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A COMPARATIVE STUDY BETWEEN KRIGING AND ADAPTIVE SPARSE

TENSOR-PRODUCT METHODS FOR MULTI-DIMENSIONAL

APPROXIMATION PROBLEMS IN AERODYNAMICS DESIGN ∗

Abdellah Chkifa1, Albert Cohen1, Pierre-Yves Passaggia2 and Jacques Peter2

Abstract. The performances of two multivariate interpolation procedures are compared using func-
tions that are either synthetic or coming from a shape optimization problem in aerodynamics. The
aim is to evaluate the efficiency of adaptive sparse interpolation algorithms [2] and compare them with
the kriging approach developed for the design and analysis of computer experiment (DACE) [21]. The
accuracy and computational time of the two methods are examined as the number N of samples used
in the interpolation increases. It appears in our test cases that both methods perform equivalently,
in terms of precision. However, as the dimension d increases, the computational time involved in the
enrichement of the kriging sample becomes intractable for large values of N . This problem is cir-
cumvented in the case of the sparse interpolation procedure for which the computational time scales
linearly with N and d.

Résumé. Nous comparons les performances de deux méthodes d’interpolation en grande dimension,
aussi bien sur des fonctions synthétiques que pour celles issues d’un problème d’optimisation de forme
en aerodynamique. L’objectif est d’évaluer l’efficacité d’algorithmes adaptatifs d’interpolation parci-
monieuse [2], et de les comparer avec l’approche du kriging développée dans le cadre design and analysis
of computer experiment (DACE) [21]. La précision et le temps de calcul des deux méthodes sont étudiés
lorsque le nombre N d’échantillons utilisés pour l’interpolation augmente. Les cas tests montrent que
les deux méthodes sont comparables en terme de précision. Cependant, lorsque la dimension d aug-
mente, le temps de calcul associé à l’enrichissement de l’échantillon pour le kriging devient prohibitif
pour les grandes valeurs de N . Ce problème est contourné dans le cas de l’interpolation parcimonieuse
pour lequel le temps de calcul est linéaire en N et d.

1. Introduction

Surrogate models, such as the surface response method are becoming increasingly popular in performing
various optimization or uncertainty quantification studies for parameter dependent complex problems. Such
problems are difficult to handle numerically, especially in high dimension, that is, when the number d of
parameters is large. Surrogate models are a non intrusive approach that aim at providing a simplified and
computable representation of the solution in the parameter space. The principle of a surrogate model relies on
an efficient interpolation procedure that estimates a scalar or vector field using a sampled data set. Each sample
typically corresponds to an instance of the solution of a complex problem, often computationally expensive.
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It is therefore mandatory that the procedure achieves the required accuracy for a reasonable number N of
samples, and that the CPU time required for the construction of the interpolant remains negligible compared
to that of the instances computation. Efficient algorithms are particularly needed as the number of variables d
increases due to the so-called curse of dimensionality. In particular, one may significantly gain by considering
adaptive strategies, for which every new sample is chosen based on the information gained through the previous
interpolation procedure. Here, two such strategies are being considered.

● The kriging procedure, initially developed by [11] has become increasingly popular over the past decades,
due to its robustness in the sense that the interpolation points may be at arbitrary locations. This
approach assumes that the function to be interpolated, is the realization of a stochastic process and
computes the interpolant at a given point as a best unbiased linear estimator from the available data
set. The relation between the interpolation and the current sample is based on a covariance function,
often assumed to be of gaussian form, with internal parameters that have to be optimized in order to
provide a reliable estimate. In an adaptive context, the variance of this estimator also provides with a
way to select the location for additional data to be included in the data sample, in order to improve the
accuracy of the surrogate model.

● Sparse approximation methods, originally developed by [24] in the context of quadrature rules, also
became popular over the past decades. These methods aim at constructing high precision polynomial
or piece-wise polynomial approximations while retaining a limited number of grid points through the
introduction of a specific sparse grid. In recent years, adaptive versions have been introduced and
studied, in particular in [2] for the polynomial case based on a greedy strategy which selects the next
sparse grid point in order to minimize the interpolation error.

Our present study is motivated by shape design problems in aerodynamics. For instance, minimizing drag at
constant lift of an aerofoil, at cruise flight conditions, is of major importance since it results in substantial savings
of fuel consumption. The basic idea is to prescribe control points around a two-dimensional aerofoil and alter
the geometry using CAD functions such as B-spline functions for example [10,12]. This topic has been treated
extensively over the past decades [4, 7–9, 14, 17, 22]. However, most studies appeared to report up to 6 design
parameters and less than 5000 samples for evaluating the surrogate model. Beyond this limit, the commonly
used interpolation procedures appear to be far more computationally expensive than the aerodynamics code
itself. For instance when considering the kriging procedure [12], the computational time evolves cubically with
the number of evaluation points N . In addition, the optimization of the internal parameters of the problem
requires minimizing a non-convex cost function defined on a space of dimension d, where d is the number of
variables, the evaluation of which requires by itself O(N3) operations. Therefore the total computational grows
fastly with N and this effect is even more accentuated in high dimension. Note in addition that the value of N
needed to obtain a reliable estimate typically grows with d, due to the so-called curse of dimensionality.

An alternative approach which aim to alleviate the curse of dimensionality is provided by the use of sparse
grids. Sparse grid methods have been introduced by Smolyak in the context of numerical integration [24]. They
are based on particular unions of tensor product grids for which fineness in one variable is typically compensated
by coarseness in other variables. This approach has been extensively applied to uncertainty quantification [29,30]
and applied to aerodynamics recently, see [13,28] for a review. Very recently, [19] have applied this method for
the case of a subsonic aerofoil using 14 uncertain parameters. However there is a lack in the literature when
considering surface response methods using sparse grid interpolation approaches. Moreover, surface response
methods appear to be efficient methods on non-intrusive robust optimization problems where one has to optimize
a design subject to uncertainty, see [5] for a recent review. Here, we want to investigate the already mentioned
adaptive versions of sparse grid interpolation introduced in [2] in the polynomial case. We are also interested
in adapting this approach to the piecewise polynomial case which is better adapted to the presence of locally
sharp regions or discontinuities in the function to be interpolated.

Therefore, we consider the response surface of a two-dimensional aerofoil using adaptive sparse grids inter-
polation approaches and compare it in terms of approximation capabilities with the kriging, considered as the
reference method.
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The rest of the paper is organized as follow. We successively detail in §2 the kriging and sparse interpolation
adaptive algorithms. For both methods, we discuss several adaptive strategies for the enrichment of the sampling
set. We then present in §3 two test cases, namely a synthetic function and the lift to drag ratio of a two-
dimensional aerofoil in a transonic flow as a function of shape parameters. These test cases reveal that both
adaptive interpolation algorithms behave similar in terms of precision with respect to the number N of samples.
However, the adaptive kriging algorithm becomes computationally intractable for large values of d and N , while
the CPU cost of the sparse interpolation algorithm is linear in both N and d. This advocates for the use of this
second class of algorithms for high-dimensional problems. Some conclusions and perspectives are drawn in §4.

2. Methods

In the present investigation, the aim is either to approximate or optimize a function

y ↦ f(y), (1)

where the coordinate vector y = (y1, . . . , yd) concatenates the various parameters of a given model problem,
and f(y) ∈ R is a quantity of interest computed from the solution of this problem for the particular value of
y. For simplicity we assume that y ranges in the hypercube U = [−1,1]d. There is no loss of generality in this
assumption when every yj ranges independently in a finite interval Ij since we may then use a standard affine
change of variable between Ij and [−1,1].

The objective is to build an accurate numerical approximation of f or of M ∶= maxy∈U f(y) using the smallest
possible number N of evaluations f(yi) at given points yi ∈ U from a sampling set SN = {y1, . . . , yN}. Of course,

if an approximation f̃ to f has been computed, one way of approximating M is by M ∶= maxy∈U f̃(y). However
the specific search for the maximum may benefit from using different sampling sets SN for a given N than when
searching for a global approximation to f .

2.1. The kriging procedure

Kriging is based on the hypothesis [15] that the unknown function f is random can be decomposed into

f(y) = µ(y) + g(y), (2)

where µ(y) and g(y) are sought as a deterministic contribution from a low-dimensional space and a random
fluctuation respectively. Typically, we search for µ as a constant or low order polynomial. The random process
g is assumed to be centered, second order, with covariance kernel of stationary form

Cov(g(y), g(z)) = E(g(y)g(z)) = φ(y, z) = ϕ(y − z). (3)

In this framework, the kriging interpolation to f(y) is a linear combination

INf(y) ∶=
N

∑
i=1

λi(y)f(yi), (4)

defined as the best linear unbiased estimator, in the sense that it minimizes the mean square error

E(∣f(y) −
N

∑
i=1

λif(yi)∣2), (5)

over all choices of λi under the constraint that E(∑Nn=1 λif(yi)) = E(f(y)). This minimization problem leads
to a linear system. Different models have been proposed [16] for µ(y):

● Simple kriging: µ is constant and known a priori.
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● Ordinary kriging: µ is constant and unknown.
● Universal kriging; µ is an unknown polynomial of known order.

The ordinary kriging is by far the most popular approach and we use it in the present investigation. In this
case, the unbiased constraint implies that ∑Ni=1 λi(y) = 1, which also means that the interpolation process is
exact for constants. Denoting by χ the Lagrange multiplier, the resulting linear system for finding the λi(y) is
given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1, y1) ⋯ φ(y1, yN) 1
⋮ ⋱ ⋮ 1

φ(yN , y1) ⋯ φ(yN , yN) 1
1 ⋯ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1

⋮
λN
χ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1, y)
⋮

φ(yN , y)
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Standard linear algebra manipulations show that the resulting interpolant also writes

INf(y) =
N

∑
i=1

βiφ(yi, y) + βN+1, (7)

where the weights βi are solution to the system

⎡⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1, y1) ⋯ φ(y1, yN) 1
⋮ ⋱ ⋮ 1

φ(yN , y1) ⋯ φ(yN , yN) 1
1 ⋯ 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

β1

⋮
βN
βN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(y1)
⋮

f(yN)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

The expression of the kriging interpolant by (7) is therefore more convenient since the system to be solved does
not depend on y. It reveals that the interpolant is a linear combination of the constant function and of the
functions y ↦ φ(yi, y) for i = 1, . . . ,N .

The covariance kernel φ(y, z) has to be positive definite. A frequently considered form, that we use in the
present investigations, is the gaussian

φ(y, z) = exp{ − 1

2

d

∑
k=1

(yk − zk)2

ζ2
k

}. (9)

The kernel parameters (ζ1, . . . , ζd) could be fixed a-priori, however in order to improve the accuracy of the
interpolation process they should rather be adjusted with the objective of minimizing the error between f(y)
and its interpolation INf(y). Here, we use a standard cross validation procedure, the so-called leave-one-out
method, that consists in removing a point yi from the sampling set SN and computing the error between the
kriging interpolant IiN−1f(yi) computed from SN−{yj} and the exact value f(yi). We then select ζ = (ζ1, . . . , ζd)
by minimizing the mean square error

E(ζ) = 1

N

N

∑
i=1

(f(yi) − IiN−1f(yi))2. (10)

The computations of the N interpolants IiN−1f can be done efficiently using Rippa’s method [20]. However, the
optimization task becomes computationally intensive as d and/or N become moderately large, even when using
the algorithm proposed in [26].

The choice of the sampling set SN is of course critical in the behaviour of kriging algorithm. One the one hand,

samples that are at mutual distance much smaller than the correlation lengths ζ
1/2
i result in ill conditioning of

the covariance matrix in (8). On the other hand, enough samples have to lie within the correlation length in
order to ensure a good approximation. The sampling set may either be predefined or adaptively built.
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One typical predefined sampling set, that we consider in the present investigations, is given by the section
SN = {y1, . . . , yN} from the Halton sequence

yn =
⎡⎢⎢⎢⎢⎢⎣

2γq1(n) − 1
⋮

2γqd(n) − 1

⎤⎥⎥⎥⎥⎥⎦
, (11)

where q1,⋯, qd are the first d prime numbers, and where γq(n) = n0q
−1 +n1q

−2 +⋯+nmq−m−1 with np such that
n = n0 + n1q + n1q

2 +⋯ + nmqm in the q-adic expansion (see for instance [18]). This sequence aims at building
for each N a quasi-uniform sampling set over U .

Adaptive strategies for building the sampling set are based on the mean square error function

y ↦ σ2(y) ∶= E(∣f(y) − INf(y)∣2) (12)

which can be explicitely computed at each y for the kriging estimator. One first strategy consists in selecting
the new point yN+1 which maximizes σ2(y) over U . In contrast to the Halton sequence, this strategy may lead
to non-uniform distributions in the sampling sets. In particular, more data points are likely to be introduced
in the directions where the covariance parameters ζk are small.

In our numerical tests, we perform the search for the new point yN+1 based on maximizing σ(y) using the
same differential evolution algorithm as used for the optimization of the correlation vector ζ. The computation
cost of both optimization procedures constitute a significant computational bottleneck for the adaptive kriging
algorithm as d and N both get large. In addition, the computation of the kriging approximation requires solving
a N ×N system with a full matrix, typically amounting in O(N3) complexity.

2.2. The sparse interpolation procedure

The sparse interpolation procedure in arbitrary dimension is based on tensorization-sparsification of a hierar-
chical interpolation procedure in one dimension. We recall in a nutshell the idea for polynomial interpolation as
proposed and analyzed in [2], then show how the procedure can be generalised to other types of interpolation.

Given the dimension d, the multivariate polynomial spaces considered are of the general form

PΛ ∶= Span{yν = yν11 . . . yνdd ∶ ν = (ν1, . . . , νd) ∈ Λ}, (13)

where Λ ∈ Nd is an index set that is assumed to be downward closed (also called lower set), in the sense that,
given ν,µ ∈ Nd,

ν ∈ Λ and µi ≤ νi, i = 1, . . . , d ⇒ µ ∈ Λ. (14)

Consider any infinite sequence Z ∶= (zi)i≥0 of pairwise distinct points in [−1,1], and denote by Ik the
univariate Lagrange interpolation operator onto Pk associated with the section {z0,⋯, zk}. The operators Ik
can be computed recursively. Indeed, for any k ≥ 0, the difference operator ∆k ∶= Ik − Ik−1 can be expressed as

∆kf = (f(zk) − Ik−1f(zk))hk, h0(z) = 1, hk(z) =
k−1

∏
j=0

z − zj
zk − zj

, (15)

with the convention I−1 is the null operator. Now, for an arbitrary lower set Λ ⊂ Nd, we introduce the grid of
points

ΓΛ ∶= {zν ∶ ν ∈ Λ} where zν ∶= (zνj)j=1,...,d ∈ [−1,1]d. (16)

It is proved in [2] that the grid ΓΛ is unisolvant for the polynomial space PΛ and that the interpolation operator
is given by

IΛ ∶= ∑
ν∈Λ

∆ν , ∆ν ∶= ⊗dj=1∆νj (17)
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We observe that this coincides with the telescopic sum Ik = ∑kj=0 ∆k for the univariate case d = 1. Similarly to
the univariate case, it has been proved in [2] that the hierarchical computation of the interpolation operator IΛ
is possible. More precisely, given a lower set Λ and any multi-index ν ∈ Nd ∖Λ such that Λ′ ∶= Λ∪{ν} is a lower
set, the operator IΛ′ is the sum of IΛ and the increment operator ∆ν which can be computed using

∆ν = (f(zν) − IΛf(zν))Hν , Hν ∶= ⊗dj=1hνj . (18)

The stability of the operators IΛ is critical for numerical applications, such as the design of surrogate models
from computer experiments. It is measured by the Lebesgue constant

LΛ ∶= max
f∈C(U)−{0}

∥IΛf∥L∞(U)
∥f∥L∞(U)

. (19)

This constant depends on the sequence Z, in particular through the Lebesgue constants Lk of the univariate
interpolation operators Ik defined similarly. It was shown in [2] that algebraic growth of Lk yields algebraic
growth of the Lebesgue constant LΛ. More precisely

Lk ≤ (1 + k)θ, for any k ≥ 1 Ô⇒ LΛ ≤ (#Λ)θ+1. (20)

Surprisingly, the previous implication is valid whatever the dimension d and the shape of the finite lower set
Λ. We note that sequences Z with provable slow algebraic growth of the Lebesgue constant Lk exist in the
literature. These sequences are known as R-Leja sequences [1]. They can be computed explicitely and we use
them in our numerical tests for sparse polynomial interpolation.

The tensorization-sparsification approach used in the construction of the polynomial interpolation procedure
can be generalized to other types of interpolation. We describe the approach in an abstract context. We consider
the following sets

(T ,≤), ZT ∶= {zλ ∶ λ ∈ T }, HT ∶= {hλ ∶ λ ∈ T }, (21)

that stands respectively for a countable partially ordered set of indices, a sequence indexed in T of pairwise
distinct abscissas in [−1,1] and a hierarchical basis indexed in T of functions on C([−1,1]) satisfying

hλ(zλ′) = δλ,λ′ , if λ′ ≤ λ. (22)

We consider the set of multi-indices T d ∶= {ν = (ν1, . . . , νd) ∶ νj ∈ T } and define lower sets Λ ⊂ T d similarly to
(14) with ≤ being the partial order over T . For a lower set Λ, we introduce

ΓΛ ∶= {zν ∶= (zν1 , . . . , zνd) ∶ ν ∈ Λ}, HΛ ∶= span{Hν ∶= ⊗dj=1hνj ∶ ν ∈ Λ}, (23)

the grid of interpolation points and the space of interpolation. The same arguments as used in [2] for the
polynomial setting show that the grid ΓΛ is unisolvant for the space HΛ. In the general context where T
might not be totally ordered, the formula (17) does not make clear sense, yet we may still rely on the recursive
computation of the interpolation operators. Namely, if Λ is lower set and ν ∈ T d ∖Λ such that Λ′ = Λ∪ {ν} is a
lower set, then we have

IΛ′f = IΛf + (f(zν) − IΛf(zν))Hν . (24)

For numerical experiment, we consider dyadic hierarchical piecewise linear or piecewise quadratic interpola-
tion. For such interpolation procedures, the set T is defined by

T = {λ−1, λ1, (0,0)} ∪ {(j, k) ∶ −2j−1 ≤ k ≤ 2j−1 − 1, j = 1,2, . . .} (25)
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induced with the partial order λ−1 ≤ λ1 ≤ (0,0) and

(j, k) ≤ (j + 1,2k), (j, k) ≤ (j + 1,2k + 1), (j, k) ∈ T . (26)

The set T is a binary tree where λ−1 is the root node, (0,0) is a child of λ1 which is a child of λ−1, every node
(j, k) has two children (j + 1,2k) and (j + 1,2k + 1), and the relation λ′ ≤ λ means λ′ is a parent of λ. We
associate with T the set of abscissas

ZT ∶= {zλ−1 , zλ1 , z(0,0)} ∪ {z(j,k) ∶=
2k + 1

2j
∶ (j, k) ∈ T , j ≥ 1}, (27)

where zλ−1 = −1, zλ1 = 1 and z(0,0) = 0. We also associate with T the hierarchical basis of piecewise linear
functions HT = {hλ ∶ λ ∈ T } defined over [−1,1] by

hλ−1(s) = 1, hλ1(s) =
1 + s

2
, h(j,k)(x) = ψ(2j(s − zj,k)), ψ(s) ∶= max{0,1 − ∣s∣}, (j, k) ∈ T , (28)

It is easy to verify that the function hλ and the abscissas zλ satisfies the condition (22), therefore the hierarchical
interpolation can be performed. Let us note that in dimension d = 1, the hierarchical interpolation amounts in
first approximating f by the constant function of value f(−1), second by the affine function that coincides with
f at −1 and 1, third by the piecewise affine function that coincides with f at −1, 0 and −1, and in further steps
refine by interpolating at the midpoint of an interval between two adjacents interpolation points. The index j
corresponds to the level of refinement, or the depth of the node in the binary tree.

In the case of piecewise quadratic interpolation, the procedure is exactly the same, except that the hierarchical
basis is nows given by

hλ−1(s) = 1, hλ1(s) =
(1 + s)2

4
, h(j,k)(x) = ψ(2j(s − zj,k)), ψ(s) ∶= max{0,1 − s2}, (j, k) ∈ T . (29)

which corresponds to interpolation by piecewise quadratic functions with the same ordering on the interpolation
points as in the piecewise affine case.

Having fixed the sparse interpolation procedure (polynomial, piecewise affine or piecewise quadratic), the
problem is now to select lower sets Λ giving the best possible interpolation spaces HΛ (or PΛ in the polynomial
case) for the target function f . In the non-intrusive context that motivated this work, no prior information is
known on f , whence the optimal approximation space HΛ for a given N = #(Λ) is not accessible. Therefore,
we may only rely on greedy type strategies. The recursive formula (24) suggests to couple the interpolation
algorithm with an adaptive strategy for the choice of best multi-index ν used to enrich Λ. Given Λ a lower
set, we denote N(Λ) the set of adjacent neighbours to Λ, which are the multi-indices ν ∈ T d ∖ Λ such that
Λ′ ∶= Λ ∪ {ν} is a lower set. Depending on the approximation context, we choose to enrich Λ by ν ∈ N(Λ) that
either satisfies

● the supremum norm of the increment ∥∆νf∥L∞(U) is maximal,
● the least square norm of the increment ∥∆νf∥L2(U) is maximal,
● the value f(zν) is maximal.

The two first criterions are designed for the approximation of f in the L∞ and the L2 sense, respectively, while
the third criterion is designed for optimization and can be seen as a way of exploring the local maxima of f .

Although the set of candidates N(Λ) might be very large, the enrichment step requires at most d new
evaluations of f . Indeed, for ν ∈ Λ and Λ′ = Λ ∪ {ν}, the set N(Λ′) ∖N(Λ) contains at most d indices. We also
note that for the two first strategies, the computation of ∥∆νf∥ for the new indices consists merely in computing

∣f(zν) − IΛf(zν)∣
d

∏
j=0

∥hνj∥, (30)
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with ∥⋅∥ being the L∞ or the L2 norm. This is computationally fast since the hn are known in advance and their
norm ∥hn∥ can be tabulated. The cost of the computation ∥∆νf∥ is essentially dominated by the evaluation of
f(zν) in cases where f is evaluated through a heavy numerical solver.

While the above strategies often give good numerical results in practice, they can be defeated when the target
function has oscillations that fail to be captured by the greedy selection procedure. For example, consider the
two first criterions for piecewise linear adaptive interpolation of a univariate function f such that f( 1

2
) =

1
2
(f(0)+f(1)). Then, the increment corresponding to the point z(1,0) = 1

2
is ∆(1,1)f = 0. Therefore the adaptive

algorithm might fail to explore the region [0,1] on which f could still oscillate away from its linear interpolation.
Similarly an algorithm based on the third criterion could be trapped in local maximas.

One way to remedy this defect consists in modifying the algorithm a follows: we produce the nested sequence
of lower sets

Λ1 ⊂ Λ2 ⊂ ⋯ ⊂ ΛN ⊂ ⋯
with #(ΛN) = −N , by alternating p − 1 adaptive steps where the new index ν ∈ N(ΛN) is picked based on the
chosen criterion when N ∉ pN, and one “conservative” step where we pick the most “ancient” index ν ∈ N(ΛN)
when N ∈ pN, in the sense that it has been lying in N(Λk) for the smallest value of k ≤ N . This conservative
step allows us to explore the whole parameter space U , while retaining the adaptive feature of the algorithm.
In our numerical test we have used the value p = 5, based on empirical observation that it gives a good balance
between adaptivity and exploration.

An important feature of these adaptive algorithm is that the computational cost scales like d + N , where
N = #(ΛN) and d is the dimension. Indeed, the construction of ΛN+1 from ΛN requires inspecting at most
d new values of the unknown function. This contrasts with the kriging algorithm and will be reflected in the
numerical tests.

3. Numerical tests

3.1. Synthetic functions

The performances of the above algorithms have been assessed on two classes of problems. First, two synthetic
functions are considered. The first is a smooth one-dimensional sinusoidal type function whereas the second is
two-dimensional and exhibits a sharp gradient along one abscissa, depicted in figure 1. The synthetic functions
are given by

h1(y1) ∶= g(10y1 − 2) cos(y2
1); g(s) ∶= s∣s∣

1 + s2
, (31a)

h2(y1, y2) ∶= g(10y1 − 2) cos(5y2
1)g(100y2 − 20) cos(5y2

2). (31b)

These functions are evaluated in the domain U = [−1,1]d with d = 1 and 2 respectively, and displayed on
Figure 1. The univariate function h1 is smooth with a kink at y1 = 0.2. The two-dimensional function h2 has
a sharp gradient along y2 = 0.2. The sparse interpolation algorithm is first considered and the performances
are compared on Figure 2 between the polynomial, piecewise linear and piecewise quadratic procedures. The
L∞ and L2 errors in all figures have been computed based on 106 randomly chosen samples. For the two test
cases, the piecewise quadratic algorithm shows the best convergence. This procedure is higher accurate than
its piecewise linear counterpart, while still providing local adaptivity as opposed to its polynomial counterpart.

A comparison with the kriging procedure is shown on Figures 3 where results between the piecewise quadratic
sparse interpolation appears to be more precise than the kriging using the Halton sequence.

In the case of the one-dimensional function, the quadratic polynomial approach appears to be also more precise
than the adaptive kriging strategy based on the mean square error (12). For the two-dimensional synthetic
function, a sample size #(Λ) > 128 appears to be mandatory in order to decrease the error significanlty in all
cases considered. The adaptive kriging appears to be slightly more precise for 128 < #(Λ) < 512, yet comparable
with the sparse interpolation algorithm when #(Λ) reaches 512. In the case of the piecewise sparse interpolation
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Figure 1. Sketch of the one-dimensional (a) and two-dimensional (b) synthetic functions,
given in equations (31a) and (31b)

procedure, we have observed that the selected interpolation points are mainly clustered along the sharp gradient
region. In the case of the Kriging, the internal parameter ζ2 appears to be much smaller than ζ1, and the points
appear to be mostly distributed along the y2 direction. Note that due to the computational time involved in
computing the adaptive kriging, the results for #(Λ) > 512 could not be computed as the parameters for the
kriging are recomputed every time a new point is included in the data set. We discuss later the comparison
between computational costs.

3.2. Surrogate model for a transonic wing profile

The second class of problem studied is a transonic flow over a RAE2822 wing profile. The flow solution is
computed using the MISES code [6] which solves the Euler equations together with a boundary layer correction.
Results are shown on Figure 4 for the baseline solution, compared with the data from the experiment in [3]
for similar inflow conditions. The inflow conditions are given by the Mach number M = 0.729, the angle of
attack α = 2.31o and the Reynolds number Re = 106 based on the chord length c and the flow at infinity. The
pressure distribution, shown on Figure 4(a) exhibits a discontinuity on the suction side of the aerofoil, denoting
the presence of a shock, caused by the expanding geometry of the aerofoil after c > 0.4. In the present study,
the value of interest is given by the ratio between the lift and the drag

f = Cl
Cd

(32)

where

Cl = ∫
ξ
p(s)nα(s) ds, and Cd = ∫

ξ
p(s)tα(x) ds, (33)

where nα = n ⋅ (− sin(α)
cos(α) ) and tα = n ⋅ (cos(α)

sin(α)) with n the outward normal vector. The shape of the baseline

RAE2822 profile has been altered using four B-spline functions. More precisely

● The 4 control points are located at 5,20,40 and 60% of the chord c, see Figure 4(a).
● The amplitude of each B-spline is taken in the interval [−1.7510−3c,1.7510−3c] and is directed towards

the normal to the initial profile ξ.
● The leading edge and the trailing egde have been considered as fixed.

In the present study, the parameter range is thus defined by the hypercube [−1.75.10−3c,1.75.10−3c]4, which
after renormalization can be set to U ∶= [−1,1]4. The change of the geometry is responsible for triggering the
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Figure 2. Comparison between the polyomial, piecewise linear and piecewise quadratic sparse
adaptive interpolation procedures: L2 error (left), L∞ error (right), function h1 (up) and
function h2 (down).

pressure gradient induced by the geometry of the profile. Even for small variations of the shape parameterw,
the pressure gradient is altered significantly, which leads to nonlinear variations of the lift and the drag.

The kriging and the sparse adaptive algorithm are compared for different sample size and in several dimen-
sions. The three procedures for sparse interpolation are compared on Figures 5. Similar to the synthetic case,
the polynomial procedure is the least accurate whereas the piecewise linear and piecewise quadratic procedures
appear to perform equally for both the L2 and L∞ error. The two kriging procedure (Halton and adaptive) are
then compared on figure 6. The results appear to be comparable for sampling sizes #(Λ) ≤ 128. Beyond this
limit, the adaptive kriging appears to perform slightly better for the L∞ error. We observed that the valued of
the internal parameters ζ are fairly similar and that the points selected by the adaptive procedure tend to be
more clustered along the borders. This is due to the fact that the kriging suffers from the lack of data points
beyond the limit of the parameter space and thus tends to cluster extra points on the boundaries.

The adaptive kriging is finally compared with the piecewise linear sparse interpolation on Figure 7. The
adaptive kriging appears to perform slightly better than the piecewise linear sparse interpolation procedure
with an error twice lower for #(Λ) = 512 for both the L2 and L∞ errors. However, when comparing both
methods in terms of computational time, the kriging algorithm appears to strongly suffer from the growth of
the sampling size N = #(Λ), in contrast to the sparse interpolation algorithm, as illustrated on Figure 8. For
103 < N < 104, the ratio between the CPU times can reach up to 105. The reasons for this have been discussed
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Figure 3. Comparison between the Kriging using either the Halton sequence or the adaptively
selected sequence, and the piecewise quadratic sparse adaptive interpolation: L2 error (left),
L∞ error (right), function h1 (up) and function h2 (down).
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Figure 5. Comparison of the L∞ (◻) and the L2 error (#) for the sparse interpolation al-
gorithms applied to the functions y1 ↦ f(y1,0,0,0) (a) and (y1, y2, y3, y4) ↦ f(y1, y2, y3, y4)
(b).
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Figure 6. Comparison of the L∞ (∎) and the L2 error ( ) for the kriging algorithms applied
to the functions y1 ↦ f(y1,0,0,0) (a) and (y1, y2, y3, y4) ↦ f(y1, y2, y3, y4) (b).

in the introduction of this paper, and are related in particular to the O(N3) complexity of the inversion process
in the kriging procedure.

4. Conclusions

In the present study, several classes of algorithms are discussed and compared with a special emphasis on
adaptivity, with the goal of overcoming as much as possible the so-called curse of dimensionality. The first
problem considered is the interpolation of a synthetic smooth function, characterized by local regions of sharp
gradients. The kriging and the sparse interpolation procedures appear to perform similarly, in terms of error vs.
number of evaluation points. Then a test case concerning the response surface of a wing at transsonic speeds in
terms of shape parameters is considered. The results are again comparable between the kriging and the sparse
interpolation procedure. However the comparison in terms of the computational time for a given amount of
evaluation points is strongly in favour of the sparse interpolation algorithm. Although much effort has been
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recently devoted to the kriging procedure, it appears that beyond a sampling #(Λ) of a few hundred points,
the surrogate model to compute becomes expensive. Beyond a few thousand samples, the kriging surrogates
might become more computationally expensive to evaluate than the CFD solver itself, which questions the
relevance of this surrogate model for large scale engineering applications. This comparison between kriging
and adaptive sparse interpolation has been carried out for fairly low-dimensional problems (up to d = 4) when
compared with full size engineering applications. However, these results clearly show that both methods provide
comparable accuracy but at significantly different computational cost, which clearly advocates in favour of the
sparse adaptive interpolation procedure for computing surrogate models.
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