
1

support of Agence Nationale pour la Recherche (ANR)
 and Institut Universitaire de France (IUF)

Semi-Lagrangian particle methods for
complex fluid and fluid-structure dynamics

G.-H. Cottet
Université Grenoble Alpes

In particular with:
M. Coquerelle, A. Magni, J.-B. Lagaert, J.-M. Etancelin, C. Mimeau
G. Balarac, E. Maitre, I. Mortazavi, F. Perignon, C. Picard

and close collaboration with group of P. Koumoutsakos, ETH Zurich

• Multilevel, Semi-Lagrangian particle methods
• Immersed boundary technics for fluid-structure interactions

• Turbulent transport of passive and active scalars
• Simulation and optimization of flows around complex bodies

Methods

Applications

Issues

• Accuracy
• Flexibility
• Computational efficiency and parallel scalability

3

Outline

•Turbulent transport (1)

•Semi-Lagrangian particle methods

•Immersed boundary methods for fish optimization

•Multi-resolution semi-lagrangian particles

•Turbulent transport (II)

•Computational issues and hybrid computing

transport	of	level	set	func/on	in	
mul/phase	flows	(Zaleski	et	al)

transport	of	pollutant	in		
L.A.	bay	(Blayo	et	al)

mixing	and		
polymer	forma/on		
(Coria	and	Solvay)	

transport	of	species		
in	combus/on		
(Vervisch	et	al.)

4

Accurate	simula/ons	of	turbulent	transport	of	scalar	are	of	great	
importance	in	many	applica/ons

5

The	hunt	for	(affordable)	details	
	in	computer	graphics

Kim	et	al,	SIGGRAPH	2008

A 50x100x50 smoke simulation with eight turbulence bands added to synthesize an effective resolution of 12800x2560x12800

6

Equa/ons	of	turbulent	transport	of	a	passive	scalar:

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

1

Brief Article

The Author

November 5, 2013

@✓

@t
+ ~u · ~r✓ = ~r ·

⇣
~r✓

⌘
(1)

@~u

@t
+ ~u · ~r~u = ~r ·

⇣
⌫ ~r~u

⌘
+ ~rp , ~r · ~u = 0 (2)

1

with	appropriate	boundary	condi/ons

The	ra/o	of	fluid	viscosity	to	scalar	diffusivity	is	called	the	Schmidt	number	: Sc	=	𝜈/ κ

Incompressible		
Navier-Stokes	equa/ons

Transport	equa/on

7

Challenge	in	DNS	of	turbulent	transport:	

Natural	idea:	decouple	spa6al	resolu6ons	for	momentum	and	for	scalar

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ = ~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u = ~r ·
⇣
⌫

~r~u

⌘
+ ~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

1

Observa/on	and	theore/cal	predic/on:		
depending	on	the	value	of	Sc,	energe/c	scales	for	scalar	can	extend	far	beyond	those	of	
the	momentum		(the	Kolmogorov	scale),	with	a	«slow»	k-1	decay

k
Ki
ne

/c
	e
ne

rg
y	
an
d	
 

sc
al
ar
	v
ar
ia
nc
e	
sp
ec
tr
um

 k -5/3

k -1

k -5/3 k -1exp(α.kβ)

ηλ ηΒ

	Challenging	numerical	ques6on:	
✓How	to	resolve	in	an	affordable	way	the	
significant	scales	in	the	scalar	
✓Scaling	of	the	scalar	spectrum	at	the	
smallest	scales?

?numbers, the viscosity-to-di↵usivity ratio, Sc = ⌫/. For Schmidt number
higher than one, similar to the Kolmogorov scale, ⌘K , which describes the
smallest scale of turbulence motions beyond which dissipation dominates,
the Batchelor scale, ⌘B, describes the smallest length scale of the scalar
fluctuations that can exist before being dominated by molecular di↵usion.
The Batchelor scale, ⌘B = ⌘K/

p
Sc, is smaller than the Kolmogorov scale.

This means that scalar dynamics can occur at scales smaller than the smallest
velocity eddy.

The motivation for hybrid numerical methods in the context of scalar
transport is twofold. First, it reflects the multi-scale nature of the problem
as mentioned above. It relies on the idea that di↵erent grid-resolutions should
be used to discretize di↵erent quantities, in our case the momentum and the
scalar. The second motivation is that di↵erent numerical method are best
suited for the di↵erent dynamics involved in the problem. The question
is both cases to couple the di↵erent scales and numerical methods. With
regards to the second point, the use of Lagrangian methods to handle scalar
transport is rather natural. Indeed Lagrangian methods are known to avoid
di�culties inherent to Eulerian methods, in particular stability constraints
linking time-step and grid-size. If one has in view the simulation of scalar
dynamics at high resolution to handle high Schmidt numbers, it is desirable to
avoid that the cost of using a large number of points is amplified by the need
to use very small time-steps. For particle methods, the stability constraint
for the time-step is related to the derivatives of the advection velocity and
not to the grid-size. In practice it means that this time-step will depend
on the coarse grid resolution used for the momentum equation. Another
interesting feature is that particle methods, unlike FFT-based methods, only
rely on local operations which make them appropriate for massively parallel
computations.

In [2], we proposed to couple particle methods at di↵erent grid-resolutions
for both the scalar transport at infinite Schmidt number and the Navier-
Stokes equations. This reference provides a proof of concept that scalar
spectra and structures are resolved with the same accuracy and much less
computational e↵ort in an hybrid method using a coarse resolution for the
momentum than in a full high resolution method. This study was also mo-
tivated by applications in computer graphics where one is interested by re-
producing turbulence e↵ects at minimal cost. Our study pointed to the fact
that using high resolution scalar together with low resolution momentum
and appropriate simulation tools could bypass the use of ad-hoc models to

2

8

which	solvers	to	choose	for	Navier-Stokes	and	transport	equa6ons	?	

➡Turbulent	flow	:		
Spectral	(periodic	«academic»	geometries)	or	Finite	Volume	(complex	«engineering»	
geometries)	

➡Scalar	equa/on:	
we	need	a	method	which	
•is	conserva/ve		
•is	high	order	accurate	(spectral-like)	
•has	good	parallel	scalability	
•limits	as	much	as	possible	the	computa6onal	overhead	

->	choice	of	Lagrangian	or	Semi-Lagrangian	method	:		
•well	adapted	to	transport	equa6ons	
•6me-step	will	not	be	constrained	by	very	fine	scalar	mesh	size

9

Particle methods with remeshing at every time-step can be viewed and analyzed as
forward semi-lagrangian methods

How they work:

1) particles on a grid
2) push particles with local velocity values
3) remesh particles on the grid, through interpolation

In 1 D method can be described by the following equations:

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ =

~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u =

~r ·
⇣
⌫

~r~u

⌘
+

~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

✓

i

=

i+N/2X

p=i�N/2

�x

✓

✓

p

⇤(x

i

� x

p

),

x

n+1
i

= x

i

+ ũ

n

i

�t (3)

In the above equation ã

n

i

denotes an evaluation of the velocity field at time t

n

= n�t and location

x

i

which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation

with a remeshing kernel � which satisfies �(�x) = �(x). If u

n

i

denotes the value approximating

u(x

i

, t

n

), this gives the following formula :

✓

n+1
i

=

X

j

✓

n

j

�

x

n+1
j

� x

i

�x

✓

!
, i 2 Zd

(4)

1

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ =

~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u =

~r ·
⇣
⌫

~r~u

⌘
+

~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

✓

i

=

i+N/2X

p=i�N/2

�x

✓

✓

p

⇤(x

i

� x

p

),

x

n+1
i

= x

i

+ ũ

n

i

�t (3)

In the above equation ã

n

i

denotes an evaluation of the velocity field at time t

n

= n�t and location

x

i

which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation

with a remeshing kernel � which satisfies �(�x) = �(x). If u

n

i

denotes the value approximating

u(x

i

, t

n

), this gives the following formula :

✓

n+1
i

=

X

j

✓

n

j

�

x

n+1
j

� x

i

�x

✓

!
, i 2 Zd

(4)

1

depend on the time-stepping scheme and 𝛤 is a piecewise polynomial kernel where	

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ =

~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u =

~r ·
⇣
⌫

~r~u

⌘
+

~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

✓

i

=

i+N/2X

p=i�N/2

�x

✓

✓

p

⇤(x

i

� x

p

),

x

n+1
i

= x

i

+ ũ

n

i

�t (3)

In the above equation ã

n

i

denotes an evaluation of the velocity field at time t

n

= n�t and location

x

i

which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation

with a remeshing kernel � which satisfies �(�x) = �(x). If u

n

i

denotes the value approximating

u(x

i

, t

n

), this gives the following formula :

✓

n+1
i

=

X

j

✓

n

j

�

x

n+1
j

� x

i

�x

✓

!
, i 2 Zd

(4)

1

interpolation property :

10

for all sequences (uni). It is readily seen that this is equivalent to the following moments conditions for the
remeshing kernel � X

k2Z
k↵�(x� k) = x↵, 0  ↵  p, x 2 R (2.5)

or
X

k2Z
(x� k)↵�(x� k) =

(
1 if ↵ = 0

0 if 1  ↵  p
, x 2 R. (2.6)

Note that for ↵ = 0 these conditions enforce the conservation of mass. Using these identities for a given
value of p and assuming that the kernel � remeshes particle weights among the p+ 1 nearest grid points,
one find a piecewise polynomial function of degree p. For p = 1 one obtains the piecewise linear tent
function. With p = 2 one obtains a piecewise quadratic function, the so-called ⇤2 formula, that has
been used with success in the first particle simulation of the Navier-Stokes equations using remeshing in
a systematic fashion [10].

This derivation method is straightforward but has the drawback that it does not deliver smooth kernels.
The kernel ⇤2 is not even continuous (this is the case more generally for kernels corresponding to even
values of p; for odd values, the kernels are continuous but their derivatives are discontinuous). This lack
of smoothness results in a loss of accuracy . In [15] local correction techniques where derived to guarantee
at least first oder for the kernel ⇤2 and third order for the analogous kernel ⇤4 corresponding to p = 4.

To derive smooth kernels, one option is to use extrapolation techniques starting from smooth B-splines.
If we denote by M1 the top-hat filter with support in [�1/2,+1/2], and by Mn its successive convolution
: Mn = M

(⇤n)
1 2 W k,1

(R). One then derives linear combinations of Mn, xM 0
n, x2M 00

n , .. to cancel the
successive continuous moments of �. More precisely, given an even integer p > 1 one looks for coefficients
↵1, · · · ,↵p/2+1 such that � =

Pp/2
l=0 ↵l+1x

lM
(l)
k satisfies

Z
y↵�(y) dy =

(
1 if ↵ = 0

0 if 1  ↵  p.
(2.7)

For symmetry reasons these conditions need only be enforced for even values of ↵. This leads to a square
linear system of size 1 + p/2 the coefficients of which only involve the even moments of Mk. With this
method , one obtains the following kernels

� =

1

2

(3M4 + xM 0
4), (2.8)

and
� =

1

8

(15M8 + 9xM 0
8 + x2M 00

8). (2.9)

The first formula corresponds to a kernel of class C1, piecewise quadratic, with a support of size 4 and
p = 2. It was derived under the name of M 0

4 in [16] and has been and still is extensively used in particle
simulations, in particular of vortex flows. The second formula corresponds to a kernel of class C4, piecewise
polynomial of degree 7, with a support of size 8 and p = 4.

The moment conditions (2.7) concern continuous moments of the kernel. To check that the discrete

moment conditions (2.6) are satisfied as well, one can use an equivalent condition using the Fourier
transform of the kernel [25, 6]. If

b
�(k) =

Z
�(y)e�iky dy,

it can be shown ([6]) that the properties (2.5) are satisfied provided b
� fulfills the following conditions:

b
�(k)� 1 has a zero of order p+ 1 at k = 0

3

𝛤 is defined by regularity and moment properties :

b
�(k) has a zero of order p+ 1 at all k = 2⇡m,m 6= 0.

Since b
�

(↵) is proportional to y↵�(y), the first condition above is clearly equivalent to the conditions (2.7).
Moreover one has

cM1(k) =
sin (k/2)

k/2

and thus
cMn(k) =


sin (k/2)

k/2

�n
.

As a result the Fourier transform of the functions xlM (l)
k has a zero of order k� l at all non zero multiple

of ⇡. From these observations, one can easily check that the kernels (2.8), and (2.9) do satisfy the discrete
moment conditions (2.5) with p = 2 and p = 4n respectively.

This approach leads to smooth and high order kernels. However the kernels derived in this fashion do not
necessarily satisfy the following exactness property

�(i) =

(
1 if i = 0,

0 otherwise.
(2.10)

Indeed the so-called kernel M 0
4 does satisfy this condition, but not the one derived above from M8. Property

(2.10) ensures that, if the velocity is zero, the exact solution is algebraically conserved. Although this
property does not enter the numerical analysis that follows, in practice it seems to have some importance,
in particular to represent accurately the smallest scales in the turbulent flows considered in [?].

One can actually derive kernels which satisfy simultaneously and to any given order, regularity, moment
conditions and the exactness property. For a sake of simplicity, in the following we restrict ourselves to
kernels which involve an even number 2Ns of grid points. We seek kernels � that have the following
properties :

P1 � has support in [�Ns,+Ns],

P2 � is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],

P3 � is of class Cr,

P4 � satisfies the moment properties (2.6) for a given value of p,

P5 � satisfies the exactness property (2.10).

Such kernels are determined by Ns(M + 1) coefficients. The regularity property P3 impose Ns(r + 1)

interface conditions at integer values , and ([r + 1)/2] conditions to express that derivatives of odd order
vanish at zero. The properties P4 and P5 impose p+1+Ns conditions. One reasonable constraint under
which one can expect to find kernels satisfying these conditions is therefore

Ns(M + 1) � (r + 1)Ns + ([r + 1)/2] + p+ 1 +Ns

The table?? lists several kernels that have been obtained through this approach by symbolic calculations.
In this table, the kernels have been labelled by 2 indices that refer to the regularity and the order to which
moment conditions are satisfied, as we will see that these are the parameters which control the order of
accuracy of the RPM : ⇤p,r is a kernel in W r,1

(R) which satisfies (2.5). ⇤4,2 corresponds to the kernel M 0
4

already mentioned. Let us point out that the kernel ⇤4,2 was derived with this approach and used for the
first time in [2] under the name of M 0

6. For a sake of completeness, we have provided in the appendix the
analytical formulas for the kernels which are considered in the numerical experiments of section 4: ⇤2,1,
⇤2,2, ⇤4,2, ⇤4,4 and ⇤6,4.

4

Moments (p in 2.5) Regularity Nb of grid points in stencil Degree Support

⇤2,1 2 C1 4 3 [�2; 2]

⇤2,2 2 C2 4 5 [�2; 2]

⇤2,3 2 C3 4 7 [�2; 2]

⇤2,4 2 C4 4 9 [�2; 2]

⇤4,2 4 C2 6 5 [�3; 3]

⇤4,3 4 C3 6 7 [�3; 3]

⇤4,4 4 C4 6 9 [�3; 3]

⇤6,3 6 C3 8 7 [�4; 4]

⇤6,4 6 C4 8 9 [�4; 4]

⇤6,5 6 C5 8 11 [�4; 4]

⇤6,6 6 C6 8 13 [�4; 4]

⇤8,4 8 C4 10 9 [�5; 5]

Table 1: Kernels of various regularity, moment properties and complexity. In bold, the kernels that are
considered in the numerical experiments.

3 Numerical Analysis

We consider in this section RPM with kernels satisfying the moment properties (2.5) and the following
regularity conditions :

� 2 W r,1
(R) and � 2 C1

(]l, l + 1[) , l 2 Z. (3.1)

The RPM is defined by the formulas (2.2), (2.3) and we will denote by Tiu(·, tn) the result of the scheme
(2.3), at the grid point xi, starting from grid values u(xj , tn).

In this section we are interested by the stability and spatial accuracy of the method. For a sake of
simplicity we will therefore assume that a does not depend on time and that particles advance with an
explicit first-order Euler scheme. In this case we simply have ãnj = a(xnj).

A striking feature of RPM, common with all semi-lagrangian methods, is that their stability does not rely
on CFL conditions. In this section we prove stability and consistency results under the condition

�t  M

ka0kL1
(3.2)

for a given constant M < 1. This condition in particular ensures that particle trajectories cannot intersect.
The constant M is often called Lagrangian CFL number (in short LCFL).

3.1 Consistency

We will prove the following consistency results

Proposition 1 Assume that the condition (3.2) is satisfied, and that the moment and regularity conditions
(2.5), (3.1) hold for some r, p > 1. Assume further . Let T > 0 and assume further that a and the solution
u to equation (2.1) belong to L1

(0, T ;W r,1
(R)). Then, if we set � = inf (r � 1, p), the following estimate

holds
u(xi, t

n+1
) = Ti(u(·, tn)) +O(�t2) +O(�t�x� +�x�+1

+�t�+1
). (3.3)

Moreover if every cell of size �x contains exactly one particle after an advection step, then � = p.

5

4 TITLE WILL BE SET BY THE PUBLISHER

The first formula corresponds to a kernel of class C1, piecewise cubic, with a support of size 4 and p = 2. It
was derived under the name of M 0

4 in [19] and has been and still is extensively used in particle simulations,
in particular of vortex flows. The second formula corresponds to a kernel of class C4, piecewise polynomial
of degree 7, with a support of size 8 and p = 4.

The moment conditions (2.7) concern continuous moments of the kernel. To check that the discrete

moment conditions (2.6) are satisfied as well, one can use an equivalent condition using the Fourier
transform of the kernel [7, 29]. If

b
�(⇠) =

Z
�(y)e�i⇠y dy,

it can be shown ([7]) that the properties (2.5) are satisfied provided b
� fulfills the following conditions:

b
�(⇠)� 1 has a zero of order p+ 1 at ⇠ = 0

b
�(⇠) has a zero of order p+ 1 at all ⇠ = 2⇡m,m 6= 0.

Since b
�

(↵) is proportional to y↵�(y), the first condition above is clearly equivalent to the conditions (2.7).
Moreover one has

cM1(⇠) =
sin (⇠/2)

⇠/2
and thus

cM
n

(⇠) =


sin (⇠/2)

⇠/2

�
n

.

As a result, the Fourier transform of the functions xlM (l)
k

has a zero of order k� l at all non zero multiple
of ⇡. From these observations, one can easily check that the kernels (2.8), and (2.9) do satisfy the discrete
moment conditions (2.5) with p = 2 and p = 4 respectively.

The approach just presented leads to smooth and high order kernels. However the kernels derived in this
fashion do not necessarily satisfy the following interpolation property

�(i) =

(
1 if i = 0,

0 otherwise.
(2.10)

Indeed the so-called kernel M 0
4 given in (2.8) does satisfy this condition, but not the one derived in

(2.9) from M8. Property (2.10) is natural as it ensures that, if the velocity is zero, the exact solution
is algebraically conserved. Although this property does not enter the numerical analysis that follows, in
practice it seems to have some importance, in particular to represent accurately the smallest scales in
turbulent flows.

One can derive kernels which satisfy simultaneously and to any given order, regularity, moment conditions
and the interpolation property. For a sake of simplicity, in the following we restrict ourselves to kernels
with a stencil covering an even number 2M

s

of grid points. We seek kernels � that have the following
properties:

P1: � has support in [�M
s

,+M
s

],
P2: � is even and piecewise polynomial of degree M in intervals of the form [i, i+ 1],
P3: � is of class Cr,
P4: � satisfies the moment properties (2.5) for a given value of p,
P5: � satisfies the interpolation property (2.10).

Such kernels are determined by M
s

(M + 1) coefficients. The regularity property P3 imposes M
s

(r + 1)

interface conditions at integer values, and [(r + 1)/2] conditions to express that derivatives of odd order
vanish at zero. The properties P4 and P5 impose p+1+M

s

conditions. One reasonable constraint under
which one can expect to find kernels satisfying these conditions is therefore

M
s

(M + 1) � (r + 1)M
s

+ [(r + 1)/2] + p+ 1 +M
s

.

regularity :

moment properties :

Convergence	result		(Co`et	et	al,	M2AN	2014)	:		
1)	the	spa6al	order	of	the	method	is	inf(p,r)	
2)	stability	holds	for	a	large	class	of	kernels	under	the	condi6on	

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ =

~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u =

~r ·
⇣
⌫

~r~u

⌘
+

~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

✓

i

=

i+N/2X

p=i�N/2

�x

✓

✓

p

⇤(x

i

� x

p

),

x

n+1
i

= x

i

+ ũ

n

i

�t (3)

In the above equation ã

n

i

denotes an evaluation of the velocity field at time t

n

= n�t and location

x

i

which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation

with a remeshing kernel � which satisfies �(�x) = �(x). If u

n

i

denotes the value approximating

u(x

i

, t

n

), this gives the following formula :

✓

n+1
i

=

X

j

✓

n

j

�

x

n+1
j

� x

i

�x

✓

!
, i 2 Zd

(4)

�t  k~r~uk�1
1

1

Remark	:																																is	some/mes	called	a	Lagrangian	CFL	condi/on	(LCFL)	with	LCFL	1

Brief Article

The Author

November 5, 2013

@✓

@t

+ ~u · ~r✓ =

~r ·
⇣


~r✓

⌘
(1)

@~u

@t

+ ~u · ~r~u =

~r ·
⇣
⌫

~r~u

⌘
+

~rp ,

~r · ~u = 0 (2)

�x

u

�x

✓ ' �x

u
p
Sc

) N

✓ '
p
ScN

u

✓

i

=

i+N/2X

p=i�N/2

�x

✓

✓

p

⇤(x

i

� x

p

),

x

n+1
i

= x

i

+ ũ

n

i

�t (3)

In the above equation ã

n

i

denotes an evaluation of the velocity field at time t

n

= n�t and location

x

i

which depends on the chosen time-stepping scheme. Remeshing follows, through interpolation

with a remeshing kernel � which satisfies �(�x) = �(x). If u

n

i

denotes the value approximating

u(x

i

, t

n

), this gives the following formula :

✓

n+1
i

=

X

j

✓

n

j

�

x

n+1
j

� x

i

�x

✓

!
, i 2 Zd

(4)

�t  k~r~uk�1
1

1

11

30 TITLE WILL BE SET BY THE PUBLISHER

Appendix

For a sake of completeness, we give here the analytical formulas for the kernels used in this work.

⇤2,1(x) =

8
><

>:

1� 5
2 |x|

2
+

3
2 |x|

3
0 6 |x| < 1

2� 4|x|+ 5
2 |x|

2 � 1
2 |x|

3
1 6 |x| < 2

0 2  |x|

⇤2,2(x) =

8
><

>:

1� |x|2 � 9
2 |x|

3
+

15
2 |x|

4 � 3|x|5 0 6 |x| < 1

�4 + 18|x|� 29|x|2 + 43
2 |x|

3 � 15
2 |x|

4
+ |x|5 1 6 |x| < 2

0 2  |x|

⇤4,2(x) =

8
>>><

>>>:

1� 5
4 |x|

2 � 35
12 |x|

3
+

21
4 |x|

4 � 25
12 |x|

5
0 6 |x| < 1

�4 +

75
4 |x|�

245
8 |x|2 + 545

24 |x|
3 � 63

8 |x|
4
+

25
24 |x|

5
1 6 |x| < 2

18� 153
4 |x|+ 255

8 |x|2 � 313
24 |x|

3
+

21
8 |x|

4 � 5
24 |x|

5
2 6 |x| < 3

0 3  |x|

⇤4,4(x) =

8
>>>>>>>><

>>>>>>>>:

1� 5
4 |x|

2
+

1
4 |x|

4 � 100
3 |x|5 + 455

4 |x|6 � 295
2 |x|7 + 345

4 |x|8 � 115
6 |x|9 0 6 |x| < 1

�199 +

5485
4 |x|� 32975

8 |x|2 + 28425
4 |x|3 � 61953

8 |x|4 + 33175
6 |x|5

�20685
8 |x|6 + 3055

4 |x|7 � 1035
8 |x|8 + 115

12 |x|
9

1 6 |x| < 2

5913� 89235
4 |x|+ 297585

8 |x|2 � 143895
4 |x|3 + 177871

8 |x|4 � 54641
6 |x|5

+

19775
8 |x|6 � 1715

4 |x|7 + 345
8 |x|8 � 23

12 |x|
9

2 6 |x| < 3

0 3  |x|

⇤6,4(x) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1� 49
36 |x|

2
+

7
18 |x|

4 � 3521
144 |x|

5
+

12029
144 |x|6 � 15617

144 |x|7 + 1015
16 |x|8 � 1015

72 |x|9 0 6 |x| < 1

�877
5 +

72583
60 |x|� 145467

40 |x|2 + 18809
3 |x|3 � 54663

8 |x|4 + 390327
80 |x|5

�182549
80 |x|6 + 161777

240 |x|7 � 1827
16 |x|8 + 203

24 |x|
9

1 6 |x| < 2

8695� 656131
20 |x|+ 3938809

72 |x|2 � 158725
3 |x|3 + 2354569

72 |x|4 � 9644621
720 |x|5

+

523589
144 |x|6 � 454097

720 |x|7 + 1015
16 |x|8 � 203

72 |x|
9

2 6 |x| < 3

�142528
5 +

375344
5 |x|� 3942344

45 |x|2 + 178394
3 |x|3 � 931315

36 |x|4 + 5385983
720 |x|5

�1035149
720 |x|6 + 127511

720 |x|7 � 203
16 |x|

8
+

29
72 |x|

9
3 6 |x| < 4

0 4  |x|

TITLE WILL BE SET BY THE PUBLISHER 31

⇤6,6(x) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1� 49
36 |x|

2
+

7
18 |x|

4 � 1
36 |x|

6 � 46109
144 |x|7 + 81361

48 |x|8 � 544705
144 |x|9 + 655039

144 |x|10

�223531
72 |x|11 + 81991

72 |x|12 � 6307
36 |x|13, 0 6 |x| < 1

�44291
5 +

1745121
20 |x|� 15711339

40 |x|2 + 32087377
30 |x|3 � 7860503

4 |x|4 + 38576524
15 |x|5

�24659323
10 |x|6 + 84181657

48 |x|7 � 74009313
80 |x|8 + 17159513

48 |x|9

�7870247
80 |x|10 + 438263

24 |x|11 � 81991
40 |x|12 + 6307

60 |x|13, 1 6 |x| < 2

3905497� 424679647
20 |x|+ 3822627865

72 |x|2 � 2424839767
30 |x|3 + 3009271097

36 |x|4

�930168127
15 |x|5 + 305535494

9 |x|6 � 9998313437
720 |x|7 + 203720335

48 |x|8 � 137843153
144 |x|9

+

22300663
144 |x|10 � 6126883

360 |x|11 + 81991
72 |x|12 � 6307

180 |x|
13, 2 6 |x| < 3

�255622144
5 +

971097344
5 |x|� 15295867328

45 |x|2 + 5442932656
15 |x|3 � 2372571796

9 |x|4

+

2064517469
15 |x|5 � 9563054381

180 |x|6 + 2210666335
144 |x|7 � 796980541

240 |x|8

+

76474979
144 |x|9 � 43946287

720 |x|10 + 343721
72 |x|11 � 81991

360 |x|12 + 901
180 |x|

13
3 6 |x| < 4

0, 4  |x|

⇤8,4(x) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

1� 205
144x

2
+

91
192x

4 � 6181
320 x

5
+

6337
96 x6 � 2745

32 x7 + 28909
576 x8 � 3569

320 x
9

0 6 |x| < 1

�154 +

12757
12 x� 230123

72 x2 + 264481
48 x3 � 576499

96 x4 + 686147
160 x5

�96277
48 x6 + 14221

24 x7 � 28909
288 x8 + 3569

480 x
9

1 6 |x| < 2

68776
7 � 1038011

28 x+

31157515
504 x2 � 956669

16 x3 + 3548009
96 x4 � 2422263

160 x5

+

197255
48 x6 � 19959

28 x7 + 144545
2016 x8 � 3569

1120x
9

2 6 |x| < 3

�56375 +

8314091
56 x� 49901303

288 x2 + 3763529
32 x3 � 19648027

384 x4 + 9469163
640 x5

�545977
192 x6 + 156927

448 x7 � 28909
1152 x

8
+

3569
4480x

9
3 6 |x| < 4

439375
7 � 64188125

504 x+

231125375
2016 x2 � 17306975

288 x3 + 7761805
384 x4 � 2895587

640 x5

+

129391
192 x6 � 259715

4032 x7 + 28909
8064 x

8 � 3569
40320x

9
4 6 |x| < 5

0 5  |x|

Acknowledgements

The authors are grateful to M. Bergdorf, D. Rossinnelli and P. Koumoutsakos for enlightening discussions
on GPU implementation and the derivation of high order kernels. The first author gratefully acknowledges
support from Institut Universitaire de France. This research has been partially supported by the Agence
Nationale pour la Recherche (ANR) under Contracts No. ANR-2010-COSI-0009 and ANR-2010-JCJC-
091601.

References

[1] M. Bergdorf, G.-H. Cottet, and P. Koumoutsakos. Multilevel adaptive particle methods for convection-diffusion equa-
tions. SIAM Multiscale Modeling and Simulation, 4:328–357, 2005.

[2] M. Bergdorf and P. Koumoutsakos. A lagrangian particle-wavelet method. SIAM Multiscale Modeling and Simulation,
5:980–995, 2006.

[3] F. Büyükkeçeci, O. Awile, and I. Sbalzarini. A portable opencl implementation of generic particle-mesh and mesh-particle
interpolation in 2d and 3d. Parallel Computing, 39(2):94–111, February 2013.

[4] A. Chorin. Numerical study of slightly viscous flow. J. Fluid Mech., 57:785–796, 1973.
[5] C. Cocle, G. Winckelmans, and G. Daeninck. Combining the vortex-in-cell and parallel fast multipole methods for

efficient domain decomposition simulations. J. Comp. Phys., 227:9091–9120, 2008.
[6] C. Cotter, J. Frank, and S. Reich. The remapped particle-mesh semi-lagrangian advection scheme. Q. J. Meteorol. Soc.,

133:251–260, 2007.
[7] G.-H. Cottet and P. Koumoutsakos. Vortex methods. Cambridge University Press, 2000.

Examples	of	remeshing	kernels	(2nd	and	6th	order)

12

16 TITLE WILL BE SET BY THE PUBLISHER

0,001 0,01
DX

1e-07

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

Er
ro

r i
n

m
ax

im
um

 n
or

m

Kernel Order of convergence

⇤2,1 2.35
⇤2,2 3.15
⇤4,2 3.45
⇤4,4 4.25

Figure 2. Refinement study for the 1D advection equation (4.1) and several first to fourth
order RPM and CFL value equal to 12. Left picture : black-circle curve : kernel ⇤2,1; red-
square : kernel ⇤2,2; blue-diamond : kernel ⇤4,2; green-triangle : ⇤4,4; dashed lines indicate
slopes corresponding to second and fourth order convergence. Right table: average order
of convergence for these RPM.

Kernel Order of convergence

⇤2,1 1.87
⇤4,2 3.17
⇤6,4 5.92

Figure 3. Refinement study for the 2D advection field (4.2). CFL value is equal to 12.
Left picture : black-circle curve : kernel ⇤2,1; red-square : kernel ⇤4,2; blue-triangle : kernel
⇤6,4; dashed lines indicate slopes corresponding to second and fourth order convergence.
Right table: average order of convergence for these RPM.

clearly shows the gain obtained in his case by using high order kernels, even though the theoretical order
of convergence is limited by that of the dimensional splitting.

As already stressed, one distinctive feature of Semi Lagrangian Particles are that their stability and the
spatial order of convergence is not constrained by a CFL condition. To illustrate this property, we repeated

Error	in	maximum	norm	for	different	kernels	(order	1_2,	2_4	and	4_6)

Accuracy assessment : case of a rotating patch in an off-center vorticity field

A LAGRANGIAN PARTICLE-WAVELET METHOD 987

the implementation of a narrow-band level set method: let η(s) be a mollification of
the Heaviside function, specifically

η(s) =

⎧
⎪⎨

⎪⎩

1, |s| ≤ β,

(|s|− γ)2 (2|s| + γ − 3β) (γ − β)−3, β < |s| ≤ γ,

0, |s| > γ,

(5.3)

where β and γ are parameters controlling the size of the narrow band. We now
smoothly truncate the detail coefficients of the MRA like

dl,µk ← dl,µk η
(
φ (hl+1)−1

)
.(5.4)

This truncation leads to a grid, which is refined only close to Γ(t) and thus results in
a level set φ, which is confined to a narrow band around Γ(t) on all levels except the
coarsest, which in general is very inexpensive to compute.

6. Kernels, scaling functions, and wavelets. The wavelets and scaling func-
tions we used to conduct the numerical experiments in the next section are interpolat-
ing wavelets [4, 7], based on the iterative interpolation scheme introduced by Deslau-
riers and Dubuc [3]. However, the formulation of the present method allows for the
utilization of other types of wavelets, e.g., second-generation wavelets or average-
interpolating wavelets. The order we chose is P = 4. The scaling function ϕ implied
by this choice is also known as the autocorrelation of Daubechies’ scaling function of
order 4 (Figure 6.1). For the interpolation of the indicator function (4.2) we use an
inexpensive bi-/trilinear kernel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

M
(x

)

0.0 0.5 1.0 1.5 2.0
10-5

10-4

10-3

10-2

10-1

100

101

M̂
(k

)

k

Fig. 6.1. The three kernels, ϕ (), M ′
4 (), and M ′′′

6 (), in real space (left) and
spectral space (right), where ϕ is the autocorrelation of Daubechies’ scaling function of order 4.

7. Numerical illustrations. In order to illustrate the Lagrangian adaptivity
of our method we have focused on a two-dimensional (2D) advection of a scalar with
a prescribed velocity field. We solve the problem of a passive scalar subject to a
single vortex in two frames: once as a plain advection problem, for which the exact
solution is known, and once in a level set frame, where we restrict our interest to the
development of an interface. The velocity field is given by [13]

u(x, t) = 2 cos(π t/T)

(
− sin2(π x) sin(π y) cos(π y)
sin2(π y) sin(π x) cos(π x)

)
.(7.1)

13

3D case : comparisons with Weno and VOF methods

Enright et al, JCP 2002
3r order Weno
N=100 + 64 ppc

CFL=1 (?)
CPU =??

Vincent et al, JCP 2010
VOF

N=64 + 9 ppc
CFL=0.1

Implementation of grid-based methods
with particles for corrections

N=100, CFL=8 N=160, CFL=12
CPU time :

1 s per iteration

remeshed particle method, 4th order
remeshing,

2nd order in time

14

20 TITLE WILL BE SET BY THE PUBLISHER

Figure 8. Isosurface u = 0.5 at t = 4.0 for the test case of the sphere in the flow (4.4)-(4.6)
with N = 256 and CFL = 30. Left picture: kernel ⇤2,1 ; right picture: kernel ⇤8,4.

physical scales resolved by these algorithms to the specific features of the processors involved in these
architectures.

A typical example is the case of turbulent transport in incompressible flows. Hybrid algorithms can be
designed to resolve in an optimal fashion the minimal scales present in the flow and in the advected
scalar [15]. Moreover in these hybrid approaches the different algorithms can have different parallel
scalability and it may be advantageous to distribute these algorithms to different type of processors. The
local nature of RPM make these methods well suited for highly parallel processors, like GPUs, and one
may envision simulations of transport at high Schmidt numbers in turbulent flows (that is when the scalar
smallest scales extend much beyond those of the flows) at very high resolution at a cost that does not
exceed that of the flow solver at a much lower resolution.

To be able to implement hybrid algorithms on hybrid architectures, one needs to develop high level
frameworks and libraries with a high level description which allows to distribute different solvers and grids
to different parts of the clusters in a seamless fashion.

In this section we first outline the general approach followed for this framework. We then go into more
details for a specific branch of this framework, namely the implementation on GPU of RPM. We detail
the performance of the different kernels associated to the different parts of the algorithm and the overall
performance of the GPU implementation of RPM. We in particular focus on the complexity of the RPM
using various high order kernels that have been derived and analyzed in the previous section.

5.1. Library description

In this library we use object oriented programming techniques to reach a high level of modularity, with a
strong focus on usability and flexibility. The goal is to enable the user to launch indifferently sequential,
parallel or hybrid numerical simulations. We use Python as an abstraction framework.

Our library currently provides two levels of parallelism, MPI and OpenCL. However, thanks to the
modularity it would also be possible to implement other parallelism paradigms such as task parallelism.

In order to achieve good portability, the computational frameworks are written using OpenCL C whenever
it will enable good performances on the target architecture. OpenCL is an open standard for parallel
programming of heterogeneous systems [21]. It provides application programming interfaces to address
hybrid platforms containing many CPUs and GPUs and a programming language based on C99 to write

20 TITLE WILL BE SET BY THE PUBLISHER

Figure 8. Isosurface u = 0.5 at t = 4.0 for the test case of the sphere in the flow (4.4)-(4.6)
with N = 256 and CFL = 30. Left picture: kernel ⇤2,1 ; right picture: kernel ⇤8,4.

physical scales resolved by these algorithms to the specific features of the processors involved in these
architectures.

A typical example is the case of turbulent transport in incompressible flows. Hybrid algorithms can be
designed to resolve in an optimal fashion the minimal scales present in the flow and in the advected
scalar [15]. Moreover in these hybrid approaches the different algorithms can have different parallel
scalability and it may be advantageous to distribute these algorithms to different type of processors. The
local nature of RPM make these methods well suited for highly parallel processors, like GPUs, and one
may envision simulations of transport at high Schmidt numbers in turbulent flows (that is when the scalar
smallest scales extend much beyond those of the flows) at very high resolution at a cost that does not
exceed that of the flow solver at a much lower resolution.

To be able to implement hybrid algorithms on hybrid architectures, one needs to develop high level
frameworks and libraries with a high level description which allows to distribute different solvers and grids
to different parts of the clusters in a seamless fashion.

In this section we first outline the general approach followed for this framework. We then go into more
details for a specific branch of this framework, namely the implementation on GPU of RPM. We detail
the performance of the different kernels associated to the different parts of the algorithm and the overall
performance of the GPU implementation of RPM. We in particular focus on the complexity of the RPM
using various high order kernels that have been derived and analyzed in the previous section.

5.1. Library description

In this library we use object oriented programming techniques to reach a high level of modularity, with a
strong focus on usability and flexibility. The goal is to enable the user to launch indifferently sequential,
parallel or hybrid numerical simulations. We use Python as an abstraction framework.

Our library currently provides two levels of parallelism, MPI and OpenCL. However, thanks to the
modularity it would also be possible to implement other parallelism paradigms such as task parallelism.

In order to achieve good portability, the computational frameworks are written using OpenCL C whenever
it will enable good performances on the target architecture. OpenCL is an open standard for parallel
programming of heterogeneous systems [21]. It provides application programming interfaces to address
hybrid platforms containing many CPUs and GPUs and a programming language based on C99 to write

15

Illustra6on	of	accuracy	of	the	Semi-Lagrangian	method		
compared	to	a	spectral	method

Semi-Lagrangian	method	needs	slightly	more	points	
to	resolve	the	dissipa/ve	scales

Scalar	spectra	given	by	spectral	vs	spectral/par/cle	method	in	a	decaying	THI	experiment	
with	Sc=50,	Nu=256,	Nθ=1024	
Par/cle	method	uses	second	order	kernel

16

�15 �10 �5 0 5 10 15

10�6

10�5

10�4

10�3

10�2

10�1

100

(@✓/@x1)/�

�
P

(@
✓/
@

x

1)

Figure 12: PDF of the scalar gradient at time u
0

k
0

t = 3 for Sc = 50. � is
the mean square root of the gradient scalar (computed in spectral run). See
figure 11 for legend.

0 20 40 60 80 100 120 140 160

10�8

10�6

10�4

10�2

100

�/�̄

�̄
P

(�
)

Figure 13: PDF of the scalar dissipation at time u
0

k
0

t = 3 for Sc = 50. See
Fig. 11 for legend.

18

The PDFs of the scalar gradient and the scalar dissipation are plot-
ted on Figures12 and 13. All the runs provides the same scalar gradient
distribution even for the hybrid method with N ✓ = 10243. The hybrid
method well predicts the tails of the PDF of the mean dissipation rate
only for N ✓ � 12803. The fit with the theoretical form exp

�
c(�/�̄)↵

�
gives

↵ = 0.351, 0.374 and 0.350 at time k
0

u
0

t = 3 for spectral method and hybrid
method with N ✓ = 10243 and 12803, respectively.

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

u0k0t

�S
u
✓
(t

)

Figure 14: Time evolution of the mixed skewness �Su✓(t) for Runs 7 to 9
(Sc = 50). See figure 11 for legend.

Figures 14 and 15 show the mixed skewness and the flatness of the scalar
gradient. The results obtained with the spectral method and the hybrid
method with N✓ = 1280 (i.e. K✓

max

⌘B � 2.25) collapse perfectly.
These experiments confirm that the condition K✓

max

⌘B � 2.25 on the
scalar resolution (coupled with the classical condition for the Navier-Stokes
equation Ku

max

⌘K � 1.5) ensures accurate DNS with the hybrid method.
For 1.5 < K✓

max

⌘B < 2.25, the global statistic quantities are correct but
the smallest scales are a little underestimated. Nevertheless we will see this
error remains small and allows to study qualitatively the spectrum decay and
discriminate between universal scaling laws. The next section will explain
how this hybrid strategy provides important speed-up even when a finer
spatial resolution is required.

19

0 1 2 3 4 5 6

5

10

15

20

25

u0k0t

F

@✓
/@

x

1
(t

)

Figure 15: Time evolution of the flatness of the scalar gradient for Runs 7
to 9 (Sc = 50). See Fig. 11 for legend.

3.3. Numerical e�ciency

Table 4 presents the numerical e�ciency of the di↵erent methods. In
this table we give the CPU time for one time-step, when the time-step is
the same for the Navier-Stokes and scalar equations, as well as the total
CPU time to reach a given simulation time u

0

k
0

t = 6. Indeed, to allow to
distinguish between the inherent complexity of the particle method itself and
its e�ciency resulting form the fact that it can be used with large time-steps,
we have performed additional runs (3bis, 4bis ..) in which particle methods
were used with the same time-steps as the Navier-Stokes equations. All the
simulations, except for run 1, have been performed on 2048 (physical) cores
of a IBM Blue Gene Q. On this computer, the CPU frequency is low (1,6
GHz for each core). The reference run 1 has been performed on 4096 cores.

A first conclusion is that the particle method for the scalar equation runs
about 10% faster than the spectral method at the same resolution and for the
same time-sep (runs 2 and 3bis). On Intel-based clusters, which are more
common, similar comparisons have been performed, and the acceleration
factor reaches the value of 2. However the most important speed-up factor
comes from the large time step allowed by the hybrid method. As expected,
the scalar time step does not depend on the scalar spatial resolution. For test-
cases at Sc = 1, the same time-step is used for N ✓ = 10243, 12803 and 15363

when a classical method would require to divide it by 1.25 for N ✓ = 12803

20

�15 �10 �5 0 5 10 15

10�6

10�5

10�4

10�3

10�2

10�1

100

(@✓/@x1)/�

�
P

(@
✓/
@

x

1)

Figure 12: PDF of the scalar gradient at time u
0

k
0

t = 3 for Sc = 50. � is
the mean square root of the gradient scalar (computed in spectral run). See
figure 11 for legend.

0 20 40 60 80 100 120 140 160

10�8

10�6

10�4

10�2

100

�/�̄

�̄
P

(�
)

Figure 13: PDF of the scalar dissipation at time u
0

k
0

t = 3 for Sc = 50. See
Fig. 11 for legend.

18

Addi/onal	diagnos/cs

pdf	of	scalar	gradient

/me	evolu/on	of	scalar	flatness

/me	evolu/on	of	scalar	skewness

pdf	of	scalar	dissipa/on

17

Samples	of	simula/ons	performed	during	the	
CTR	Summer	Program	2012		
(on	up	to	8000	cores	with	MPI)

-	Stability	condi/on	is	independent	of		
-	Case																					and																		:		
	 established	mixing	dynamic	takes	 
									18h	instead	of	≈	12	days	with	full			 
									spectral	method.	

Forced	homogeneous	turbulence:	
Systema/c	quan/ta/ve	study	of	spectra	at	large,	intermediate	and	small	scales		

for	a	wide	range	of	Reynolds	and	Schmidt	numbers

-	Ra/o	of	scalar/momentum	resolu/on		
roughly	given	by	Sc1/2	

R� Nu Ku
max

⌘K �tu Sc N ✓ K✓
max

⌘B �t✓ �t✓
spec

130 2563 1.73 1.2e�2

0.7 5123 -

8.6e�2

6e�3

4 10243 3.39 3e�3

8 10243 2.45 3e�3

16 15363 2.61 2e�3

32 15363 1.85 2e�3

64 20483 1.76 1.5e�3

128 30643 1.79 1e�3

210 5123 1.79 3e�3

0.7 7703 -
2e�2

2e�3

4 10243 1.76 1.5e�3

Table 5: Setup of simulations performed. �tu is the time step used to solve
the Navier-Stokes equation with a pseudo-spectral solver. �t✓ is the time
step used to solve the scalar transport equation with the particle method.
�t✓

spec

is the time step which would be needed if a pseudo-spectral method
was used for the same number of scalar grid points.

the results show a inertial-convective range independent of the Schmidt num-
ber. The k�5/3 range of the scalar spectrum is found more clearly than the
k�5/3 range of the energy spectrum. Indeed, the scalar spectrum exponent
is known to tend to the �5/3 value more rapidly than the energy spectrum
exponent [26, 27]. Note that the end of the inertial-convective range appears
around k⌘K ⇡ 0.1 (which is roughly the Taylor scale) independently of the
Schmidt number.

Beyond this range, for Schmidt numbers larger than one, Batchelor [19]
explained the development of the viscous-convective range with a k�1 law.
This scaling is due to the velocity small scales strain e↵ect on the scalar
field. Figure 18 shows the scalar spectra for various Schmidt numbers, com-
pensated by the Batchelor’s scaling. For clarity, the results are shown with
wavenumbers multiplied by the Kolmogorov scale (Figure 18, left picture)
or by the Batchelor scale (Figure 18, right picture). From our numerical
results, the �1 power law starts from k⌘K ⇡ 0.1, after the inertial-convective
range, and this viscous-convective range grows with the Schmidt number
(Figure 18, left picture). The form of the scalar variance spectrum in the
dissipation range (following the viscous-convective range) is also studied (Fig-
ure 18, right picture). Two distinct theoretical behaviors have been proposed

24

18

	Scaling	of	the	large	and	intermediate	scales

Scaling	of	smallest	scales

Scaling	at	large	and	intermediate	scales	
	 Depending	on	Reynolds	and	Schmidt		
numbers,	k -5/3 or k -1 or	both	scaling	found	 
	 in	accordance	with	theore/cal	predic/ons	

	Scaling	at	the	smallest	scales	
	 Numerical	results	in	good	agreement		
	 with	Kraichnan’s	theory:	k -1exp(α.k)

Kraichnan’s prediction

Batchelor’s prediction

Example	of	jet	simula/on	using	one	billion	par/cles	for	the	scalar	on	8	GPUs	at	1	fps	
Re=104,	Sc=10

side	view top	view

vo
r/
ci
ty

sc
al
ar

zoom	of	scalar		
and	vor/city	
showing	the		
different	scales

20

Handling complex geometries and Fluid-Structure Interactions
with Immersed boundary technics

21

complex geometry

elastic bodies

rigid bodies

collision/contact

«deforming rigid» bodies

Regular (Cartesian) grid with your (favorite) Navier-Stokes solver

No-slip boundary
 conditions

Interfaces
Elastic stresses

M. Ismail et al.

22

«Same» flow solver on a cartesian grid
coupled with a few advection equations

23

Application to the 3D simulation and optimization of swimming

Conventional approach would use body-fitted FV methods,
ALE mesh generation and coupling boundary conditions between fluid and body

Copyright© 1997, American Institute of Aeronautics and Astronautics, Inc.

Since the structural problem is solved by the mid-

point rule, it follows that

un+i - un = — un+i

Finally, from Eqs. (13,14) we derive

n+i = un+i - - U n i o n T

(14)

(15)

which completes the proof by induction of PROPO-

SITION 1.

PROPOSITION 2. The ISS procedure described

above satisfies Eg. (6) (implied by the GCL) and

both interface continuity equations (4).

PROOF. Define

X r a _ i+X n + i

Substituting Eq. (11) into Eq. (16) gives

At .
Xn —

 x
n_i + Xn

(16)

(17)

and substituting Eqs. (10,12) into Eq. (17) gives

xn = un on T (18)

which concludes the proof of PROPOSITION 2.

REMARK 2. From Eq. (13), it follows that up-

dating the fluid dynamic mesh using Eq. (11) is

equivalent to updating it using

xn , i = un -u,. (19)

The second proposition summarizes the main idea

behind the design of the ISS method, and high-

lights the major difference between this improved

serial staggered procedure and the conventional se-

rial staggered procedure CSS overviewed in Section

2.1.

The ISS method advocated in this paper is illus-

trated in Fig. 4. It is subiteration-free, has a com-

putational complexity that is similar to that of the

CSS method, and exhibits superior numerical prop-

erties that are highlighted in Section 6. It can be

equipped with fluid subcycling as for the case of the

CSS procedure (see Fig. 2).

4 An improved parallel partitioned

solution procedure

The mathematical analysis performed in [7] for a

linearized aeroelastic model problem suggests that

Wn-1/2 © Wn+i/2 ^

©V" Awl/2 Vn+l
Pn+3/2

0

Figure 4: ISS: the improved serial staggered proce-

dure

for the CPS procedure, inter-field parallelism is

achieved at the expense of amplified errors in the

fluid and structure responses. This is not surprising

given that the CPS method does not implement any

feedback between the fluid and the structure within

one coupled time-step. In order to improve the ac-

curacy of this basic parallel time-integrator, we pro-

pose to exchange information between the fluid and

structure kernels at half-step. We label the corre-

sponding staggered algorithm the Improved Parallel

Staggered (IPS) procedure, and depict it graphically

in Fig. 5.

x
n=-2(

u
n-l

 +
 '

r
ii)

 x
n+l/2=

u
l> xn+, = ̂ (un+Un+l)

Wn (T) ^ Wn+i ^ (?)

/
U

n+l

Figure 5: IPS: the improved parallel staggered pro-

cedure

The computations performed during the first half

of a cycle of the IPS procedure are identical to

those that are performed during a cycle of the

CPS method, except that the fluid system is ad-

vanced only up to tn+i, while the structure is time-

integrated all the way to tn+i- Let Wn+i and Un+i

denote respectively the fluid and state vectors corn-

American Institute of Aeronautics and Astronautics

Time consuming and difficult to extend to several bodies

Alternative approach based on penalization method in cartesian grids

Body-fitted mesh generation

Fluid-solid interface coupling and interface conditions

24

1) Penalization method for one-way interaction [Angot-Bruneau-Fabrie 1999]

•S the rigid body at a given time, subject to gravity forces, embedded in a
computational box Ω
•ū = prescribed body velocity,

•χS = 1 in the body, 0 outside and

•λ a (large) penalization parameter

then :

58

Obstacle

Fluid

Tagged grid points for

the solution

of the linear system

Physical
boundaryNumerical

boundary

Figure 35: Immersed boundary

6.2.3 IMMERSED BOUNDARY TECHNIQUES - THE PENALIZATION METHOD The
idea behind penalization method is to view obstacles, walls, etc .. as porous media
which absorb the velocity in a small layer on the boundary of the obstacle [2]. From a
mathematical point of view, it means assuming a flow everywhere, including inside the
obstacles, and adding a term in the flow equation which drives the velocity back to zero
- or whatever value is sought - inside the obstacles.

To be more specific, we consider, in a computational domain K, the case of an incom-
pressible flow around an object S with prescribed velocity u inside S. We denote by �
a penalization parameter, � >> 1, and denote by ⌅S the characteristic function of S (1
inside, 0 outside). The model equation is then the following :

⇤

�
�u

�t
+ (u ·⇧)u

⇥
� ⇥�u +⇧p = ⇤ g + � ⇤⌅S(u� u)forx ⌅ K (92)

coupled with the incompressibility condition

div u = 0 for x ⌅ K (93)

In the above equation ⇤ denotes the density, with value ⇤S in S and ⇤F in the fluid
outside S, F = K � S. If we want to use vortex particles to handle this penalization
model, we first need to derive the vorticity form of (92). Taking the curl of (92) we get

�⇧

�t
+ (u ·⇧)⇧ = (⇧ ·⇧)u + ⇥�⇧ �⇧p⇤⇧(

1
⇤
) + �⇧⇤⌅S(u� u). (94)

This system has to be complemented by the usual system giving the velocity in terms of
the vorticity :

⇧ · u = 0inK;⇧⇤u = ⇧ inK. (95)

The right hand side above exhibits two terms : a so-called barotropic term, resulting
from the density variations, already seen in variable density and free surface flows, and

 in the computational box Ω

+ boundary conditions (e.g. periodic)

25

2) extension to two-way interaction [Coquerelle, C. 2008; Bost, C., Maitre 2009]:
computation of solid velocities not prescribed but obtained by projection of flow
velocity onto rigid body velocity:

60

tion term based on this level set. The level set equation is classically :

⌃⇥S

⌃t
+ (u ·⇧)⇥S = 0. (97)

The level set function is initialized as a distance function to the initial boundary of the
solid, positive inside and negative outside. The expression of the rigid motion u is actu-
ally rather simple : it is obtained by averaging the velocity (to obtain the translation part
of the rigid body - and the vorticity (to obtain the rotation) inside the body :

u =
1

|S|

⇤

K
⇤Su dx +

�
J�1

⇤

K
⇤Su⇤ (x� xG) dx

⇥
⇤(x� xG). (98)

We have denoted by ⇤S the characteristic function of the solid which can be immediately
recovered from the level set function : ⇤S(x) = (1 + sign(⇥S(x)))/2. The appealing

Figure 36: Kissing and tumbling of 2 spheres by a vortex level set method.

character of is model is the fact that it both relies on clear-cut numerical recipes (one
can actually prove that it converges, when numerical discretization parameters tend to
0, to the exact physical solution) and is very easily implemented in a remeshed particle
algorithm. Such an algorithm will combines the following steps, for each time interval :

⌃�

⌃t
+ (u ·⇧) � = (� ·⇧)u + ��� (99)

where J is the inertia matrix of the body K, and xG is its mass center.

average
 translation velocity average vorticity

E =
1

ϵ

∫

E(|∇φ|)ζ(
φ

ϵ
) dx

T(γ(s, t), t) = λ(∥γs(s, t)∥ − 1)

−div(F (ψ, ∇ψ)∇ψ ⊗∇ψ)

(ut + (u · ∇)u) − div σ(ψ,Du,X, ∇X) + ∇p = 0

σ(ψ,Du,X, ∇X) = σS(X, ∇Xt
∇X) + H(ψ/ε)

(

σF (Du) − σS(X, ∇Xt
∇X)

)

ut + (u · ∇)u − ν∆u + ∇p = λ(ū − u)χS

ωt + (u · ∇)ω = (ω · ∇)u + ν∆ω + λ(ω̄ − ω)χS + λ(ū − u) × n δ∂S

ωt + (u · ∇)ω = (ω · ∇)u + ν∆ω + (ω̄ − ω)H(ϕ/ε) − (ū − u) × ∇ϕ ζε(ϕ)

α4 = γ(Z)

∂φ

∂t
+ (u · ∇)φ = 0

ρ

(

∂u

∂t
+ (u · ∇)u

)

+ ∇p − ν∆u = f(φ, ∇φ)

ρ

(

∂u

∂t
+ (u · ∇)u

)

+ ∇p = ν∆u + ρg + λχS(ū − u) + γFe

λ >> 1 , γ = 0

Xt = u(X(r, s, t), t) =

∫

u(x, t)δ(x − X(r, s, t)) dx

f(x, t) =

∫

F(r, s, t)δ(x − X(r, s, t) drds

τ =
V

4

3
π

(

A
4π

)3/2
∈ [0, 1]

4

S is captured by a level set function, advected with the rigid motion ū :

In practice: solid motion allows to compute ϕ analytically

26

3) In a vorticity formulation, leads to

complemented by the usual system giving u from ω , and the coupling of ū with the
flow and the contact forces

58

Obstacle

Fluid

Tagged grid points for

the solution

of the linear system

Physical
boundaryNumerical

boundary

Figure 35: Immersed boundary

6.2.3 IMMERSED BOUNDARY TECHNIQUES - THE PENALIZATION METHOD The
idea behind penalization method is to view obstacles, walls, etc .. as porous media
which absorb the velocity in a small layer on the boundary of the obstacle [2]. From a
mathematical point of view, it means assuming a flow everywhere, including inside the
obstacles, and adding a term in the flow equation which drives the velocity back to zero
- or whatever value is sought - inside the obstacles.

To be more specific, we consider, in a computational domain K, the case of an incom-
pressible flow around an object S with prescribed velocity u inside S. We denote by �
a penalization parameter, � >> 1, and denote by ⌅S the characteristic function of S (1
inside, 0 outside). The model equation is then the following :

⇤

�
�u

�t
+ (u ·⇧)u

⇥
� ⇥�u +⇧p = ⇤ g + � ⇤⌅S(u� u)forx ⌅ K (92)

coupled with the incompressibility condition

div u = 0 for x ⌅ K (93)

In the above equation ⇤ denotes the density, with value ⇤S in S and ⇤F in the fluid
outside S, F = K � S. If we want to use vortex particles to handle this penalization
model, we first need to derive the vorticity form of (92). Taking the curl of (92) we get

�⇧

�t
+ (u ·⇧)⇧ = (⇧ ·⇧)u + ⇥�⇧ �⇧p⇤⇧(

1
⇤
) + �⇧⇤⌅S(u� u). (94)

This system has to be complemented by the usual system giving the velocity in terms of
the vorticity :

⇧ · u = 0inK;⇧⇤u = ⇧ inK. (95)

The right hand side above exhibits two terms : a so-called barotropic term, resulting
from the density variations, already seen in variable density and free surface flows, and

59

a term coming from the penalization. We now continue with the derivation of the model.
Developing the term ⇧⇤⇧S(u� u) one obtains

�⌃

�t
+(u·⇧)⌃�(⌃ ·⇧)u�⇤�⌃ = �⇧p⇤⇧(

1
⌅
)+⇥⇧S(⌃�⌃)+⇥�� n⇤(u�u). (96)

In the above equation we have set ⌃ = ⇧⇤u and n is the normal to the interface ⇥ ori-
ented towards the solid. It is interesting to note that the right hand side of this equation
contains, in addition to the density-driven term, a vorticity generator coming from the
no-slip condition at the fluid-solid interface.This term is also localized at the interface.
It is very much reminiscent to vorticity creation algorithms that we have outlined when
we have discussed gird-free methods (Figure 34). A definite difference though with
previously seen immersed boundary methods, is that here, both normal and tangential
components of the velocity are handled by a single term in the vorticity equation. This
greatly simplifies the algorithm. A drawback is that the condition on the normal compo-
nent is possibly not satisfied with the same accuracy as when it is addressed by potential
sources like in 6.2.2. Therefore it may happens that a few particles cross the interface.
To avoid circulation defect in the method, it is therefore important that vorticity inside
the solid domain is not discarded. We will outline the algorithm box, when we adress
the more general situation of a fluid fully interacting with a solid body.

6.3 Interaction of a fluid with rigid bodies

The classical approach to adress fluid solid interaction (wether the solid is rigid or elas-
tic) is to solve separately fluid and solids, with the associated physics, and to couple
them through interface conditions that translate the continuity of forces and velocities.
In general the description of the physics in the fluids is Eulerian, that is equations of the
fluid are solved in Eulerian coordinates on a grid, while it is Lagrangian in the solid.
The grid for the fluid has to adjust to the moving interface with the solid, at least in the
normal direction (whence the name ALE for Arbitrary Lagrangian Eulerian methods).
These methods are rather tricky to implement in particular in 3D and/or in presence of
large defomations.It is clearly possible to define ALE particle methods, here the fluid is
solved by a grid-free or hybrid particle-grid algorithm combined with solid solvers (for
instance based on classical Finite Element solvers). However one may anticipate that
these methods will face the problems of all ALE methods, with the additional difficulty
inherent to particle methods for enforcing boundary conditions.

In the following we therefore focus on an alternative approach, which is to consider
fluids and solids as a single, variable density, multiphase, flow. The different phases,
fluids, elastic or rigid solids, are captured by level set methods. Interface conditions are
enforced by penalization methods. We first consider the case of a single rigid body in an
incompressible fluid, and we show how to model it with a vortex particle method

The starting model is the penalization model (94) just seen, with two additional fea-
tures:

• the solid velocity is not given, but a result of flow forces, gravity and so on ..
• the solid is moving, and its boundary is captured by a level set function.

This means that we have to complement (94) by an expression for u, an advection equa-
tion for a level set following the fluid/solid interface, and an expression of the penaliza-

4) Extension to deforming bodies (Gazzola et al. 2011)
translation

rotation

deformation

prescribed

result of body-flow interaction
→ computed from mean velocity/vorticity in the body

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

2

• Penalization methods offer flexibility and reduce computational cost,
but at the expense of lower accuracy near the boundaries

• Requires to locally refine in adaptive manner

27

At each time-step, wavelet-based MRA of (grid) quantities, based on interpolating wavelets :

982 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

results in a time step bound of

δt < C∥∇ ⊗ u∥−1
∞(2.6)

or LCFL < C, where LCFL ≡ δt ∥∇ ⊗ u∥∞.
The inherent adaptation of particle methods to the flow map can lead to an

irregular distribution of particles and to the loss of convergence, as the function ap-
proximation (2.2) ceases to be well sampled. It is therefore necessary to periodically
regularize the particle locations by “remeshing” them onto regular positions [11, 23].
This redistribution is in general accomplished by interpolating particle values onto a
regular grid where a new set of particles is created with positions given by the grid
locations. Because our kernel ζ is interpolating, remeshing is implemented by directly
evaluating the function q on grid locations after each time step:

Qnew
i = hd

∑

p

Qpζ
h(xnew

i − xp),(2.7)

where xnew
i = ih lie on the grid nodes.

In this work we introduce the function M ′′′
6 , which is interpolating, of order six,

and in C2(R):

M ′′′
6 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
88 (|x|− 1)(60 |x|4 − 87 |x|3 − 87 |x|2 + 88 |x| + 88), |x| < 1,

1
176 (|x|− 1)(|x|− 2)(60 |x|3 − 261 |x|2 + 257 |x| + 68), 1 ≤ |x| < 2,

− 3
176 (|x|− 2)(4 |x|2 − 17 |x| + 12)(|x|− 3)2, 2 ≤ |x| < 3,

0, |x| ≥ 3.

(2.8)

We chose the particle kernel ζ as the d-dimensional tensor product of (2.8). The M ′′′
6

is of higher order than the M ′
4 function [11] often used in the context of remeshing,

and it introduces less spurious small scales. The improved accuracy comes at the
expense of a larger support (supp): supp(M ′

4) = 4 vs. supp(M ′′′
6) = 6.

3. Wavelet-based adaptation for PM techniques. In the present framework
we implement tensor-product wavelets ψl,µ and scaling functions ϕl on a sequence of
L + 1 dyadically refined grids with mesh spacings {hl}Ll=0 = {h0 2−l}Ll=0 and grid
points k ∈ {Kl}Ll=0. The scaling functions and wavelets are related as

ϕl
j =

∑

k

H l
j,k ϕl+1

k , ψl,µ
j =

∑

k

Gl,µ
j,k ϕl+1

k ,(3.1)

where µ = 1, . . . , 2d − 1. The discrete filters H l
j,k and Gl,µ

j,k depend on the specific
choice of wavelets employed. Using these bases a function q(x) is expressed as

q(x) =
∑

k∈K0

c0k ϕ0
k(x) +

L−1∑

l=0

∑

k∈Kl

2d−1∑

µ=1

dl,µk ψl,µ
k (x).(3.2)

The scaling coefficients clk and detail coefficients dl,µk can be efficiently computed
using a fast wavelet transform. In areas where the function q(x) is smooth the detail
coefficients of fine levels l will tend to be small, and a compressed representation

982 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

results in a time step bound of

δt < C∥∇ ⊗ u∥−1
∞(2.6)

or LCFL < C, where LCFL ≡ δt ∥∇ ⊗ u∥∞.
The inherent adaptation of particle methods to the flow map can lead to an

irregular distribution of particles and to the loss of convergence, as the function ap-
proximation (2.2) ceases to be well sampled. It is therefore necessary to periodically
regularize the particle locations by “remeshing” them onto regular positions [11, 23].
This redistribution is in general accomplished by interpolating particle values onto a
regular grid where a new set of particles is created with positions given by the grid
locations. Because our kernel ζ is interpolating, remeshing is implemented by directly
evaluating the function q on grid locations after each time step:

Qnew
i = hd

∑

p

Qpζ
h(xnew

i − xp),(2.7)

where xnew
i = ih lie on the grid nodes.

In this work we introduce the function M ′′′
6 , which is interpolating, of order six,

and in C2(R):

M ′′′
6 (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1
88 (|x|− 1)(60 |x|4 − 87 |x|3 − 87 |x|2 + 88 |x| + 88), |x| < 1,

1
176 (|x|− 1)(|x|− 2)(60 |x|3 − 261 |x|2 + 257 |x| + 68), 1 ≤ |x| < 2,

− 3
176 (|x|− 2)(4 |x|2 − 17 |x| + 12)(|x|− 3)2, 2 ≤ |x| < 3,

0, |x| ≥ 3.

(2.8)

We chose the particle kernel ζ as the d-dimensional tensor product of (2.8). The M ′′′
6

is of higher order than the M ′
4 function [11] often used in the context of remeshing,

and it introduces less spurious small scales. The improved accuracy comes at the
expense of a larger support (supp): supp(M ′

4) = 4 vs. supp(M ′′′
6) = 6.

3. Wavelet-based adaptation for PM techniques. In the present framework
we implement tensor-product wavelets ψl,µ and scaling functions ϕl on a sequence of
L + 1 dyadically refined grids with mesh spacings {hl}Ll=0 = {h0 2−l}Ll=0 and grid
points k ∈ {Kl}Ll=0. The scaling functions and wavelets are related as

ϕl
j =

∑

k

H l
j,k ϕl+1

k , ψl,µ
j =

∑

k

Gl,µ
j,k ϕl+1

k ,(3.1)

where µ = 1, . . . , 2d − 1. The discrete filters H l
j,k and Gl,µ

j,k depend on the specific
choice of wavelets employed. Using these bases a function q(x) is expressed as

q(x) =
∑

k∈K0

c0k ϕ0
k(x) +

L−1∑

l=0

∑

k∈Kl

2d−1∑

µ=1

dl,µk ψl,µ
k (x).(3.2)

The scaling coefficients clk and detail coefficients dl,µk can be efficiently computed
using a fast wavelet transform. In areas where the function q(x) is smooth the detail
coefficients of fine levels l will tend to be small, and a compressed representation

where d is the dimension and scaling functions and wavelets are recursively given by filter
operations

Wavelet-based multi-resolution particle methods (Bergdorf & Koumoutsakos, 2006)

basis functions for scales spaces at level 𝑙 and 𝑙+1

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

V l

W l

V l+1 = V l

M
W l

2

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

V l

W l

V l+1 = V l

M
W l

2

basis functions for details spaces at level 𝑙 and 𝑙+1

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

V l

W l

V l+1 = V l

M
W l

2

28

Nested grids and grid adaptation based on thresholding detail coefficient
 (Liandrat & Tchamitchian, 1990, Vasilyev 2003)

Particle method advects/remeshes scale solution at the successive scales, level by level,
then combine results to reconstruct solution and perform MRA for next iteration

984 MICHAEL BERGDORF AND PETROS KOUMOUTSAKOS

MRA

K>(t + 1
2δt)

create
particles

K>(t)
MRA

advect advect

remesh
particles

K>(t + δt)

 time

grid

particles

M → M

P → M M → P

Fig. 4.1. Particles are created on the adapted grid K>(t) and advected. In the context of a
two-step ODE integration scheme, the particle function representation is evaluated (P → M) on an
intermediate grid K>(t + 1

2 δt), and the right-hand sides that are evaluated on this grid (M → M)
are interpolated back onto the particles (M → P). At the end of the time step the particles are
remeshed onto a mesh K>(t + δt) on which the next MRA is performed.

around Kl
>. Values of these buffer grid points are interpolated from coarser levels,

which is always possible due to the nestedness that we have ascertained earlier.
For P → M interpolation the situation looks different. Particles reside on differ-

ent levels of refinement. When evaluating the particle function representation on a
grid point i, we must therefore make sure that there are particles everywhere in the
support of the interpolant ζh(· − i). We will now present two ways of dealing with
this requirement and highlight their close relation to the convection of small-scale
information.

4.2. P → M: The “Eulerian” approach. This approach can be seen as a
simplified version of a multilevel interpolation procedure that we have introduced in [2]
in the context of an AMR-based particle method. The procedure works as follows (see
Figure 4.2):

(a) We start with a set of activated grid points {Kl
>}Ll=0 selected by the adapta-

tion procedure (3.4).
(b) We then expand this set by ⌈CFL⌉ grid points on each level creating an

extended set Kl
>,ext ≡ Kl

> ∪ Kl
>,CFL; this extension will serve to capture

level l-scale information that is convected out of Kl
>. Around this set we

create a buffer band Bl. We will derive the required size of Bl below.
(c) Now we create particles on grid points k ∈ Bl ∪K>,ext and convect them.
(d) Particle quantities are interpolated onto the grid points in K>,ext.

Fig. 4.2. The “Eulerian” way: (a) Active grid points Kl
> are selected by MRA; (b) Kl

> is

extended by Kl
>,CFL to account for the convection of small scales, a buffer Bl is added, and particles

are created; (c) particles are convected; (d) particles are interpolated onto grid points k ∈ Kl
>,ext.

Nested grids, for wavelet coefficient above given threshold :

An additional buffer is created around particles activated at level 𝑙, with values obtained by
interpolation from level 𝑙-1, to allow consistent remeshing

A LAGRANGIAN PARTICLE-WAVELET METHOD 985

Fig. 4.3. The “Lagrangian” way: (a) Active grid points Kl
> are selected by MRA; (b) Kl

>

is extended by a buffer Bl, an indicator (4.2) is assigned, and particles are created; (c) particles
are convected—they carry the indicator function values alongside; (d) particle quantities and the
indicator function are interpolated onto the grid, and a new set Kl

> is obtained as {k | χl
k > 0 }.

In order to have a sufficient number of particles in the support of the interpolation
kernel, the Bl must be chosen as

Bl =
{
k′

∣∣∣ min
k∈Kl

>,ext

|k′ − k| ≤ ⌈ 1
2 supp(ζ) + CFL⌉

}
.(4.1)

This approach bears two disadvantages: first, it requires the extension of the
set of active grid points to capture convected small scales and, second, the size of
both the extension and the buffer band depend on the CFL number. For particle
methods, where situations with CFL ≫ 1 are possible, this can severely detract from
the efficiency of the method.

4.3. P → M: The “Lagrangian” approach. The second approach inherits
from the Lagrangian character of the underlying particle method (see Figure 4.3):

(a) We again start from the set of active grid points {Kl
>}Ll=0 selected by the

preceding MRA.
(b) Around this set we create a buffer band Bl on each level. Additionally, we

introduce an indicator function χl defined as

χl
k =

{
1, k ∈ Kl

>,

0, k ∈ Bl.
(4.2)

(c) We convect the particles, now carrying the particle quantities and alongside
the indicator function χl.

(d) Particle quantities and the indicator function are interpolated onto the under-
lying grid points and grid points on which the interpolated indicator function
χ̃l

k > 0 are selected1 to constitute the new set Kl
>.

In order to have a sufficient number of particles in the support of the interpolation
kernel, the Bl must be chosen as

Bl =
{
k′

∣∣∣ min
k∈Kl

>

|k′ − k| ≤ ⌈ 1
2 supp(ζ) + LCFL⌉

}
,(4.3)

where the addition of LCFL accounts for the effects of deformation as illustrated in
Figure 4.4. Using this technique, the scale distribution {Kl

>}Ll=0 is naturally convected

1Another possibility is to set χl
k = 1 for all particles. After remeshing, one then selects the new

Kl
> as {k ∈ Kl |χl

k > 1− εPM}, where εPM represents the tolerance for the error introduced by the
interpolation.

Finally, like for grid-based methods, need to allow levels 𝑙+1 to appear from level 𝑙 during advection step.

Important: time steps given by LCFL =1 are ok :
time scale on which scale 𝑙+1 appear from scale 𝑙 is given by

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

V l

W l

V l+1 = V l

M
W l

dt
l!l+1 = ln 2/|ru|

2

29

Algorithm	for	6me	advancement	of	par6cles	at	a	given	level	𝑙

select	«ac/ve»		
par/cles		
on	the	grid		
(with	tag=1)	

create	a	buffer	
around	these	
par/cles	
(with	tag=0)

advect	par/cles		
and	tag

remesh	par/cles	
and	tag;		
keep	par6cles		
with	tag	>	0

30

A LAGRANGIAN PARTICLE-WAVELET METHOD 987

the implementation of a narrow-band level set method: let η(s) be a mollification of
the Heaviside function, specifically

η(s) =

⎧
⎪⎨

⎪⎩

1, |s| ≤ β,

(|s|− γ)2 (2|s| + γ − 3β) (γ − β)−3, β < |s| ≤ γ,

0, |s| > γ,

(5.3)

where β and γ are parameters controlling the size of the narrow band. We now
smoothly truncate the detail coefficients of the MRA like

dl,µk ← dl,µk η
(
φ (hl+1)−1

)
.(5.4)

This truncation leads to a grid, which is refined only close to Γ(t) and thus results in
a level set φ, which is confined to a narrow band around Γ(t) on all levels except the
coarsest, which in general is very inexpensive to compute.

6. Kernels, scaling functions, and wavelets. The wavelets and scaling func-
tions we used to conduct the numerical experiments in the next section are interpolat-
ing wavelets [4, 7], based on the iterative interpolation scheme introduced by Deslau-
riers and Dubuc [3]. However, the formulation of the present method allows for the
utilization of other types of wavelets, e.g., second-generation wavelets or average-
interpolating wavelets. The order we chose is P = 4. The scaling function ϕ implied
by this choice is also known as the autocorrelation of Daubechies’ scaling function of
order 4 (Figure 6.1). For the interpolation of the indicator function (4.2) we use an
inexpensive bi-/trilinear kernel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

M
(x

)

0.0 0.5 1.0 1.5 2.0
10-5

10-4

10-3

10-2

10-1

100

101

M̂
(k

)

k

Fig. 6.1. The three kernels, ϕ (), M ′
4 (), and M ′′′

6 (), in real space (left) and
spectral space (right), where ϕ is the autocorrelation of Daubechies’ scaling function of order 4.

7. Numerical illustrations. In order to illustrate the Lagrangian adaptivity
of our method we have focused on a two-dimensional (2D) advection of a scalar with
a prescribed velocity field. We solve the problem of a passive scalar subject to a
single vortex in two frames: once as a plain advection problem, for which the exact
solution is known, and once in a level set frame, where we restrict our interest to the
development of an interface. The velocity field is given by [13]

u(x, t) = 2 cos(π t/T)

(
− sin2(π x) sin(π y) cos(π y)
sin2(π y) sin(π x) cos(π x)

)
.(7.1)

A LAGRANGIAN PARTICLE-WAVELET METHOD 991

by comparing with a well-resolved reference solution without regularization. The two
cases used 13,502 (TRI=5) and 10,093 (TRI=18) active grid points on average and 25,007
(TRI=5) and 22,601 (TRI=18) at t = 3.0 and yielded a CFLmax of 17.1.

In order to quantify the accuracy of the method as extended to narrow-band
level sets we now consider the case T = 8.0. Here the interface returns to the initial
condition at t = 8.0; thus the final solution is again a circle with radius 0.15. The
parameters of this simulation are again Nlev = 5, β = 1, γ = 3, and δt = 0.08. We
reinitialize the level set every 5 time steps.

Following [8] and [5] we compute the area enclosed by Γ(t = 8.0) and compare
with the exact solution. The full simulation requires 29 seconds for an accuracy
of 10−4 on a 2GHz PowerMac G5. The results of this comparison are depicted in
Figure 7.6, demonstrating the high-order convergence of the present method.

We next demonstrate the applicability of the present method to problems that
are not convection dominated. We consider the growth of dendrites in a supercooled
liquid according to the sharp-interface model. The governing equations are given by

∂T

∂t
= ∇ · (k∇T) ,

T |∂Ω = T∂Ω,

T |Γ = TΓ,

u|Γ = −n [k∇T · n]Γ,

∂φ

∂t
+ u ·∇φ = 0,

Γ = { x | φ(x) = 0 },

(7.3)

where T is the temperature, Ω is the computational domain, Γ = ∂Ωr is the phase
boundary, n is the outward normal on Γ, and k is the thermal conductivity. The

102 103 104 10510-5

10-4

10-3

10-2

10-1

e a
re

a

N , N

Fig. 7.6. Plot of relative error of the area enclosed by Γ(t = 8.0) against the number of
particles/active grid points: Hieber and Koumoutsakos [8] (, N = number of particles at time
t = 0), Enright et al. [5] (, N = total number of degrees of freedom at time t = 0 and ,
N = number of grid points), and the present method (, N = number of active grid points at
time t = 0 and , N = number of active grid points at time t = 8.0).

Number of active particles or grid points at time t=0 and t=8

error in area enclosed by
contour at time T=8

wavelet particles

Particle level set, Enright et al. 2002

N for t=0

N for t=8

Back to the stretching-by-rotation patch

31

Illustration of particle MRA for flow around a wind turbine
(ETH group of Koumoutsakos)

Ingredients : wavelet-based particles for vorticity transport and
Brinkman penalization for non-slip boundary conditions (Angot et al., 1999, Coquerelle & Cottet, 2008)

32

3D anguilliform swimming

33

Mattia Gazzola, Wim van Rees,
Andrew Tchieu, P. Koumoutsakos

C-start is an escape motion pattern

Is C-start optimal?

Liao Lab’s Channel - YouTube

Preparatory stroke Propulsive stroke

Muller, van den Boogaart, van Leeuwen. J. of Exp.Biology, 2008.

start endr

COST f = �r
���
T
prep

+2T
prop

FLOW @ Re =
L2/Tprop

⌫
= 550

S1 S3S2 S4 S5 S6

GEOMETRY

4.4mm long larva zebrafish of age 5 days post-fertilization

Muller, van den Boogaart, van Leeuwen. JEB, 2008
Parichy et al. Developmental Dynamics, 2009

Fontaine et al. JEB, 2008

PARAMETERS

8 = 3 + 3 +1 +1


s

(s, t) = B(s) f(
t

T
prep

+ T
prop

) + K(s) · sin

2⇡(

t

T
prop

� ⌧(s)) + �

�

0 100 200 300 400 500 600
evaluations

-1.3

-1.2

-1.1

-1

-0.9

co
st

 fu
nc

tio
n

3D

C-start is OUTCOME of optimization

0 2000 4000 6000 8000
Evaluations

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

C
os

t f
un

ct
io

n

2D

Optimization strategy : evolutionary algorithm + covariance matrix
adaptation

37

Pros and cons of the Wavelet-based multi-resolution particle method

Pros:
• great compression / efficiency boundary layer / wake
• well adapted to Lagrangian transport of scales

Cons :
• Scalability non optimal, load balancing difficult
(not a problem for evolutionary optimization)

Z
f(x)�(x) dx =

X

i

hd f(x
i

)�(x
i

) +O (hmkfk
m,p⇤k�km,p

)

kf �
X

i

hdf(x
i

)�(x� x

i

)k�m,p

= O(hm)

kf �
X

i

hdf(x
i

)⇣
✏

(x� x

i

)k
L

p = O(✏r + hm/✏m)

@u

@t
+ (u ·r)u+rp� ⌫(�)�u = F(u ,� ,r�)

@�

@t
+ (u ·r)� = 0

ū = ut + ur + udef

V l

W l

V l+1 = V l

M
W l

dt
l!l+1 = ln 2/|ru|

u(x
p

) =
X

q 6=p

v
q

!qK(x
q

� x

p

)

2

• In a vorticity particle method,
velocities of particles have to be recovered
through Biot-Savart lax and Fast Multipole solver.

Much more expensive than FFT-based Poisson solvers

38

Alternative (more naive approach) : Bi-level formulation of vorticity transport

3D Euler equations in vorticity formulation

Using higher resolution for vorticity than for velocity is equivalent to advecting
vorticity with mollified velocity

where div u = 0, curl u = ω, and ω=ω*ζε

In	prac/ce	means	that		
•ω	computed	(advec/on-diffusion	equa/on)	on	fine	grid	
•u	computed	on	coarse	grid,	from	filtered	field	ω

39

Problem : these modified NS equations induce enstrophy
production at the sub-grid scale

This can be analyzed and overcome by appropriate “minimal” non-
linear dissipation terms [C., JCP 1996]

This is reminiscent to subgrid-scale models involved in
Large Eddy simulations

40

To compensate for this backscatter, need to introduce anisotropic subgrid-
scale dissipation :

with linear cut-off, easily discretized on a 27-points stencil.

Brief Article

The Author

March 6, 2016

@!

@t

(x) = C

Z
[!(x)� !(y)] [(u(x)� u(y)) ·r⇣(x� y)]� dy

1

Constant C needs to be tuned (unfortunately)

41

Proof	of	concept	on	Taylor-Green	vortex	
[C.	Mimeau,	PhD	thesis	2015]	

together with the Poisson equation for the velocity given in Eq. (2). The rotational formulation ensures that the vorticity field
remains divergence-free for the duration of the computation. De-aliasing is done with the smooth truncation formula de-
scribed in [20]. For more details on the pseudo-spectral method, see [21–23]. All pseudo-spectral simulations are performed
with a constant CFL-number of 0.75. Like the vortex-particle method, our pseudo-spectral solver is implemented as a client
of the PPM-library and exploits the scaling capacities of this library.

3. Taylor–Green vortex

The Taylor–Green vortex is a benchmark flow case that is often used to study the generation of small-scale vorticity and
small-scale vortical structures from a smooth initial condition under the influence of vortex stretching (e.g. [24]). The family
of initial conditions, defined in a periodic cube with side length 2p, are described by the following equations:

uxðx; t ¼ 0Þ ¼ 2ffiffiffi
3
p sin hþ 2p

3

" #
sinðxÞ cosðyÞ cosðzÞ;

uyðx; t ¼ 0Þ ¼ 2ffiffiffi
3
p sin h% 2p

3

" #
cosðxÞ sinðyÞ cosðzÞ;

uzðx; t ¼ 0Þ ¼ 2ffiffiffi
3
p sinðhÞ cosðxÞ cosðyÞ sinðzÞ:

ð10Þ

Here h is the free parameter, and it is set to h = 0 for all results in this study. The Reynolds number in this flow is defined as
ReC = 1/m and in this work we set it equal to ReC = 1600. The time integration for the vortex method is done with a third order
Runge–Kutta method with the timestep determined by the minimum of the advection-based criterion, here LCFL = 0.125,
and the diffusion based criterion as determined by the Fourier number. For the pseudo-spectral method we employ a fourth
order Runge–Kutta time integration with CFL = 0.75.

We performed the computation with the rVM-M0
4, the rVM-M&

6 and the PS, using resolutions of 2563, 5123 and 7683. The
2563 resolution results are relevant as they shows how close the vortex method approximates the pseudo-spectral results for
an underresolved computation. At a resolution of 5123 the pseudo-spectral method has converged. For each resolution we
compare the vortex method results with the pseudo-spectral method results in the next subsections.

3.1. Comparison at 2563 resolution

Fig. 2 shows the evolution of the dissipation as a function of time. Up to T ' 6.5, the rVM-M&
6 results are on top of the PS

results, whereas the results from the rVM-M0
4 slightly underpredict the dissipation. For larger times, the rVM-M&

6 results
show a consistent larger dissipation than the PS results, although the shape of these two curves are qualitatively similar.
In the close-up of the region 7.5 6 T 6 10.0 it can clearly be seen that the rVM-M&

6 overpredicts the dissipation peak, whereas
with the rVM-M0

4 the dissipation peak is underpredicted with respect to the PS. Fig. 6(a) shows the tail of the energy spec-
trum for all three methods at T = 9.0. The drop in energy at the highest wavenumbers in the pseudo-spectral method is due to

Fig. 2. Energy dissipation of Taylor–Green vortex as a function of time, ReC = 1600, the resolution is 2563 for all methods. PS results (solid black) compared
with the rVM-M0

4 results (long dashed blue) and with the rVM-M&
6 results (dash-dotted red). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

W.M. van Rees et al. / Journal of Computational Physics 230 (2011) 2794–2805 2797

42

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 2 4 6 8 10

En
st

ro
ph

y

T

om=2563, u=2563
om=2563 (Enstr=643), u=2563

om=2563, u=643 (C=0.04)
om=2563 (Enstr=643), u=643 (C=0.04)

Temporal	evolu/on	of	enstrophy

Comparison	of	enstrophy	in	a	fully	resolved		
5123	simula/on	[van	Rees	et	al.,	JCP	2011]	
and	in	a	bi-level	643/2563	simula/on

Case without subgrid-scale dissipation
and unphysical enstrophy growth

Case with subgrid-scale dissipation
with C=0.04

43

Contours	of	vor/city	in	a	cross-sec/on

5123	simula/on		
(van	Rees	et	al.,	JCP	2011)1283	/	5123	simula/on

44

What is the point of doing of using different particle resolution for velocity and vorticity (is
there any CPU gain at all) ?

Vorticity advancement implies only local operations (advection - remeshing -diffusion)

-> good parallel scalability

Velocity calculation implies non-local operations (Poisson solver, FFT ..) : fast but not
highly parallel

Hybrid computing idea :

• distribute operation intensive parallel parts of the algorithm (vorticity) to GPU (or
accelerators)

• keep less operation intensive (more communication demanding) on classical CPU.

Similar results with turbulent plane jets (with same value of coefficient C)

45

Computa/onal	/me	(s)	/	itera/on	
(Etancelin,	PhD	thesis,	2014)	

Proof of concept of transport of passive scalar:
Summary	of	performance	for	hybrid	CPU	/GPU	implementa/ons	of		

Navier	Stokes	/	scalar	transport

Ongoing	:	extension	to	Navier-Stokes	(transport	of	vor6city)	
DNS	at	the	price	of	a	LES	?

Performance equivalent
to conventional MPI
implementation of same
method on several
thousand Blue Gene
cores

46

Conclusion and outlook

SL Particle methods combined with immersed boundary technics efficient in many
CFD problems dominated by transport

Efficiency relies on

•high order algorithms, not constrained by CFL conditions

•ability to be combined with grid-based technics, including MRA

•high parallel scalability

Ongoing works:

• explore double-diffusion at high Sc with hybrid method, in Finite Volume NS solvers

• continue the validation of the vorticity/velocity bi-resolution approach on turbulent jets and
boundary layers

• implement it on hybrid architectures

• extend the approach to (finite-difference,velocity-pressure)/(particles,level set)
 for multiphase flows with surface tension, using new semi-implicit time-discretization [Cottet-
Maitre, JCP 2016]

