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Abstract

Motivated by the development of non-intrusive methods for high dimensional para-

metric PDE’s, we study the stability of a sparse high dimensional polynomial interpo-

lation procedure introduced in [6]. A key aspect of this procedure is its hierarchical

structure: the sampling set is progressively enriched together with the polynomial

space. The evaluation points are selected from a grid obtained by tensorization of a

univariate sequence. The Lebesgue constant that quantifies the stability of the result-

ing interpolation operator depends on the choice of this sequence. Here we study the

<-Leja sequence, obtained by the projection of Leja sequences on the complex unit cir-

cle, with initial value 1, onto [−1, 1]. For this sequence, we prove cubic growth in the

number of points for the Lebesgue constant of the multivariate interpolation operator,

independently of the number of variable and of the shape of the polynomial space.

1 Introduction

This paper deals with a process of high dimensional approximation process, for which the

sampling set is hierarchically enriched, in parallell with the polynomial space. Our main

motivation for considering this process is the development of non-intrusive methods for high

dimensional parametric PDE’s.

Parametric PDE’s are equations with the general form

D(u, y) = 0, (1.1)

where D is a differential operator and y = (y1, . . . , yd) is a parameter vector in a tensor prod-

uct domain Xd. Up to a change of variable, typical choices for X are the real interval [−1, 1]

or the complex unit disk {|z| ≤ 1}. The solution u to such PDE’s is therefore a function
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of y, which may be deterministic or stochastic depending on the context of application, in

addition to the usual space and time variable.

Parametric PDE’s raise significant computational challenges in the high dimensional con-

text, that is when d >> 1 or d = +∞. Recent results such as in [9, 10, 7] have shown the

effectiveness of approximating the map y 7→ u(y) to certain such PDE’s by multivariate poly-

nomials in the parametric variables (y1, . . . , yd). Here, the multivariate polynomial spaces

are of the general form

PΛ := Span{yν = yν1
1 . . . yνdd : ν = (ν1, . . . , νd) ∈ Λ}, (1.2)

where Λ ∈ Nd is an index set that is assumed to be downward closed (also called lower set),

in the sense that

ν ∈ Λ and µi ≤ νi, i = 1, . . . , d⇒ µ ∈ Λ. (1.3)

It was shown in [8, 7] that for relevant classes of parametric PDE’s, certain sequences of

downward closed index sets

Λ1 ⊂ Λ2 ⊂ . . . ⊂ Nd, (1.4)

with #(Λk) = k break the curse of dimensionality in the sense that the polynomial approx-

imation error decays with k at a rate k−s that does not deteriorates as d gets large in the

sense that it remains valid even when d =∞.

One practical way to construct such polynomial approximations is by interpolation, based

on the evaluation of u at certain points yi ∈ Xd. One attractive feature of such an approach is

that it is non-intrusive and therefore can benefit from existing numerical codes for evaluating

y 7→ u(y) pointwise. An important issue for computational simplicity and economy is that

the sampling and interpolation procedure should be hierarchical: the solution u is evaluated

at only one new point in Xd when Λk is updated to Λk+1.

Such a procedure was recently proposed and analyzed in [6]. It is based on the data of

a sequence Z := (zi)i≥0 of pairwise distinct points in X, and the univariate interpolation

operator Ik onto Pk associated with the section {z0, · · · , zk}. The corresponding multivariate

interpolation operator IΛ onto PΛ is constructed by a certain process of tensorization and

sparsification based on the difference operators Dk := Ik − Ik−1, which is described in §2

of this paper. We also show that there is a simple relation between the algebraic growth

of the Lebesgue constant LΛ := ‖IΛ‖L∞→L∞ in terms ot #(Λ), and that of its univariate

counterpart Lk := ‖Ik‖L∞→L∞ or of ‖Dk‖L∞→L∞ in terms of k.

This motivates the search for “good” univariate sequences Z of points on [−1, 1] such

that the, Lebesgue constant Lk or the norm of the difference operator Dk, have moderate

algebraic growth, controlled by (1 + k)θ for a small θ. Note that is well known that the

Lebesgue constant grows logarithmically with k for certain choices of non-nested sets of
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points, such as Chebychev or Gauss-Lobatto points, however it is not clear that such a very

slow growth is possible for nested sets corresponding to the sections of a sequence Z.

In this paper, we consider the so-called <-Leja sequence, obtained by the projection of

Leja sequences on the complex unit circle, with initial value 1, onto [−1, 1], and studied

in [3, 4]. We recall in §3 some main properties of these sequences. We then obtain in §4

the bound Lk ≤ 8
√

2(1 + k)2, which improves on the O(k3 log k) bound in [3] and on the

O(k2 log k) bound in [4]. Then in §5, we establish the improved bound Dk ≤ (1 + k)2 for

the difference operator, which could not be obtained directly from Dk ≤ Lk + Lk−1. A

consequence of this last result is that using the <-Leja sequence, the resulting multivariate

interpolation operator has Lebesgue constant with bound

LΛ ≤ (#Λ)3, (1.5)

whatever the dimension d and the shape of the finite lower set Λ.

2 Sparse polynomial interpolation

In this section, we recall the construction of the multivariate interpolation operator proposed

in [6]. Given an infinite sequence Z := (zi)i≥0 of pairwise distinct points in X, we define Ik
the univariate interpolation operator onto Pk associated with the section {z0, · · · , zk}. We

may express Ik as the telescoping sum

Ik =
k∑
l=0

∆l, ∆0 = I0 and ∆k := Ik − Ik−1, (2.1)

which corresponds to the Newton form, with

∆kf =
(
f(zk)− Ik−1f(zk)

)
hk, h0(z) = 1, hk(z) =

k−1∏
j=0

z − zj
zk − zj

, (2.2)

with the convention that I−1 = 0. Now, for an arbitrary lower set Λ ⊂ Nd, we introduce the

grid of points

ΓΛ := {zν : ν ∈ Λ} where zν := (zνj)j=1,...,d ∈ Xd. (2.3)

We also introduce the operator

IΛ :=
∑
ν∈Λ

∆ν , ∆ν := ⊗j=1,...,d∆νj (2.4)

We observe that this coincides with (2.1) for the univariate case d = 1 when Λ = {0, 1, . . . , k}.
We also observe that when Λ is a rectangular block, that is,

Λ = Bµ := {ν : ν ≤ µ}, (2.5)
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for some µ, then

IΛ = ⊗j=1,...,d(

µj∑
νj=1

∆νj) = ⊗j=1,...,dIµj , (2.6)

is the interpolation operator for the tensor product polynomial space PΛ := ⊗j=1,...,dPµj for

the tensor product grid ΓΛ = ⊗j=1,...,d{z0, . . . , zµj}.
The following result is given in [6] but its first appearance dates back from [14] in the

bi-dimensional case. It shows that this observation generalizes to any downward closed set.

Theorem 2.1 The grid ΓΛ is unisolvant for the polynomial space PΛ and that the interpo-

lation operator is given by IΛ.

Proof: Since #(Λ) = dim(PΛ) and the image of IΛ is obviously contained in PΛ, it suffices

to show that IΛ is the interpolation operator, that is, IΛf(zµ) = f(zµ) for all ν ∈ Λ. This is

shown by splitting IΛf into

IΛf = IBµf + (IΛ − IBµ)f, (2.7)

where Bµ is the rectangular block in (2.5). For the first, we have already observed that

IBµf(zµ) = f(zµ). The second part in the above splitting is a sum of terms ∆νf where

ν is such that νj > µj for at least one value of j. For this value we have ∆νjf(zµj) = 0,

which implies that ∆νf(zµ) = 0. Therefore (IΛ−IBµ)f(zµ) = 0 which concludes the proof. 2

One main interest of the above construction is that it is hierarchical in the sense that the

enrichment of Λ by a new index µ corresponds to adding one sampling point zµ to the grid

ΓΛ. In a similar way to the univariate case, the hierarchical computation of the interpolant

is possible, based on the formula

∆νf =
(
f(zν)− IΛf(zν)

)
Hν , Hν(z) =

d∏
j=1

hνj(zj), (2.8)

which holds whenever Λ is any lower set such that any ν /∈ Λ and Λ ∪ {ν} is also a lower

set. This hierarchical form allows us to develop adaptive interpolation algorithms: given a

certain set Λn of cardinality n, one picks a new index νn+1 which maximizes the contribution

∆νf in some norm of interest (typically Lp for p = 1, 2 or∞) among those ν /∈ Λn such that

Λn ∪ {ν} is a lower set. The numerical behaviour of such adaptive algorithms is studied in

[6].

The stability of the operators IΛ is critical for numerical applications such as the non-

intrusive treatment of parametric PDE’s. It is measured by the Lebesgue constant

LΛ := max
f∈C(Xd)−{0}

‖IΛf‖L∞(Xd)

‖f‖L∞(Xd)

. (2.9)
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In particular, we have the classical estimate

‖f − IΛf‖L∞(Xd) ≤ (1 + LΛ) inf
g∈PΛ

‖f − g‖L∞(Xd). (2.10)

This constant depends on the sequence Z, in particular through the Lebesgue constant of

the univariate interpolation operators

Lk := max
f∈C(X)−{0}

‖Ikf‖L∞(X)

‖f‖L∞(X)

. (2.11)

We recall that

Lk := max
t∈X

λk(t), (2.12)

where λk is the Lagrange function for the section {z0, . . . , zk} defined by

λk(t) :=
k∑
i=1

|li,k(t)|, (2.13)

with

li,k(t) :=
∏

j=1,...,k,
j 6=i

t− zj
zi − zj

, (2.14)

for j = 0, . . . , k are the Lagrange polynomials associated with {z0, . . . , zk}.
It is shown in [6] that algebraic growth of Lk yields algebraic growth of the Lebesgue

constant LΛ. More precisely, given any θ ≥ 1

Lk ≤ (1 + k)θ, for any k ≥ 1 =⇒ LΛ ≤ (#Λ)θ+1. (2.15)

Surprisingly, the previous implication is valid whatever the dimension d and the shape of

the finite lower set Λ.

A more straightforward computation shows that we also have

Dk ≤ (1 + k)θ, for any k ≥ 1 =⇒ LΛ ≤ (#Λ)θ+1, (2.16)

where

Dk := max
f∈C(X)−{0}

‖∆kf‖L∞(X)

‖f‖L∞(X)

. (2.17)

Indeed, by triangle inequality, we find that

LΛ ≤
∑
ν∈Λ

d∏
j=1

Dνj ≤
∑
ν∈Λ

d∏
j=1

(1 + νj)
θ =

∑
ν∈Λ

(#(Bν))θ ≤
∑
ν∈Λ

(#Λ)θ = (#Λ)θ+1, (2.18)

where in the forth inequality, we have used the fact that Bν ⊂ Λ for any ν ∈ Λ because Λ is

downward closed.
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The construction of sequences with algebraic growth of the Lebesgue constant is then

essential. In all the following, without loss of generality, we consider the interval X = [−1, 1],

for which the classical choices of Chebyshev and Gauss-Lobatto points gives univariate

Lebesgue constants that grow polynomially with k. However, these choices are of no use

for our purposes since they do not correspond to the sections of a single sequence Z.

A possible alternative is provided by the so-called Leja sequences A := (aj)j≥0 constructed

according to: a0 ∈ [−1, 1] arbitrary and ak satisfying

|ak − a0| . . . |ak − ak−1| = max
t∈[−1,1]

|t− a0| . . . |t− ak−1|. (2.19)

Numerical evidence shows that such sequences have moderate growth of the Lebesgue con-

stant, the bound Lk ≤ k seems valid, see [4]. However, no rigorous proof supports this

evidence. It is only known that the growth of the Lebesgue constants is sub-exponential, i.e.

(Lk)
1
k →k→∞ 0, see [15]. In the rest of this paper, we provide estimates on the growth of

Lebesgue constants for slightly different sequences, namely Leja points for the complex unit

disk and their projections on the interval [−1, 1].

3 Leja sequences and their projections

3.1 Leja sequence on the unit circle

Recently, Calvi and Phung [2, 3] have shown that the Lebesgue constants of Leja sequences

on U the unit disk and theirs real projection on [−1, 1], the so-called <-Leja sequences, are

moderate and have growth asymptotically bounded inO(k log k) andO(k3 log k) respectively.

In addition, unlike Leja sequences on [−1, 1], theses sequences are easy to construct and have

explicit formulas. In [4], their bounds were improved to 2k and 5k2 log k, respectively. In

this paper, we improve further these bounds and give direct bounds for the norms Dk of

the difference operators, which are useful in view of the discussion in the previous section.

Our techniques of proof share several common points with those developed in [2, 3, 4], yet it

is shorter and exploit to a considerable extent the properties of Leja sequences on the unit

disk.

We introduce the notations U and ∂U for the closed complex unit disk and the complex

unit circle respectively and the notation UN for the set of N -root of unity. Given an infinite

sequence A := (aj)j≥0, we define Ak := (a0, · · · , ak−1) and Al,m = (al, · · · , am) for l ≤ m.

Given two finite sequence S1 and S2, we denote by S1 ∧ S2 the concatenation of S1 and S2.

For any section S = (s0, · · · , sl) of complex number, we introduce the notations

ρS := (ρs0, · · · , ρsl), ρ ∈ C, <(S) := (<(s0), · · · ,<(sl)), S := (s0, · · · , sl). (3.1)
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Throughout this paper, to any finite set S of numbers, we associate the polynomial

wS(x) :=
∏
s∈S

(x− s). (3.2)

Any integer k ≥ 1 can be uniquely expanded according to

k = 2p0 + . . .+ 2psk−1 , p0 < . . . < psk−1, (3.3)

where sk is the number of ones in the binary representation of k and the pj’s are integers. We

emphasize the dependance of p0 in k when needed by sometimes writing p0(k). We denote

by σ1(k) and σ0(k) respectively, the number of ones and zeros in the binary expression of k.

For k = 2n, . . . , 2n+1 − 1, one has

σ1(k) = sk ≤ n, σ0(k) = n+ 1− σ1(k). (3.4)

We recall also that for any n ≥ 1 and any 0 < l < 2n, one has

sl + s2n−l = n+ 1− p0(l). (3.5)

The proof is simple and can be found in [4].

Leja sequences E = (ej)j≥0 on U considered in [2, 4] have all theirs initial value e0 ∈ ∂U
the unit circle. In view of the definition (3.6), the maximum principle implies ej ∈ ∂U for

any j ≥ 1. The sequence considered in [2] are actually Leja sequence on the unit circle.

A Leja sequence on the unit circle E = (ej)j≥0 is defined inductively by: pick e0 ∈ ∂U
arbitrary and for k ≥ 1

ek = argmaxz∈∂U |z − ek−1| . . . |z − e0|, (3.6)

The previous argmax problem might admit many solutions and ek is one of them. We call a

k-Leja section every finite sequence (a0, . . . , ak−1) obtained by the same recursive procedure.

In particular, with E is a sequence as above, then the section Ek = (e0, . . . , ek−1) is k-Leja

section.

In contrast to the interval [−1, 1] where even the first points of a Leja sequence can not

be computed explicitly, Leja sequences on ∂U are much easier to compute. For instance,

suppose that e0 = 1, then we can immediately check that e1 = −1 and e2 = ±i. Assume

that e2 = i then e3 maximises |z2 − 1||z − i|, so that e3 = −i because −i maximizes jointly

|z2−1| and |z− i|. Then e4 must maximize |z4−1|, etc... We observe that a “binary” patten

on the distribution of E begin to appear.

Since the element of ∂U have all the same modulus 1, then an arbitrary Leja sequence

E = (e0, . . .) on ∂U is merely the rotation by e0 of a Leja sequence with initial value 1. The

latter are completely determined according to the following theorem, see [2, 4].
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Theorem 3.1 Let n ≥ 0, 2n < k ≤ 2n+1 and l = k − 2n. The finite sequence Ek =

(e0, . . . , ek−1) is a k-Leja section if and only if E2n = (e0, . . . , e2n−1) and Ul = (e2n , . . . , ek−1)

are respectively 2n-Leja and l-Leja sections and e2n is any 2n-root of −1.

The most natural construction of a Leja sequence in ∂U consists then in defining E :=

(ej)j≥0 inductively by

E1 := (e0 = 1) and E2n+1 := E2n ∧ e
iπ
2nE2n , n ≥ 0. (3.7)

This “uniform” construction of the sequence E yields an interesting distribution of its ele-

ments. Indeed, by an immediate induction, see [1], it can be shown that the elements ek are

given by

ek = exp
(
iπ

n∑
l=0

aj2
−j
)

for k =
s∑
j=0

aj2
j, aj ∈ {0, 1}. (3.8)

The construction yields then a low-discrepancy sequence on ∂U based on the bit-reversal

Van der Corput enumeration. This sequence was known to be a Leja sequence over ∂U in

many earlier works.

As stated above, Theorem 3.1 characterizes completely Leja sequence on the unit circle.

It has many implications that turn out to be very useful in the analysis of the growth of

Lebesgue constant studied. We have

Theorem 3.2 Let E be a Leja sequence on ∂U starting at 1. The following holds:

• For any n ≥ 0, E2n = U2n in the set sense.

• For any k ≥ 1, |wEk(ek)| = supz∈∂U |wEk(z)| = 2σ1(k).

• For any n ≥ 0, E2n,2n+1 := (e2n , · · · , e2n+1−1) is a 2n-Leja section.

• For any n ≥ 0, B(E2n) := (e2n−1, · · · , e1, e0) is a 2n-Leja section.

• The sequence E2 := (e2
2j)j≥0 is a Leja sequence.

The proof of the properties can be found in [2, 4, 5].

Using the implications of the Leja definition (3.6) on the growth of the Lebesgue constants

LEk of the sections Ek and the previous structural properties of Leja sequences on the unit

circle, it was proved in [4] that for any Leja sequence E on ∂U , we have

λEk(ek) ≤ k and LEk ≤ 2k, k ≥ 1, (3.9)

where λEk is the Lagrange function associated with the section Ek which is defined in a

similar manner as in (2.13).
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For further use, let us note that given E a Leja section starting at ρ ∈ ∂U , n ≥ 1 and k

such that 1 ≤ k ≤ 2n, one has for any z, ξ ∈ ∂U with ξ 6∈ Ek

|wEk(z)|
|wEk(ξ)|

=
|wEk(z)||wB(Ek,2n )(ξ)|

|wE2n
(ξ)|

≤ 2σ1(k)2σ1(2n−k)

|ξ2n − ρ2n|
=

2n+1−p0(k)

|ξ2n − e2n
0 |
. (3.10)

We have used that Ek∪B(Ek,2n) = Ek∪Ek,2n−1 = E2n = ρU2n in the set sense, that B(Ek,2n)

is a {2n − k}-Leja section according to the forth properties above, and the easily checked

identity σ1(k) + σ1(2n − k) = n+ 1− p0(k) for any 0 ≤ k ≤ 2n.

3.2 <-Leja sequences on [−1, 1]

We consider a Leja sequence E = (ej)j≥0 on the unit circle with e0 = 1 and project it

onto the real interval [−1, 1] and denote by R = (rj)j≥0 the sequence obtained. Since

E = (1,−1,±i, · · ·), one should make sure that no point is repeated on R simply by not

projecting a point ej such that ej = ei for some i < j. Such sequences R were named <-Leja

sequence in [3]. The projection rule that prevent the repetition is well understood. Indeed,

it was in proved in [3, Theorem 2.4] that

Lemma 3.3 Let E be a Leja sequence on ∂U with e0 = 1 and R the associated <-Leja

sequence. Then

R = <(Z), with Z := (1,−1) ∧
∞∧
j=1

E2j ,2j+2j−1 . (3.11)

The previous theorem says essentially that the section E2n,2n+1 considered as a set is the

union of its first half E2n,2n+2n−1 and its conjugates. E2n,2n+2n−1 .

A straightforward cardinality argument shows that in addition to r0 = 1, r1 = −1, we

have for any n ≥ 0 and any k with 2n ≤ k − 1 < 2n+1,

Zk = (1,−1) ∧
n∧
j=1

E2j ,2j+2j−1 ∧ E2n+1,2n+k−1 and rk = <(e2n+k−1). (3.12)

The particular structure of the Leja sequences E yields useful properties for <-Leja

sequences. First, in view of the first property in Theorem 3.2, we have

R2n+1 =

{
cos
(jπ

2n

)
: j = 0, . . . , 2n

}
, n ≥ 0 (3.13)

in the set sense. Therefore R2n+1 coincides as a set with the Gauss-Lobatto abscissas. We

have also the following result.
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Lemma 3.4 Let R := (rj)j≥0 be a <-Leja sequence. The sequence

R2 := (2r2
2j − 1)j≥0 (3.14)

is also an <-Leja sequence.

Proof: We consider E = (ej)j≥0 to be a Leja sequence associated with R and recall that by

Theorem 3.2, the sequence E2 = (e2
2j)j≥0 is also Leja sequence starting at 1 since e0 = 1. the

sequence R2 can be obtained by projection of E2 onto [−1, 1]. Indeed, the first two elements

of R2 are 1 and −1 because r0 = 1, r2 = 0, so that we only need to show that (3.12) holds

with R2 and E2. For n ≥ 0 and 2n ≤ k − 1 < 2n+1, one has 2n+1 ≤ (2k − 1) − 1 < 2n+2 so

that by (3.12),

r2k−1 = <(e2n+1+2k−1−1) = <(e2(2n+k−1)).

Since 2k ≥ 4, then r2k = −r2k−1, hence

2r2
2k − 1 = 2r2

2k−1 − 1 = <(e2
2(2n+k−1)),

where we have used <(z2) = 2<(z)2 − 1 for z ∈ ∂U . The proof is then complete. 2

The previous lemma has certain implications on the polynomials wRk associated with the

sections Rk which are very essential on the study of the growth of the norm of the difference

operator discussed in section §5. In order to lighten our notation, we find it convenient to

work with normalized versions of the polynomials wRk that we define by

WRk(x) := 2kwRk(x), x ∈ [−1, 1]. (3.15)

We are interested in the relation between these polynomials for sections of the sequences R

and R2. First, since all <-Leja sequences has initial elements 1 and −1, then it is immediate

that

WR2
1
(2x2 − 1) = WR2(x) x ∈ [−1, 1]. (3.16)

For higher value of k, we have the following

Lemma 3.5 Let R be an <-Leja sequence and S := R2. For any k ≥ 2

WSk(2x
2 − 1) = 2x WR2k−1

(x), x ∈ [−1, 1] (3.17)

Consequently W ′
Sk

(−1) = W ′
R2k−1

(0), W ′
Sk

(1) = 1
2
W ′
R2k−1

(1) = 1
2
W ′
R2k−1

(−1) and

W ′
Sk

(sj) =
1

2
W ′
R2k−1

(r2j) =
1

2
W ′
R2k−1

(r2j−1), j = 2, . . . , k − 1 (3.18)
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Proof: The verification of (3.17) for k = 2 is immediate. Now, from the definition of R2,

we have for k ≥ 3

wSk(2x
2 − 1) =

k−1∏
j=0

(
2x2 − 1− (2r2

2j − 1)
)

= 2k
k−1∏
j=0

(x+ r2j)(x− r2j).

Since r0 = 1, r1 = −1, r2 = 0 and r2j = −r2j−1 for any j ≥ 2, then

wSk(2x
2 − 1) = 2k(x+ 1)(x− 1)x2

k−1∏
j=2

(x− r2j−1)(x− r2j) = 2kx wR2k−1
(x),

which implies (3.17) after multiplication by 2k . The derivation with respect to x gives

4x W ′
Sk

(2x2 − 1) = 2
(
x W ′

R2k−1
(x) +WR2k−1

(x)
)
. (3.19)

Since WR2k−1
(0) = 0, then the first result on derivatives is obtained when dividing by x and

letting x → 0. The second result is obtained by the substitution of x by 1 or −1. As for

(3.18), we substitute x by r2j and r2j−1 = −r2j for j = 2 . . . , k − 1. 2

The previous Lemma has also implications on the growth of WRk(rk) that we use in §4.

Lemma 3.6 Let R be a <-Leja sequence and denote S := R2. For any N ≥ 1, we have

2rk WRk(rk) = WSN+1
(sN+1), k = 2N + 1, (3.20)

and

WRk(rk) = 2WSN (sN), k = 2N. (3.21)

Proof: The first equality follows from formula (3.17) applied with x = rk since k = 2(N +

1) − 1 and 2r2
k − 1 = 2r2

2(N+1) − 1 = sN+1. The second equality can be checked easily for

N = 1. For N ≥ 2, using the fact rk = −r2N−1 and sN = 2r2
k − 1, formula (3.17) implies

WRk(rk) = 2(rk − r2N−1)WR2N−1
(rk) = 4rkWR2N−1

(rk) = 2WSN (sN).

2

4 Growth of Lebesgue constant of <-Leja sections

As stated above in (3.13), for any <-Leja sequence R, the sections R2n+1 coincide in the set

sense with the Gauss-Lobatto abscissas. This type of abscissas are known to have Lebesgue

constant with logarithmic growth LR2n+1
∼ 2

π
log(2n+1). More precisely, we have the bound

LR2n+1
≤ 1 +

2

π
log(2n). (4.1)
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See [12, Formulas 5 and 13]. In [4], using the previous bound and classical trigonometric

arguments as the one used in the bounding of Lebesgue constant of Tchybeshev abscissas,

e.g. [13], it is established that for any n ≥ 0 and any k ≥ 2n + 1

LRk ≤ 4n−p0(k′)(5 +
8

π
log 2n) (4.2)

where k′ = k− (2n + 1). Although the effect of the binary pattern on the distribution of the

Leja sequence E on ∂U is somehow reflected by the term 2n−p0(k′), we observe that if k is an

even number, we only have the bound LRk ≤ 8
π
k2 log k.

Through a novel analysis, we propose to relate the analysis of the Lebesgue constants

LRk to the analysis of the Lebesgue constants LEk where E is any Leja sequence associated

with R, then benefit from the machinery developed for the complex setting in [4].

The sections Rk of length k = 2n + 1 for n ≥ 1 have already been treated, see (4.1).

Therefore, we only discuss the cases of k such that 2n + 1 < k < 2n+1 + 1. In view of (3.12),

for such values, we have Rk = <(Zk), Zk being the section obtained by the elimination

procedure from E2n+k−1 which is the shortest section of E that yields Rk we projected onto

[−1, 1]. We have the following result

Theorem 4.1 Let n ≥ 0 and k ≥ 3 such that 2n + 1 < k < 2n+1 + 1. One has

LRk ≤ 2
√

2
(

2n−p0(k′)LEk+2n−1

)
where k′ = k − (2n + 1). (4.3)

In view of (3.9), the previous theorem implies in particular

LRk ≤ 2
√

2(2n × 2(k + 2n − 1)) ≤ 8
√

2k2 (4.4)

In order to prove the theorem, we must bound the Lebesgue function associated with the

real section Rk using the Lebesgue function or constant associated with the complex section

Ek+2n−1. To this end, we propose to bound the Lagrange polynomials associated with Rk

using those associated with Ek+2n−1.

For notational simplicity, we introduce

Gk = Ek+2n−1, 2n + 1 < k < 2n+1 + 1, (4.5)

where Gk is a set. The following lemma describe to some extent how Gk can be obtained

from Rk.

Lemma 4.2 Let E be a Leja sequence with e0 = 1, R the associated <-Leja sequence, and

Z = (zj)j≥0 the sequence in Lemma 3.3. For any n ≥ 0 and any k with 2n+1 < k < 2n+1 +1,

we have

Gk = {z0, z1} ∪ {z2, z2, · · · , z2n , z2n} ∪ Fk Fk := Z2n+1,k−1 = {z2n+1, · · · , zk−1}. (4.6)

12



Proof: We have that

Gk = E2n+1 ∧ E2n+1,2n+k−1 = E2n+1 ∧ Z2n+1,k−1.

Therefore, we only need to show that E2n+1 = {z0, z1, z2, z2, · · · , z2n , z2n} in the set sense.

Since E2n+1 coincides with the set of 2n+1-root of unity, then E2n+1 is the union of {1,−1}
and {z2, . . . , z2n} and theirs conjugates, which finishes the proof. 2

The previous Lemma allows us to relate the polynomials WRk defined in (3.15) and wGk ,

and also their derivatives.

Lemma 4.3 Let n, k, Fk and Gk as in the previous lemma. For any z ∈ ∂U and x = <(z)

|WRk(x)| = |z2 − 1||wGk(z)||wFk(z)| = |z2 − 1||wGk(z)||wFk(z)|. (4.7)

Consequently, for any j = 0, · · · , k − 1

|W ′
Rk

(rj)| = 2αj|w′Gk(zj)||wFk(zj)|, (4.8)

where αj = 1 for every j except for j = 0 and j = 1, it is equal to 2.

Proof: Given z, z′ ∈ ∂U and x = 1
2
(z + z) and x′ = 1

2
(z′ + z′), one easily checks that

2|x− x′| = |z − z′||z − z′|. (4.9)

Since rj = <(zj) and zj ∈ ∂U for any j ≥ 0, then

|WRk(x)| =
k−1∏
j=0

2|x− rj| =
k−1∏
j=0

|z − zj|
k−1∏
j=0

|z − zj|.

In view of (4.6), taking into account that z0 = 1 and z1 = −1 are repeated twice in the

previous product, the first part in (4.7) follows. The second part is immediate since z and

z play symmetric roles. This result combined with the identity (4.9), shows that for every

j = 1, · · · , k − 1

|W ′
Rk

(rj)| = lim
x→rj

|WRk(x)|
|x− rj|

= lim
z→zj

|z2 − 1||wGk(z)||wFk(z)|
1
2
|z − zj||z − zj|

,

where the limit limz→zj is meant in the circle ∂U . The second result follows then from the

fact that limz→ξ |z2 − 1|/|z − ξ| is equal to 1 for every ξ ∈ ∂U , except for ξ = 1 and ξ = −1

for which it is equal to 2. 2

13



In view of the above, we are now able to relate the Lagrange polynomials associated with

the sections Rk and the set Gk, hence the Lebesgue functions associated with Rk and Gk.

First, we introduce the quotient notation

qk(z, ξ) :=
|wFk(z)|
|wFk(ξ)|

, z ∈ ∂U , ξ ∈ ∂U \ Fk. (4.10)

Lemma 4.4 We have

LRk ≤ 2LGk sup
z∈∂U
ξ∈Gk

qk(z, ξ). (4.11)

Proof: We denote by l0, . . . , lk−1 the Lagrange polynomials associated with the section Rk

and by

L0, L1, L(2,1), L(2,2), · · · , L(2n,1), L(2n,2), L2n+1, · · · , Lk−1,

the Lagrange polynomials associated with the set Gk following the order given in (4.6). For

convenience, we write the first polynomials as

lj(x) :=
WRk(x)

W ′
Rk

(rj)(x− rj)
, x ∈ [−1, 1],

In view of Lemma 4.3 and identity (4.9) we have for j = 0, . . . , k − 1, z ∈ ∂U and x = <(z)

|lj(x)| = 1

αj

∣∣∣ z2 − 1

(z − zj)(z − zj)

∣∣∣ |wGk(z)|
|w′Gk(zj)|

|wFk(z)|
|wFk(zj)|

(4.12)

where αj are defined as in Lemma 4.3. We observe that∣∣∣ z2 − 1

(z − ξ)(z − ξ)

∣∣∣ =
∣∣∣ z − z
(z − ξ)(z − ξ)

∣∣∣ ≤ 1

|z − ξ|
+

1

|z − ξ|
(4.13)

The last inequality applied with the real values ξ = z0 = 1 and ξ = z1 = −1 and injected

in (4.12) yields

|l0(x)| ≤ qk(z, z0)|L0(z)| and |l1(x)| ≤ qk(z, z1)|L1(z)|. (4.14)

Now for the indices j = 2, . . . , 2n, since zj and zj play symmetric roles in that <(zj) =

<(zj) = rj and zj, zj ∈ Gk, then one observes that (4.8) yields

|w′Gk(zj)||wFk(zj)| =
1

2
|W ′

Rk
(rj)| = |w′Gk(zj)||wFk(zj)|.

Taking this equality into account when injecting (4.13) into (4.12) and the fact that αj = 1,

we deduce

|lj(x)| ≤ qk(z, zj)L(j,1)(z) + qk(z, zj)L(j,2)(z), (4.15)
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Finally for the indices j = 2n + 1, . . . , k − 1, taking account of |z − ξ| = |z − ξ| and the

easily checked identity

|wGk(z)wFk(z)| = |wGk(z)||wFk(z)|,

when injecting (4.13) into (4.12), we obtain

|lj(x)| ≤ qk(z, zj)Lj(z) + qk(z, zj)Lj(z). (4.16)

Summing the inequalities (4.14), (4.15) and (4.16), we conclude the proof. 2

In view of the previous lemma, we can derive Theorem 4.1 through a study of the growth

of the quotients function qk. By the structure of Leja sequences on U , we have that Fk =

E2n+1,2n+k−1 is a k′-Leja section with k′ = k − (2n + 1) and 0 < k′ < 2n, therefore by (3.10),

we derive

qk(z, ξ) =
|wFk(z)|
|wFk(ξ)|

≤ 2n+1−p0(k′)

ξ
2n − e2n

2n+1

Since e2n+1 is a 2n+1-root of −1, then e2n

2n+1 = ±i. As for ξ ∈ Gk, since Gk ⊂ E2n+2 = U2n+2

then ξ2n ∈ {1,−1, i,−i}. This shows that necessarily |ξ2n − e2n

2n+1 | ≥
√

2, so that

sup
z∈∂U
ξ∈Gk

qk(z, ξ) ≤ 2n+ 1
2
−p0(k′) (4.17)

This bound injected in (4.11) completes the proof of Theorem 4.1.

5 Growth of the norms of the difference operators

In this section, we focus our attention on the difference operators

∆0 = I0, and ∆k = Ik − Ik−1, k ≥ 1. (5.1)

associated with interpolation on Leja sequences on ∂U and <-Leja sequences on [−1, 1]. We

are interested in estimating their norm

Dk := sup
f∈C(X)−{0}

‖∆kf‖L∞(X)

‖f‖L∞(X)

. (5.2)

We write Dk(Z) when needed to emphasize the dependence on the sequence Z. It is imme-

diate that D0 = L0 = 1 and Dk ≤ Lk + Lk−1 any for k ≥ 1. We shall sharpen the previous

bound when Z has a particular structure, for instance, if Z is a Leja or an <-Leja sequence.

Similar to the expression of Lebesgue constant in (2.12), we can express Dk using Lagrange
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polynomials. Indeed, using Lagrange interpolation formula in z0, . . . , zk, it can be easily

checked that for any k ≥ 1

∆kf(z) =
(
f(zk)− ΠZkf(zk)

) wZk(z)

wZk(zk)
, z ∈ X. (5.3)

This implies that

Dk = sup
z∈X

|wZk(z)|
|wZk(zk)|

sup
f∈C(X)−{0}

|f(zk)− ΠZkf(zk)|
‖f‖L∞(X)

(5.4)

The second supremum in the previous equality is obviously bounded by 1 + λZk(zk). This

bound is actually attained: to see this, take f a function in C(X) having a maximum value

equal to 1, and satisfying f(zk) = −1 and f(zj) =
|lj(zk)|
lj(zk)

for every j = 0, . . . , k − 1 where

l0, . . . , lk−1 are the Lagrange polynomials associated with Ek. Therefore

Dk =
(

1 + λZk(zk)
)

sup
z∈X

|wZk(z)|
|wZk(zk)|

. (5.5)

The previous formula shows in particular that if Z is a Leja sequence on X, then

Dk = 1 + λZk(zk). (5.6)

In particular, in view of the results on Leja sequences on the unit circle, more precisely (3.9),

we have

Theorem 5.1 Let E be a Leja section in ∂U with initial value e0 ∈ ∂U . The norm of the

difference operators associated with E satisfy, D0 = 1 and for k ≥ 1

Dk ≤ 1 + k (5.7)

Combining this result with (2.16), we obtain the following stability estimate for the

multivariate interpolation operator.

Corollary 5.2 With X = U and Z the Leja sequence with initial value e0 ∈ ∂U , one has

LΛ ≤ (#(Λ))2, (5.8)

for any lower set Λ.

The formula (5.5) is convenient in the case of Leja sequence since it yields exact values

of the quantities Dk. In the case of <-Leja sequences, we opt for a different expression of

(5.5). From the formulas of Lagrange polynomials associated with Zk, we may write (5.5) as

Dk =
( 1

|wZk(zk)|
+

k−1∑
j=0

1

|w′Zk(zj)||zk − zj|

)
sup
z∈X
|wZk(z)|. (5.9)
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We remark that |wZk(zk)| = |w′Zk+1
(zk)| and |w′Zk(zj)||zk − zj| = |w′Zk+1

(zj)| for any j =

0, . . . , k − 1, we may then rewrite (5.5) in the more compact form

Dk =
( k∑
j=0

1

|w′Zk+1
(zj)|

)
sup
z∈X
|wZk(z)| (5.10)

Now, we let R = (rj)j≥0 be an <-Leja sequence. Using for this sequence the polynomials

WRk defined in (3.15) instead of wRk , we might rewrite (5.10) for R as

Dk(R) = 2βk(R) sup
x∈[−1,1]

|WRk(x)| where βk(R) :=
k∑
j=0

1

|W ′
Rk+1

(rj)|
. (5.11)

We propose to bound separately the quantities βk(R) and supx∈[−1,1] |WRk(x)| in this order.

Lemma 5.3 Let R be a <-Leja sequence. We have β2n(R) = 1
4

for any n ≥ 0. For k ≥ 1,

such that 2n < k < 2n+1,

βk(R) ≤ C
2σ0(k)

2p0(k)
, C =

1

4
. (5.12)

where σ0(k) is the number of zeros in the binary expansion of k.

Proof: We first assume that k = 2N ≥ 4 is an even integer. We have

βk(R) =
1

|W ′
R2N+1

(1)|
+

1

|W ′
R2N+1

(−1)|
+

1

|W ′
R2N+1

(0)|
+

N∑
j=2

( 1

|W ′
R2N+1

(r2j−1)|
+

1

|W ′
R2N+1

(r2j)|

)
. (5.13)

We introduce the shorthand S = R2. Using Lemma 3.5, we deduce that

βk(R) =
1

|W ′
SN+1

(1)|
+

1

|W ′
SN+1

(−1)|
+

N∑
j=2

1

|W ′
SN+1

(sj)|
= βN(S). (5.14)

The same arguments implies that β2(R) = β1(S), so that β2N(R) = βN(S) is valid for any

N ≥ 1. Since S is also an <-Leja sequence, then the verification β1(S) = 1
4

for any <-Leja

sequence S implies the first result in the lemma β2n(R) = 1
4

for any n ≥ 0.

We now assume that k = 2N +1 ≥ 5 is an odd integer. First, we isolate the last quotient

in the the sum giving βk(R) and multiply the other quotients by
|rj−rk+1|
|rj−rk+1|

yielding

βk(R) =
1

WRk(rk)
+

k−1∑
j=0

|rj − rk+1|
|W ′

Rk+2
(rj)|

.
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Since k = 2N + 1 = 2(N + 1)− 1 and k + 2 = 2(N + 2)− 1, then regrouping the sum as in

(5.13) and using Lemmas 3.5 and 3.6, we deduce

βk(R) =
2|rk|

|WSN+1
(sN+1)|

+
|1− r2N+2|+ | − 1− r2N+2|

2|W ′
SN+2

(1)|
+

|r2N+2|
|W ′

SN+2
(−1)|

+

( N∑
j=2

|r2j−1 − r2N+2|+ |r2j − r2N+2|
2|W ′

SN+2
(sj)|

)
Since |x− r|+ |x+ r| ≤ 2 for any x, r ∈ [−1, 1] and r2j−1 = −r2j, for every j ≥ 2, we deduce

that

βk(R) ≤ 2

|WSN+1
(sN+1)|

+
1

|W ′
SN+2

(1)|
+

1

|W ′
SN+2

(−1)|
+

N∑
j=2

1

|W ′
SN+2

(sj)|
=

1

|WSN+1
(sN+1)|

+ βN+1(S) ≤ 2βN+1(S)

We introduce the sequence (uk)k≥1 defined by

uk := sup
{
βk(R) : R is an <-Leja sequence

}
, k ≥ 1

Since S = R2 is an <-Leja sequence, then in view of the previous discussion, we have u1 = 1/4

and

u2N = uN , u2N+1 ≤ 2uN+1, N ≥ 1.

The sequence (uk)k≥1 is bounded by the sequence with initial value 1/4 that saturates the

previous inequality. We introduce the sequence

vk =
2σ0(k)−p0(k)

4
, k ≥ 1. (5.15)

We have p0(2N) = 1 + p0(N) and σ0(2N) = 1 + σ0(N), hence v2N = vN . Now given an even

number l ≥ 1, we have by binary subtraction,

l = 00 . . . 0︸ ︷︷ ︸
p(l)

1 . . . 1︸︷︷︸ =⇒ 2l − 1 = 11 . . . 1︸ ︷︷ ︸
p(l)−1

0 . . . 1︸︷︷︸
where the root “. . . 1” to the right has not changed. Therefore the number of zeros in l and

2l − 1 are related by

σ0(l)− p0(l) = σ0(2l − 1)− 1.

This applied with l = 2(N + 1) for N ≥ 1 implies σ0(N + 1)− p0(N + 1) = σ0(2N + 1)− 1,

thus v2N+1 = 2vN+1. Since v1 = 1
4
, this shows that (vk)k≥1 is the saturation sequence that
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bounds (uk)k≥1 and completes then the proof. 2

In view of the above lemma, we are now able to provide a bound on the growth of the

norms of the difference operators for <-Leja sequence.

Theorem 5.4 Let R be a <-Leja sequence. For any n ≥ 0 and for k ≥ 1, such that

2n ≤ k < 2n+1,

Dk(R) ≤ 4n ≤ (k + 1)2 (5.16)

Proof: We have by Lemma (4.7) that for 2n + 1 < k < 2n+1 + 1 and with k′ = k − (2n + 1)

|WRk(x)| = |z2 − 1||wGk(z)||wFk(z)| ≤ 2× 2σ1(2n+1+k′)2σ1(k′) = 4× 4σ1(k′),

where we have used that Gk and Fk are respectively {2n+1 + k′}-Leja and k-Leja section

the unit circle and the second point in Theorem 3.2. This result is also valid for the value

k = 2n + 1.

Since 0 < k′ < 2n, the number of ones in the binary expansion of k′ satisfies σ1(k′) =

σ1(k′+2n)−1 = σ1(k−1)−1. It can be checked using binary subtraction σ1(k−1) = σ1(k)−1

if k is odd and σ1(k − 1) = p0(k)− 1 + σ1(k) for k even, therefore

σ1(k′) + 1 = σ1(k) + p0(k)− 1

We deduce then from (5.11) and the previous lemma that

Dk(R) ≤ 2× 4σ1(k)+p0(k)−1 2σ0(k)−p0(k)

4
=

1

4
2σ1(k)+p0(k)2σ1(k)+σ0(k) ≤ 1

4
(2n+1)2 = 4n.

where we have used σ1(k) + p0(k) ≤ σ1(k) + σ0(k) = n+ 1. 2

Combining this result with (2.16), we obtain the following stability estimate for the

multivariate interpolation operator.

Corollary 5.5 With X = [−1, 1] and Z an <-Leja sequence, one has

LΛ ≤ (#(Λ))3, (5.17)

for any lower set Λ.
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