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Semi-Lagrangian Particle Methods for
Hyperbolic Equations

Georges-Henri Cottet

Abstract Particle methods with remeshing of particles at each time-step can be seen
as forward semi-lagrangian conservative methods for advection-dominated prob-
lems, and must be analyzed as such. In this article we investigate the links between
these methods and finite-difference methods and present convergence results as well
as techniques to control their oscillations. We emphasize the role of the size of the
time-step and show that large time-steps, only limited by the flow strain, can lead
to significant gains in both computational cost and accuracy. Our analysis are il-
lustrated by numerical simulations in level set methods and in fluid mechanics for
compressible and incompressible flows.

1 Particle methods for conservation laws

Particle methods have long been considered as natural tools for the discretization of
conservation laws, written in general form as

∂U
∂ t

+div (a : U)+AU = F (1)

In the above equation U is a vector in Rm, a = (a j) is a vector field in Rn and

div (a : U) =

(
n

∑
j=1

∂ (a jui)/∂x j

)
i∈[1,m]

.

The term F represents both external forces and terms that are not related to advec-
tion, typically diffusion terms or pressure gradients. This PDE translates the follow-
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ing conservation property

d
dt

[∫
Ω(t)

Udx
]
+
∫

Ω(t)
AUdx =

∫
Ω(t)

Fdx

where Ω(t) is a domain of Rn moving with velocity a. System (1) must of course be
supplemented by boundary conditions (at least inflow boundary condition in case
F = 0). However we will here focus on unbounded problems, or problems with
periodic boundary conditions.

Particle methods consist of concentrating the mass of U on points (particles),
which means that the following approximation is considered :

Uh(x, t) = ∑
p

α p(t)δ (x−xp(t)). (2)

Particle trajectories are along the velocity field

dxp

dt
= a(xp, t)

and particle strengths change to account for zero order terms and right hand side
F. When smooth quantities must be recovered/plotted one can rely on mollified
particles (or blobs)

Uε
h(x, t) = ∑

p
α p(t)ζε(x−xp(t)) (3)

where ζε(x) = ε−nζ (x/ε) with ζ a smooth function satisfying
∫

ζ (x)dx = 1.
The strengths of the particles represent local masses. It may be convenient to

write these masses in terms of local values of u and local volumes :

α p(t) = U(xp(t), t)vp(t)

with

dvp

dt
= diva(xp, t)vp.

In case of an incompressible flow (diva = 0), strengths, local values and volumes of
the particles are conserved along the flow.

The velocity field, as well as the matrix A and the right hand side F can either be
given (linear problems) or function of the solution U (nonlinear problems). In the
latter case the coupling of the advected quantities with the flow field (in particular)
requires to consider the mollified particle distribution, which, as we will see below,
has important consequences on the convergence properties of the method.
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1.1 Classical examples

In the linear case, passive scalars advected by a flow, like concentration or density in
incompressible flows or level set functions to capture an interface, are natural exam-
ples. Scalars which feedback to the flow, like temperature or density in compressible
flows, or interface capturing level set functions in presence of surface tension, are
non-linear examples where particle methods can been used.

More elaborate examples include the Vlasov-Maxwell system, the Navier-Stokes
equations in vorticity form and the equations of gas dynamics.

In the Vlasov-Maxwell system the advected quantity is the density probability f
associated to each specie of ions or electrons, moving under the action of the electric
and magnetic fields. The phase-space variables are the positions and velocities (in
other words n = 6 in the general case). The conservation law for f can be written
as (1) with a(x,v) = (v,E(x, t)+v×B(x, t)), A = F = 0 (assuming an elementary
electric charge equal to 1). The electric and magnetic fields are computed from the
momentum of f with respect to v (charge density and electric current) through the
Maxwell equations. We refer to [14, 4] for descriptions and numerical analysis of
particle methods in this context.

Inviscid incompressible flows can be described by the vorticity form of the in-
compressible Euler equations [5]. In this case, n = m = 3, U = ω = ∇×u, a = u
and A = [∂ui/∂x j]. For the Navier-Stokes equations, viscosity and diffusion come
in the right hand side F. Note that in two dimensions, it is convenient to represent
the vorticity as a vector along the axis perpendicular to the flow plane. In this case
the so-called stretching term AU vanishes and the mass of the particles coincide
with the local circulation of the flow. In 3D the stretching term is responsible for
reorientation and amplification of the local vorticity, and ultimately of the onset of
3D turbulence.

Finally gas dynamics equations can be recast in terms of density, momentum and
energy : U = (ρ,ρu,ρE), which in the most general case gives m = 5 and n = 3.
The term F is made of pressure gradients terms to complete the momentum and
energy equations. Its discretization by means of particles led to Smooth Particle
Hydrodynamics (SPH) methods [22].

1.2 Sketch of numerical analysis and overlapping condition

To give an idea of the numerical analysis of these methods, let us assume for a sake
of simplicity a linear equation where A = F = 0. One way to understand the con-
vergence properties of particle methods [6] is to realize that particle approximation
given by (2) are exact weak solutions to the advection equation (1). One can fur-
ther show that, for smooth enough velocity fields, the advection equation is stable
in distribution spaces of the form W−m,p(Rn). As a result one can write

‖(U−Uh)(·, t)‖W−m,p ≤ exp(CT )‖(U−Uh)(·,0)‖W−m,p
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where C depends on the derivatives of a. If at t = 0 particles are initialized on a
regular grid of grid-size h and if the initial condition is of class C∞ with compact
support (or periodic) the right hand side above can be bounded through classical
quadrature rules by O(hm) for arbitrary m, which gives

‖(U−Uh)(·, t)‖W−m,p = 0(hm).

Now, to obtain error bounds in Lp norms for the mollified particles (3), one needs
to add regularization errors and to ”pay the price” for the mollification. This easily
leads to the following estimate

‖(U−Uε
h)(·, t)‖W−m,p ≤ exp (CT )(εr +hm/ε

m)

where r is such that
∫

xγ ζ (x)dx = 0 for 1≤ |γ| ≤ r−1. The above estimate exhibits
two scales in the convergence process : ε , the mollifying range, which eventually
dictates the overall order of the method, and h the particle spacing. It also shows that
convergence requires h� ε , or in other words that many particles lie in the mollify-
ing range. In case the right hand side F involves pressure gradients or diffusion term,
one can easily predict that this overlapping condition will be even more demanding.
A more precise analysis also shows that the flow strain (derivatives of the velocity)
is responsible for the exponential term in the error estimate which indicates that the
overlapping requirement gets more difficult to fulfill in presence of strong shear in
the flow.

2 From grid-free to semi-lagrangian particles

The overlapping condition just outlined has long been recognized as a major dif-
ficulty to perform accurate simulations, in particular for non-linear problems. Fig-
ure 1 illustrates typical numerical artifacts appearing in he simulation of a smooth
axisymmetric (and thus steady) vortex for the incompressible 2D Euler equations
when the blob size ε remains constant and of the order of the initial particle spacing.
The situation is even more problematic when the nonlinearity does not involve any
smoothing effect, unlike in the case of incompressible flows in vorticity formulation
just mentioned or for the Vlasov-Poisson equations. In that case the flow strain pro-
hibits any convergence proof. This includes the simple 1D Burger’s equations. As a
matter of fact, convergence analysis in the SPH literature (e.g. [1]) always assume
that particles are carried by a smooth flow field and focus on the particle treatment
of pressure gradient terms.

An important effort has been made starting in the 80’s to overcome this difficulty
for flow simulations. In particular a class of methods aims at adapting the parti-
cle weights or mollifying range to the local flow strain (see [5] and the references
therein). Triangulated particle methods for vortex methods [27] or renormalization
methods for gas dynamics [23] fall in this category. More recently [26], methods
have been designed in particular to improve the treatment of diffusion with grid-
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Fig. 1 Numerical artifact due to a lack of overalapping in the simulation of a steady smooth ax-
isymmetric vortex in the 2D incompressible Euler equation (curtesy of P. Koumoutsakos). Left
picture : exact solution; right picture : numerical solution with ε ' h.

free particles. However these methods have been mostly validated for 2D flows and
it is not clear that they offer viable tools (in terms of accuracy ad cost) for complex
3D flows.

An alternative approach consists of remeshing particles from time to time in or-
der to maintain the initial overlapping. This strategy can be traced back to inviscid
equations and the first vortex sheet calculations [17] or vortex filament calculations
[21]. In these cases particles where lying on curves and the overlapping could be
maintained by simply inserting fresh particles when successive particles were too far
apart. The weights of the fresh particles could easily be computed by interpolation
along filaments (in 3D) or sheets (in 2D). For more general vortex topology and/or
to handle the Navier-Stokes equations, a more systematic approach, together with
appropriate treatment of boundary conditions, was introduced and implemented for
flow past 2D cylinders at high Reynolds numbers in [15] and for the study of the
axisymmetrization of elliptical vortices in [16], where it allowed to obtain reference
results. These calculations were soon followed by 3D simulations [24, 25, 9].

Until recently particle remeshing was considered as an ad hoc fix, to maintain the
regularity of the particle distribution at the price of some truncation error every few
time steps. In practice, the number of time-steps between two successive remesh-
ing steps never increases as the particle spacing tends to zero, which means that the
remeshing error cannot be considered as an additional truncation error but must be
analyzed as part of the particle scheme. On the other hand the time scale which gov-
erns the particle distortions is of order ‖∇u‖−1

L∞ , similar to the time-scale which is
used for the time-discretization of the particle motion. As a result, these time-scales
are routinely taken equal which means that remeshing is performed at each time-
step. It is important to point out that this particular implementation offers several
additional advantages. It allows particle methods to be combined with grid-based
methods when appropriate, either in the same computational domain (for exam-
ple to rely on FFTs to compute velocity or electric/magnetic fields) or in domain-
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decomposition approaches [24]. It also enables Adaptive Mesh Refinement [2] or
wavelet-based multilevel [3] approaches.

For advection equations with uniform grids, the resulting method becomes a for-
ward, conservative semi-lagrangian method and must be analyzed as such.

3 Semi-lagrangian particle methods for linear hyperbolic
equations

In he following we denote by ∆x the grid size and ∆ t the time-step. Let us consider
the following one-dimensional advection equation in conservation form

∂u
∂ t

+div (au) = 0,x ∈ R, t > 0, (4)

where a is a given smooth velocity field. Assuming that particles are initialized and
remeshed on a uniform grid with grid-size ∆x, we obtain

un+1
i = ∑

j
un

j Γ

(
xn+1

j − xi

∆x

)
, i ∈ Zd ,n≥ 0, (5)

where Γ is the interpolation function used to remesh particles. In the above equation

xn+1
i = xi + ãn

i ∆ t, (6)

where ãn
i is the velocity field used to push particle and depends on the chosen time-

stepping scheme. As we will see later, the construction of accurate interpolation
kernels is done by requiring the conservation of successive moments of the particle
distribution. This means that Γ satisfies

∑
k∈Z

(x− k)α
Γ (x− k) =

{
1 if α = 0
0 if 1≤ α ≤ p

, x ∈ R, (7)

for some value of p≥ 1. The simplest example of interpolation kernel is the piece-
wise linear function which conserves mass ∑i un

i and first momentum ∑xiun
i (p= 1).

In the case of constant velocity this choice corresponds, for a CFL number less than
1, to the classical first order upwind scheme. However it is readily seen that this
choice can lead to inconsistency if the local CFL number crosses an integer value,
in particular when the velocity changes sign, whatever time-step is chosen. For in-
stance for a(x) = x, a particle initialized and remeshed at x = 0 will keep its strength
unchanged although the exact solution at this point is given by u0(x)exp(−t).

The number of integers inside the support of Γ must increase with p. The choice
p = 2 leads to a piecewise quadratic function, with support on three grid points,
which yields the following weights (according to Figure 2)
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α j =−λ (1−λ )/2 , β j = 1−λ
2 , γ j = λ (1+λ )/2, (8)

where λ is the algebraic distance, normalized by ∆x, between the particle, after
advection, and the nearest grid point. For a constant velocity and a CFL number be-
low 1/2, this formula corresponds to the Lax-Wendroff finite-difference scheme [8].
However, for CFL numbers larger than 1/2, this kernel can lead to inconsistencies
which can be corrected by first order terms [20].

i

x
λ

αi

tn

tn+1
βi γi

Fig. 2 Sketch of advection-remeshing with a 3-points formula.

The consistency issues just mentioned are actually related to the lack of regularity
of the kernels : the piecewise linear kernel is not differentiable, and the piecewise
quadratic kernel is not even continuous. Indeed, requiring more regularity, together
with moment properties and the interpolation property, which means that remeshing
does not change the weights if particles do not move, allows to prove a general
consistency theorem [10]. Under the following assumptions

Γ is even and piecewise polynomial in intervals of the form [i, i+1],
Γ is of class Cr, for r ≥ 1
Γ satisfies the moment properties (7) for p≥ 1,
Γ satisfies the interpolation property Γ (i− j) = δi, j, i, j ∈ Z

and provided the time step ∆ t satisfies the following condition (sometimes referred
to as a Lagrangian CFL condition)

∆ t < |a′|−1
L∞ , (9)

one can prove that, for an Euler time-stepping scheme for the motion of particles, the
consistency error of the semi-lagrangian method is bounded by O(∆ t +∆xβ ) where
β = min(p,r). Moreover, at least for kernels of order up to 4, under appropriate
decay properties for the kernel Γ one can prove the stability of the method under
the sole assumption (9). Higher order in time can be recovered by using classical
Runge-Kutta methods to push particles. The kernel conditions listed above can be
used to construct in a systematic fashion high order kernels, denoted Λp,r (see in
[10] examples for β up to 6).

The above discussion concerns 1D equations but carries on to several dimensions
using directional splitting for advection equations. In practice it means that particles
are transported then remeshed in successive directions, with the possibility of using
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high order splitting methods. As a mater of fact, dimensional splitting allows to use
high order (with large support) kernels at an affordable cost.

Figure 3 presents a comparaison between computed and exact solutions in the
classical level set case of a disk undergoing filamentation in the velocity field result-
ing from a smooth off-center vortex. The particle method uses the 4th order kernel
Λ6,4, 2562 points and a CFL number equal to 30. For this experiment, a second order
directional splitting and a 4th order Runge Kutta method were used and the observed
order of accuracy was 5.9 (we refer to [10] for more examples and refinement stud-
ies). Figure 4 shows a comparison of the efficiency of kernels Λ2,1 and Λ8,4 for a
similar 3D experiment, with 2563 points and a CFL number equal to 30.
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Fig. 3 Advection of a level set in a 2D off-center vorticity field [10]. Comparison of the exact
solution (left) and 4th-order particle solution using N = 2562 particles and a CFL number equal to
30.

Fig. 4 Advection of a level set in a 3D off-center vorticity field [10]. Comparison of the results
obtained by a 1st order and 4th order kernels, using N = 2563 particles with a CFL number equal
to 30.
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A striking example where the combination of high-order accuracy and large time-
steps can lead to very efficient implementations of semi-lagrangian particle methods
is the study of scalar turbulence. In the passive advection of a scalar in a turbulent
flow, when the diffusivity of the scalar is smaller than the viscosity of the flow,
the spectrum of the scalar exhibits a k−1 decay range, beyond the classical k−5/3

range of the flow. This implies that, for Direct Numerical Simulations, it is neces-
sary to use a finer resolution for the scalar than for the flow. The ratio of the flow
viscosity to the scalar diffusivity is called the Schmidt number (Sc) and the ratio
between the corresponding grid discretizations has to be of the order of

√
Sc. Us-

ing semi-lagrangian particles allows to increase the scalar resolution while keeping
time steps defined by the flow strain and not by the fine particle discretization. In
[18] systematic simulations coupling semi-lagrangian particles for the scalar and
spectral methods for the flow, allowed to exhibit the k−1 scalar spectrum decay for
a large range of Schmidt numbers and to confirm the Kraichnan prediction for the
dissipative scales of the scalar (see Figure 5). In the case of a Schmidt number equal
to 128, resolutions of up to 30003 were made possible because the time-step could
be larger than what would be necessary in a spectral method by a factor close to 100.
Figure 6 shows scalar and vorticity contours in a periodic turbulent plane jet [13],
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Fig. 5 Scalar spectra compensated by k for different Schmidt numbers [18] (arrow indicates in-
creasing values of Sc). The squares (resp. dots) indicates the Batchelor (resp. Kraichnan) prediction
of the dissipative scales.

for a Reynolds number equal to 103 and a Schmidt number equal to 64. This simula-
tion used semi-lagrangian particles both for the vorticity to solve the Navier-Stokes
equations, and for the scalar, respectively at grid resolutions of 1283 and 10243. The
flow and scalar particles were computed on different hardware, to account for the
different parallel scalability of te different parts of the algorithm : 8 CPUs for the
flow and 8 GPUs for the scalar for a computational cost of about 1.5 second per
iteration.
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Fig. 6 Periodic plane jet for Re = 103 and Sc = 64 [13]. Side (left) and top (right) views showing
the different scales in the vorticity (bottom) and the scalar (top). Simulation with 1283 particles for
the flow and 10243 particles for the scalar.

4 Semi-Lagrangian particles for nonlinear conservation laws

Let us first consider scalar equations of the form

ut +(g(u)u)x = 0. (10)

The situation is different from the linear case. If one considers the piecewise linear
remeshing kernel together with an explicit first order time-discretization, it is easy
to see that, for a CFL number smaller than 1, it translates into the following 3 points
scheme :

un+1
j = un

j −λ

[
u j+1g−j+1 +u jg+j −u jg−j −u j−1g+j−1

]
, (11)

where λ = ∆ t/∆x and the superscript + and − denote the positive and negative
parts. This scheme has a numerical flux given by

F(u,v) = ug(u)++ vg(v)−

and is therefore consistent with the original equation. Let us now consider the three-
points second order formula (8) associated to the piecewise quadratic kernel corre-
sponding to the Lax-Wendroff scheme in the constant coefficient case. To obtain a
second order scheme both in time and space, one can consider a Runge Kutta scheme
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where the particle velocities are predicted by advancing the equation for half a time-
step. That can be done using the following approximation for the particle velocity
at time (tn + tn+1)/2) [7]

un+1/2
j = un

j (1−∆ t g(u)x(x j)/2) . (12)

In practice g(u)x(x j) in the above formula is evaluated by a centered finite dif-
ference (g(un

j+1)−g(un
j−1))/(2∆x). The finite-difference formula corresponding to

this method for a CFL number below 1/2 can be then derived along the same lines
as in the linear case and is given by

un+1
j = un

j −
∆ t

2∆x
(g̃n

j+1un
j+1− g̃n

j−1un
j−1)

+
∆ t2

2∆x2

(
(g̃n

j+1)
2un

j+1−2(g̃n
j)

2un
j +(g̃n

j−1)
2un

j−1
)

(13)

where we have set g̃n
j = g(un+1/2

j ). It can be checked [8, 28] that this is a second
order scheme.

For systems of conservation laws, the above ideas extend to flux splitting meth-
ods, where advective fluxes are dealt with by semi-lagrangian particles, whereas
pressure gradient terms are handled by grid-based finite-volume methods. These
methods bear some similarities with the Advection Upstream Splitting Method [19],
with the difference that in our case the advection does not involve the pressure flux
in the energy equation. It also can be seen as a variation of the Lagrange-projection
methods [12], with the difference that in our case the advection step is performed
in the conservation form. Note that, in the case of systems, the up-winding implic-
itly resulting from particle motions is based on material velocities and not on wave
speeds. Figure 7 shows a comparison of a semi-lagrangian particle method using
the Λ2,1 kernel with a Mac-Cormack scheme using a third-order limiter derived in
[11] for the calculation of the interaction of a shock wave with a boundary layer of
a Reynolds number of 200, with the same grid resolution ∆x = 10−3.

5 Non-oscillatory semi-lagrangian particles

Like all high order methods, semi-lagrangian particle methods can produce spurious
oscillations near sharp variations of the solution. To prevent this, limiters can be de-
rived in a similar way to finite-differences schemes. The general idea is to start from
the equivalent finite-difference scheme when the CFL number is below a certain
value, to derive limiters for these schemes and to go back to remeshing formulas by
interpreting the modified finite-difference coefficients.
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Fig. 7 Density levels in a shock / boundary layer interaction. Comparison of the results of a semi-
lagrangian particle method (top) and of the third order Mc Cormack finite-difference scheme [11]
(bottom). In both calculations ∆x = 10−3.

5.1 The linear case

In that section we give the derivation of [20] for non-oscillatory remeshing schemes
obtained by limiting 2nd order centered formulas with first order centered formulas.
More specifically, since we have seen above that the piecewise linear remeshing is
not consistent for non constant velocities, we choose a 3 points first order centered
formula. For |λ = a∆ t/∆x| ≤ 1/2, with the the notations of Figure 8 the weights
corresponding to this remeshing kernel are given by :

α j = 3/4−λ
2 , β j = 1/2(1/2−λ )2 , γ j = 1/2(1/2+λ )2.

This is equivalent to a first order scheme written in incremental form as

un+1
j = un

j +C(1)
j+1/2∆v j+1/2−D(1)

j−1/2∆v j−1/2

where ∆v j+1/2 = v j+1− v j and

C(1)
j+1/2 = 1/2(λ −1/2)2 , D(1)

j−1/2 = 1/2(λ +1/2)2
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Similarly, the second order remeshing scheme (8), which corresponds to the Lax-
Wendroff scheme when |λ | ≤ 1/2, can be recast in a similar incremental form with
coefficients C(2)

j+1/2 =C(1)
j+1/2−1/8 and D(2)

j−1/2 =D(1)
j−1/2−1/8. It is therefore natural

to look for TDV scheme of the form

un+1
j = un

j +C(1)
j+1/2∆v j+1/2−D(1)

j−1/2∆v j−1/2−
1
8

φ j+1/2∆v j+1/2 +
1
8

φ j−1/2∆v j−1/2

(14)
where, classically, φ is a function of the slopes with values in [0,1]. To derive
appropriate TVD conditions for φ let us first assume that λ ≥ 0. We then define
φ j+1/2 = φ(r j+1/2) where r j+1/2 = ∆v j+1/2/∆v j−1/2 and rewrite (14) as

un+1
j = un

j +
1
2
(λ −1/2)2

∆v j+1/2−∆v j−1/2[
1
2
(λ +1/2)2 +

1
8

φ j−1/2−
1
8

φ j+1/2

r j+1/2
].

Using Harten’s theorem it is readily seen that we obtain a TVD scheme provided φ

satisfies |φ(s)−φ(r)/r| ≤ 1 which allows to use the classical limiters. This scheme
can be interpreted back into a remeshing formula with weights (according to Fig-
ure 2) given by

α j =
1
2
(λ − 1

2
)2− 1

8
φ j−1/2,

β j =
3
4
−λ

2 +
1
8
(φ j−1/2 +φ j+1/2),

γ j =
1
2
(λ +

1
2
)2− 1

8
φ j+1/2.

If λ ≤ 0 we rewrite (14) as

un+1
j = un

j +
1
2
(λ +1/2)2

∆v j−1/2−∆v j+1/2[
1
2
(λ −1/2)2− 1

8
φ j+1/2−

1
8

φ j−1/2

r̃ j−1/2
]

where r̃ j−1/2 = ∆v j+1/2/∆v j−1/2. Remeshing weights are then given by a formula
similar to the ones above.

The point is now that the resulting scheme can be used even for a CFL num-
ber larger than one (in this case one has to use the corrected Λ2 formula derived
in [7]). The method then of course does not reduce anymore to a finite-difference
scheme. To illustrate the method we consider the case of a double top-hat function
advected in a flow with a positive velocity with sinusoidal modulation [20]. This
flow, although very smooth, results in compression and dilatation, associated to an
increase or decrease of local values, which are delicate to capture. Figure 8 shows
a comparison, with the same grid size ∆x = 0.510−2, of the non-oscillatory particle
scheme at a CFL number equal to 12, with a 5th-order WENO scheme for a CFL
number equal to 2. Strikingly the particle scheme performs better, although it is at
most second order and locally only first order. The reason is that, because it uses
large time-steps, it ”sticks” more to the exact condition.
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6.3. Results for remeshing formulas with limiters

We now give numerical illustrations of the limiters that we have derived in Section 4 for the K2 remeshing formula. In
one dimension, it of course does not make sense to consider the usual constant velocity case: in this case, as predicted by the
condition (13), it is not necessary to remesh particles, and particle methods give the exact solution. We instead consider the
case of the advection of a discontinuous function in a deformation field. The computational domain is the interval [!1,+1].
The scalar is at time t = 0 a double top hat function and the velocity field a is a periodic sinusoidal wave:

u0ðxÞ ¼ 1 if x 2 ½!0:3;!0:1&
[
½0:1;0:3&; 0 elsewhere; ð45Þ

aðxÞ ¼ 1þ sinðpxÞ=2: ð46Þ

This velocity field results in a translation to the right together with alternating increase and decrease of the solution. The
solution is time periodic with a period given by T ¼ 4=

ffiffiffi
3
p

. In the top picture of Fig. 11 we compare the solution obtained
by the limited K2 scheme with the solution obtained by a 5th order Weno scheme using a Lax–Friedrichs flux and a RK3
time-stepping. In both cases we take h = 0.005. The particle method uses a Van Leer limiter and the CFL number is equal

Fig. 11. Discontinuous profile (45) in a deformation field (46). Top pictures: Comparisons of particle methods with second order remeshing and TVD limiter
at CFL12 (green curves) to the exact solution (red curve) and to a 5th order Weno scheme at CFL 2 (blue curve). Solution shown at t = 3 (top-left) and
t=6.926 = 3T (top-right). Bottom picture: comparison at time t = 3T with results of the M0

4 remeshing scheme at CFL 12 (blue curve, bottom-left) and to
second order TVD remeshing at CFL 0.5 (blue curve, bottom-right). In all cases h = 0.005. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Exact solution
 
Particle method

Weno scheme

Fig. 8 Comparison of a semi-lagrangian particle method (green curve) and a 5th-order weno
scheme (blue curve), using the same grid-size, with the exact solution (red curve), for the ad-
vection of a double top-hat function in a sinusoidal velocity field [20]. The CFL number for the
particle method is 12.

5.2 The non-linear case

The above discussion extends to the non-linear case [7, 28]. [28] in particular con-
tains a detailed derivation of the TVD formulas associated to a large class of first
and second order remeshing kernels, for scalar conservation laws and for the Euler
equations. It also gives a proof, for these TVD particle schemes, of convergence
towards entropy solutions in the case of scalar equations. Note that, to our knowl-
edge, this is the only convergence proof of particle methods for non-linear scalar
conservation laws.

Unlike in the case of linear equations, these schemes are restricted to CFL con-
ditions similar to the finite-difference methods. Indeed, due to the shocks, the La-
grangian CFL condition, where the time-step is constrained by flow derivatives,
reduce in this case to a classical CFL condition since the flow derivatives can reach
values of the order of max |u|/∆x. In Figure 9 we show an illustration of a TVD
semi-lagrangian particle scheme for a classical shock tube. In this example the par-
ticle scheme uses the second order formula (8), corresponding to the second or-
der scheme (13), limited by the upwind first order piecewise linear formula (corre-
sponding to (11)) and the pressure gradient terms are computed using the first order
method in the Euler-Lagrange method in [12]. This illustration shows that, in con-
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trast with the linear case, the method does not avoid the numerical dissipation of
first order schemes, in particular in the contact discontinuity. Based on the preced-
ing remarks concerning the linear case, one may expect that using local time steps,
with CFL numbers larger than 1 away from shocks, could improve this part of the
solution. This possibility has yet to be tested.
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Fig. 9 Semi-lagrangian particle solution (red dots) for a shock-tube problem, compared to the
exact solution (green curve), for ∆x = 10−2. Left picture : density; right picture : velocity.

6 Conclusion

Particle methods with particle remeshing at each time-step can be analyzed as semi-
lagrangian conservative methods. High order methods can be easily implemented
and the analogy with finite-differences for small time-steps enables the deriva-
tion of non-oscillatory schemes. For linear problems, the possibility to use large
times-steps, only constrained by the flow strain, can lead to significant savings. For
non-linear problems, the method can be seen as a particular case of advective flux-
splitting. Using local time-steps or decoupling the scales of the conservative vari-
ables and of the velocity field are two possible directions to enhance the performance
of the methods.

References

1. B. Ben Moussa and J.-P. Vila, Convergence of SPH method for scalar nonlinear conservation
laws, SIAM Journal on Numerical Analysis, 37, 863–887 (2000).

2. M. Bergdorf, G.-H. Cottet and P. Koumoutsakos, Multilevel Adaptive Particle Methods for
Convection-Diffusion Equations, SIAM Multiscale Modeling and Simulation, 4, 328–357, 2005.

3. M. Bergdorf and P. Koumoutsakos, A Lagrangian Particle-Wavelet Method, SIAM Multiscale
Modeling and Simulation, 5(3), 980–995 (2006).

4. G-H Cottet, P-A Raviart, Particle methods for the one-dimensional Vlasov-Poisson equations,
SIAM Journal on Numerical Analysis, 21, 52–76 (1984).



16 Georges-Henri Cottet

5. G.-H. Cottet and P. Koumoutsakos, Vortex methods, Cambridge University Press, 2000.
6. G.-H. Cottet, A new approach for the analysis of vortex methods in 2 and 3 dimensions, Ann.

Inst. Henri Poincaré, 5, 227–285 (1988).
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