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Abstract. We present the construction of a multilevel stochastic reduced-order model
devoted to the robust prediction of frequency response functions of complex linear dy-
namical systems that are characterized by the presence of several structural scales
in which there are local displacements in addition to the usual global displacements,
and which are associated with the distinct low-, medium-, and high-frequency bands.
As the levels of uncertainties are different in the three frequency bands, a multilevel
stochastic reduced-order model using several orthogonal subspaces associated with
the several types of displacements is developed. The objective of the paper is to
demonstrate the capability of the multilevel stochastic reduced-order model to adapt
the stochastic modeling of uncertainties to each one of the three frequency bands.
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1 Introduction

We present a new method for the robust prediction of frequency response func-
tions (FRF) of complex linear dynamical structures exhibiting a high modal density.
Commonly, the low-frequency range [1] is characterized by the presence of a few
dozen isolated eigenfrequencies that are associated with global modes, in which case
the modal analysis method [2, 3, 4] allows an effective and efficient small-dimension
reduced-order model (ROM) to be obtained. In contrast, the complex structures we
deal with can exhibit more than hundreds or thousands modes in low frequencies. This
unusual feature is due to the presence of several structural scales within the complex
geometry of the structure. Small flexible components attached to the stiff skeleton of
the structure induce the presence of numerous local modes intertwined with the usual
global modes of the stiff skeleton. For such complex structures, besides the absence of
separation of scales, the global displacements (or global modes) cannot easily be iden-
tified because coupled with the large-amplitude local displacements (or local modes).
For constructing an adapted reduced-order model of such complex structures, a first
version of a two-levels reduced-order model has been proposed [5], and then has been
extended and applied to complex mechanical systems [6, 7]. Then the methodology
has been generalized [8] for constructing multilevel reduced-order models. This paper
is mainly devoted to the stochastic aspects and their implementation in the multilevel
reduced-order model.
First, the proposed method allows for constructing a ROM of smaller dimension, which
is obtained by introducing a subspace of global displacements. The construction of the
latter is based on the introduction of high-degree polynomial shape functions. The
vector basis of the global-displacements subspace is constituted of the eigenmodes
calculated using such an approximation for the kinetic energy. The choice of the poly-
nomial degree allows for controlling the filtering between the so-called global and local
displacements, as well as the resulting dimension and accuracy of the so-called global
ROM. Furthermore, it is well known that local displacements are in general more sen-
sitive to uncertainties than global displacements. The nonparametric probabilistic ap-
proach [9] allows all sources of uncertainty to be globally accounted for by randomiz-
ing each reduced matrix whose probability density function, constructed applying the
maximum entropy principle [10, 11], is parameterized by a unique dispersion hyper-
parameter. In order to separately control the uncertainty level of the displacements of
each of the scales, we propose to use a multilevel ROM, based on the introduction of
orthogonal subspaces. The basis of each of these subspaces is constructed by using,
notably, the aforementioned polynomial approximation for the kinetic energy, with an
adapted polynomial degree. Each basis is constituted of displacements associated with
a given structural scale. Then, the multilevel stochastic ROM is obtained by using
the nonparametric probabilistic approach for each scale. This stochastic model is then
controlled by some dispersion hyperparameters devoted to each scale. The method is
applied to the complex computational model of a car. The objective of this work is
to present a sensitivity analysis of the multilevel stochastic ROM with respect to the
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dispersion hyperparameters in order to demonstrate the capability of the method pro-
posed to adapt the stochastic modeling to the level of uncertainties as a function of the
frequency bands.

2 Classical nominal reduced-order model

Let [M], [D], and [K] denote the (m × m) positive-definite real symmetric mass,
damping and stiffness matrices of a m-dimensional finite element model of a linear
damped structure with bounded domain, Ω. The m-dimensional complex vector U(ω)
of the displacements satisfies, for all ω in the frequency band B, the matrix equation,

(−ω2[M] + iω[D] + [K])U(ω) = F(ω) , (1)

in which the m-dimensional complex vector F(ω) represents the external forces. For
α = 1, . . . ,m , the elastic modes ϕα are the eigenvectors of the following generalized
eigenvalue problem associated with the conservative dynamical system,

[K]ϕα = λα[M]ϕα , (2)

in which λα is the eigenvalue associated with mode ϕα such that λα = ω2
α and ωα =

2πfα , with fα the associated eigenfrequency in Hz. The classical nominal reduced-
order model (C-NROM) is obtained by projecting Eq. (1) onto the subspace, Sc ⊂ Cm ,
spanned by the first n elastic modes (associated with the n smallest eigenfrequencies).
Normalizing the eigenmodes with respect to the mass matrix, the associated reduced-
order basis (ROB) is given by [Φ] = [ϕ1 . . .ϕn] and verifies [Φ]T [M][Φ] = [In] as
well as [Φ]T [K][Φ] = [Λ], with [Λ] the matrix of the first n eigenvalues. In the rest
of this paper, the eigenvectors of any eigenvalue problem such as in Eq. (2) will
follow the same normalization. Introducing the generalized damping matrix [D] =
[Φ]T [D][Φ] and the vector F(ω) = [Φ]TF(ω) of the generalized forces, the vector
q(ω) = (q1(ω) . . . qn(ω)) of the generalized coordinates of the C-NROM is the solu-
tion of the reduced-matrix equation,

(−ω2[In] + iω[D] + [Λ])q(ω) = F(ω) , (3)

and allows displacements U(ω) to be approximated by

U(ω) ' [Φ]q(ω) =
n∑

α=1

qα(ω)ϕα . (4)

In the rest of this paper, several ROMs will be constructed. For simplicity, the notations
will be introduced only for the associated ROB, since any ROM is straightforwardly
obtained, using its ROB, by projection of Eq. (1) and by recovering the physical de-
grees of freedom (DOF) U(ω) such as in Eq. (4).

For the complex structures under consideration, due to the presence of numerous
local displacements, dimension n of the C-NROM is quite large. We propose the

3



O. Ezvan, A. Batou, and C. Soize

construction of a global-displacements ROB, from which local displacements are re-
moved. Such filtering relies on the introduction of a reduced kinematics for the mass
matrix.

3 Reduced-kinematics mass matrix

The proposed filtering of local displacements is based on the use of polynomial
shape functions defined on domain Ω, the filtering being controlled by the degree, D,
of the polynomial approximation. The construction of the polynomial basis is detailed
in [8]. Let [B] denote the (m×Np) real matrix constituted of the concatenation of the
Np = (D + 1)(D + 2)(D + 3)/2 polynomials, which are orthogonal such that

[B]T [M][B] = [INp ] . (5)

The polynomials are only used for approximating the kinetic energy (the elastic energy
remains exact). Let V(t) denote a time-dependent real vector of dimension m. The
orthogonal projection Vr(t) of V(t) onto the subspace spanned by the polynomials
basis is given by

Vr(t) = [P]V(t) , (6)

in which the projector [P] is a (m×m) real matrix which is written [8] as

[P] = [B][B]T [M]. (7)

Then, the kinetic energy Ek(V(t)) = 1
2
V(t)T [M]V(t) is replaced by the reduced ki-

netic energy Er
k(V(t)) = 1

2
Vr(t)T [M]Vr(t) = 1

2
V(t)T [Mr]V(t) in which the (m×m)

reduced-kinematics mass matrix [Mr] is positive-semidefinite symmetric real of rank
Np and such that

[Mr] = [M][B][B]T [M] . (8)

For constructing the global-displacements ROB, matrix [Mr] is used instead of [M].

4 Global-displacements reduced-order basis

4.1 Definition

Letψg
α (α = 1, . . . , Np) be the eigenvectors and let σgα be the associated eigenvalues

such that

[K]ψg
α = σgα[Mr]ψg

α , (9)

for which the kinetic energy is subjected to the polynomial approximation and which
allows the (m × ν) real matrix [Ψg] = [ψg

1 . . .ψ
g
ν ] to be constructed, with ν ≤ Np.

Then, the ROB associated with the global nominal reduced-order model (G-NROM) is
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given by [Φg] = [Ψg][R], where [R] = [r1 . . . rng ] is constituted of the ng eigenvectors
rα of the small-dimension generalized eigenvalue problem(

[Ψg]T [K][Ψg]
)

rα = λgα

(
[Ψg]T [M][Ψg]

)
rα , (10)

where dimension ng of the G-NROM is chosen as minimum under the constraint f gng
≥

f c , with f gα =
√
λgα/2π . Frequency f c is related to the upper bound of frequency

band of analysis B. The global-displacements subspace, spanned by the ng columns
of [Φg], is denoted by Sg . The matrix [Λg] of the associated eigenvalues is such that
[Λg] = [Φg]T [K][Φg].

4.2 Numerical implementation

The proposed method is adapted so as to be non-intrusive with respect to commer-
cial software for which extraction of mass and stiffness matrices can be difficult or
even impossible. Given the considered approximation for constructing mass matrix
[Mr], replacing consistent mass matrix [M] by a lumped approximation in order to
construct [Mr] is legitimate. We then propose an indirect method for constructing the
global-displacements ROB.

Let S0 be a subspace spanned by the n0 columns of a ROB [Φ0], which can, for
instance, be constituted of elastic modes, available through commercial software. We
suppose having [Φ0]

T
[M][Φ0] = [In0 ] and [Φ0]

T
[K][Φ0] = [Λ0] with [Λ0] a diagonal

matrix with positive elements. Then, considering the approximation Sg ⊆ S0 obtained
writing ψg

α = [Φ0]sα for all α = 1, . . . , Np , Eq. (9) leads us to the reduced-order
generalized eigenvalue problem(

[Φ0]
T

[K][Φ0]
)

sα = σgα

(
[Φ0]

T
[Mr][Φ0]

)
sα . (11)

Since [Φ0]
T

[K][Φ0] = [Λ0], the latter eigenvalue problem does not require having [K]
but [Λ0] instead. Moreover, denoting as [M`] a lumped approximation of [M], the
generalized mass matrix of Eq. (11) is approximated as

[Φ0]
T

[Mr][Φ0] ' [N0][N0]
T
, (12)

with [N0] = [Φ0]
T

[M`][B`], in which [B`] denotes the orthonormalization of [B] with
respect to [M`]. Matrix [S] = [s1 . . . sν ] is such that [Ψg] = [Φ0][S] and we then
have [Φg] = [Φ0][Qg] with [Qg] = [S][R] . Furthermore, reduced matrices involved in
Eq. (10) are given by

[Ψg]T [K][Ψg] = [Σg] , [Ψg]T [M][Ψg] = [S]T [S] , (13)

with [Σg] the matrix of the first ν eigenvalues σgα .
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4.3 Complementary local-displacements reduced-order basis

The complementary basis of local displacements belonging to subspace S0 spans a
subspace S` that is such that

S0 = Sg ⊕ S` , (14)

which means that Sg and S` are in direct sum. The construction of the associated ROB,
[Φ`] , is proposed as follows. It verifies [Φg]T [M][Φ`] = [ 0 ] (orthogonality of the local
basis vectors, ϕ`α , and the global basis vectors, ϕgα , with respect to the mass matrix)
as well as [Φ`] = [Φ0][Q`] (the local basis vectors belong to S0), with [Q`] a real matrix
of generalized coordinates that is defined hereinafter. The orthogonality condition is
written as [C][Q`] = [ 0 ], where matrix [C] is given by [C] = [Φg]T [M][Φ0], and can
be rewritten as

[C] = [Qg]T . (15)

Let [C] = [UC ][ΣC ][VC ]T be the singular value decomposition (SVD) of [C]. Let [Z]
be the concatenation of the columns of [VC ] associated with the zero singular values
(zero diagonal elements of [ΣC ]). Then, the columns of [Z] constitute a vector basis
of the kernel of [C] and matrix [Z] verifies [Z]T [Z] = [In`

] , where n` = n0 − ng
is the dimension of the kernel of [C]. Orthogonality condition [C][Q`] = [ 0 ] leads
us to [Q`] = [Z][U ], with [U ] a matrix of generalized coordinates. The columns uα
of [U ] = [u1 . . . un`

] are the solutions of the reduced-order generalized eigenvalue
problem (

[Z]T [Φ0]
T

[K][Φ0][Z]
)

uα = λ`α

(
[Z]T [Φ0]

T
[M][Φ0][Z]

)
uα , (16)

which can be more simply rewritten as the eigenvalue problem(
[Z]T [Λ0][Z]

)
uα = λ`α uα . (17)

5 Multilevel nominal and stochastic reduced-order models

To sum up, for a given polynomial degree D and a given truncation order ν for
[Ψg] = [ψg

1 . . .ψ
g
ν ], global-displacements subspace Sg and local-displacements sub-

space S` of any given space S0 can be constructed such that S0 = Sg ⊕S`. Dimension
ng ≤ ν of Sg also depends on cutting frequency f c. Therefore, there is a function G
such that

G : (S0,D, ν, f c) 7−→ (Sg,S`) , (18)

which includes the described construction in a compact form.
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5.1 Definition of the orthogonal subspaces

For the multilevel nominal reduced-order model (ML-NROM), three subspaces SL ,
SM , and SH associated with the low-, medium-, and high-frequency bands (LF, MF,
and HF) are constructed. These subspaces are such that Sg = SL⊕SM⊕SH. Space Sg
corresponds to a filtering of local displacements that allows the final dimension (and
thus the computational cost) of the ML-NROM to be reduced. Subspaces Sg and S`
are given by

(Sg,S`) = G(Sc,Dg, νg, f cg ) , (19)

where we recall space Sc to be spanned by the first n elastic modes that would be used
in a classical modal analysis, with f cg a cutting frequency associated with the upper
bound of frequency band of analysis B, and where parameters Dg and νg allow the
filtering to be controlled. It should be noted that, for constructing the ML-NROM, the
construction of S` that is such that Sc = Sg ⊕ S` , is not needed.

We then introduce a second filtering, using DLM ≤ Dg and νLM ≤ ng as well
as a cutting frequency f cLM associated with the upper bound of the MF band. The
associated global-displacements and local-displacements subspaces SLM and SH are
given by

(SLM,SH) = G(Sg,DLM, νLM, f cLM) , (20)

and satisfy Sg = SLM ⊕ SH.

For obtaining subspaces SL and SM, a third filtering parameterized by DL ≤ DLM
and νL ≤ dim(SLM) as well as a cutting frequency f cL associated with the upper
bound of the LF band is introduced. The associated global-displacements and local-
displacements subspaces SL and SM are given by

(SL,SM) = G(SLM,DL, νL, f cL) . (21)

Since SLM = SL ⊕ SM , we thus have Sg = SL ⊕ SM ⊕ SH.

5.2 Multilevel nominal reduced-order model

Due to the orthogonality property, it can be shown that the reduced mass matrix
of the ML-NROM, [M ], is such that [M ] = [Ing ] . In contrast, the reduced stiffness
matrix [K] of the ML-NROM is a full matrix that is written as

[K] =

[KLL ] [KLM ] [KLH ]
[KML] [KMM] [KMH]
[KHL ] [KHM ] [KHH ]

 , (22)

in which, for I and J in {L,M,H}, the matrix block [KIJ ] is given by [KIJ ] =

[ΦI ]
T

[K] [ΦJ ], with [ΦI ] the ROB of SI . The damping matrix [D] of the ML-NROM
is also a full matrix with the blocks [DIJ ] = [ΦI ]

T
[D][ΦJ ] .
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5.3 Multilevel stochastic reduced-order model

The construction of the multilevel stochastic reduced-order model (ML-SROM) is
based on the nonparametric probabilistic approach of uncertainties. This approach
consists in replacing any positive-definite symmetric real (N × N) matrix [X] of a
ROM by an associated random matrix [X] whose probability density function is ob-
tained applying the maximum entropy principle under the constraints (available infor-
mation)

• Matrix [X] is with values in the set of all the positive-definite symmetric real
(N ×N) matrices.

• E{[X]} = [X] , where E is the mathematical expectation: the mean value is
chosen as the value of the nominal model.

• E{||[X]−1||2F} < +∞ , with ||.||F denoting the Frobenius norm.

Given the Cholesky factorization [X] = [LX ]T [LX ] with [LX ] an upper triangular
matrix, random matrix [X] is written as

[X] = [LX ]T [G][LX ] , (23)

in which the algebraic construction of the positive-definite symmetric real (N × N)
random matrix [G] is given in [9] and only depends on a scalar (dispersion) hyperpa-
rameter, δ, verifying

δ2 =
1

N
E{||[G]− [IN ]||2F} . (24)

In general, the local displacements are more sensitive to uncertainties than the global
displacements. The ML-SROM allows the variability of each type of displacements
(belonging to either subspace SL , subspace SM , or subspace SH) to be modeled sep-
arately. For each random matrix [A] = [M], [D], [K] of the ML-SROM, three dis-
persion hyperparameters δAL , δAM , and δAH are thus introduced (with A = M,D,K
referring to each deterministic matrix of the ML-NROM). For I = L,M,H and
A = M,D,K , let [GA

I ] denote the random matrix with the same construction as
[G] and verifying (δAI )

2
= 1

nI
E{||[GA

I ]− [InI ]||2F} , in which nI = dim(SI) . Given
the Cholesky factorization [A] = [LA]T [LA] of each deterministic matrix [A] of the
ML-NROM, each random matrix [A] of the ML-SROM is defined as

[A] = [LA]T [GA][LA] , (25)

in which the (ng × ng) positive-definite symmetric real random matrix [GA] is given
by

[GA] =

[GA
L ] [ 0 ] [ 0 ]

[ 0 ] [GA
M] [ 0 ]

[ 0 ] [ 0 ] [GA
H ]

 . (26)
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Denoting as [Ψ] = [ [ΦL] [ΦM] [ΦH] ] the ROB of the multilevel ROM and introducing
the deterministic vector f(ω) = [Ψ]TF(ω) of generalized forces, the random general-
ized coordinates Q(ω) = (Q1(ω) . . . Qng(ω)) of the ML-SROM are the solutions of
the small-dimension matrix equation

(−ω2[M] + iω[D] + [K])Q(ω) = f(ω) , (27)

which is solved using the Monte-Carlo simulation method [12], and allow the random
response U(ω) associated with U(ω) to be obtained from

U(ω) = [Ψ]Q(ω) . (28)

6 Application to the complex computational model of a car

6.1 Nominal reduced-order models

The nominal finite element model is used for constructing the multilevel stochastic
ROM. The finite element model has m = 8, 000, 000 DOF and the C-NROM is con-
structed using the first n = 16, 192 elastic modes as a ROB (we have fn = 1, 600 Hz).
Then, the global-displacements nominal ROM associated with subspace Sg is con-
structed choosing Dg = 31, ν = 7, 000 and f cg = 1, 525 Hz. Follow the con-
struction of subspaces SLM and SL obtained choosing DLM = 15, νLM = 1, 950,
f cLM = 1, 000 Hz and DL = 4, νL = 400, f cLM = 300 Hz. Dimensions ng , nLM and
nL of subspaces Sg , SLM , and SL are ng = 6, 984, nLM = 1, 919, and nL = 344.

6.2 Multilevel stochastic reduced-order model

The objective of the stochastic model is to take into account the variability as well as
the uncertainties in the computational model (due to both the model-parameter uncer-
tainties and the modeling errors). The global displacements, which usually correspond
to resonances in the low-frequency band, are more robust with respect to small de-
sign changes, variability, and model uncertainties. We recall the multilevel ROM to be
constituted of the following three orthogonal subspaces:

• SL , constituted of displacements obtained using degree DL = 4 for the kinetic
energy and associated with the frequencies below f cL = 300 Hz, thus expected
to consist in low-frequency global displacements.

• SM , constituted of displacements obtained using degree DLM = 15 for the
kinetic energy, associated with the frequencies below f cLM = 1, 000 Hz and
orthogonal to SL, thus expected to consist in combinations of a few global
displacements in presence of many local displacements in the low- and mid-
frequency bands.

• SH , constituted of displacements obtained using degree Dg = 31 for the kinetic
energy, associated with the frequencies below f cg = 1, 525 Hz and orthogonal to
both SL and SM, thus expected to mainly consist in local displacements present

9



O. Ezvan, A. Batou, and C. Soize

throughout the entire band with an increasing density towards higher frequen-
cies.

Frequency (Hz)

Figure 1: Random response using the ML-SROM with δML = 0.1 and for all other dispersion hyperpa-
rameters set to zero (95% confidence interval).

Frequency (Hz)

Figure 2: Random response using the ML-SROM with δMM = 0.1 and for all other dispersion hyperpa-
rameters set to zero (95% confidence interval).

Frequency (Hz)

Figure 3: Random response using the ML-SROM with δMH = 0.1 and all other dispersion hyperparam-
eters set to zero (95% confidence interval).
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The ML-SROM allows statistical dispersion levels to be controlled within each sub-
space. A sensitivity analysis of the ML-SROM with respect to the dispersion parame-
ters is carried out. We are interested in performing a sensitivity analysis of frequency
response functions for structural accelerations over the frequency band B = [10, 1500]
Hz. To do so, the modulus in dB of the random normal acceleration in one point
of the car (that is distant from the excitation point) is calculated using Eq. (28) with
nsim = 300 Monte-Carlo realizations. The 95% confidence intervals of the random
response are plotted:

• in Fig. 1 for δML = 0.1 and for all other dispersion hyperparameters set to zero.

• in Fig. 2 for δMM = 0.1 and for all other dispersion hyperparameters set to zero.

• in Fig. 3 for δMH = 0.1 and for all other dispersion hyperparameters set to zero.

For only nonzero δML , the confidence interval is larger in the low-frequency band
whereas it is very thin elsewhere. For only nonzero δMM , the confidence interval is
larger in the mid-frequencies although the dispersion also propagates around. For only
nonzero δMH , the confidence interval is larger in the high-frequency band although it is
also large in the mid-frequency band. These results tend to agree with the qualitative
expectations made hereinbefore. For δMM = 0.1, the propagation of uncertainties in
the high-frequency band is explained by the coupling between subspaces SM and SH ,
which are not orthogonal with respect to the stiffness matrix.

7 Conclusions

A general method has been proposed for the construction of a multilevel stochastic
reduced-order computational model devoted to the robust prediction of the frequency
response functions of complex linear dynamical systems. The proposed multilevel
ROM is based on the nonparametric probabilistic approach. The presence of several
structural scales, characterized by the presence of more or less local displacements
intertwined with the usual global displacements, and associated with the distinct low-,
medium-, and high-frequency bands, induces a heterogeneous variability. Using sev-
eral orthogonal subspaces each one composed of a particular type of displacements, the
multilevel stochastic ROM allows for constructing a finer modeling of uncertainties.
We have demonstrated the capability of the method proposed to adapt the stochastic
modeling to the level of uncertainties as a function of the frequency bands that can be
correlated to the scales of the global and of the local displacements.
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