluded 3D facial scans, we also tested our 
method on the Gavab database. To the best of our 
knowledge, Gavab is the most noise-prone dataset cur-
rently available to the public. This database consists of 
Minolta Vi-700 laser facial range scans of 61 different sub-
jects. The subjects, of whom 45 are male and 16 are female, 
are all Caucasian. Each subject was scanned 9 times for 
different poses and facial expressions. The scans with 
pose variations contain one facial scan while looking up 
(+35 degree), one while looking down (-35 degree), one 
for the right profile (+90 degree), one for the left profile (-
90 degree) as well as one with random poses The scans 
without pose changes include two different frontal facial 
scans, one with a smile, and one with an accentuated 
laugh. Figure 14 shows some examples of faces in this 
dataset. 

 
Fig. 14. Examples of all the 3D facial scans of the same subject from 
the Gavab dataset [58]. 

A similar preprocessing step was utilized as in FRGC 
to remove spikes and fill holes. Since the Gavab contains 
many severe pose changes, we performed a coarse align-
ment based on three landmarks for all facial scans. When 
the two inner corners of the eyes and the nose tip of one 
scan are available at the same time (all face scans exclud-
ing the extreme poses such as the right and left profiles), 
we used our previous method [57] to find the three land-

mark points automatically and computed rotation and 
translation parameters; while for each of these left or right 
profiles, we manually landmarked four points, i.e., the 
inner and outer corner of one eye, nose tip, and the corner 
of the nose, which are visible in that profile. After coarse 
registration, one range image is extracted from each facial 
scan; these range images hence only contain partial faces 
due to the self-occlusion caused by pose variations, and 
all facial range images are further resized to 150×150 
pixels. 

In our experiments, the first frontal facial scan of each 
subject was used as the gallery; while the others were 
treated as probes. We calculated rank-one face recogni-
tion rates, and Table VII shows matching accuracies for 
different categories of probe faces: (A) displays the results 
without pose variations; while (B) lists those only with 
the facial scans with pose changes. In (A), the neutral sub-
set contains one frontal facial scan of each subject, and the 
expressive subset includes a smile, accentuated laugh and 
random gesture (random facial expression), three scans of 
each subject. To the best of our knowledge, work [58] is 
the only one that carried out experiments on the entire 
Gavab dataset before this work. Therefore, we compared 
our results with theirs on the subset of four severe pose 
variations as well as the overall performance. It is worth 
noting that the difference between their work and ours is 
that Drira et al. manually landmarked nose tips on all the 
face scans in the dataset for an ICP-based fine registration, 
while we only manually landmarked facial scans of right 
and left profiles ((c) and (d) in Table VII (B)), and for all 
the faces, only a coarse alignment is utilized to rotate and 
translate them. 

5.3.2 Evaluation on the faces with large pose variations 
(Experiment F) 

From Table VII (A), we can see that for frontal neutral 
probes, the rank-one recognition rate is 100% as in [58]; 
while regarding expressive faces, our approach surpasses 
all the others. Moreover, when evaluating the robustness 
to severe pose variations (Table VII (B)), we achieved an 
overall accuracy of 91.4% on these four subsets; whilst 
that reported by [58] is 88.9%. 

To sum up, the experimental results on the Gavab da-
taset clearly prove that only aided by a coarse alignment, 
our method can deal with large pose changes and even 
partial occlusions. 

TABLE VI 
COMPARISONS OF RANK-ONE RECOGNITION RATES ON THE 

GAVAB DATASET: (A) WITHOUT POSE VARIATIONS; (B) ONLY 

WITH POSE VARIATIONS 

(A) 

 I. Neutral II. Expressive I + II 

Li et al. [59] 96.67% 93.33% 94.68% 

Moreno et al. [60] 90.16% 77.90% NA 

Mahoor et al. [61] 95.00% 72.00% 78.00% 

Berretti et al. [62] 94.00% 81.00% 84.25% 

Mousavi et al. [63] NA NA 91.00% 

Drira et al. [58] 100.00% NA 94.67% 

MS-eLBP-DFs 100.00% 93.99% 95.49% 
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 (B) 

 (a) (b) (c) (d) (e) 

Mahoor et al. [61] 85.30% 88.60% NA NA NA 

Berretti et al. [62] 80.00% 79.00% NA NA NA 

Drira et al. [58] 100.00% 98.36% 70.49% 86.89% 88.94% 

MS-eLBP-DFs 96.72% 96.72% 78.69% 93.44% 91.39% 

(a): Looking down 

(b): Looking up 

(c): Right Profile 

(d): Left profile 

(e): Overall 

5.3.3 Analysis of the impact by pose changes on face 
recognition accuracy (Experiment H) 

The previous experiments tend to suggest that our meth-
od can cope with moderate 3D face pose changes, in par-
ticular for nearly frontal face models as this can be the 
case for user cooperative biometric applications (e.g., ac-
cess control), without any prior registration. When aided 
by a coarse alignment step using very few landmarks, the 
proposed method can even deal with 3D face models with 
large pose variations such as the ones in the Gavab da-
taset. However, the question remains of determining to 
what extent the proposed approach is still robust in pose 
changes. To give some insight into this question, we de-
signed the following experiment. Two nearly frontal faci-
al scans of the same subject were randomly chosen from 
the Gavab database: one used as the gallery face and the 
other as the probe. We rotate the probe one around the 
yaw axis by 5, 10, 15 and 20 degrees, respectively, thus 
leading to range images (shown in Fig. 15) subsequently 
employed for the analysis on the impact of rotated faces 
to the matching result. 
 

 
(a)           (b)              (c)              (d)             (e)              (f) 

Fig. 15. Face samples for matching: (a) gallery face (nearly frontal); 
(b) probe face (nearly frontal); (c) probe face rotated by 5 degrees; (d) 
probe face rotated by 10 degrees; (e) probe face rotated by 15 de-
grees; (f) probe face rotated by 20 degrees. 

We generated the eLBP based facial representations for 
a gallery face (a) as well as each of the probe faces (b-f). 
We then computed the number of keypoints detected on 
each probe face (c)-(f) and found that the numbers almost 
remain stable when compared with the one of the original 
probe face (b). In the matching phase, when the probe 
face Fig.15 (b) is rotated successively from Fig.15 (c) to (f) 
each time by 5 degrees, the number of matched keypoints 
with the gallery face (a) keeps decreasing, as illustrated in 
Figure 16, from roughly 300 pairs in Fig.16 (a) down to 
only around 10 pairs in Fig.16 (e) when the probe face is 
rotated by 20 degrees from the frontal one. Meanwhile, 
the main quality of a similarity measurement for the pur-
pose of face recognition is its ability to distinguish intra-
class changes from inter-class ones. From this perspective, 
the number of matched keypoints on each eLBP-DF pair 
used as face similarity measurement between the gallery 

face and the probe rotated by 15 degrees can still clearly 
discriminate the facial scans of the same subject from the 
ones of different subjects. Indeed, the average number of 
matched keypoints in the former case is above 20 even as 
the face is rotated by 15 degrees while this number over 
the whole Gavab dataset excluding the left and right pro-
files is close to 10 in the latter case. However, when probe 
facial scans are rotated by 20 degrees, it becomes difficult 
to discriminate intra-class variations from inter-class ones 
in terms of the matched keypoint pairs. We conducted the 
experiment 10 times, the phenomena are similar. 

5.4 Experiment Summary 

In the sub-section 5.1, 5.2 and 5.3, eight experiments (Ex-
periment A-H) are carried out on three public datasets, i.e. 
FRGC v2.0, Bosphours and Gavab. The results achieved 
in Experiment B, D and E demonstrate that our method, 
without the registration step for nearly frontal faces dis-
plays comparable to the best ones so far presented in the 
literature. Moreover, Experiments C and F show that the 
proposed approach is robust to facial expression varia-
tions whereas experiment F further highlights its toler-
ance to partial external occlusions. Additionally, Experi-
ment G indicates that supported by a coarse registration 
step applied on only a few landmarks, our approach can 
deal with the faces with large pose variations and even 
self-occlusions. 

At the same time, we observe the computational ex-
pense of the proposed approach along with the experi-
ments conducted on the FRGC v2.0 database. Currently, 
an unoptimized implementation of the proposed method 
with MATLAB (R2010a) can perform one match between 
one pair of eLBP-DFs of the gallery and probe faces in 
about 0.32s using a machine where Intel(R) Core(TM) i5 
CPU (2.60 GHz) and 4 GB RAM are equipped. Since the 
similarity scores based on different eLBP-DFs can be cal-
culated independently, if implemented in a parallel com-
puting device, our method is quite promising in provid-
ing decisions in real time. 

6 CONCLUSION 

We have presented an effective method to 3D face recog-
nition using a novel geometric facial representation and 
local feature hybrid matching. The proposed facial repre-
sentation is based on MS-eLBP and allows for accurate 
and fast description of local shape variations, thus en-
hancing the distinctiveness of range faces. SIFT-based 
hybrid matching that combines local and holistic analysis 
further robustly associates keypoints between two faces 
of the same subject. The proposed method was evaluated 
in 3D face recognition and verification, achieving a recog-
nition rate of 97.6% and a 98.4% verification rate with a 
0.001 FAR respectively on the FRGC v2.0 database which 
consists of nearly frontal 3D facial scans with rich facial 
expression changes. Additional experiments on the Bos-
phorus database further confirm the advantages of the 
proposed approach with regard to facial expression varia-
tions and external partial occlusions. The results achieved 
on the Gavab DB dataset containing severe pose changes  
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Fig. 16.  A face matching demonstration. The upper maps are generated by eLBP(8,3)-L1; while the bottom ones with eLBP(8,3)-L2. (a) 
matching with nearly frontal probe face; (b) matching with probe rotated by 5 degrees; (c) matching with probe rotated by 10 degrees; (d) 
matching with probe rotated by 15 degrees; (e) matching with probe rotated by 20 degrees. 

clearly illustrate that the entire system also provides a 
promising solution to recognizing partially occluded fac-
es. Moreover, generally costly registration was not need-
ed thanks to the relative tolerance of the proposed hybrid 
matching strategy to nearly frontal faces like the ones in 
the FRGC v2.0 and the subset of Bosphorus. When deal-
ing with extreme poses, e.g. left or right profiles, a coarse 
alignment step based on a few manually landmarked 
points was sufficient in preprocessing as indicated by the 
experiments on the Gavab database. 

ACKNOWLEDGMENT 

This work was in part supported by the National Natural 
Science Foundation of China under Grant 61061130560, 
the French research agency, Agence Nationale de Recher-
che (ANR), within the ANR FAR 3D project (grant ANR-
07-SESU-004-03), the Sino-French project 3D Face Analyz-
er (grant ANR 2010 INTB 0301 01), and the LIA 2MCSI 
laboratory between the group of Ecoles Centrales, France 
and Beihang University, China, through the 3D face in-
terpreter project. 

REFERENCES 

[1] A. K. Jain, A. Ross, and S. Prabhakar. “An introduction to biometric 
recognition,” IEEE Trans. on Circuits and Systems for Video Technol-

ogy, vol. 14, no. 1, pp. 4–20, 2004. 

[2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recog-
nition: a literature survey,” ACM Computing Survey, vol. 35, no. 4, pp. 

399–458, 2003. 

[3] K. W. Bowyer, K. Chang, and P. J. Flynn, “A survey of approaches 
and challenges in 3D and multi-modal 3D+2D face recognition,” 

Computer Vision and Image Understanding, vol. 101, no. 1, pp. 1-15, 

2006. 
[4] A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino, “2D and 3D face 

recognition: a survey,” Pattern Recognition Letters, vol. 28, no. 14, pp. 

1885-1906, 2007. 
[5] P. J. Phillips, H. Moon, P. J. Rauss, and S. Rizvi, “The FERET evalua-

tion methodology for face recognition algorithms,” IEEE Trans. on 

Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-
1104, 2000. 

[6] A. Scheenstra, A. Ruifrok, and R. C. Veltkamp, “A survey of 3D face 

recognition methods,” in Proc. International Conference on Audio- 
and Video-Based Biometric Person Authentication, 2005. 

[7] A. Hadid, M. Pietikäinen, and T. Ahonen, “A discriminative feature 

space for detecting and recognizing faces,” in Proc. IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 797–804, 2004. 

[8] B. Achermann, X. Jiang, and H. Bunke, “Face recognition using range 

images,” in Proc. International Conference on Virtual Systems and 
MultiMedia, pp.129-136, 1997. 

[9] C. Hesher, A. Srivastava, and G. Erlebacher, “A novel technique for 

face recognition using range imaging,” in Proc. International Sympo-

sium on Signal Processing and Its Applications, pp. 201-204, 2003. 
[10] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Expression in-

variant 3D face recognition,” in Proc. International Conference on 

Audio- and Video-Based Biometric Person Authentication, pp. 62-70, 
2003. 

[11] P. J. Besl and N. D. McKay, “A method for registration of 3-D 

shapes,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 
vol.14, no. 2, pp. 239-256, 1992. 

[12] X. Lu, A. K. Jain and D. Colbry, “Matching 2.5D face scans to 3D 

models,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 
vol. 28, no. 1, pp. 31-43, 2006. 

[13] X. Lu and A. K. Jain, “Deformation modeling for robust 3D face 

matching,” in Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 1377-1383, 2006. 

[14] K. Chang, K. W. Bowyer, and P. Flynn, “Effects on facial expression 

in 3D face recognition,” in Proc. SPIE Conference Biometric Tech-
nology for Human Identification, vol. 5779, pp. 132-143, 2005. 

[15] T. Maurer, D. Guigonis, I. Maslov, B. Pesenti, A. Tsaregorodtsev, D. 

West, and G. Medioni, “Performance of geometrix active IDTM 3D 
face recognition engine on the FRGC data,” IEEE Workshop on 

FRGC Experiments, 2005.  

[16] Y. Lee and J. Shim, “Curvature-based human face recognition using 
depth-weighted Hausdorff distance,” in Proc. International Confer-

ence on Image Processing, 2004, pp. 1429-1432. 

[17] T. D. Russ, M. W. Koch, C. Q. Little, “A 2D range Hausdorff ap-
proach for 3D face recognition,” IEEE Workshop on FRGC Experi-

ments, 2005. 

[18] G. G. Gordon, “Face recognition based on depth and curvature fea-
tures,” in Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, 1992, pp. 808-810. 

[19] A. B. Moreno, A. Sanchez, J. F. Velez, and F.J. Diaz, “Face recogni-
tion using 3D surface-extracted descriptors,” in Proc. Irish Machine 

Vision and Image Processing Conference, 2003. 
[20] S. Gupta, J. K. Aggatwal, M. K. Markey, and A. C. Bovik, “3D face 

recognition founded on the structural diversity of human faces,” in 

Proc. IEEE Conference on Computer Vision and Pattern Recognition, 
2007. 

[21] T. Nagamine, T. Uemura, and I. Masuda, “3D facial image analysis 

for human identification,” in Proc. International Conference on Pat-

tern Recognition, 1992, pp. 324-327. 

[22] C. Beumier and M. Acheroy, “Automatic 3D face authentication,” 

Image Vision Computing, vol. 18, no. 4, pp. 315-321, 2000. 
[23] C. Samir, A. Srivastava, and M. Daoudi, “Three-dimensional face 

recognition using shapes of facial curves,” IEEE Trans. on Pattern 

Analysis and Machine Intelligence, vol. 28, no. 11, pp. 1858-1863, 
2006. 

[24] C. Chua, F. Han, and Y. Ho, “3D human face recognition using point 

signature,” in Proc. International Conference on Automatic Face and 
Gesture Recognition, pp. 233-238, 2000. 

[25] H. T. Tanaka, M. Ikeda, and H. Chiaki, “Curvature-based face surface 

recognition using spherical correlation — principal directions for 
curved object recognition,” in Proc. International Conference on Au-

tomatic Face and Gesture Recognition, pp. 372-377, 1998. 

[26] Y. Wang, J. Liu, and X. Tang, “Robust 3D face recognition by local 
shape difference boosting,” IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, vol. 32, no. 10, pp. 1858-1870, 2010. 

http://www.nist.gov/humanid/feret/doc/FERET_PAMI_Oct_2000.pdf
http://www.nist.gov/humanid/feret/doc/FERET_PAMI_Oct_2000.pdf


Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY.  MANUSCRIPT SUBMISSION 

 

[27] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of 

Cognitive Neuro-Science, vol. 3, no. 1, pp. 71-86, 1991. 

[28] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. fisher-

faces: recognition using class specific linear projection,” IEEE Trans. 

on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-
720, 1997. 

[29] L. Wiskott, J. M. Fellous, N. Kruger, and C. v. d. Malsburg, “Face 

recognition by elastic bunch graph matching,” IEEE Trans. on Pattern 
Analysis and Machine Intelligence, vol. 19, no. 7, pp. 775–779, 1997. 

[30] A. Pentland, B. Moghaddam, and T. Starner, “View-based and modu-

lar eigenspaces for face recognition,” in Proc. IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 84-91, 1994. 

[31] I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. 
Karampatziakis, and T. Theoharis, “Three-dimensional face recogni-

tion in the presence of facial expressions: an annotated deformable 

model approach,” IEEE Trans. on Pattern Analysis and Machine In-
telligence, vol. 29, no. 4, pp. 640-649, 2007. 

[32] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Three dimen-

sional face recognition,” International Journal of Computer Vision, 
vol. 64, no. 1, pp. 5-30, 2005. 

[33] A. S. Mian, M. Bennamoun, and R. Owens, “Keypoint detection and 

local feature matching for textured 3D face recognition,” Internation-
al Journal of Computer Vision, vol. 79, no. 1, pp. 1-12, 2008. 

[34] K. Ouji, B. B. Amor, M. Ardabilian, L. Chen, and F. Ghorbel, “3D 

face recognition using R-ICP and geodesic coupled approach,” in 
Proc. International conference on on MultiMedia Modeling, 2009. 

[35] A. S. Mian, M. Bennamoun, and R. Owens, “Region-based matching 

for robust 3D face recognition,” in Proc. British Machine Vision Con-
ference, 2005. 

[36] J. Huang, B. Heisele, and V. Blanz, “Component-based face recogni-

tion with 3D morphable models,” in Proc. International Conference 
on Audio- and Video-Based Biometric Person Authentication, pp. 27-

34, 2003. 

[37] S. Z. Li, C. Zhao, M. Ao, and Z. Lei, “Learning to fuse 3D+2D based 
face recognition at both feature and decision levels,” in Proc. work-

shop on Analysis and Modeling of Faces and Gestures, 2005. 

[38] Y. Huang, Y. Wang, T. Tan, “Combining statistics of geometrical and 
correlative features for 3D face recognition,” in Proc. British Machine 

Vision Conference, 2006. 

[39] A. B. Moreno and A.Sanchez, “GavabDB: a 3D face database,” in 

Proc. COST Workshop on Biometrics on the Internet: Fundamentals, 

Advances and Applications, pp. 77-82, 2004. 

[40] T. Ojala, M. Pietikäinen, and T. Maenpaa, “Multiresolution gray-scale 
and rotation invariant texture classification with local binary pat-

terns,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 

24, no. 7, pp. 971–987, 2002. 
[41] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local 

binary patterns,” in Proc. European Conference on Computer Vision, 

2004. 
[42] J. J. Koenderink and A. J. Doorn, “Surface shape and curvature 

scales,” Image Vision Computing, vol. 10, no. 8, pp. 557-565, 1992. 

[43] S. Yan, H. Wang, X. Tang, and T. S. Huang, “Exploring feature de-
scriptors for face recognition,” in Proc. International Conference on 

Acoustics, Speech, and Signal Processing, 2007. 

[44] C. Chan, J. Kittler, and K. Messer, “Multi-scale local binary pattern 
histograms for face recognition,” in Proc. International Conference on 

Biometrics, pp. 809-818, 2007. 

[45] C. Shan and T. Gritti, “Learning discriminative LBP-histogram bins 
for facial expression recognition,” in Proc. British Machine Vision 

Conference, 2008. 

[46] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 4, pp. 

91-110, 2004. 

[47] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. Lu, “Person-
specific SIFT features for face recognition,” in Proc. IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, 2007. 
[48] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, K. I. Chang, K. 

Hoffman, J. Marques, J. Min, W. Worek, “Overview of the face 

recognition grand challenge,” in Proc. IEEE Conference on Computer 
Vision and Pattern Recognition, vol. I, pp. 947-954, 2005. 

[49] A. S. Mian, M. Bennamoun, and R. Owens, “An efficient multimodal 

2D-3D hybrid approach to automatic face recognition,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, 

pp. 1927-1943, 2007. 

[50] D. Huang, G. Zhang, M. Ardabilian, Y. Wang, and L. Chen, “3D face 

recognition using distinctiveness enhanced facial representations and 

local feature hybrid matching,” in Proc. IEEE International Confer-

ence on Biometrics: Theory, Applications and Systems, 2010. 

[51] Y. Wang, G. Pan, Z. Wu, “3D face recognition in the presence of ex-
pression: guidance-based constraint deformation approach,” in Proc. 

IEEE Conference on Computer Vision and Pattern Recognition, 2007. 

[52] K. I. Chang, K. W. Bowyer, P. J. Flynn, “Adaptive rigid multi-region 
selection for handling expression variation in 3D face recognition,” 

IEEE workshop on FRGC Experiments, 2005. 

[53] G. Passalis, I. Kakadiaris, T. Theoharis, G. Tederici, and N. Murtaza, 
“Evaluation of 3D face recognition in the presence of facial expres-

sions: an annotated deformable model approach,” IEEE workshop on 
FRGC Experiments, 2005. 

[54] M. Husken, M. Brauckmann, S. Gehlen, and C. v. d. Malsburg, “Strat-

egies and benefits of fusion of 2D and 3D face recognition,” IEEE 
workshop on FRGC Experiments, 2005. 

[55] J. Cook, V. Chandran, and C. Fookes, “3D face recognition using Log-

Gabor templates,” in Proc. British Machine Vision Conference, 2006. 
[56] T. Faltemier, K. W. Bowyer and P. Flynn, “A region ensemble for 3D 

face recognition,” IEEE Trans. on Information Forensics and Security, 

vol. 3, no. 1, pp. 62-73, 2008. 
[57] P. Szeptycki, M. Ardabilian, L. Chen, “A coarse-to-fine curvature 

analysis-based rotation invariant 3D face landmarking,” in Proc. IEEE 

International Conference on Biometrics: Theory, Applications and 
Systems, 2009. 

[58] H. Drira, B. B. Amor, M. Daoudi, and A. Srivastava, “Pose and ex-

pression-invariant 3D face recognition using elastic radial curves,” in 
Proc. British Machine Vision Conference, 2010. 

[59] X. Li, T. Jia, and H. Zhang, “Expression-insensitive 3d face recogni-

tion using sparse representation,” in Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009. 

[60] A. B. Moreno, A. Sanchez, J. F. Velez, and F. J. Díaz, “Face recogni-

tion using 3d local geometrical features: pca vs.svm,” in Proc. Inter-
national Symposium on Image and Signal Processing and Analysis, 

2005. 

[61] M. H. Mahoor and M. Abdel-Mottaleb, “Face recognition based on 3d 
ridge images obtained from range data,” Pattern Recognition, vol. 42, 

no. 3, pp. 445–451, 2009. 

[62] S. Berretti, A. Del Bimbo, and P. Pala, “3d face recognition by model-

ing the arrangement of concave and convex regions,” in Proc. Interna-

tional Workshop on Adaptive Multimedia Retrieval: Adaptive Multi-

media Retrieval: User, Context, and Feedback, pp. 108–118, 2006. 
[63] M. H. Mousavi, K. Faez, and A. Asgharim, “Three dimensional face 

recognition using svm classifier,” in Proc. International Conference 

on Computer and Information Science, pp. 208–213, 2008. 
[64] D. Huang, M. Ardabilian, Y. Wang, and L. Chen, “A novel geometric 

facial representation based on multi-scale extended local binary pat-

terns,” in Proc. IEEE International Conference on Automatic Face 
and Gesture Recognition, 2011. 

[65] D. Huang, C. Shan, M. Ardabilian, Y. Wang, and L. Chen, “Local 

binary patterns and its application to facial image analysis: a survey,” 
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-

cations and Reviews, vol. 41, no. 4, pp. 1-17, 2011. 

[66] C. C. Queirolo, L. Silva, O. R. P. Bellon, and M. P. Segundo, “3D face 
recognition using simulated annealing and the surface interpenetration 

measure,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 

vol. 32, no. 2, pp. 206–219, 2010.  
[67] N. Alyuz, B. Gokberk, and L. Akarun, “Regional registration for 

expression resistant 3-D face recognition,” IEEE Trans. on  Infor-

mation Forensics and Security, vol. 5, no. 3, pp. 425-440, 2010. 
[68] A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. 

Sankur, and L. Akarun, “Bosphorus Database for 3D Face Analysis,” 

The First COST 2101 Workshop on Biometrics and Identity Manage-
ment, 2008. 

[69] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens and D. 
Vandermeulen, “Feature detection on 3d face surfaces for pose nor-

malisation and recognition,” in Proc. IEEE International Conference 

on Biometrics: Theory, Applications and Systems, 2010. 
 

 

 
 

 

http://liris.cnrs.fr/publis/?id=5004
http://liris.cnrs.fr/publis/?id=5004


Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

D. HUANG, M. ARDABILIAN, Y. WANG, AND L. CHEN: 3D FACE RECOGNITION USING ELBP-BASED FACIAL DESCRIPTION AND LOCAL FEATURE HY-

BRID MATCHING 15 

 

Di Huang (S’10-M’11) received the B.S. and 

M.S. degrees in computer science from Bei-

hang University, Beijing, China, and the Ph.D. 

degree in computer science from Ecole Cen-

trale de Lyon, Lyon, France, in 2005, 2008, 
and 2011 respectively. In December 2011, he 

joined the Laboratory of Intelligent Recogni-

tion and Image Processing, Beijing Key La-
boratory of Digital Media, School of Comput-

er Science and Engineering, Beihang Univer-

sity, as a Faculty Member.  
His current research interests include biometrics, especially on 2D/3D 

face analysis, image/video processing, and pattern recognition. 
 

Mohsen Ardabilian received the master and the Ph.D. 

degree in computer science at Université Technologie 
de Compiègne, France, in 1996 and 2001, respective-

ly. In 2001, he founded Avisias Company, specialized 

in media asset management with several other con-
firmed industrial players of Thomson, Canal+ Tech-

nologies and Philips, where he served as Scientific 

Expert from 2001 to 2003. In 2003, he joined Ecole 
Centrale de Lyon as an associate professor.  

His current research interests include computer vision and multimedia 

analysis, particularly 3D acquisition and modeling, 3D face analysis and 
recognition. 

 

Yunhong Wang (M’98) received the B.S. degree in 
electronic engineering from Northwestern Polytech-

nical University, Xi’an, China, in 1989, the M.S. de-

gree and the Ph.D. degree in electronic engineering 
from the Nanjing University of Science and Technolo-

gy, Nanjing, China, in 1995 and 1998, respectively. 

She worked at the National Laboratory of Pattern 
Recognition, Institute of Automation, Chinese Acade-

my of Sciences, Beijing, China, from 1998 to 2004. 

Since 2004, she has been a Professor with the School 
of Computer Science and Engineering, Beihang University, Beijing, China, 

where she is also the Director of Laboratory of Intelligent Recognition and 

Image Processing, Beijing Key Laboratory of Digital Media.  

Her research interests include biometrics, pattern recognition, comput-

er vision, data fusion, and image processing. 

 
Liming Chen (M’05) received the B.Sc. de-

gree in mathematics and computer science 

from Université de Nantes, Nantes, France, in 
1984 and the M.S. and Ph.D. degrees, both in 

computer science from the University of Paris 

6, Paris, France, in 1986 and 1989, respectively. 
He was an Associate Professor with the 

Université de Technologies de Compiègne, 

Compiègne, France, and then joined Ecole 
Centrale de Lyon, Lyon, France, in 1998 as a 

Professor, where he has been leading an ad-

vanced research team on multimedia computing and pattern recognition. 
From 2001 to 2003, he was the Chief Scientific Officer with the Paris-based 

company Avivias, where he specializes in media asset management. During 

2005, he was a Scientific Expert in multimedia at France Telecom R&D, 
China. Since 2007, he has been Chairman with the Department of Mathe-

matics and Computer Science, Laboratoire d’InfoRmatique en Image et 

Systèmes d’information, Ecole Centrale de Lyon. Since 1995, he has been 
the author of three patents and more than 100 publications in international 

journals and conferences. He has directed more than 15 Ph.D. dissertations. 

His research interests include face analysis and recognition in 3-D and 2-D, 
image and video categorization, and affect computing on multimedia data. 

Dr. Chen has been the Chairman and a Program Committee Member 
for various international conferences and journals. He has been a Reviewer 

for many conferences and journals, e.g. the IEEE SIGNAL PROCESSING 

LETTERS, Computer Vision and Image Understanding, the IEEE TRANS-
ACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, the Proceedings of 

the International Conference on Image Processing, the IEEE TRANSAC-

TIONS ON IMAGE PROCESSING, and Pattern Recognition Letters. He 
was a Guest Editor for the special issue on Automatic Audio Classification 

of the European Association for Signal Processing (EURASIP) Journal on 

Audio, Speech, and Music Processing. 


