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SUMMARY

A nonparametric probabilistic approach for modeling utaieties in projection-based, nonlinear, reduced-
order models is presented. When experimental data is blgikhis approach can also quantify uncertainties
in the associated high-dimensional models. The main uyidgridea is two-fold. First, to substitute the
deterministic Reduced-Order Basis (ROB) with a stochastimterpart. Second, to construct the probability
measure of the Stochastic Reduced-Order Basis (SROB) omsetsaf a compact Stiefel manifold in
order to preserve some important properties of a ROB. Thehastic modeling is performed so that the
probability distribution of the constructed SROB dependsiemall number of hyperparameters. These are
determined by solving a reduced-order statistical invpreblem. The mathematical properties of this novel
approach for quantifying model uncertainties are analyhealigh theoretical developments and numerical
simulations. Its potential is demonstrated through séws@mple problems from computational structural
dynamics. Accepted for publication in International Jahfior Numerical Methods in Engineering, 30 May
2016
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KEY WORDS: modeling errors; model uncertainties; nonpatim stochastic approach; reduced-order
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Notation
Throughout this paper:

A real, deterministic variable is denoted by a lower cageletich ag.

A real, deterministic vector is denoted by a boldface, lovase letter such as in= (y1,...,yn).

A real, random variable is denoted by an upper case lettér asic.

A real, random vector is denoted by a boldface, upper cams Rich as ity = (Y1,...,Yn).

A real, deterministic matrix is denoted by an upper (or Igvearse letter between brackets such as
(4] (or [a]).

A real, random matrix is denoted by a boldface, upper cater leétween brackets such|ag.

|ly|| designates the Euclidean norm of vector

<Y,z > designates the Euclidean inner producy @indz.
E designates the mathematical expectation.

My ., denotes the set @f x n real matrices.

M,, denotes the set of squatie< n real matrices.
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2 C. SOIZE AND C. FARHAT

M3 denotes the set of symmetricx n real matrices.

MSS denotes the set of skew-symmetiic< n real matrices.

M, denotes the set of Symmetric Positive-Definite (SRD) N real matrices.

M1 denotes the set of symmetric positi¥ex N real matrices.

MY, denotes the set of upper trianguléir< N real matrices with strictly positive diagonal entries.
A, designates the entfy] ;. of matrix[A].

tr{[A]} designates the trace of matfiA].

[A]T designates the transpose of mafri.

| Al designates the Frobenius norm of mafe, with || A||Z = tr{[A]” [A]}.

| Allas is defined byj| A3, = tr{[A]"[M] [A]}, where[M] is a positive definite matrix.

[I,] denotes the identity matrix iNL,, .

[On ] denotes the zero matrix My .

d;, denotes Kronecker’s symbol and therefore verifigs= 0 if j # k andé;, = 11if j = E.
15(x) designates the indicator function of a #etlefined bylg(x) = 1if x € Bandlg(x) =0 if
X ¢ B.

i denotes the pure imaginary complex number satisfiing —1.

1. INTRODUCTION

1.1. Background: high-dimensional and projection-basedliced-order models

Today, the potential of physics-based (or Partial Diffti@nEquation (PDE)-based), High-
Dimensional computational Models (HDMs) for providing gee understanding of complex
phenomena, enhancing system performance, and predibgéngnknown is recognized in almost
every field of science and engineering [1]. However, in manygutational mechanics applications,
nonlinear, time-dependent numerical simulations basedHBMs remain so computationally
intensive or cost-prohibitive that they cannot be used tenadis needed, or are more often used
in special circumstances than routinely. For this reasonjimear, projection-based Model Order
Reduction (MOR) has recently emerged as a promising if ndispensable numerical tool for
parametric applications such as, to name only a few, dedagign optimization, statistical analysis,
and simulation-based decision making [2, 3, 4, 5, 6, 7, 80911].

In general, gu-parametric, high-fidelity, physics-based computationatiel is high-dimensional
because its underlying spatial discretization is perfata@riori — that is, before any significant
knowledge about the response of the system to be analyzexvéoged. On the other hand, the
projection of such a computational model of dimensinonto a subspace of low dimension
n << N represented by an associat@d x n) Reduced-Order Basis (ROBY)] leads to a Reduced-
Order Model (ROM) of much lower dimension When[V] is carefully constructed posteriori
— that is, after some knowledge about the response of themybhas been developed — the
corresponding ROM can capture the dominant behavior of tiderying u-parametric HDM and
therefore retain most of its fidelity. In general, knowledgmut the system response is obtained
during atraining procedure that is performexffline During this procedure, the model parameters
represented here by the parameter vegtes (y1,...,un,) belonging to the parameter space
C,, are sampled at gew points using a greedy but effective sampling strategy (f@meple, see
[12]), and a set of problems related to the main problem cérgdt are solved to obtain a set
of parametric solution snapshots. Then, these snapshetsoanpressed using, for example, the
Singular Value Decomposition (SVD) to construgjlabal ROB. In general, the sampling strategy
is designed so that the global ROB is reliable in a large regibthe model parameter domain.
Unfortunately, despite its low dimension, the resultingbgll (or pu-parametric) ROM does not
necessarily guarantee computational feasibility. Thizeisause the construction of this projection-
based ROM does not scale only with its sizébut also with that of the underlying HDMY >> n.

In the deterministic setting, this issue is particularlpllematic for nonlinear problems because
the ROM needs to be repeatedly reconstructed to addresxdorple, time-dependency or Newton
iterations for implicit solution strategies. This cavestémedied by equipping an MOR method
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 3

with a rigorous procedure for approximating the resultiaduced operators whose computational
complexity scales only with the small sizeof the ROM [2, 4, 13, 14]. Such a procedure is also
known in the literature as hyper reduction [15]. It trangfsrthe nonlinear ROM into a hyper
reduced ROM that guarantees feasibility, while maintajréls much as possible a desired level
of accuracy.

From the above discussion, it follows that a nonlinear RONhgper reduced ROM inherits
the modeling errors and associated uncertainties of itenyidg HDM — including model form
uncertainties. It is also tainted by additional errorsddtrced by the reduction processes highlighted
above. Hence, if MOR is essential for enabling simulatiasdd decision making, Uncertainty
Quantification (UQ) for ROMs is critical for certifying theedisions they enable.

1.2. Output-predictive error method

For a given HDM, several methods are currently availablaf@lyzing model uncertainties induced
by modeling errors, including model form uncertaintieseTost popular one is the standard
output-predictive error method introduced in [16]. In trentext of ROMs however, this method
has a major drawback. For example, it is not well-suited fesigih optimization problems where
ROMs are particularly needed, because it does not enable-ffaametric HDM and its associated
ROM to learn from data.

1.3. Parametric probabilistic methods for modeling unaarties

An alternative family of methods for analyzing model unaatties is the familty of parametric
probabilistic methods for UQ. This approach is relativelglwdeveloped for modeling model
parameter uncertainty, at least for a reasonably small eunob parameters. It consists in
constructing prior and posterior stochastic models of ttage model parameters pertaining, for
example, to geometry, boundary conditions, material ptogse - - [17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27]. This approach was shown to be computationdibiesfit for both gu-parametric HDM
and its associated-parametric ROM (for example, see [28, 5, 29]), and for lesgale statistical
inverse problems [30, 31, 32, 33, 34, 35, 36, 37]. Howevatpés not take into account neither
the model uncertainties induced by modeling errors intceduduring the construction of a-
parametric HDM (model form uncertainties), nor those dumtalel reduction [27, 29, 38].

1.4. Nonparametric probabilistic approach for modelingcertainties

A nonparametric probabilistic approach for modeling utaiaties due to more general modeling
errors was introduced in [38, 39, 40, 41], in the contextlinéar structural dynamics. It is
organized in two steps. In the first one, a linear ROM of din@ms is constructed using a
linear HDM with N degrees of freedom (dofs) — that is, of dimensiyh— and a linear,
projection-based MOR. In the second step, a linear Stoch&®M (SROM) is constructed
by substituting the deterministic matrices underlying linear ROM with random matrices for
which the probability distributions are constructed udimgMaximum Entropy (MaxEnt) principle
[42, 43, 44]. Specifically, the construction of the linearGR is performed under constraints
generated from available information such as algebraipent@es (positiveness, integrability of
the inverse; - -) and statistical information (for example, the equalityviEen mean and nominal
values). This nonparametric probabilistic approach waesreled for different ensembles of random
matrices [40, 45] and linear boundary value problems [46}als also experimentally validated and
applied for linear problems in composites [47], viscoeddtst [48, 49], dynamic substructuring
[50, 51, 52, 53, 54], vibroacoustics [48, 55, 56, 57], stiltsture interaction and earthquake
engineering [58, 59, 60], and robust design and optiming8a, 62]. More recently, it was further
extended to account for some nonlinear geometrical efiecisuctural analysis [63, 64]. However,
the latter extension is strongly related to the mathemlagicaperties of the nonlinear elasticity
operator considered in [63, 644.priori, it does not hold for arbitrarily nonlinear systems.

Accepted for publication in International Journal for Nuroal Methods in Engineering, 30 May 2016 (2016)
nmeauth.cls



4 C. SOIZE AND C. FARHAT

1.5. Main objective and organization of this paper

For all reasons outlined above, given igparametric nonlinear ROM and corresponding
experimental data, the main objective of this paper is tsgme a nonparametric probabilistic
approach for modeling the uncertainties due to the follgwtwo types of modeling errors

responsible for discrepancies between predictions paddrusing this nonlinear ROM and

corresponding experimental data:

e The modeling errors associated witbnlinearMOR in general, independently of the type or
source of nonlinearities. In this regard, it is noted hegd thhen the dimension of the -
parametric nonlinear ROM approach€sand the number.,, of parameter vectorg that are
sampled inC,, for constructing the global ROB/] approaches infinity, the modeling errors
of this type approach zero.

e Those introduced in the construction of the underlyipgparametric nonlinear HDM,
including model form errors.

From the second bullet above, it follows that the nonparamptobabilistic approach presented
in this paper can also quantify uncertainties in any HDM fbiick a ROM can be constructed.

Furthermore, it is well-known that many applications sushr@bust design optimization call
for a u-parametric computational model that is capable of reproduthe typical experimental
variability induced by a manufacturing process, and/or eaperfect if not noisy set of
measurements. Therefore, a related objective of this papdp ensure that the proposed
nonparametric probabilistic approach can also accourédperimental variability.

To this effect, the remainder of this paper is organized #evis. In Section 2, the proposed
nonparametric probabilistic approach for modeling uraisties is described using a simple
example that introduces and highlights its key componémtSection 3, a method for constructing
the associated Stochastic ROB (SROB) is presented. Itsriyimdptheory is given in a discrete
form that is readily applicable to computational models.ohtinuous interpretation of this theory
is provided in Appendix D. In Section 4, the potential of thRCGB for taking into account
modeling errors is analyzed through the discussion of alsimgmerical example. In particular, the
performance of the proposed approach for identifying theehyarameters of the probability model
underlying the constructed SROB is assessed. Section S/@getketo a computational structural
dynamics application of the proposed approach to UQ in neali MOR that is simple to reproduce
by the interested reader. Section 6 presents yet anotherptggroblem which focuses on the
assessment of the ability of theparametric SROM to account for the errors induced by modei
system using a-parametric ROM instead of the underlyipgparametric HDM. Finally, Section 7
concludes this paper.

2. NONPARAMETRIC PROBABILISTIC APPROACH FOR UNCERTAINTY WALYSIS OF
NONLINEAR MODEL ORDER REDUCTION METHODS

To begin, the proposed approach for modeling the unceigsirtue to both model form and
model reduction errors and its main underlying idea arermedl here, before their theoretical and
algorithmic underpinnings are presented in the remainti®paper. For this purpose, the context
is set to that of a nonlinear Finite Element (FE) structusalaimics model. However, the overall
approach is equally applicable, at least in principle, tp afparametric, nonlinear, computational
model. Essentially, given such a model and a Quantity ofdéisteQol), au-parametric, nonlinear,
projection-based ROM is constructed using a standard guveesuch as that outlined in Section 1.
Next, an SROB that verifies a specific set of mathematicalgtigs is generated by randomizing
the deterministic ROB underlying the nonlinear ROM. ThisCBRdepends on a vector-valued
hyperparameter that is identified by formulating an appetercost function and solving an
associated optimization problem. Finally, agparametric SROM associated with the global SROB
is computed using the same projection approach chosenrstragting the deterministic nonlinear
ROM.
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 5

2.1. Parametric nonlinear high-dimensional computatiomadel

Consider thqu-parametric, nonlinear, computational model

[M]Y(t) +9(y(t),y(t); ) =f(ts ), t €]to, T (2.1)

defined onR?”, arising from thelarge-scaleFE semi-discretization of the PDEs governing the
dynamic equilibrium of a given structure, equipped with ithigal conditions

y(ﬁo) = yO ’ y(to) = yl 3
and subject taV,, < N linear constraints of interest written in matrix form addals
[B]Ty(t) =0y, , t € [to,T], (2.2)

wheret, andT are two given time-instances satisfyingo < ¢y < T' < +o00, andy, andy, are
two given vectors iR satisfying the specified constraints.

In Eq. (2.1) abovey is as before the vector parameter belongingCfoc R™+, ¢ denotes
time,y(t) = (y1(t),...,yn(t)) is theR" vector of theN displacement dofsj(t) = dy(t)/dt and
y(t) = d?y(t)/dt? are the corresponding velocity and acceleration vecif$,is the mass matrix
belonging toM}; and is assumed to be independent aid s, g(y(t), y(¢); 1) is theRY vector
representing the internal forces at timand depends on(t), y(¢t) andu, and finally,f(¢; ) is the
RY vector of external forces at tinteand depends op.

In Eq. (2.2),[B] is a given matrix inMMly n.,. It defines theV,, constraints ory, is assumed to be
independent of andy and to satisfyB|"[B] = [In,].

The RV-valued solution{y(t; 1), t € [to,T]} of Egs. (2.1) to (2.2) depends ga The Qol
(system observation) at timeis denoted by the vectaw(¢; u) = (o1(t; ), - . ., om, (t; 1)) With
values inR™°. This vector depends g and is here written as

o(t; ) = h(y(t; p),y(t; ), f(t; ), ts0) 5t € [to, T7], (2.3)

whereh is a given mapping.

2.2. Construction of au-parametric nonlinear reduced-order model

Let [V] € My, be a global ROB (independent @f) of dimensionn << N constructed for
approximating the solutiofy(t; i), t € [to, T']} for all u € C,,. From (2.2), it follows thafV’] must
satisfy the constraint equation

[BI" V] = [Oneon] - (2.4)

Typically, [V] satisfies also by construction the orthonormality condifi8, 14]
[VIT[M][V] = [L]. (2.5)

The Galerkin projection of the HDM represented by (2.1) ochsai ROB leads to tha-parametric
nonlinear ROM

y™m () =[via®) .t e [to,T], (2.6)
a) + VITa(vVla®), (V1a); w) = [VI"f(t;w) , t €]to, T, (2.7)

with the initial conditions
q(te) = VITIM]y, , Glto) = VI [M]y,, (2.8)

where theR™-valued solution{q(¢; u),t € [to,T]} of Egs. (2.7) and (2.8) depends pn— and
is often referred to as the vector of generalized coordimateand{y™) (t; u),t € [to, T]} is the
n-order approximation ofy(t; u),t € [to,T]}. The corresponding approximatiofi*) of the Qol
ois given by

o™ (t; ) = h(y™ (t; ), Y™ (t; ), f(t; ), t51) , t € [t0,T] , peCy. (2.9)
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6 C. SOIZE AND C. FARHAT

For a givenn, the prediction error due to the use of theparametric nonlinear ROM instead of
the p-parametric nonlinear HDM could, priori, be estimated (in thé? sense) by

T
e(n) = /C M / 0t 1) — 0 (t: o) it dp. (2.10)

However, such an estimation entails the computation of tigh-timensional solution of the
problem for a very large number of sampled values of the vagttmed parameteg in C,, and
therefore can be cost-prohibitive. For this reason, EqQOis replaced in practice by

my,

T
00 =3 [ ot ) o ) P,
i=1Jto
wherep,, ..., un,, are the sampling points used for constructing the ROB

2.3. Construction of a stochastic reduced-order model

As already stated in the abstract, the main idea contriboyetthis paper includes substituting the
deterministic ROBV] with a stochastic counterpdi/]. In view of the properties diV'], including
the constraint (2.4) and orthonormality condition (2.9)istSROB must verify the following
properties:

e [W]is global and therefore independentafbecauséV] is global and independent gf.

e [W]is a random matrix with values il .

e The support of its probability distribution (constructesing the Maximum Entropy principle
of Information Theory) is the subset bf v ,, corresponding to the constraints

[B]" W] = [0Ncp.n] (2.11)

and
W] [M] (W] = [I,] (2.12)

almost surely.

e The probability distribution of[W] depends on a vector-valued hyperparameier
(a1,...,a4,,) belonging to a subsef, of R™= where the dimensionn, is chosen
sufficiently small so that the statistical inverse problem itlentifying the hyperparameter
vectora is computationally feasible.

The construction of such an SROB is described in Section 3.

Next, the u-parametric, nonlinear, projection-based SROM assatiafti¢h the p-parametric,
nonlinear, projection-based ROM described above is detiuom Eqgs. (2.6) to (2.9) by substituting
[V] with the random matriXW]. Consequentlyy(™), g, ando(™ become the stochastic processes
Y™ Q, andO0™, and the SROM can be written as

Y () = WIQ(E) , t € [to, T], (2.13)
Q(t) + WITg(W] Q(t), W] Q(t); ) = W] f(t; ) , ¢ €]to,T], (2.14)

with the initial conditions
Q(to) = W [M]y, , Q(to) = W]|"[M]y; . (2.15)

The R"-valued stochastic solutiofiQ(¢; u, ), t € [to,T]} of Egs. (2.14) and (2.15) depends
on peC, and a € Co. The stochastic proces§Y ™ (t;u, )t € [to,T]} is the n-order
approximation of the stochastic procesé(t; u),t € [to,T]}. The corresponding approximation
{0 (t: p, @), t € [to, T]} of the random QoKO(t; p),t € [to, T]} is given, for allt € [to, T,

p € C,anda € Cq, by

- (n)

O™ (1 py @) = MY ™ (1 1, @), Y™ (15, @) F(t; ) 1 1) (2.16)
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 7

2.4. Identification of the hyperparameter vector of the ataibty distribution of the stochastic
reduced-order basis

The identification of the hyperparameter vecierc C, C R™= can be performed using the
maximum likelihood method, or a nonlinear Least-Squaré® thethod for the Qol. For example,
a nonlinear LS method can be formulated as follows for boplesyof modeling errors highlighted
in Section 1.5.

Let J () be the cost function defined @i, by

J(a) =wy Jmean(a) + (1 —wy) Jsid (a) , (2.17)

wherew; is a weight satisfying < w; < 1, andJmean () and Jgq (ax) allow for controlling the
identification ofa with respect to the mean value and statistical fluctuati@spectively. The latter
guantities are defined here as

my,

T
(M%Ma)%%M“f”,mw)Z;L)WMWMHEKyMWMmaHWdL (2.18)
Jotd (@) = ! mz /T V™) (£ ;) — VO (t; g, @)||? di (2.19)
std Cstd( 1y - - - /Lmu) ~ Ji, > i s s )
where the positive constamtgead (41, - - - , fm, ) @Ndesw(pe, - - -, i, ) @re given by

my, T

st o ti) = 3 [0t |t (2:20)
=1 0

my,

T
caulpn st ) = [V )|
i=1 Yo

(ref,n)

andv(et™) (¢; ) = (0™ (& ), ... oS5 (# ) is such that,

<ref,n)

W (4 ) = |0 (8 i) — o (G )|, =1, .o, (2.21)

where~ > 0 allows to control the amplitude of the target related to tagistical fluctuations. In
Eq. (2.19) V™) (t; pi, ) = (UYL) (t; pi, ), . .. ,U,E,:lo) (t; pi, o)) is such that

Wt s, ) = { BLO) (8 piy @)} — (B{O (6 i, ) )2} Y2, =1, mo.

In Egs. (2.18), (2.20) and (2.219¢" is defined as a function of the type of the modeling errors
that are taken into account:

¢ If only the errors due to model reduction are taken into angaheno™ = o.

< If the errors due to model reduction and those introduceliérconstruction of the underlying
p-parametric nonlinear HDM are taken into account, tl#h= 0®, where 0®® is based on
experimental data.

It follows that in the cost function defined above:
o 0" appears as the target for the mean value with a weight
o v(ehn) appears as the target for the standard deviation with a weigho ;.

Hence, the identification of the hyperparameter veat@onsists in calculating:°® such that

a®' = min J(a).
aclCq
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8 C. SOIZE AND C. FARHAT

2.5. Justification

At this point, the reader may ask why is a random basis of thasgible set useful? The answer to
this question has three parts:

e Any deterministic global ROBV] of dimensionn = N constitutes a basis of the admissible
vector space for the solutions of theparametric HDM, for allu belonging toC,. On
the other hand, for a fixed dimensien< N and a given sampling, ..., ., in C,, the
solution of an instance of thg-parametric HDM problem formulated using an unsampled
parameter vectop* cannot be necessarily approximated in the subspace spéayng@d
with a specified level of accuracy. Using the proposed napetric probabilistic approach
however, the variability of\’] can be captured for the following reason. Every ROB sample
generated by the constructed SROB constitutes a familygebahically independent vectors
that verifies the boundary conditions of the problem of ie¢&rsatisfies the regularity required
for solving the boundary value problem represented by th&lH&nd represents a fluctuation
around[V] whose magnitude is controlled by the hyperparameters oBR®@B, but can be
large enough to capture any variability [®f] while satisfying all of the required constraints.
Therefore, the proposed nonparametric probabilistic @gugir for taking into account model
form uncertainties can be interpreted as a stochastidlasthod for extracting fundamental
information or knowledge from test or HDM data that is nottcapd by a deterministic HDM
or ROM. Using this approach, one essentially parametetiimeapproximation basis in order
to capture the variabilities instead of (artificially) pareterizing the governing equations.

e In the deterministic setting, it is well known that a good apgmation of order, y™, of the
solutiony of a problem of interest delivered by an HDM of dimensidncan be computed
using a Galerkin projection method — for example, a progeethased ROM of dimension
n — independently of the explicit choice of the admissibletoedasis. For example, this
statement is trivial fom = N. Similarly, in the stochastic setting, a family of stoclast
approximationsy (™) that converges almost surely towards the deterministigtisoly based
on an HDM can be constructed using an SROM. At convergenée,is independent of the
choice of the stochastic basis. However,iotz < N, and taking into account the fact that the
deterministic ROBV] is constructed fog, . .., pm, in C,, for any unsampled value qf
in C,,, the approximatiory(™ delivered by the associated ROM is tainted by both sampling-
and truncation (or reduction)-induced errors. In this césea fixed value ofn for which
convergence is not reached, the value of the approximation depends on the choice of
the admissible basis. Subsequently, when the RiJBs substituted with the SRORV], a
stochastic family of approximations™ is generated using the SROM. Hence, the idea is
to adapt the statistical fluctuations 6f™ for representing not only the sampling and model
reduction related errors, but also the modeling error®éhtced during the construction of
the u-parametric nonlinear HDM itself.

e The proposed nonparametric probabilistic approach uyidgrthe usage of a random basis of
the admissible set can account for experimental varigtiilitwo different ways: qualitatively,
by the probabilistic nature of the SROM that generates thassital fluctuations of the
Qol; and quantitatively, by choosing the experimental detdhe target for the Qol in the
identification procedure of the hyperparameters of the SROB

3. CONSTRUCTION OF A STOCHASTIC REDUCED-ORDER BASIS

From Eq. (2.12), it follows that th&/ x n SROB [W] must satisfy an orthonormality condition.
Hence, it must be constructed on a compact Stiefel manittoted here b§y ,,. From Eq. (2.11),

it follows that this SROB must also satisfy an additional stoaint equation. Therefore, more
specifically, it must be constructed on a subse$ gf,. For this reason, a brief summary of known
results concerning the parameterizatiorsaf,, is given below. Then, the complete construction of
the SROB/W)| and the analysis of its mathematical properties are predéntSections 3.3 to 3.5.
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 9

3.1. The compact Stiefel manifold: tangent vector spacepanameterizations

Letn and N be two integers satisfying < n << N, and let{M] € M}; denote ar{N x N) real,
SPD matrix. The sétly ,, of all (V x n) real matrices forms an Euclidean space equipped with the
inner product and associated norm defined by

< Wi, Vel >ar=tr{Vi]" [M][Ve]} IVl = {tre{[V]" [M] [V]}}1/2,
The compact Stiefel manifolSly ,, is defined as (for example, see [65])
SNn={[V]€Mpy.,, [VI*IM][V]=[I.] } C Mn,. 3.1)

Its dimension is’s = Nn — n(n + 1)/2, which can also be written ag =n(n — 1)/2 + n(N —
From [V]T[M][V] = [I,], it follows that [V]T[M][dV] + [dV]T[M][V] = [0n.n], Where[dV]
denotes the 1-differential form d¥’]. Therefore, the tangemector spacdo Sy, at the point
[V] € SN.n, TV SN, is defined by

TvSnn = { [Z2] € Mnn : [VI'[M][2] + [Z]" [M] [V] = [On.n] }- 3.2)

In the context of this work, the tangent vector spdgeSy ,, plays an important role for two
reasons:

e It provides a mean for parameterizifg ,,.

e An explicit mapping can be constructed between this tangectbr space anfy ,,. Hence,
if for constructing the random matri¥V] the fluctuations around the deterministic ROB
are generated in this tangent vector space, two importatg f'ecome noteworthy: (1) the
resulting perturbed ROB remains in this vector space, amerfbre (2) it can be mapped onto
Sw,» to obtain a matriW] that satisfies the constraint equations (2.11) and (2.12).

From the definition (3.2), it follows that any elemé#{ of 7Sy ,, can be written as
(2] = [V]lal + [VL][0], (3-3)
where[V | denotes an element d 5 n_,, Satisfying
[VIT[M][VL] = [0n,n—n],

[a] is a skew-symmetric matrix iMSS ([a]” = —[a]), and[b] is any matrix inMy_,, .. Eq. (3.3)
constitutes a parameterization of the tangent vector spaSgy ,, at a given poin{V] in Sy .
Specifically,n(n — 1)/2 entries of[a] and n(N —n) entries of[b] parameterizel,Sy ,, at the
point [V']. Therefore, the dimension @fSy,, iS vrysy, = n(n —1)/2+n(N —n) — that is,
VTIySn.n = VS-

The parameterization (3.3) @ Sy ,, requires the construction of a large-scale mdfix] that
belongs toMy n_,. For large values ofV, this is a major drawback. In this case, the following
alternative parameterization is preferred.

Let [A] denote an arbitrary matrix iMy,,,. Its projection ontd'y Sy, Proj. s, ([4]), can be
written as

2] = Prok, s, ([A]) = [A] = [VI[D] , [D] = (VI"[M][A]+ [A]T[M][V])/2,  (3.4)
where [D] € M5 is an (n x n) symmetric matrix. The above result can also be written as
2] = [V][a] + ([In] — [V] V] [M])[A], where([a] = ([V]"[M][A] — [A]"[M][V])/2 belongs to
M55, In this case|V]T[M][Z] = [a], and given that fu] = 0, < [V],[Z] > = 0.

REMARK 1 For large values oV, the dimension of the parameterization (3.4YpSy ,,, Nn,
is much smaller than that of its counterpart (3.3). Stile timension of this parameterization
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10 C. SOIZE AND C. FARHAT

is larger than the dimension dfy Sy, itself, vs = Nn —n(n + 1)/2. In particular, note that
Nn =vs+n(n+1)/2, which reveals that there argn + 1)/2 unnecessary parameters in the
representation (3.4) ofySy,,. These unnecessary parameters are associated with th@lnorm
space tdSy ,, at a given poinfV] in Sy, NvSn . Indeed, from (3.4), it follows thavy Sy,
consists of the set of matrices of the fofrs] = [V] [S], where[S] is a symmetric matrix ifVl?

([Z) = Projr, s, .. ([As]) = [0nn]). The dimension of this vector spaceiis: + 1)/2. Nevertheless,

for large values ofV, the parameterization @t Sy ,, defined by (3.4) is computationally feasible
for constructing the random matri¥V] associated with the stochastic modeling[Bf € Sy ,,,
whereas that defined by (3.3) is not computationally feadiin this purpose.

Now, let[Z] — R, v ([Z]) denote the smooth mapping frafiy Sy ,, 10 Sy n,
W] =R, v([Z]),
that verifies
[V]=Rsv([Onn])-

Then, for any{Z] in Ty Sy n, [W] = R, v ([Z]) satisfiesW]T [M] [W] = [1,,].

There are several possibilities for constructing the magpk, . For example, one can
note the construction procedure based on the economy-dzedgomposition [67], which is
computationally efficient folV very large anch << N. In this work, the following equally efficient
procedure based on the adaptation of the polar decompofd to Eq. (3.1) is used

W] = Rsv([2]) == (VI+s[2]) [Hs(2)] , [Z] € TvSnm- (3.5)

In (3.5) aboves > 0 is a real number introduced for controlling the level of fluations of[Z] in
TySn,, aroundV]in Sy, and[H,(Z)] is the SPD matrix ifVL;} given by

[H(2)] = (] + s*[2)7[M] [2]) V2. (3.6)

The construction procedure defined by (3.5) and (3.6) veritiey ([0n,»]) = [V]. This means
that when[Z] undergoes small fluctuations arouiog; ], [W] = Rs,v ([Z]) undergoes fluctuations
aroundV] and their amplitude can be controlled by the parameter a given normalization oiZ].
Now, substituting the parameterization|@f] given in (3.4) into the definition ofiV] = R, v ([Z])
given by Egs. (3.5) and (3.6) leads to the mapgitg— R v ([4]) from My ,, into Sy ,, defined
for all [4] in My ,, by

W] =Rev([A]) = Rev (A = [VI[D]) , [D]=(VI"[M][A]+[A]"[M][V])/2. (3.7
In particular, using the above result, the reader can véndy
WITIMI W] = [I.] , [V]=Rsv([0nn]) €Snm-

3.2. Parameterization of a subset of a compact Stiefel ralhéissociated with additional
constraints

Consider now the case wheié] belongs to the subsély ,, of Sy, defined by
Snn={[VI €My, VIT[M][V] =[], [B]"[V] = [ONeyn] } C Shin s (3.8)
where0 < N, < N is the number of constraint equationB] is a given matrix satisfying
(Bl € Mnne, » [B]" [B] = [Ine] (3.9)

and [B]T[V] = [On.,,»] represents a set a¥,, linear constraints expressed here in orthonormal
form and associated, for example, with Dirichlet boundamditions and/or kinematic constraints
between some dofs of the computational model for which th® R is constructed. Then, the
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 11

objective is to extend the parameterizatjo] = R, v ([A]) € Sw,, defined by Egs. (3.7) and (3.1)
to a parameterizatiofiV] = R v ([4]) € Sn.n C Sn,», SO that the additional constraint equation
[B]T[W] = [On.,.»] is satisfied. Such a parameterization, which must verify

WM W] =[] . [BI'W]=[0new] » [VI=Rsv(Onal), (3.10)
is given by Eq. (3.7), wherpd] belongs in this case to the sub%fm of My ,, defined by
MY, ={ [A] € Mn,n , [A] = ([Ix] = [B][B]") [U] , [U] € My, }. (3.11)

Indeed, using (3.9), the reader can verify that for[dll in M% | [B]T[A] = [On,,.»]. Using the
polar representation dt, - (see Egs. (3.5) and (3.6)) with the parameterizatiofZoiefined by
Eq. (3.4), andB]T[V] = [On.,.n] (s€€e Eq. (3.8)), the user can also verify that' [W] = [0x.,.n]-

It is important to note that from a numerical point of viewetharameterization of the matrix
[A] introduced in (3.11) can be rewritten @8 = [U] — [B] {[B]" [U]}, where[B]" [U] € M, »-
Therefore, thé N x N) matrix[B] [B]T does not need to be assembled in practice. Furthermore, if
the constraintB]T [W] = [0n.,.»] does not apply, Eq. (3.11) is simply replaced By = [U], where
[U] S MN,n-

Next, given a global ROB/], the associated SROB/] is constructed o8 y ,, with the additional
constraint equatiofiB]” [W] = [0n, »]. Using the notation introduced above, this means that the
matrix [A] in M% is given by (3.11). If no additional constraint equation teé form [B]T[W] =
[0n.,.n] IS specified[A] = [U]. Hence, the stochastic modeling of the mattix described next will
be the same for both cases of a ROB with or without additional constraint equation.

3.3. Construction of a stochastic reduced-order basis

As anticipated in Section 2.3, given a RQB| in Sy, C S, (@nd therefore satisfying3]” [V] =
[On.,.n]), the corresponding SROB is constructed here as a randonixm@li defined on a
probability spac€®, T, P) with values inSy, — that is, verifying the conditions (2.12) and (2.11)
— and possibly additional constraints that are defined.ldee construction of the probability
measurePy; of W] onMy ,,, for which the support is the manifolgly .,

SuppP[W] = SN,n C SN,n C MN,7L7

requires the introduction of an adapted parameterizatio§x9, that addresses the difficulties
induced by the support of the measure. To this effect, a thie construction procedure fiw],
in which the available information is gradually introducedpresented below.

3.3.1. Step 1: parameterizatiohhe SROB is constructed using the parameterizatidgimdfgiven
in (3.7) and (3.11). The corresponding random mdif¥% can then be written as

W] =R.v([A]) = Rev([A] = [VI[D) , [D] = (VI"[M][A]+ [AI"[M][V])/2, (3.12)

where[A] is a random matrix defined ¢®, 7, P), with values in the subs&ty; ,, of My ,,. Hence,
[A] can be written as

[A] = (lIn] = [B] [B]") [U] = [U] — [BI{[B]" U]}, (3.13)

where the random matrifJ] = [U'...U"] is defined on(©, 7, P), with values inMy ,,. The
columns of[U] aren random vectord)', ..., U™ with values inR". The deterministic mapping
R, v (from the tangent vector spa@& Sy, of Sy, at point[V] to Sy ,,) is defined by Egs. (3.5)
and (3.6). Note thdD] is a random matrix with values M.

3.3.2. Step 2: defining the available informatidaking into account Egs. (3.12) and (3.13), the
stochastic model of the random matfW/] and its generator are completely defined by their
counterparts for the random matiiy].
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12 C. SOIZE AND C. FARHAT

A main requirement for the construction of the SROB is that statistical fluctuations of the
random matri{W] be around the deterministic matiik]. Taking into account thgw] = [V] for
[A] = [On,»] (due to the third of Egs. (3.10)), the random mafi{ must be a centered random
variable, which is satisfied U] is also a centered random matrix (due to Eqg. (3.13)). Henee, o
must have

E{[U]} = [0n.n]- (3.14)

Furthermore, in order to minimize the number of hyperpatansein the stochastic model of
the centered random matri¥], the Nn(Nn + 1)/2 components of the fourth-order symmetric
covariance tensofc;x; x }k;/k Of the My ,,-valued random matriXU] are not kept, because
N can be very large. Therefore, the following reduced pararizgtion with 1+ n(n +1)/2
hyperparameters is chosen for tenso6pecifically, for allj andj’ in {1,..., N}, and for allk
andk’in{1,...,n},

Cikgrkr = E{UjeUjnr} = [Cn (B)ljj0 [en]kr (3.15)

where:

e [Cn(B)] € M}, is a type-covariance matrix depending on a hyperparametsuch that
0 < Bq < B < By < +o0,andis constructed in Appendix D (see Eq. (D.57)). This davae
matrix allows the introduction of a correlation between toenponentd/f, ..., U% of each
random vectolJ* so thatl7¥ = [U] 4.

e [c,] € M is a type-covariance matrix: therefore, there exists areupangular matrixo]
belonging taM!! so that (Cholesky’s factorization)

[cn] = [0]T[o]. (3.16)

Specifically, the matriXc, ] allows to describe the correlation between the random v&cto
ut,...,un

Using Egs. (3.14), (3.15), and (3.16), the second-olegr ,-valued random matrixU] can be
rewritten agU] = [G] [¢], where[G] is a second-order center®fly ,,-valued random matrix defined
on the probability spacéd, T, P), such that for alj andj’ in {1,..., N}, and for allk andk’ in
{1,...,n},

E{Gjr} =0 , FE{GjyGjr} =[Cn(B)];j Ok - (3.17)

It follows that
E{[GI[G]"} =n[Cn(B)] , E{[G]"[G]} = (tr[CN(A)]) [1n]-
Therefore, the random matril] is parameterized as
(U] = [G] o], (3.18)
and is such that
E{[U][U]"} = (r[ea]) [On(B)] , E{[UIT[U]} = (U[CN(B)]) lenl] -

3.3.3. Step 3: stochastic model f@V] In this step, the stochastic model and generator of
independent realizations of the SRQB] are constructed.

To this effect, it is first noted that the stochastic modelh# second-order, centered, random
matrix [G] with values inMy ,, is defined by Eq. (D.55) in Appendix D, and its generator of
independent realizations is described in Section D.5 of Appendix. The stochastic model is
constructed so that it exhibits only a scalar hyperparam&tand does not require the explicit
construction of the large matri’y (3)] with N (N + 1)/2 entries.

On the other hand, the stochastic representation of thendemaler, uncentered, random matrix
[W] with values in the manifol&y ,, C Sy, C My ,, is defined by Egs. (3.12), (3.13), and (3.18),
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which can be rewritten (using Egs. (3.5) and (3.6)) as falow

(W] = R v([2]) = (V] +s[2]) [Hs(2)], (3.19)
[Hs(Z)] = (L] + 8* [Z]" [M] [Z]) /2, (3.20)
(2] = [A] - [V][D], (3.21)
D] = (V" [M][A] + [A]"[M] [V])/2, (3.22)
[A] = [U] - [BI{[B]" [U]}, (3.23)
U] = [G(B)] o], (3.24)

where:

e [G(p)] is the second-order, centered, random matrix with value$/if,, defined by
Eq. (D.55) in Appendix D, and for which the covariance terisatefined by Eq. (3.17).

e [o] is a given upper triangular matrix M} (positive diagonal entries).

e [B]is a given matrix ifMy, v, verifying [B]" [B] = [In,).

e [V]is a given matrix inSy .

For [V] fixed in Sy, the2 + n(n + 1)/2 hyperparametersf the stochastic model of the random
matrix [W] with values inSy ,, are:

e The deterministic real parametey which is such thaty, < s < 1, wheregg is such that
0 <eg < 1 andis given (ifs = 0, then[W] = [V] is deterministic and there are no statistical
fluctuations).

e The deterministic real parametgr which is such thad < 5; < 8 < 8, < +o0, where Sy
andg, are given.

e The upper triangular matrifs] in MY (positive diagonal entries), which is parameterized
by n(n + 1)/2 parameters, and such that its diagonal entries satisfy dhetm@intss, <
[0]11s .-y [O)nn < 0w < +00, Whereg,, is given.

Thus, the hyperparameter vectoras= (s, 3, {[o]kr, 1 < k < k' < n}) with lengthmy =2 +
n(n + 1)/2. It belongs to the admissible s&t defined by

Coc = {S S [50 ) 1] ) 6 S [6d76u] y €0 S [0]11; RS [U]nn S Oy [U]kk’ S Rvk < k/} . (325)

For the sake of simplicity, the notatidn, 3, o) is used fora in the remainder of this paper.

REMARK 2 A good choice for the number of hyperparameters is problem dependent. For
this reason, settingh, requires practical experience. To this effect, Section23@Bovides some
guidelines. For alpractical purposes howeven,, should be chosen as large as the computational
model can afford from the computational complexity viewgoit should also take into account
the number of nonzero elements in the mafrik whose sparsity can be controlled. Its smallest
possible value corresponds to the smallest possible védlue-e that is,n = 1 — and therefore is
me = 3; in this case[o] is the identity matrix multiplied by a scalar hyperparamete

The generator of independent realizations of the randorrixrj§lf] with values inSy ,, is directly

given by Egs. (3.19) to (3.24) and Eq. (D.55). For a fixed valithe hyperparametess 3, and|o],
and forg € ©, the realizatiofdW ()] of [W] is computed as follows:

o Compute[G(0; 8)] the generator described in Section D.5 of Appendix D.
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14 C. SOIZE AND C. FARHAT

e Then compute

V)] = [G(6;5)] o],
[A0)] = [U(0)] - [BI{[B]" [V(O)]},
[DO)] = (VI"IM]A@)] + [AO)]"[M] [V])/2,
[2(0)] = [A(0)] - [V][D(0)],

[Ho(Z(6))] = ([I] + s*[Z(O)] T [M]1Z()]) /2,
(W(©®)] = (V] +5[2(0)]) [H:(Z2(0))]

3.4. Analysis of some mathematical properties of the stsiagheeduced-order basis

From Egs. (3.19) to (3.24), it follows that the random mafw¥ is a nonlinear function o6 that
can be expected in general to be a non-Gaussian secondrandi®m matrix. Since it depends on
the hyperparameter vector = (s, 5,0) € Cq, its second-order moments dependsors, and|o].
The mean value of this SROB is written here as

W(a)] = EX[W]}.
Its variance, vaY («) (a positive-valued quantity), is defined by
van,(a) = E{|W — W(e)|[3} - (3.26)

Forallj andj’ in {1,..., N} and for allk and%’ in {1,...,n}, the components;; i (o) of the
fourth-order correlation tensef«) of [W] are defined by

) = E{W — W (a)];x[W — W ()] w } |
\/E{[W - W(a)2 }E{W - W(a)2,.}

kg (X

Next, some important properties of the mean value of the SR@Bits variance, and its correlation
tensor are highlighted.

Let [Z] be the random matrix defined by Egs. (3.21)—(3.24). In AppeAdit is proved that the
mean valuéW (s, 8, o)] of [W] (defined by Egs. (3.19)—(3.24)) is such that

(W(s, B,0)] = VIE{[Hs(2Z)]} , [BI"W(s,B.0)] = [0ncon] - (3.27)

In general, for alk > 0, 8 > 0, and[o] in MY,
B >0, and[s] € MY,

W(s,B,0)] #[V]  [W(s,B,0)]"[M][W(s,B,0)] # [Ln],

E{[Hs(Z)]} # [I,]. This means that for ali > 0,

and fors = 0,
(W(0,8,0)] =[V] , [W(0,5,0)"[M]W(0,8,0)] =[I] , V[o]eM;.
In Appendix B, it is proved that
IW(s, 8,003 <n o lim |W(s,8,0)[} =0 , ¥8>0 , V]eM;. (3.28)

In the same Appendix B, it is also proved that

var (0, 8,0) =0 lim var (s,8,0)=n , VB>0, Vo] € MY, (3.29)
s$—+4o00
and the mapping — var, (s, 5, 0) is an increasing function that is asymptoticrtoThese results
show that the statistical fluctuations of the SROB are bodmahel cannot grow indefinitely. This is
also due to the constraifitv]” [A/] [W] = [I,,] almost surely.
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Furthermore, it can be easily proved that forsa#t 0, 5 > 0, and[o] € MY, the correlation tensor
{rjrjw (s, B,0)} ki1 can be neither written as;;: o, Neither asy;; byrr, NOr asé;; dprr. This
implies that all components of the tensdg, 3, o) are not equal to zero — specifically, there are
N2n? non zero components.

Finally, it is proved in Appendix C that for alt > 0 and[o] in MY,

lim < [W],[V]>y= 0 almostsurely (3.30)

s—+00

3.5. Continuous interpretation of the stochastic reduoedkr basis

A continuous interpretation of the SRQ®/| constructed in Section 3.3 is given in Appendix D. The
generator of the random matrjés(3)] is also described in details in Section D.5 of Appendix D.
For all numerical applications presented in this paperptirameter, introduced in Eq. (D.41) of
Appendix D for the generation of the random mafif&(3)] is set to20.

4. PERFORMANCE ANALYSIS FOR A SIMPLE EXAMPLE

Here, various performance aspects of the SROB concept apged approach for constructing
it, including the ability of this SROB to control the staigstl fluctuations of the Qol, are assessed
through afirst, simple, numerical example. Because theexglissues do not necessarily depend on
any parametric variation, nonlinear behavior, or dynamsjwegt of the modeled system of interest,
a generic linear static system is considered for this perpos

4.1. Generic linear static problem
The considered linear static problem Hés= 1 000 dofs. For this problem, Eq. (2.1) is rewritten as
[Kly=f, (4.1)

wherey = (y1,...,yn) is the dimensionless displacement vector belongingiq [K] belongs
to M, andf = (f1,..., fv) is the dimensionless force vector belongingRd and satisfying
f1 = fn =0. The generation of all of these quantities is described ipeigix E so that the
interested reader can reproduce this example. Equatid lids a unique solution that satisfies
y1 =y~ = 0 (Dirichlet boundary conditions) and

By =0x,, , where [B]"[B]=[In]. 4.2)

The matrix[B] belongs tdMly n.,, WhereN,, = 2. Its construction is also described in Appendix E.
For this simple example, the Qol (see Eq. (2.3)) is defined as

D
0 =Yy,

wherey is the unique solution of Eq. (4.1). Hence? = (0P, ..., 0%) belongs toR™e with
me = N, and the superscript “D” stands for “Displacement”.

Given that the problem described above is a generic, ceutriproblem, Appendix E also
describes the perturbation approach followed to genersigragate set of “experimental” data.
4.2. Reduced-order model

Let n =20, and let{¢?,..., "} denote the first» eigenvectors associated with the first
eigenvalue$ < \; < ... <\, of the matrix[K]. Hence,

[Klo" =M@t <ob " >=du. (4.3)

Setting[M] = [Ix], the ROB[V] in My, is constructed ag/] = [¢! ... "]. From Egs. (4.1) and
(4.2) (or the construction gf] given in Appendix E), it follows that

[B]"[V] = [0nco,n] -
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16 C. SOIZE AND C. FARHAT

For problem (4.1), the projection-based ROM associatel thi¢ ROB[V] can be written as (see
Egs. (2.6) and (2.7))
y™ =[V]a, (4.4)
VIT[K][V]a = [V]'T.

D,n)
.

The corresponding approximation of the Qo™ = (o§ : ,o§$=”>), is (see Eq. (2.9))

olPm) = y(n) | (4.5)

At this point, it is noted that is set here ta. = 20 so that a modeling error (truncation error)
is generated by using the chosen ROM instead of the HDM fasirsplproblem (4.1). Indeed, for
n = 20, f does not belong to the subspace spannefidly.. ., "} (see Appendix E).

A second Qol is introduced in the framework of this simple edical example, namely, the

vectoro B = (0¥ o™ in R" defined as

olEm) — \(m) (4.6)

whereA™ = (\q,...,\,) is the vector of the first eigenvalue$ < \; < ... < ), of [K]. To this
effect, it is also noted that the ROM approximation of theseigalue problem (4.3) can be rewritten,
fork =1,...,n, ase”* = [V]g*, where

VITIK][V]Q® = A g" .

For this simple example, the familyg,...,q"} constitutes the canonical basis &f*. This
observation is introduced here in order to analyze the dhiyadif the nonparametric probabilistic
approach proposed in this paper to generate statisticalifitions for the random eigenvalues.
4.3. Predictions performed using the high-dimensional etlliced-order models

Figure 1 (left) contrasts, for the dimensionless displaeats) the graph of — o]D computed using

the HDM and that ofj — o§.D’”) computed using the ROM. The effect of the truncation error
is noticeable. Figure 1 (right) contrasts, for the firseigenvalues ofK7], the graph oft — of
computed using the HDM and its counterpart computed usiadrtBM. For this problem, due to
the construction of the matrip¥’] described in Appendix E and that of the ROB, the eigenvalyes
for k = 1,...,n are the same for the HDM and its ROM — thata$, = o(Z-"),

4.4. Stochastic reduced-order model

From Egs. (2.13) to (2.16), it follows that the SROM assedawith Eqs. (4.4) to (4.5) is obtained
by substitutingV’] with the random matri¥W]. The corresponding quantitig&®, g, ando(™ are
the random vector¥ ™, Q, andOP™ . Specifically, the SROM is given by

Y™ =w]Q,
[WIT[K] [W]Q = [W]'f,
0P (a) =Y™),

For the eigenvalue problem, the vecidf) becomes the random vecta™ = (A;,...A,), the
SROM for the eigenvalue problem is

W] [K] W] Q" = A,Q"
and the Qob(®") defined in Eq. (4.6) becomes the random vector

O(E77l) (OL) _ A(n)'
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Figure 1. Left figure: Dimensionless displacements, grdph-e of computed using the HDM (thick line)

and counterparj — og.D’”) computed using the ROM (dashed line) — Right figure: Firgigenvalues,
graph ofk — okE computed using the HDM (dashed line) and counterpast ofﬁEm computed using the
ROM (dashed line).

4.5. Identification of the hyperparameter vector

For this problem, the hyperparameter veatoe (s, 5, 0) defined in Section 3.3.3 has the length
ma =2+ n(n+1)/2 =212. It is identified using the adaptation te,, = 1 of the nonlinear LS
method presented in Section 2.4. Specificallan () andJsg () are defined in this case as

Jmean(@) = [0 — E{O" () }[|* / [|0°]|?, (4.7)

Jstd (a) — Hv(ref,n) _ V(n) (a)H2 / Hv(ref,n) ||2 , (48)
wherev(etn) = (™), betn)) s sych that,

U](-ref’") =7 |03FEf — og-")| , 7=1,...mg, (4.9)

andy > 0 is varied in the computations reported in the following get. In Eq. (4.8)y(") (a) =
W\ (), ..., o5 () is such that

v (@) = { E{O} (@)?} = (B{OS" ())?} }/2, G =1,...m0.

The reader is reminded that in Egs. (4.7) and (48)is the target for the mean value with a weight
wy andv(®"") is the target for the standard deviation with a weight w; (see Eq. (2.17)).

Throughout the remainder of the discussion of the academoblgm examined here, the
following cases will be considered for the vector-valued @:

o 0% = oP =y, with me = N, which is the deterministic displacement vector computsidgi
the HDM and does not coincide with the deterministic apprationy™ computed using the
ROM. The random vecta®'™ () is then chosen a®'”"™ (). For this choice, the constructed
stochastic model of uncertainties takes into account tiretttion error induced by the ROM.

o 0% =0l =y with me= N, which is the experimentally measured (surrogate)
displacement vector (see Appendix E) and does not coincitltetine predictiory performed using
the HDM. For this choice, the constructed stochastic mofiehoertainties takes into account both
the truncation error induced by the ROM and the modelingrsifwith respect to the surrogate real
system) introduced during the construction of the undegyiDM. The random vectciD(”)(a) is
chosen a®?" (a).

o 0 = 0P = X\ with m, = n, which is the experimentally measured set of the first
eigenvalues and does not coincide with the deterministim@partA(™ computed using the
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18 C. SOIZE AND C. FARHAT

ROM (or in this case, the HDM), and the random ved®F’ («) is chosen a®®™ («). This
choice allows the evaluation of the potential of the propasenparametric probabilistic approach
for simulating different types of errors induced by the ROMi&r underlying HDM.

It is noted here that the optimization problem

aCPt — (sopt, BODI Opt] = mlcn J() (4.10)
ac

is not a convex problem. Therefore, only an approximatiom®¥ can be computed in general
(recall thatm, = 212). Many numerical tests were performed to analyze the rdieged by the
components;, 3, and[o] of . These tests have led to shaping the final optimization hgor
presented in Appendix F. Nevertheless, this algorithm ocarrdplaced by any other preferred
solution algorithm for problem (4.10).

4.6. Sensitivity analysis of the stochastic model witheesto model reduction errors

For the purpose of performing a numerical sensitivity asiglyof the stochastic model with
respect to the modeling error induced by model reductios,Qol is set here t@* = o” =y
with mo = N. The weightw; is set tow; = 0.9, so that the target™ for the mean value is
preponderant for the standard deviation (see Eq. (4.98.oftimization problem (4.10) is solved
using the interior-point algorithm described in Appendixvkh ¢, = 0.01, 5, = 0.01, 8, = 0.3,
ando,, = 20, and the initializatiors, = 0.05, 5y = 0.2, and o] = [I,,]. Furthermore, the solution
Pt = (st BOPL [5OPY) js computed for = 0.2, 0.5, 0.8, and1.0. The Monte Carlo method is used
as the stochastic solver with000 independent realizations, and the mean-square convergenc
reached with a reasonable accuracy.

Figure 2 (left) displays the graphs of four arbitrary traégees (realizations) of the discrete
random fieldj — O§.D’”) computed using the SROM for= 0.8. The reader can observe that the
Dirichlet boundary conditions are preserved, and that tmaputed trajectories are as regular as
predicted by the theory (see Appendix D).

Figure 2 (right) reports the graph of the functibn- [¢2”],. (diagonal entries), where?| =

[0 [o°PY corresponds to the optimal val{ke®?] of [0] (see Eq. (3.16)). Foy = 0.2, 0.5, 0.8, and
1 0, the optimal values of and ares° = 0.0111, 0 0158 0.0120, and0.0173, andﬁOpt =0.071,
0.036, 0.207, and0.111.

HDM (thick line), ROM (dashed line), and for y=0.8, Diagonal entries of matrix [czp'] for 4= 0.2 (dash-dotted line),
four realizations (trajectories) computed with the SROM (thin lines) 0.5 (dashed line), 0.8 (thin solid line), 1.0 (thick solid line)

x10*

D

]

Displacement o
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=
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Index j of displacement Index k of the diagonal entries of matrix [c"p‘]

Figure 2. Left figure: Four sample realizations of the discrandom fieldj — O§D’7l) for v = 0.8 (four

colored thin lines) — Right figure: Graph &fi— [, (in log;, scale) fory = 0.2 (dash-dotted line)).5
(dashed line).8 (thin solid line), and!.0 (thick solid line).

Figure 3 (left) displays the graph ¢f— 0 corresponding to the HDM target, that pf o§D "

computed using the ROM and= 0.2, 0.5, 0 8, and1.0, and the mean value of the discrete random
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HDM (thick line), ROM (dashed line), and for v = 0.2, 0.5, 0.8, and 1.0, Standard deviation of the random displacement computed with SROM for

. mean values of the SROM (four thin lines) ~ =0.2 (dash-dotted line), 0.5 (dashed line), 0.8 (thin line), and 1.0 (thick line)
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Figure 3. Left figure: Graph of — oJD of the HDM target (black line), graph gfi— o§D’") computed using
the ROM fory = 0.2, 0.5, 0.8, and1.0, and mean value of the random figld- O§.D’") computed using the

SROM (blue thick lines superimposed on the black line) — Rfglure: Standard deviation gf— OJ(,D’”)

computed using the SROM far= 0.2 (dashed-dotted line).5 (dashed line)).8 (thin solid line), andl.0
(thick solid line).

field j — O§.D’”) constructed with the SROM. The ROM and mean value of the SRe@Mlmnost
coinciding for all considered values of Figure refFIG3 (right) displays, for the different considd
values ofy, the standard deviation gf— OED’”) computed using the SROM. As it can be expected,
the standard deviation increases with the amplitudéits target value.

In Figure 4, the four displayed figures summarize the resbitsined for the numerical sensitivity
analysis of the stochastic model with respect to the errduéed by using the ROM instead of
the HDM for solving problem (4.1). Each figure pertains to #iedent value ofy (0.2, 0.5, 0.8,
and 1.0) and displays, for the dimensionless displacements, taphgofj — oJD corresponding

to the HDM target, the graph gf— ng,@ computed using the ROM, and the confidence region
with a probabilityp. = 0.98 of the discrete random fielfl— O§D’") constructed using the SROM.
The upper envelope of the confidence region correspondsetguhantile for the probability.,

and the lower envelope to the quantile for the probability p.. These figures show that the
statistical fluctuations increase as the amplityd# the target for the standard deviation increases
(as expected). They also show that the confidence regioriasvedy well-centered around the
response computed using the ROM, which is close to the awearalge of the HDM target (see
Figure 3) and was chosen as the target for the mean valudlyf-tha reader can observe that the
prediction performed fofy = 0.8 is simply excellent.

4.7. Performance in the presence of modeling errors in béth@high-dimensional and
reduced-order models

For the purpose of assessing the ability of the proposedarangetric stochastic model to account
for modeling errors introduced at both HDM and ROM levelg @ol is set to the displacement
oP = ywithmo = N, the target of the mean value is sebtth = o”-* = y&*— which corresponds
to the surrogate experimental data and is denoted as "EXBttan the figures to follow. The graph
of j — of’exp is displayed in Figure 6 (top left). The target"™ of the standard deviation is defined
in Eq. (4.9), where the amplitude is controlled by the pan@me. (It is noted here that the task
of generating an SROM for which the mean value of the stoahassponse will be close to the
average of the EXP target and the confidence region of thistitat fluctuations will contain this
EXP target is a difficult one). The weight; = 0.9 is chosen so that the target’ of the mean value
is preponderant during the identification of the hyperpatamax. This identification is performed in
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HDM Target (black thick line), ROM (black dashed line)
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Figure 4. For the dimensionless displacements, grap‘h@fof of the HDM target (black thick solid line),
graph ofj — o§.D’") computed using the ROM (black dashed line), and confidergierrdor p. = 0.98

(yellow region with red upper and lower envelopes) compitbed — O§D”L) using the SROM andg = 0.2
(top left), v = 0.5 (top right),y = 0.8 (bottom left), andy = 1.0 (bottom right).

this case foB different values ofy, namely,y = 0.1, 0.2, and0.3. The optimization problem (4.10)
is solved using the interior-point algorithm described ipp&ndix F withey = 0.01, 5; = 0.0005,
Bu = 0.01, ando,, = 20, and the initializatiorsg = 0.011, 8y = 0.001, and[oo] = [I,]. As in the
previous analysis, the Monte Carlo method is used as théastic solver withl 000 independent
realizations (and the mean-square convergence is readtted reasonable accuracy).

Figure 5 (left) displays the graphs of four arbitrary traégees (realizations) of the discrete
random fieldj — O§.D’”) computed using the SROM and= 0.3. As in Section 4.6, the Dirichlet
boundary conditions are preserved and the trajectorieegrdar.

Figure 5 (right) displays the graph of the functibr [c>"|x (diagonal entries), where?”| =
[0 [o°PY corresponds to the optimal valite??] of [o] (see Eq. (3.16)). Foy = 0.1, 0.2, and0.3,
the optimal values of andg ares°Pt = 0.0138, 0.0142, and0.0275, and3°°* = 0.0005, 0.0074, and
0.0077.

Figure 6 (top left) displays the graphs pé of’exp of the EXP targetj — of computed using
the HDM, j — ng,@ computed using the ROM and= 0.1, 0.2, and0.3, and the mean value of

the discrete random field — O§D’") constructed using the SROM. The reader can observe that
the solution computed using the HDM is different from the EdRyet, which simulates model
uncertainties in the HDM, and that the ROM yields an avemgihthe solution predicted by the
HDM. The reader can also observe that the mean values are wake EXP target, which is
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EXP target (thick black line), ROM (black dashed line), and for v = 0.3,

Diagonal entries of matrix [cﬁp‘] for ~ = 0.1 (dashed line),
four realizations (trajectories) computed with the SROM (thin lines)

0.2 (thin solid line), 0.3 (thick solid line)
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Figure 5. Left figure: Foty = 0.3, sample realizations of the discrete random field Oj(.D’”) (four colored
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(top right),~ = 0.2 (bottom left),y = 0.3 (bottom right).
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coherent with the fact that the EXP target is given as theetdiy the mean value with a weight
wy = 0.9. Fory = 0.1, 0.2, and0.3, the 3 other figures shown in Figure 6 (top right, bottom left,
and bottom right) display the graph pf— oJD’eX” of the EXP target, that of — oj(,D’”) computed
using the ROM, and the confidence region (with a probabijlity= 0.98) of the discrete random
field j — OJ(.D’”) constructed using the SROM. These figures show that, as texpde statistical
fluctuations increase as the amplitudef the target for the standard deviation increases, the toma
defined by the confidence region contains the EXP target,fangrediction performed foy = 0.2

is excellent.

4.8. Random eigenvalue analysis

Next, the ability of the proposed nonparametric stochasticlel to control the mean values and
statistical fluctuations of the vectar™ of the firstn random eigenvalues\y, . .., A,) (see (4.4))
associated with the Q@(®"») = X(") with m, = n (see (4.6)) is assessed. To this effect, the target
of the mean value is set W* = o ®® = X\*®, which corresponds to the surrogate experimental
data. The target(""™ of the standard deviation is defined in Eq. (4.9); its amgktis controlled

by the parametey. The weightw; = 0.9996 is chosen so that the target’ of the mean value is
preponderant during the identification of the hyperparametThis identification is performed here
for v = 0.14 and~y = 0.043. These two values of are arbitrarily chosen except for the interesting
fact that for one valuey(= 0.14), the error happens to increase with the rank of the eigaasal
while for the other 4 = 0.043), the error happens to decrease with the rank of the eigessal
The optimization problem is solved using only Stages 1 and the interior-point algorithm
described in Appendix F. Foy = 0.14, the parameters of this algorithm are setsto= 0.01,

B4 = 0.0001, B, = 0.2, and o, = 20, and the initialization is set teg = 0.011, 3y = 0.01, and
[o0]kkr = Okir 14 % k/20 4+ 1. For v = 0.043, they are set te, = 0.01, o, = 20, S5 = 0.001 and

ﬂu = 0.003, andso = 0.011, ﬂ() = 0.002, and[O'()]kk/ = Oppr — 14 % k/20 + 15.

Two targets cases are considered:

o The mean-value target (EXP-targetand standard-deviation target0(x Std-target)
generated fory = 0.14, displayed in Figure 7 (left), and corresponding to an iasheg of the
statistical fluctuations of the random eigenvalues witlirtinelex. This choice of targets simulates a
modeling error in the HDM that increases the statisticaltéflations of the random eigenvalues with
their index (smaller statistical fluctuations féy and larger statistical fluctuations fa, ).

¢ The mean-value target (EXP-targgtand standard-deviation targetO(x Std-target)
generated fory = 0.043, displayed in Figure 7 (right), and corresponding to a desirgy of the
statistical fluctuations of the random eigenvalues witlirtimelex. This choice of targets simulates
a modeling error in the HDM that decreases the statisticatuations of the random eigenvalues
with their index (larger statistical fluctuations fag and smaller statistical fluctuations far,).

In Figure 7, one observes that the two mean-value targetsigméicatively different from the
eigenvalues computed using the HDM (which, as explainelieeaare identical for this specific
problem to their counterparts computed using the ROM).

Figure 8 (left) displays the graph of the functién— [c>"]., (diagonal entries) wherg2| =
[0°PYT [0°PY) corresponds to the optimal val(ie®?] of [o] (see Eq. (3.16)). Foy = 0.14 and0.043,
the optimal values of andg3 ares°P = 0.0213 and0.0109, and3°Pt = 0.0242 and0.00298.

For v =0.14 (0.043), which corresponds to an increasing (decreasiriglh® statistical
fluctuations of the random eigenvalues with their index , tthe figures in Figure 9 display the

graph ofk — o} of the mean-value target, that bf— o = o,(cE’”) computed using the HDM,

and the confidence region of the random eigenvah;esO,(cE’") constructed by using the SROM
for the probability level op. = 0.98. The reader can observe that whereas the eigenvaluestpredic
by the HDM are different from the target values, the meanesbf the random eigenvalues are close
to these target values.

For~ = 0.14, the statistical fluctuations of the random eigenvaluesame with their index while
for v = 0.043, they decrease with their index. This is coherent with thedsed standard-deviation
targets.
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Figure 7. Graphs of — of = o{"™ computed using the HDM and the ROM (dashed lings); o2 of

the mean-value target (thick lines) for= 0.14 (left) andy = 0.043 (right), andk — ("™ of the standard-
deviation target (dotted lines) far= 0.14 (left) andy = 0.043 (right).
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Figure 8. Left figure: Graph of — [¢°PY;,;, for v = 0.043 (thin line) and~y = 0.14 (thick line) — Right

figure: Standard deviation @&f— O,iE’”) computed using the SROM far= 0.043 (thin line) andy = 0.14
(thick line).

All reported results demonstrate the capability of the pemal nonparametric probabilistic
approach for quantifying model uncertainties to modify thatistical properties of the spectrum
of a linear operator and reproduce (in this case surrogapsrenental data.

5. APPLICATION TO A NONLINEAR COMPUTATIONAL STRUCTURAL DYNAMICS
PROBLEM

Here, a three-dimensional (3D) dynamic problem associatitld a slender, damped, linearly
elastic structure witmonlinear barriersis considered. The setup of this problem is designed to
be sufficiently simple to enable the reproduction of the aisged results by the interested reader.
On the other hand, constructing an efficient ROM for this iagion is a difficult task. In the
frequency domain, the energy of the considered excitaaoncentrated in a narrow frequency
band, within an otherwise broader frequency analysisvatefor this reason, the discrepancies
between the HDM and ROM predictions are very small in thelfesgy band of excitation where the
uncertainties are small, but larger outside this frequdranyd where, because of the energy transfer
outside the frequency band of excitation due to nonlinegrithe model uncertainties are larger.
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EXP-target” (black solid line),ROM (black dashed line)

EXP-target” (black solid line),ROM (black dashed line)
SROM (confidence domain p, = 0.98: yellow region), v = 0.14
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Figure 9. Graphs of: — of’ex” of the mean-value target (thick solid line) and bf— of = och’")
computed using the ROM (dashed line) — per= 0.98, confidence region (yellow region with red upper

and lower envelopes) of the random eigenvalbes O,(vE’”) computed using the SROM: = 0.14 (left),
~ = 0.043 (right).

Consequently, such uncertainties are associated witmdemaler contributions to the solution,

and the main purpose of this problem is to demonstrate tHityatfi the proposed nonparametric
probabilistic approach to predict them.

5.1. Description of a mechanical system

The mechanical system considered here is a 3D linear efdsiicture with two elastic barriers that
induce impact nonlinearities. It is defined in a cartesiasrdmate syster®z; xox3 (see Figure 10).
Its cylindrical geometry has alengfh = 1.2 m, and a rectangular section with height= 0.12m
and widthL3 = 0.24 m. The two end sections are locatedrat= 0 andxz; = Ly. The originO is

in the corner of the first end section, and; is parallel to the main axis of the cylinder. The
axis Oz- is the transversal axis along the side of lengith andOz; is the axis along the side of
length L3 (see Figure 10). The elastic medium is made of a homogenewlgsatropic elastic
material for which the Young modulus & = 10 N/m?, the Poisson ratio i% = 0.15, and
the mass density is = 1500 Kg/m?>. Damping is represented using the global damping rate of
&4 = 0.01 for each elastic mode of this structure in the absence dfielaarriers, and is introduced
directly at the ROM level. As for the boundary conditiond, @displacements are constrained
(“locked”) along the two lines defined By(x1, 22, 23) : 1 = 0;29 = L2/2; 0 < 23 < L3} and by
{(xl,l‘g,l‘g) rxy =Ly 20 = L2/2; 0<z3< Lg} (See Figure 10)

The elastic barriers induce two nonlinear point forces andtiucture: one in the direction of
xo and applied at the poirftz; = 0.66,z2 = 0,23 = L3/2), and another in the direction af and
applied to the poinfz; = 0.66, 22 = L2/2, 23 = L3) (see Figures 10 and 12), of intensitiegy. »
and— fy_ 3, respectively. These intensities, which are assumed todepiendent of the velocity, are
given by

fa2(n) = ko2 (n+ep2) Lp+ (-1 —p2) , nER, (5.1)

Iaes(n) = ko3 (C—eb3) Ir+ (C —ep3) , C(ER, (5.2)
wherek, » = k, 3 = 2 x 10° N/m is the elasticity constant of the barriers ang = e, 3 = 2 x
10~—* m are the two positive valued gaps.

A time-dependent point force is also applied at the boundéttyis slender structure, specifically,
at (x; = 0.46, 22 = 0,25 = 0.2) (See Figures 10, 12). Tha component of this force is zero, and
its z5- andxz3-components are equal to the square integrable real-valmetion f. defined by

fe(t) = % {sin(t(we + Aw./2)) — sin(t(w. — Aw:/2)} , t € [to,T], (5.3)
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Figure 10. Slender elastic structure with nonlinear besrie

where fo =100 N, w. =27 x 470 rad/s is the central circular frequency, amw, = 27 x
300 rad/s is the circular frequency bandwidth. The graph wt |f.(w)| defined on2x x
T

0,1550] rad/s, where f.(w)

e~ “tf.(t)dt, is plotted in Figure 11. The signal energy of
to
the excitation is mainly concentrated in the frequency bapa, 620] H z.
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Figure 11. Time-variation of the external point for¢e— f.(¢) defined on[—0.0403,0.3790] s and

represented op-0.04,0.1] s (left) — Graph ofw — | fe(w)| in log;,-scale defined on the frequency band
of observatiorj0, 1550] Hz (right).

The line defined by{0 < zy < L;; 22 =0; 23 = L3} is adopted as an observation line for

t € [to,T]. In order to limit the number of figures, only the,- and zs-displacements o
observation points on this line are considered and denateel by Obg, and Obs;. Their z;-
coordinates ar@.66 and1.00, respectively (see their locations in Figure 12). Consatigeonly

4 displacement dofs are observed for the purpose of repontimgerical results. The initial time
to < 0 is written asty = —mg 7/w. = —0.0403 s, wherem, is a positive integer set tay, = 50.

At 4, the system is assumed to be at rest (displacement and tyefietils are zero). The final
time T > 0 is a positive integer chosen so that the system is returndtiet@ero equilibrium
with a relative error of,; = 0.1. Its value is estimated using the equatiep(—§; w1 T) = €4,
wherew; = 27 x 96.69 rad/s is the fundamental eigenfrequency of the associated lumedamped
dynamical system, which yields = 0.3790 s. The frequency band of observatiaa chosen as
B, = [0,w,], with w, = 27 x 1550 rad/s. The chosen time-interval is sampled at the frequency
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26 C. SOIZE AND C. FARHAT

Wmax = 27 X 12,400 rad/s. This leads tal0, 400 time-instances and the time-st&p = 7 /wmax =
4.032 x 1075 s. Similarly, there are 0, 400 frequency steps in the frequency bdra .y, wmad and
the sampling frequency stepdsv = 27 x 2.38 rad/s.

5.2. Predictions performed using the high-dimensional ehod

A 3D finite element model is constructed for the problem dbsck above using 80 x 6 x 12 =
4320 8-noded solid elements. Hence, this model cont&ifis1 nodes andNV = 16653 dofs.
N, = 78 Dirichlet boundary conditions are applied?ak 13 nodes (see Figure 12). For this HDM,

1.2

8
o

0.8

Voo v 0 0
iy
[

o

0.2

Figure 12. Finite element model: applied force (diamondy &lastic barriers (circles), observation points
Obs;4 and Obg; (pentagrams).

the governing equations (2.1) to (2.3) are rewritten asvadl

[M]Y(t) +9(y(2),y(t)) =f(t) , ¢ €lto, T], (5.4)
a(y(®),y(t)) = D] y(t) + [K]y () + fa(y(2)) , (5.5)

and equipped with zero initial conditions
Y(to) =0n , Y(to) =On. (5.6)

The N, < N constraint equations arising from the Dirichlet boundaoypditions are written in
matrix form as
[BTy(t) =0n,, , t € [to,T], (5.7)

where[B] is a matrix inMy v, Verifying [B]T[B] = [In,,] and constructed using th¥,, zero
Dirichlet conditions. In Eq. (5.4), the time-dependent lgggp force f(¢) is directly constructed
using Eq. (5.3). In Eq. (5.5), the nonlinear forige(y(¢)) induced by the elastic barriers is directly
constructed using Egs. (5.1) and (5.2). Note that the magsxma/] belongs toM},, but the
stiffness matriX K| is in M} and has a null space of dimensién

In general, the damping matrif] should also be iM}° with the same null space d&7].
However,[D] is carefully constructed so that the modal damping rateinéteby projection ofD]
onto the subspace spanned by the ROB constructed for tHiepnds effectivelys,. In addition,
an adapted representation [@f] is carried out in order to avoid th@D] be a full matrix and that
the computational complexity of a corresponding matrigtee product grows withV2. For the
application considered here, a constructiofifin M{, ¢ M}’ is described in Appendix G.

In the frequency band of observatid = [0,w,], the Qol (observation of the system) is the
vectoro(w) = (01(w), . . ., 0m,(w)) € C™e defined as follows:
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e For plotting and analyzing the responses of the SROM= 2 x 2 = 4 dofs in thex, and
x3 directions of the2 observation nodes Oksand Obs; belonging to the aforementioned
observation line (see Figure 12).

e For the identification of the hyperparametenf the SROB;m, = 2 x 61 = 122 dofs in the
x9 andz; directions of allb1 nodes belonging to the observation line (see Figures 112nd 1

For allw in B,, the complex vector vect@(w) is written as
o(w) = h(-w?J(w)) . w e By, (5.8)

whereh is a linear mapping fronC"V into C™° which extracts the dofs from the vectoew? y(w) €
CV, and

T
y(w) = / e Wly(tydt | weDB,. (5.9)
to

Note that—w?y(w) would be the Fourier transform dfy(t)t € [to,T]} if y(to) = Y(to) = On
(which is the case, see Eq. (5.6)) ang(f’) = y(T') = Ox (which is not exactly the case, because,
as explained in Section 5.7, corresponds to the time for which the dynamical system nettw
the zero equilibrium with the relative erref). Neverthelessp(w) can be considered as a good
approximation of the accelerations of the observationgadu ther,- andz; directions.

Also, Egs. (5.4) and (5.5) are rewritten @] Y(t) + [Dq] ¥(t) + [K]y(t) = f(t) — fa (Y(2)) —
[D.]y(t), where the full(N x N) damping matrix is written agD] = [D,] + [D.], [D4] is the
positive definite diagonal part dD], and [D.] = [D] — [Dy] is a full (N x N) damping matrix.
The purpose of the latter matrix decomposition is to pronspi@se computations (see Eq. (G.3)
in Appendix G). The midpoint rule is applied to the time-gation of this equation using a fixed
point method at each sampling time with the relative precisif 10~5. In order to guarantee the
convergence of the fixed point method, a local adaptive step-is used.

The four subfigures of Figure 13 compare the graphs log,,(|o,;(27v)|) predicted for this
problem using the HDM described above and a linear variataiogd by supressing the nonlinear
elastic barriers, for the,- andzs-accelerations at Opsand Obsg,. Hence, these figures highlight
the effects of the nonlinear elastic barriers on the respadnsparticular, they reveal an important
energy transfer in the frequency band outside the main &ecy band[320,620] Hz of the
excitation.

5.3. Reduced-order model and performance

Let{p!,..., 4"} be the firstr elastic modes associated with the fiigtigenfrequencies < w; <
... < wy, Of the linear undamped countpart model of the nonlinear dahalynamical system. These
modes satisfy

K] oF = A [M] ", (5.10)
where\; = w?,..., \, = w2, and the constraint equation
BlT* =0y, , k=1,...,n. (5.11)

Furthermore, the elastic modes satisfy the usual orthdiyppeoperties
<M " =0 . <[K]@F " >= N . (5.12)
For the nonlinear dynamical HDM, the ROB is chosends= [¢!...¢"] € My ,. This ROB
satisfies the orthonormality property (2.5) and the coirgtequation (2.4). Using this ROB and
Eq. (5.12), the ROM associated with the HDM defined by Eq4) . (5.7) can be written as
y" () = [Viat) . te ft,T], (5.13)
G(t) + (VITDIV]g() + [VITIK]VIa®) + VT (VIa®) = [VITHE) L ¢ €lto, T), (5.14)
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FRF modulus for xz-acceleration of Obs51 FRF modulus for x3-acceleration of Obs51
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Figure 13. Graphs of — log(|0;(27v)|) computed using the HDM (thick lines) and a linear counterpar
(thin lines) for thexs- andzs-accelerations at Obs (top left and top right) and at Ops (bottom left and
bottom right).

with the initial conditions
Q(O) = On 5 Q(O) = O’VL .

The approximatio@(”) (w) of the Qolo(w) defined by Egs. (5.8) and (5.9) can be written as

0" W) =h(-?Y" (W) , w € B, (5.15)

T
S/\(n) (w) _ / oW ty(n) (t) dt , webBb,. (516)

to
To solve the above reduced governing equations, the aigodtescribed in Section 5.2 is used
after it is adapted to Eq. (5.14), and this equation is réamjtusing Eqgs. (G.2) and (5.12), as
G(t) +2& [N)V2q(t) + N q(t) = [V]TE) — [V]T (V] q(t)), where[A\(™] is the positive
definite diagonal matrix whose diagonal entriesare .., \,.

Taking into account the fact that a significative differemegween the responses delivered by
the HDM and ROM must be generated in order to demonstrate apabdlity of the proposed
nonparametric stochastic method to account for this typmadeling errors, a good compromise
between computational cost and ROM accuracy leads to amgesk 20 as the dimension of the

ROM. In this casew; = 27 x 96.69 rad/s, wy = 27 x 472 rad/s, ws = 27 X 720 rad/s, w11 =
27 x 1474 rad/s, w12 = 27 X 1754 rad/s, andwsg = 27 x 2936 rad/s. Consequently, there ade

elastic modes in the frequency band620] H z containing the main part of the excitatidn, elastic
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NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 29

modes in the frequency band of observatjon1550] Hz, and9 elastic modes in the frequency
band[1550, 3100] Hz. In Figure 14, the four subfigures compare the graphs log,,(|o; (27v)|)
computed using the HDM with the graphs— 10g10(|5§-n) (27v)|) computed using the chosen ROM,
for the z5- andxz3-accelerations at Obsand Obs,. They show that the differences between the
HDM and ROM predictions are very small in the frequency bg?2d , 620] H = of the excitation,
but significant outside this frequency band (by design, sliffdérences can be reduced by increasing

the dimensiom of the ROM).

FRF modulus for x3-accelera1ion of Obs51

FRF modulus for xz-acceleration of Obs51
HDM (thick line), ROM (thin line)

HDM (thick line), ROM (thin line)

3 3
2
1
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Figure 14. Graphs af — log(|0; (27v)|) computed using the HDM (thick lines) and ROM (thin lines) for
thexs- andzs-accelerations at Obs (top left and top right) and OBs (bottom left and bottom right).

5.4. Stochastic reduced-order model and performance

From Egs. (2.13) to (2.16), it follows that the SROM assadatith Eqgs. (5.13) to (5.16) is obtained
by substituting1’] with the random matrifW]. Consequently ™), g, ando(™ become the random

vectorsY ™, Q, andO", and the SROM becomes
YO (t) = WIQ(t) , t € [to, T],
Q(t)+ W] DIW] Q(#)+ W] [K)WI]Q(t) + W] fu (W]Q(£)) =W (¢) , ¢ €]to, T], (5.17)
with the initial conditions
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Let (A)(n)(w;a) be the random Qol with values @™ and withm, = 122. This random Qol
depends on the hyperparameteand is such that

A (n) (n)

0 (wa)=h(—w®Y (wa)) , we€ By, (5.18)

T

9" (W) = / Y (a)dt , we B,.
to

In Eq. (5.17), theM; -valued random matri¥W]? [D][W] is constructed using Eq. (G.4), which

shows that thé N x V) full matrix [D] is not assembled.

To identify the hyperparameter = (s, 5, o) defined in Section 3.3.3, of length, = 2 + n(n +
1)/2 = 212, and belonging to the admissible s&f = R* x [0.01,0.1] x MY, the cost function
J(a) defined by Eq. (H.3) of Appendix H, whete; = 0.9 andy = 0.3, is minimized. Specifically,
the optimization problem

Pt = (5Ot 3Ot [5OPY)) = Hélcn J(a), (5.19)

is solved using the algorithm described in Appendix F. ThentdddCarlo solver is used with000
independent realizations (mean-square convergenceagach

Figure 15 (left) displays the graph of the functién- J(a(3)), wherea(3) = (s, 3, [¢?)])
(used in Stage 3 of the optimization algorithm described ppéndix F) and Figure 2 (right)
displays the graph of the diagonal entries of the function [co?],, where[c2P] = [°PT [5OP
corresponds to the optimal val{e®™] of [o] (see Eq. (3.16)). For the sake of limiting the number
of figures, the extra diagonal entries[ef*] are not displayed. The optimal valuessoénd 3 are
found to bes®Pt = 0.0103 and3°Pt = 0.0181.

Cost function in Stage 3 of the optimization problem Diagonal entries of matrix [c%P] for + = 0.3 (solid line)

=
o
w
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opt;
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0421

diagonal entrie [c!

0.4 . . . . 10° . .
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5] Index k of the diagonal entries of matrix [cﬁp‘]

Figure 15. Graph off — J(a(B8)), wherea(8) = (s, 8, [c?]) (left), and ofk ~ [°PY;, (right, using
thelog;, scale) fory = 0.3 (solid line).

The four subfigures of Figure 16 summarize the results obtasing the SROM. These
subfigures pertain to the,- and z3-accelerations at Ops and Obs,. Each of them displays
the graph ofv — log,y(|0o;(27v)|) computed using the HDM (the target for the mean), that

of v — 10g10(|0j")(27r1/)|) computed using the nonlinear ROM, and the confidence regitih,

a probability p. = 0.98, of the frequency sampled stochastic process 10g10(|(3j(-n)(27r1/)|)
constructed using the SROM. The upper envelope of the cord@eegion corresponds to the
guantile for the probability., and the lower envelope to the quantile for the probability p..
The reader can observe that the obtained results are ved; groept for thers-accelerations in
the small par{270,438] Hz of the frequency banfl, 1550] Hz of the analysis. This prediction
can be improved by using a more sophisticated optimizatigarhm than that used here for
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the identification of the hyperparameters. Neverthelessan be seen that the SROM allows the
generation of a confidence region which is not centered artlm responses computed using the
ROM, but is approximatively well centered around the reggsncomputed using the HDM. This
demonstrates the capability of the proposed method fonaatow for second-order contributions.

FRF modulus for x,-acceleration of Obs, FRF modulus for x -acceleration of Obs,
HDM, ROM, SROM (confidence region) HDM, ROM, SROM (confidence region)

|Ogm|6j(2m/)|

0 500 1000 1500 0 500 1000 1500

Frequency v (Hz) Frequency v (Hz)
FRF modulus for x -acceleration of Obs FRF modulus for x -acceleration of Obs
HDM, ROM, SROM (confidence region) HDM, ROM, SROM (confidence region)
4 4

©° y \ A
GS 2 / \ / s JW”V"“WV”‘”V'W M
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0 500 1000 1500 0 500 1000 1500
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Figure 16. Graphs af — log;4(|o;(27v)|) computed using the HDM (thick lines) and ROM (thin lines),

and confidence region fos. = 0.98 (yellow region with red upper and red lower envelopes)vofs

loglo(|6§")(2m/)|) computed using the SROM, for the- and z3-accelerations at Obs (top left and
top right) and Obg; (bottom left and bottom right).

6. APPLICATION TO A PARAMETERIZED NONLINEAR COMPUTATIONAL
STRUCTURAL DYNAMICS PROBLEM

Whereas Sections 4 and 5 have focused on two nonparamethieprs, this section illustrates the
capabilities of the proposed nonparametric probabilistithod in the case of@parametric HDM.

In particular, the objective of this section is to analyze gerformance of @a-parametric SROM
constructed as proposed in this paper at predicting a corfedieegion that contains the solution of
the u-parametric HDM, for a quality-assessment valigof o which does not belong to the subset
of training points{., ..., wm, } 0f C,.. To this effect, the reader is reminded that the training{soi
are used for constructing the RQB], identifying «°", and therefore, constructing the SROR
For this purpose, the simple example presented in Sectidrte 4.6 is reused as described next.
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6.1. Description of the.-parametric HDM

Consider again the linear static problem described in 8eecti with N = 1000, and such that
Eq. (2.1) is rewritten as

(KTy(p) = (). (6.1)

The vectory(u) = (y1(u), - .., yn(n)) belonging taR ™ represents the dimensionless displacement.
The matrix [K] belonging toM}, is the stiffness matrix of the problem. The vecfigr) =
(fi(w), ..., fn(p)) belonging taR? is the dimensionless force withi (1) = fn (1) = 0; it depends

on the real-valued paramet@r belonging toC,, = [ pmin, tmax] C R, with with pmin = 0.5 and
umax = 1.1. The matrix[K] and vectorf(n) are defined/constructed as described in Appendix I.
Eqg. (6.1) has a unique solution which satisfiggn) = yn (1) = 0 (Dirichlet conditions), and
consequentlyy () satisfies the following equation

[B]"Y(1) = On, , [BIT[B] = [In], (6.2)

where[B] belongs taMly n., With N, = 2 and is explicitly constructed as described in Appendix I.
For this example, the Qol (see Eq. (2.3)) is defineda§:) = (0P (p), ..., 0k (n)) — that is, the
vector inR™e, with mg = N, which satisfies

wherey(u) is the unique solution of Eq. (6.1).

6.2. Construction of tha-parametric ROM

To construct the ROM, the parameter spégés sampled at the following:,, = 3 points
,LL1:0.5 y /~L2:0-7 y /J3=1.1.

For each sampled valug;, i = 1,2,3, the solution of Eg. (6.1) under the constraint (6.2) is
denoted byy(u;). The singular values of the resulting matfix(u) y(uz2) Y(us)] € My s are
s1=5.9x 1072, 59 =6.1 x 1072, andss = 1.2 x 10715, In view of this, and in order to construct
a ROM with modeling errors, a ROB/] € My ; (n = 1) is constructed using the right singular
vector associated with the largest singular value. Helhéi® ROB satisfies

VITWVI=[n] . (B [V]=[024],

which is consistent with the choid@/] = [I] for static problems. Then, the-parametric ROM
defined by Egs. (2.6) and (2.7) is rewritten as

y® () = [V]a(w) , (6.3)
VITIK] [VIa(u) = [VITT(n). (6.4)

The corresponding approximatia®®™ (1) of the Qolo®™ (1) = (o{”™ (1), ..., 0P (1)) is
written (see Eq. (2.9)) as

o) (1) =y (). 65)

6.3. Performance of the-parametric ROM

To assess its accuracy for parametric computations, thetremted ROM is applied to predict the
solution of problem (6.1) at the unsampled parameter vadie- 0.6. Figure 17 displays the graph

of j — o§D’") (1) computed using the constructed ROM, which reveals someceegh@accuracies
of the u-parametric ROM.
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HDM (solid line) and ROM (dashed line) for the
quality-assessment value Hoa = 0.6

x107°
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Index j of the displacement

Figure 17. Graph of — OjD(uqa) computed using the HDM (solid line) and counterpart graply e

O;D7n)(uqa) computed using the ROM (dashed line).

6.4. Construction of thg-parametric SROM

From Egs. (2.13) to (2.16), it follows that theparametric SROM associated with Egs. (6.3) to
(6.5) is obtained by substitutiri§’] with the random matri¥W|]. Consequently™ (1), q(x), and
o™ (1), become the random vectovs™ (4, ), Q(u, ), andOP™ (11, ), all of which depend
on the parameteti and the hyperparameter. Hence, the.-parametric SROM can be written for
this problem as

Y (1, 0) = W] Q(u, ), (6.6)
[WIT K] W] Q(u, @) = W] (1) , (6.7)
0P () =Y (i, ). (6.8)

6.5. ldentification of the hyperparameter of the SROB

The hyperparametex defined in Section 3.3.3 is written as= (s, 3, 0). In this case# = 1), its
length ismq = 2+ n(n+1)/2 = 3. It is identified using the nonlinear LS method presented in
Section 2, after adaptation to the present example as Heddoelow.

Specifically, the cost function (2.17) is considered with

> 110P (i) — YO ™ (e, i)}
22y 1107 (a2 ’

> VP (i) = v (i, o) |2
2oy VP (i) 12 ’

wherev? (1;) = (v (i), - - ., v2 (wi)) is such that

Jmean (04) =

Jstd (a) =

(6.9)

D,r .
o (1) = v10f (i) = o)l . j=1,...ma,

and v>0. In Eg. (6.9), the vector vi?™(u;,a) whose components are
WP (s, @), .. o8E™ (i, @) is such that
of?" (i, ) = { {0 iy )2} = (B{OS™™ (uis @)D} 12, =1,...mo. (6.10)
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The optimization problem is

Pt = (5Ot 3OPt 5OPY — Hélcn J(a). (6.11)
The parameters andw; introduced in Section 6.5 are fixed o= 0.8 andw; = 0.5. The above
optimization problem is solved by using only stage 1 of thgoathm presented in Appendix F
(for n = 1, the matrix[c] becomes a scalar and consequently, the hyperparameienas only3
components, namely, ases, ando). The admissible sé&, is defined by Eq. (3.25) withy = 0.01,
B4 = 0.15, B, = 0.30, ando,, = 20. For the interior-point algorithm, the initial values aedexted
as follows:sy = 0.017, 8y = 0.2, andoy = 1. The optimal value ok, 5, ands are found to be
$°Pt = 0.0869, 3°Pt = 0.21, ando°Pt = 0.74.

6.6. Performance of the-parametric SROM at an unsampled parameter value

The stochastic solution of Egs. (6.6) to (6.8), whare- o, is computed using the Monte Carlo
method withl 000 independent realizations (for which the mean-square cgewee is reached with
a reasonable accuracy).

For the unsampled parameter valye= ;.. = 0.6, Figure 18 (left) displays the graph

of j— og.D’”) (nqa) of the displacement field computed with the ROM, and thatjof
E{Oj(.D’”) (1ga @°Pt)} of the mean function of the random displacement field contputeng the
SROM. The reader can observe that the mean function compsieg the SROM is relatively close
to that computed using the ROM. Figure 18 (right) displaysdhaph ofj — U§D’") (1qas @°P") O
the standard deviation (see Eq. (6.10)) of the random disptent field computed using the SROM.

ROM (dashed lines) and mean values computed
with the SROM (solid lines)

Standard deviation computed with the SROM

%107

-4
15Ff 110

Displacement
Displacement

0 200 400 600 800 1000 0 200 400 600 800 1000

Index j of the displacement Index j of the displacement

Figure 18. Left figure: graph of — o§D’7l)(u) computed using the ROM (dashed line) and thayj e
E{O§D’”)(uqa, Y} of the mean function computed using the SROM (solid line) -ghRfigure: Graph

of j — v](.D’”)(u,qaaOp‘) of the standard deviation computed using the SROM (sol&)lin

Finally, Figure 19 displays the graph gf— of(uqa) computed using the HDM, that of

§D’7b)(uqa) computed using the ROM, and the confidence region gioe= 0.98 of j —

O](D’”) (1ga @°Pt) computed using the SROM. It demonstrates a good qualityefitharametric
SROM

j—o

7. CONCLUSIONS

A nonparametric probabilistic approach for quantifyingeriainties in a given linear or nonlinear
High-Dimensional Model (HDM) for which a projection-basReéduced-Order Model (ROM) can
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Figure 19. Graph of — OjD(Mqa) computed using the HDM (black solid line), that pf— O§D77L)(Mqa)

computed using the ROM (black dashed line), andbfo= 0.98, confidence region (yellow region with red
upper and lower envelopes) pf— O§D7TL)(uqa, oY) computed using the SROM.

be constructed is presented. The underlying probabilisticiel is implemented directly in the
ROM. The associated stochastic model is characterized byial sumber of hyperparameters
whose identification via the solution of a statistical irseeproblem is computationally feasible. The
cost function describing this inverse problem is formulatéth respect to a given target related
to given observations, which allows for specifying the lestuncertainties induced by various
model form uncertainties introduced during the constaictif both the HDM and ROM. While this
approach for modeling uncertainties is developed for lsgae nonlinear computational models, it
is demonstrated in this paper using simple academic exaniiese are nevertheless representative
of realistic problems, and have the advantage of being eagptoduce by the interested reader. All
obtained numerical results highlight the potential of theppsed nonparametric stochastic model
of model uncertainties to control the statistical fluctaas of the random eigenvalues of a linear
operator, the statistical mean values and fluctuations efréindom solution of a linear elliptic
problem, and those of a nonlinear dynamical problem.
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APPENDIX A: PROOF OF EQ. (3.27)

(i) The proof of equationW (s, 8,0)] = [V] E{[Hs(Z)]} is the following. Equation (3.19) yields

W (s, 8,0)] = [VI E{[Hs(Z2)]} + s E{[Z][H:(Z)]}. We then have to prove that{[Z] [H:(Z)]} =
[0,,,,,]. From Egs. (3.21) to (3.24), random matf&| can be written a®Z] = [2(G)] in which the
mapping[G] — [2(G)] is defined orM y ,,. We have
BZIH@0) = [ OGO a6 6], (A1)
Changing[G] in —[G] in the right-hand side of Eq. (A.1), and sinpg;(—[G ]) = pie)([G]) (see
Eq. (D.59)),[2(=G)] = —[2(G)], [Hs (2(=G))] = [Hs(—2(G))] = [Hs (2(G))], EQ. ( 1) yields
E{[Z][Hs(2)]} = - /M [2(G)] [Hs(2(G))] pe) (IG]) dIG] - (A.2)

Adding Eq. (A.1) with Eq. (A.2) yield$2{[Z] [H.(Z)]} = [0n.n]-
(i) The proof of equatiofB]” [W (s, 3,0)] = [One,,»] is the following. SincgB]” [W] = [0x,,,n]

almost surely, and sinc&{[W]} exists, it can be concluded th&t{[B]T W]} = [On_,..], and
consequently,B]” E{[W]} = [Oxn,.n]-

APPENDIX B: PROOFS OF EQ. (3.28) AND EQ. (3.29)

Since  E{|W —W(s,8,0)|13,} = E{tr{[W]"[M] W]} } — tr{[W(s, 8, 0)]" [M][W (s, 8,0)]},
from Eq. (2.12), Eqg. (2.11) and (3.26), it can be deduced that

vart (s, 8,0) =n— |[W(s,8,0)|3s , Vs>0,8>0, [o] € ML. (B.1)

Since vaf!(s, 8,0) > 0, Eq. (B.1) yields||W (s, )||M < n, which proves the first equation
in Eq. (3. 28) Fors—o Eq. (B.1) yields vajj/‘f o)=n—||W(0,8,0)|3, and since

(W (0, 8,0)])T[M] [W(0,3,0)] = [I,], it can be deduced that VA0, 8, 0) = 0, which proves the

first equation in Eq. (3 29). From Egs. (3.27) and (3.1), wewsdte

W (s, 8,013 = | E{H(Z)}% - (B.2)

It can be seen that,

(B.3)

n?

sotoo  B{HDN} ~ - [(5,0) . ¥A>0, [o] € My

in which [J(3,0)] = E{([Z]"[M][Z])~'/?} is a matrix in M, depending ons and [o] (but
independent of) such that|J (8, o)||r < +o0. Using Egs. (B.2) and (B.3) yields

1
s 4o, |W(s,B,0)lla ~ Z I7(B,0)}E  VB>0, [o] €My (B4
Egs. (B.1) and (B.4) yield
st L val(s,6,0) ~n— 5 [JB.0ME . V>0, bleMy.  (BS)

From Eg. (B.5), it can be deduced the second equation in E§9X3and that the mapping
s — varM (s, 3, 0) is an increasing function that is asymptotiaio
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APPENDIX C: PROOF OF EQ. (3.30)

For all 5 > 0 and for all[g] in M¥, Egs. (3.19) and (3.20) yield

lim [W(s,8,0)] = [Z)([Z]"[M][Z)""/? a.s. (C.1)

s——+oo
We have < [W(s,B,0)],[V] >u=tr{[W(s,5,0)]" [M][V]} = tr{[V]"[M][W(s, 3,0)]} and
consequently, from Eg. (C.1l), it can be deduced that, , .. < [W(s,S,0)],[V]>u=
tr{[a] [S]}, in which [a] = [V]T[M][Z] is a random skew-symmetric matrix (see Section 3.1)
and where([S = ([2]T[M][Z])~Y/? is a random symmetric matrix. Since the trace of the

product of a skew-symmetric matrix with a symmetric one isozeve obtainlim, ., <
(W(s,B,0)],[V] >u=0.

APPENDIX D: CONTINUOUS INTERPRETATION OF THE SROB AND CONRUCTION
OF THE RANDOM GENERATOR OF RANDOM MATRIXG(3)]

In this appendix, we present a continuous interpretatiadh@SROB constructed in Section 3.3 and,
in Section D.5, we detail the generator of independentzatdins for random matrijG(3)].

D.1. Computational SROB to be deduced from a continuous SROB

The problem is to give the continuous version of the follogvocomputational SROBW| that is
defined by the following equations,

(W] = R v([2]) = (V] +s[2]) [Hs(2)], (D.1)
[H(2)] = (] + s*1Z]7[M] 2]) /2, (D-2)
(2] = [A] - [V][D], (D.3)
D] = (VT [M][A] + [A]"[M] [V])/2, (D-4)
[A] = [U] - [BI{[B]" U]}, (D.5)
U] = [G(B)] [o] - (D.6)

in which the random matri¥G(g3)] is constructed by using the stochastic model presentedsn th
Appendix.

D.2. Introduction of a continuous ROB

In this section, we introduce a continuous ROB correspanpdim the computational ROB
[V] € Snn C Sn . such thatV]T[M] [V] = [I,,] and [B]T[V] = [On.,.n), in Whichn > 1 is the
dimension of the ROB,M ] is a given matrix inV{;, and[B] is a given matrix ifM v x., such that
[B]T [B] = [In.,]- In order to simplify the presentation, we consider a cargirs ROB made up of
R™-valued fields and constraint equations defined by zero ldeiacconditions. The extension to
general constraint equations is straightforward.

(i) Notations Let d > 1 be an integer. Lek = (z1,...,z4) be the generating point of an open
bounded domairf2 ¢ R? and letdx = dx; ...dx, be the Lebesgue measure. bets p(x) be

a given bounded function oft with valued in]0, +oo[. Let m > 1 be an integer and l6t? :=
LidX(Q,Rm) be the space of all the™-valued functionx — v(x) = (v1(X), ..., v, (X)) that are
square integrable ofl with respect to the measupéx) dx, equipped with the usual inner product
and the associated norm,

TRV / UX) V) ) dx [Vl = {< Vv >}, (D.7)
Q
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in whichu(x) - v(x) = Y7~ | we(X) ve(X).

(i) Continuous ROBThe continuous ROB is represented by the field [V(x)] = [v1(X)...v*(X)]
defined onQ with values inM,, ,, (for fixed x, the n columns of [V(x)] are then vectors
vi(X),...,v*(x)). Itis assumed that, for allin {1, ..., n}, functionv* belongs to a subséty C 1.2,
which is such that the trace of on the boundarg$ of Q2 exits (oftenCaqis a Sobolev space such
asH? . (Q,R™) with p > 1) . Let[Cad be the corresponding subset of functions [V(x)] defined
on( with values inM,, ,,, such that* belongs taC,q for all &,

[Cad = {Xx+—=[VX)] = N'(X)..v*(X)]: Q= M, , V¥ €CagC L, Vk=1,...,n}. (D.8)

Therefore, if[V] belongs to[Caq, then the tracg)] s, exists. In addition, it is assumed that

{v',...,v"} constitutes an orthonormal family of functionsli, that is to say< v* ,v*'>p. =
orr . Consequently, we have

memwmmmw=uw (D.9)

The manifoldSS? ,, is defined as the set of all the functiors— [V(x)] belonging to[Cad and

m,n

verifying Eq. (D.9), that is to say,

S = {IV]I € [Cad , /Q VTV (X)) p(x) dx = [La]} - (D.10)
(iii) Constraint equationsAs explained before, we consider the simple case for whidera
Dirichlet condition is given on a paift, of the boundanp$? of Q, that is to sayy*(x) = 0 for
all xinT'y and for allk = 1, ..., n. The constraint equations can then be rewritten[¥ore [Cad,
as

VX)] =[0mn] , YXxeTly. (D.11)

(iv) Definition of the manifold)y,, € S77,, for the continuous ROBThe manifoldSyy ,, is defined
as the subset &7 ,, such that Eq. (D.11) holds:
S, =1{[V] €8Sy

m,n m,n

V(X)] = [Omn], VXETo} C Sy, . (D.12)

m,n

(v) Tangent vector spacg,S;; ,, to S50, at the point[V] in S77 .. Such a tangent vector space is

defined as the set of all the functiol&] = {x — [Z(x)]} belonging to[Caq such that
00 2601+ L2001 60D 00 dx = [0, (013)

D.3. Construction of the stochastic model of a continuouSBR

(i) Continuous SROBFor a given continuous ROB that is represented by the detestic field
[V] = {x— [V(X)]} belonging to manifoldS:°, , the associated continuous SROB consists in
introducing a random fielgV] = {[W(x)],x € Q} thatis a random variable defined on probability
spaceg®, T, P) with values inS7? . ConsequentlyWV] is a random field belonging t@.q almost

surely (a.s), which admits a trace bpa.s, and which is such that
/[W(x)]T[W(x)] p(X)dx = [I,] as , WX)]=[01,], YXETy a.s. (D.14)
Q

The stochastic representation of random f{8] is then defined by

WX = (VX +s[ZX)) [Hs(2)] . VxeQ, (D.15)
[Ho(2)] = (L] + 5 /Q[Z(XHT [Z(x)] p(x) dx) "2, (D.16)
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in which [Z] = {[Z(x)],x € Q} is a random field defined on probability spage, 7,7P), with
values inM,,, ,,, which belongs to tangent vector spageSce . a.s, and which is such that

m,n

[Z(X)] =[0m.n] , YVXETy a.s. (D.17)

The random matrix#(Z)] is with values inM;". Using Eq. (D.15) with Egs. (D.9), (D.13), and
(D.16) yield the first equation in Eq. (D.14). Taking into aoat Egs. (D.11) and (D.17), Eg. (D.15)
yields the second equation in Eq. (D.14). Random fl&l(x)], x € Q} can be written as

[Z2(0] = [AX)] = V] [P(A)] , V¥Vxe, (D.18)

[D(A)] = /Q 5 (VOO LA + ACOTT VOO p(x) dx, (D.19)

in which [D(.A)] is a random matrix with values iMS and whereg[A] = {[A(X)],x € Q} is a
random field defined on probability spa@®, 7, P), whose trajectories belong {6.4 a.s, and are
such that

[AX)] = [0mn] , YXeETy a.s. (D.20)

It should be noted that random fieldd] does not belong to tangent vector spaBeSoe, .
Substituting Eq. (D.18) with (D.19) into the left-hand sidieEq. (D.13) yields that Eq. (D.13) is
satisfied and consequent|Z] belongs to tangent vector spatgSy; , a.s.

(ii) Construction of random fiel4] for obtaining the required regularity of the trajectorienc
the Dirichlet conditions The regularity of the trajectories of random fidld] is defined by the
regularity of functions ir[Cad|. In addition, the trajectories must verify the zero Diriethtondition
given by Eq. (D.20). In order to construct a general theogypropose the following approach. Let
Q = QU N be the closure of open bounded dom@ifor which its boundary = I'y UT'; with
I'oNTy = (0 is assumed to be smooth. Let g = Q\I'y. Letx — 1o, (X) be the function defined
on Q = Qy UT such thatlg, (x) =1 for all x in Qy and 1, (x) = 0 for all x in T',. Note that
function1g, is not continuous if). We propose to construct the random fightl] as

[AX)] =15, () [UX)] , VxeQ, (D.21)
in which

e X+ 1g (X) is a real-valued function defined an, which corresponds to a regularization
of functionx — 1q,(x), and wherez,. > 0 is a small parameter that allows for driving the
regularization. Letvgr be a neighborhood dffy, controlled bye,., which is defined as a
subset of2, such thal’y ¢ 1? , and detailed in the Remark given after. The regularizagon
constructed in order thaf; (x) is equal (in the meaning of the regularizationpti x € I',
is equal tal if x € Q\V? , is such that functiong; is indefinitely continuously differentiable
on®, and is such that, if, — 0, thenig; — 1, in L.

o [U] = {[U(x)],x € R} is a random field defined on probability spa&, 7, P), indexed
by R?, with values inM,,, ,, which will be constructed after in order that its trajeéer
are indefinitely continuously differentiable functions di? a.s. The random field
{1q,(X) [U(X)],x € Q} belongs to[Cad but the trajectories are discontinuous Bn This
is the reason why the regularizatiagy of 1o, has been introduced (due to the presence
of a the zero Dirichlet condition ofi'y). For ¢, sufficiently small, the trajectories of
{15, (X) [U(X)],x € Q} are indefinitely continuously differentiable dh and are such that
[A(X)] =~ [0, ] for all x € Ty. Consequently, for a sufficiently small valuespf> 0, random
field [A] defined by Eq. (D.21), verifies the zero Dirichlet conditiom B, (defined by
Eqg. (D.20)) and its trajectories (that are indefinitely ¢ombus differentiable o) thus
belongs tqCag).
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Remark about the construction of the regularizatidhis problem is relatively difficult and there
are several possible methods. Hereinafter, we proposemoagh for which the numerical cost is
low.

e Let x — 15(x) be the function defined almost everywhere ®h such thati (x) = 1 for
all x in Q and13(x) = —1 for all x in R%\Q. The first step consists in introducing a usual
regularizatiorL{; of function1g;, which can be constructed, for alin R?, as

15 (X) = (e, ¥ 15)() = / PG =y)dy = BIg(x—-YT)},  (D.22)

inwhichY® = (Y;,...,Y;") is the GaussiaRR?-valued random variable whose probability
density function with respect tdy is written as

pe(¥) = = exp(— I, (D.23)
=)= Zagman 26,2) :

Therefore, the real-valued random variablEs",...,Y;" are independent, Gaussian,
centered, and with varianeé. Taking into account Eq. (D.22), it should be noted thataflor
fixedx in R4, 15 (x) can be estimated by the Monte Carlo method.

e For ¢, sufficiently small, letV= be the open neighborhood 6f2 in R? associated with
the regularization such that (1} (x) ~ 0 if x € 09, (2) 15 (x) ~ 1 if x € Q\VZ in which
VI =0nVE, and (3)x — 1 (x) is indefinitely continuously differentiable oft. Note
thatoQ c V. Let V? be the subset oP such thatl, c V2 and which is defined as a
neighborhood of’y.

e The regularization functior — 1¢; (x) on Q of functionx — 1q,(x) onQ is constructed as
follows,
1G,(X) ~1, Vxe Q\V) 15 (X) =15 (x), Vxe V2 . (D.24)

Consequently]l?{O (X) ~0if x € Tp.

(iii) Construction of random fielfi/ ]. Random field24] = [/* ... U"] indexed byR¢ values in
M., ., is constructed as a second-order, centered, mean-squaoghkneous (stationary), and mean-
square continuous random field for which the fourth-ordeste-valued autocorrelation function
(X, X') = {Rea (X, X ) }okerrr = E{UX)]er[UX)] i } that is defined oiR? x R?, is written, for¢
and? in{1,...,m} and fork andk’ in {1,...,n}, as

{Ru(X, X ) }ekerwr = R(X = X3 B) 60 [enlir (X, X) € R x RY, (D.25)

in which [c,] = [0]T[0] € M with [0] € MY the upper triangular matrix with positive diagonal
entries (see Eq. (3.16)). The real functipr-> R(n; ) is an autocorrelation-type function which is
constructed to be indefinitely continuously differentabhR? and to go to zero ai|| goes to+oc.
Such a condition will be fulfilled thanks to the constructmirthe stochastic model of the random
field { Q(x)],x € R4} presented hereinafter (see Paragraph (iv)).The choiceeteliy Eq. (D.25)
for the autocorrelation function of random figld] has voluntary been chosen as simple in order
to be in capability to use the SROM for very large values\ofThis algebraic representation for
Ry (X, x") implies the following properties:

e Matrix [c,] allows for controlling the correlation between theandom fieldg4*, ... U™ with
values inR™, usingn(n + 1)/2 hyperparameters (upper triangular mafsy).

e The m components{U/f(x),x € R4}, ... {Uk (x),x € R?} of R™-valued random field
{Uu*(x),x e R?} are not correlated. Such a choice is mainly done in order tdnmease
the number of hyperparameters in the stochastic modeling.
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e The real-valued functiom — R(n; 8) allows for controlling the real-valued autocorrelation
function of eachR™-valued random field{t4* (x),x € R?}, using only one real-valued
hyperparametes that will be related to the spatial correlation length of fiedd. With the
proposed construction, this autocorrelation functiomesgame for each.

e There is a version of random fiel@/] whose trajectories are indefinitely continuously
differentiable functions ofR? a.s. Consequently, there is a versigmV(x)],x € Q} of the
SROB for which its trajectories belong [6.4 and verify the zero Dirichlet condition dry,
and therefore, belong to manifokjy .

(iv) Normalization of random fiel@4]. Taking into account Eq. (D.25), random figld] can be
rewritten as
U] =[G(X)][0] , VxeR?, (D.26)

in which {[G(x)],x € R?} is a random field defined on probability spaée 7, P), indexed byR¢,
with values inM.,, ,,, which is a second-order, centered, and mean-square homoge random
field such that its fourth-order tensor-valued autocoti@tefunction(x, x’) — {Rg (X, X') }ererrr =
E{[G(X)]ek[G(X)]err } defined onR? x R?, is written, for¢ and#’ in {1,...,m} and fork and&’
in{1,...,n},as

{Rg(X, X }eperrr = R(X = X3 8) 600 Opr (X, X) € RY x RY. (D.27)
The stochastic model of random figlf7 (x)], x € R4} is constructed in order that:

e ForallZin {1,...,m} and for allk in {1,...,n}, the random field§[G(X)].,x € R} are
independent copiesf a random field Q(x),x € R} defined on probability spad®, 7, P),
indexed byR<?, with values inR.

e The random field Q(x), x € R9} (that is defined hereinafter in Paragraph (v)) is secone+ord
centered, mean-square homogeneous, mean-square costiand there there is a version of
random fieldQ whose trajectories are indefinitely continuously différ@le functions oiR?
a.s.

Taking into account Eq. (D.27), it can be deduced that thevaaed autocorrelation function
(X, X') = Ro(X,X') = E{Q(x) Q(xX)} defined orR? x R, is written,

[Ro(x,X)] = R(x—X;8) , (x,x)ecR?xR". (D.28)

(v) Stochastic modeling of random fief@l It is recalled that the objective is a construction of a
SROB in the context of the nonparametric probabilistic apph of modeling errors and not the

construction of a parametric probabilistic model of una®rtphysical parameters of the HDM.

This means that we have the freedom to choose an adaptedsticahodel.

(v-1) Explicit construction of autocorrelation functiafi(n; 3) of field Q. For alli in {1,...,d}, let
L; > 0 be the maximum length of doma$nin direction:, defined by
Li= max |z;—}|. (D.29)
(X, x")eQxQ

The algebraic model of autocorrelation functipn+ R(n; 3) defined orR<, with values inR, and
depending on hyperparametgris chosen as

Rm; B) = xri(n; B) x oo xrama; B) , m=(m,-..,n4), (D.30)

in which¢ > 0 is a constant of normalization (that will be defined aftefyene for alli = 1,...,d,

4£2 . of T
ri(0;8)=1 ; rin;p) = pp sin <2£i for n; #0, (D.31)
and whereL4, ..., L4 are positive real numbers dependingrorvhich are defined by
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Therefore, there exists a power spectral density fundtiea (kq, ..., kqs) — S(k; 8), integrable
from R¢ into RT, which is written as

S(k;B) = s1(k1; B) x ... X sa(ka; B), (D.33)
in which, foralli = 1,...,d, the functionk; — s;(k;; ) from R into R* is written as
L; L;
si(ki; 8) = — x(ki—). (D.34)
™ e

In Eq. (D.34), the functiom — x(x) is continuous fronR into R*, has a compact suppdr 1, 1],
and is such that

x0)=1 ; x(—k)=x(k) ; x(k)=1—k for ke€]0,1]. (D.35)

Consequenthyk — S(k; 3) is a function with a compact support

T
L; BL;

suppS(.; B) = [ K1, Ki] x ... x [-Kq4, Kq] K; = (D.36)

)

The spatial correlation length2 of random fieldQ, relative to the coordinate;, is written as

+oo 27

L2 = / ri(n;) dni = 3 5:(0;8) = L; = B L. (D.37)
0

Consequently, the parametets, . . ., L, represent the spatial correlation lengths of random field

Q. SinceL; = S L;, hyperparametet allows for controlling these spatial correlation lengths.

(v-2) Regularity of the trajectories of random fietd. Using the Kolmogorov lemma, it can be
deduced that the random fief@ admits a version whose trajectories are indefinitely camtirsly
differentiable functions ofi? a.s.

(v-3) Choice of a representation of random figffladapted to the numerical simulation for large
values ofN,. The first question that has to be analyzed is the choice gfrasentation fo@, which
is adapted to the problem that we have to solve under thefajiges given hereinafter.

e A major constraint is related to the fact that we have to aorsnumerical simulations of
random fieldQ for a set of point!, . .., xV> belonging to2 c R? for which N, can be very
large, that is to say, we have to construct a generator opeigent realizations of a random
vectorQ = (Q(x1), ..., Q(xNe) with values inR™Me.

e The construction of a generator of independent realizat@frrandom fieldQ requires the
construction of it probability law (which can be defined, fastance, by introducing the
system of marginal probability distributions @f). The choice of the probability law fo®
is not crucial, because we are interested in generatingorandss for which only the spatial
correlation length (represented by hyperparamg}dras to be controlled. Consequently, we
are interested in constructing a representation of randelah g, which is very efficient for
the numerical simulations in high dimension (large valueVgj, without imposing a given
probability law for random field2. NeverthelessQ must be a second-order, mean-square
homogeneous (mean-square stationary), centered randonfofiavhich its autocorrelation
function is defined by Egs. (D.30) to (D.32).

¢ In this framework for which there is no specification cong@egrthe probability law, it could
be assumed tha® is a Gaussian random field in order to construct a representaf Q
(or more precisely, a representation for its discretizeunf@)). A possible candidate for
such a representation @f would beQ = [Lg] G in which the lower triangulafN, x N,)
real matrix[Lg] would come from the Cholesky factorizatioft;g] = [Lg] [Lg|”, of the
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covariance matri¥Cy] € M of the centered random vect@. Matrix [Cg] is such that

[Calj.j, = R(xP° — x’), andG would be the second-order centered Gaussian vector with
values inR™-, for which the covariance matrix idy,). For a large value ofV,, such a
representation of) could not be used becaufgy] is a full big matrix. It should be noted
that, from a numerical point of view, the construction of arli@aen-Loeve expansion of
random fieldQ, would be equivalent to the principal component analysisaoflom vector
Q, which would consist in effectively constructing the bigtmta[Cg| and then, in extracting
the dominant eigensubspace[6f] using for instance the subspace iteration method or the
Krylov iteration method. For large value d@¥,, such a method could be very numerically
expansive and would require a very large core memory.

¢ Always assuming tha® could be a Gaussian random field, another representatidd beu
deduced from the use of the Shinozuka representation [§8pfe@&ndom fieldQ, which
is a particular case of integral representations involthg stochastic spectral measure of
random fieldQ, and for which a detailed development with additional mathagcal properties
related to convergence of the representation can be fouff@jnNevertheless, fod > 2 (in
particular, ford = 3) such a representation would be very efficient if the muttieinsional Fast
Fourier Transform (FFT) could be used. In our case, sinceehé , . .., x" of given points
in Q does not constitute a structured mesh corresponding tostartrspatial sampling step
in each direction, the multidimensional FFT cannot be ukkxvever, as the autocorrelation
function of @ is assumed to be separated (see Eq. (D.30)) and as the pitylhadyiof random
field @ can be arbitrary (and consequently, can be non-Gaussian)raepose to generatg
in writing it as

O(X) = V¢ x Qi(z1) X ... x Qa(xg) , VX=(z1,...,24) € R, (D.38)

in which 9y, ..., Q4 ared independent Gaussian real-valued stochastic procesdeseit
by R. This stochastic model allows for decreasing the numedoat for the generation of
independent realizations of random figdat pointsx', . . ., x> for very large large values of
N,. Forifixedin{1,...,d}, Q; is a Gaussian, second-order, mean-square stationargrednt
stochastic process for which its autocorrelation functon

ri(ni; B) = E{Qi(wi +m;) Qi(zs)} , Vi, €R , Vp €R, (D.39)

which is defined by Egs. (D.31) and (D.32), and for which theedation length isC;, = 5 L,.
The power spectral density function of stochastic proesss the functionk; — s;(k;; 5)
defined by Egs. (D.34), with compact supppris;, K;] with K; = n/L; = = /(5 L;), which
is such that

ol B) = / B (ks B) dky Vi €R. (D.40)
R

There exists a version of Gaussian stochastic progs$for which the trajectories are
indefinitely continuously differentiable functions @a.s. We can then use the Shinozuka
representation for each Gaussian stochastic pro@g$sdexed byR. For the unstructured
mesh that is considered, the algorithm complexity that wad’§ is now in N,. For the
numerical calculation, the series of the Shinozuka reptasien is truncated to a finite
numbery, of terms.

(v-4) Representation of random fie{d;. Let p > 1 be an integer and let, = 2p. Letky,..., K,
be the sampling points of the intenjal1 , 1] with the constant steps = 2/, such that

1)\ 2
nV1+<1/—>— , v=1...,1p. (D.41)
2) v
LetX,,...,X,, be the positive real numbers defined by
2
Yo=—xky) , v=1,...,1p, (D.42)
Vp
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in which x — x(k) is defined by Eq. (D.35). We then have the followingorder representation
Q;‘/p Of Q’L1

Z\/2E \V/—log Ui cos{®’ + /{sz} , Vax; €R, (D.43)

in which {¥{,..., ¥} } is a set of independent uniform random variables [on1], where
{®f,...,®; } is a set of independent uniform random variables [on27], and where the
2d v, random variableg Wy, ..., 0} },. .. (0], . 0l {®],... &) },... {®] ... &L} are
independent. For any value of, = 2p fixed, and for all: in {1,...,d}, the stochastic process
{Q.?(z;),z; € R} is Gaussian and if, goes to+oo, then the sequen({é% vP}y of autocorrelation
functions goes to autocorrelation functiog. ; 3) of stochastic proces{st(:cz) x; € R}.

D.4. Finite element discretization

(i) Notations for the finite element discretizatidret x!,...,xV> be the N, nodes of the finite
element mesh of domaift. The numbering of the nodes is assumed to be such that the first
N., < N, nodesx!, ..., x e, correspond to all the nodes that belon@'§oc 9 on which the zero
Dirichlet condition is written. LefA (x)] be the row matrix irM,,, y of the assembled interpolation
functions of all the finite elements. L& = m x N, be the number of degrees of freedom (before
applying the zeros Dirichlet conditions). The finite elerrdiacretization of any continuous function

X = U(X) = (u1(X), ..., um(X)) from Q into R™ (which does not verify the Dirichlet condition on
I'o), is the functiorx — u™)(x) such that

uM(x) = [NX)]U , V¥xeQ, (D.44)
inwhichU = (uy,...,uy) is the vector inRRY of the N DOFsu; such that
u=u(x’) , je{l,...,N}, (D.45)

in which the DOFj = (¢, j,) is associated with the componéraf nodej,. Let us consider another
continuous functionx — a(x) = (a1(X), ..., an (X)) from Q into R™ , which verifies the Dirichlet
conditiona(x) = 0 for all x in Ty. Let a™¥)(x) = [N (x)] A be its finite element discretization in
whichA = (o1, ...,0n) € RY with a; = a,(x?). Consequently, we have

0, =0 , Vje{l,....N.}. (D.46)

The parameterization of € RV that satisfies the Dirichlet conditions defined by Eq. (D,46)
expressed as a function of any vectbin R can then be written as

A=U-[B]B]'U , VYUEeR", (D.47)

in which [B] is the matrix inMuy n., such that[B];; =¢;; for all j€{1,...,N} andie
{1,..., N,}. It can be seen that

[B]T[B] = [INCD] ‘ (D48)
(i) Finite element discretization of the continuous R@Broducing the matrixV] = [vl..v"] €
My, with vF = (vF ... vk) € RN, the finite element approximationx — [VV)(x)], of

continuous ROB — [V(X)] is written as
VM =WV, [VIEMya , ¥xeD. (D.49)

We have now to verify that, if)’] belongs taS
into Eq. (D.9) yields

then[V] belongs taSy ,,. Substituting Eq. (D.49)

7” n?

VITIMI[V] = [1] [M]/Q[N(X)]T[N(X)]/)(X)dXGMI- (D.50)
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Equation (D.11) yield§V(x")] = ... = [V(x"e)] = [0n.,]. Sincevh = vy (x7) with j = (¢, j,) and
as[B];; =d;; forallj € {1,...,N}andi € {1, ..., N}, it can be deduced that

[BI"[V] = [ONcon] - (D.51)

Equations (D.50) and (D.51) show that the computational R@Bngs taSy ., (see Eg. (3.8)). The
finite element approximation of a field— [Z(x)] continuous front2 into M,,, ,,, which belongs to
tangent vector spacB,S<°  , is written as

ZMx)]=NXI[Z] , [Z €My, , YxeQ. (D.52)

We have to verify thatZ] belongs to tangent vector spafeSy ,, to Sy ,, at the poinfV] in Sy .
Substituting Egs. (D.49) and (D.52) into Eq. (D.13) yields

V1T IM][2) + [Z]" [M][V] = [On,n] - (D.53)
Equation (D.53) shows th@Z] belongs tdlySy ,, (see (3.2)).

(iii) Finite element discretization of the continuous SRO& {[F(x)],x € Q} be a random field
representing one of the random field®], [Z], [A], [4], or [G] defined in Section D.3. The finite
element approximation of random figl#] is written as

FM)) = WIF] , [FleMyn , YXxeQ, (D.54)

in which [F] is the random matrix corresponding to the random matfMgs[Z], [A], [U], or [G(5)]
that are in Egs. (D.1) to (D.6). The finite element method thdahat, for all; = 1,..., N and for
allk=1,...,n, we havelF];; = [F(x/)]a. with j = (£, j,). Substituting 2™ (x)] = [V (x)] [Z]
into Eq. (D.16) vyields[#.(Z2"))] = [H,(Z)] in which [H,(Z)] is defined by Eqg. (D.2).
Similarly, substituting. A" (x)] = [NV(x)] [A] and [V (x)] = [N (x)] [V] into Eq. (D.19) yields
[D(A™)] = [D] in which [D] is defined by Eq. (D.4). Taking = x’ for j, =1,..., N, into
Egs. (D.15), (D.18), and (D.26) yields Egs. (D.1), (D.3)ddD.6). We have then proved that
the finite element discretization of the continuous SROBomhiced above correspond to the
computational SROB constructed in Section 3.3. Nevertiselse have to precise the construction
of the stochastic model of random matj&(3)].

(iv) Construction of random matri)s(5)]. Random matrixG(3)] with values inM v ,, is such that,
forall{=1,...,m,forallj,=1,...,N,,andforallk =1,...,n,

[G(ﬂ)]]k = [g(Xj(’)][k 5 ] = (gvjo) € {17 RN N} ’ (D55)

inwhich, forall¢in {1,...,m} and forallkin {1,...,n}, the random field$[G (X)]sx, X € R} are
independent copiesf a random field{ 9(x), x € R?} defined by Eq. (D.38) in which the constant
of normalization is chosen such that

(= N (D.56)
From Egs. (D.27) and (D.55), it can be deduced that the cavegitype matriXCy (3)] € M},
introduced in Eq. (3.17) is written, for afland?’ in {1,...,m}, for all j, andj, in {1,...,N,},
and forj = (¢, j,) andj’ = (¢,j/)in{1,...,N}, as

[Cn(B))j5r = R(XP> — XT3 B) durr (D.57)

and consequentlyC'x (58)];; = R(0, 8) that yields (taking into account Egs. (D.30), (D.31), and
(D.56)):
trlCn(8)] =1. (D.58)

Let d[G] = Hlengzldek be the volume element on skfy ,, in which dG,; is the Lebesgue
measure orR. Taking into account Egs. (D.38), (D.55), and (D.43), it azasily be proved
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that the probability distribution of random matrj&(3)] admits a probability density function
[G] — pie(s)) ([G]) with respect tod[G], which is a mapping fronM ,, into R*, which is not
Gaussian but which is such (using the property of indeperagries introduced before and the fact
thatQ,,..., Q4 are independent Gaussian random processes) that

piee) (=[G = pepE)(G]) , VYIG] €Mn,. (D.59)

D.5. Algorithm for the generation of independent realiaasi of random matrixG(3)]

Hereinafter, we detail the algorithm for the generation afdependent realizations
[G(61;5)],...,[G(8,.; 8)] of random matri{G(S3)] following the theory presented in Sections D.2
to D.4.

Data:

d: dimension of bounded domai

m: dimension of the field discretized by the FEM.

Ny: total number of nodes of the FE mesh of dom@in

N = m N,: total number of DOFs before applying the zero Dirichletditions.
xt, ..., xNeo: N, nodes of the FE mesh belonginglig C 95).

xNeotl  xNe: N, — N, nodes of the FE mesh in domdinu {9Q\I'o}.
n: reduced-order dimension.

s: real-valued hyperparameter suchsas 0.

B: real-valued hyperparameter suchgas 0.

[o]: matrix-valued hyperparameter such thdte M.

vp: sampling points of intervgl-1 1] with v, = 2 p.

.. regularization parameter such that> 0.

vs: number of independent realizatioji3(0:; 8)], . . . , [G(6..; B)]-

Pre-computation:

fori=1:d 4 .
L; = maxj, ) |zl — xl°].
L;=pBL,.

end

forv=1:y,

Ky, =—1+ (V — %) (2/vp).
Y, = % x(k,) with x defined by Eq. (D.35).

end
forj,=1: N,
1g (x72) using Eq. (D.22).
end
Generator:

Initialization of the random generator for uniform randoarigbles.

fort, =1:v,

fork=1:n
fort=1:m
Independent realizations &f;*(6,,) on [0, 1] and®%%*(6,.) on[0, 27| fori =1,...,d
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andforv =1,...,v,.
forj,=1: N,
Ql K=" V2 —log U (0,.) cos{®L(8,.) + + =ty zle}.

Qdfk 00,) =07 V2 —log W% (6,.) cos{®%(6,.) + Y x’y
G5 (0,) = (1/V/N) x Q8 (0,,) x ... x Q% (6y,).

G5 (0e,) = 15 (692) G (6e,).
[G(0e.; B)] 3k = G5 (0e,) with j = (¢,5,) € {1,...,N}.
end
end
end
end

Remarks

e Eq. (D.6) is kept in order to exactly impose the zero Diritltendition at the nodes located
in I'y. Consequently, in the generator given hereinbefore, narfikld [ | has been replaced
(and it is perfectly licit) by the regularizatidg©-] of [G].

e The realizationgG(6,_; 8)] for ¢; = 1,...,v, are not stored in order to avoid core memory
problems. The loop ir¥, has been introduced for clarifying the sequence relatedhéo t
initialization of the generator for uniform random varieb) but, in practice, this loop is the
most external in the code that solves the SROM.

APPENDIX E: DESCRIPTION OF THE LINEAR STATIC SYSTEM USED ASDBM FOR THE
EXAMPLE OF SECTION 4

In this appendix, we describe the linear static computatiorodel defined by Egs. (4.1) and (4.2)
for N = 1000 andN,, = 2. Letz,...,zx be the pointsin0, 1] such thate; = (j — 1)/(V — 1).
Let\q, ..., \n be the positive real numbers such that= 472k, and let)\] be the diagonal matrix
in M}, such thafA]x, = Axdi . Let [e] be the square matrix iy such thafe];, = sin(kmz;).
Let[®] = [ ... "] be the orthogonal matrix ib y obtained by the QR decomposition of matrix
[e] (we thus havée] = [®] [R] with [®] [®]7 = [®]7[®] = [Ix] and therefore< ¢* , " >= 61)

In addition, fork = 1,..., N, we haveyp! = [®];;, = 0 andk, = [®] vk = 0. The computational
HDM is then generated as follows:

e Matrix [K] in M}, is written as[K] = [®] [\] [®]7. Consequently, Eq. (4.1) has a unique
solution such thag; = yny = 0.

e Vectorf in RV is written asf = 55255 (0.1¢? + 0.4 0° 4 0.6 ©® + 2.5(p* + % + ©31))
and consequently; = fy = 0.

o Let [b] = [On,n.,] be the zero matrix iIMy, n,, except(blii = [b]n N, = 1 With N, = 2.
Matrix [B] in My n., such tha{B]”[B] = [Ix.,] is written as the orthonormal basis for the
range offb] (for instance, using Matlab, [B] = orth [b]).

The experimentally measured (surrogate) displacemembmgt® that is introduced in Section 4.5
is generated as the solution @] y®® = f*® in which the vectorf * in RY is written asf®® =
a5 (0-1 % + 0.4 0% + 0.6 0% 4 2.5(3! + p32) — 0.015¢")).
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APPENDIX F: ALGORITHM FOR SOLVING THE OPTIMIZATION PROBLEM

The algorithm used for solving the non-convex optimizagwoblem with constraints, defined by
Egs. (4.10) and (5.19), is detailed below. Det ¢, 0 < 84 < B, @andey < o, (in the applications
presenteds, = 102, 34 = 0.0005 t0 0.15, 5, = 0.01 t0 0.3, ando,, = 20).

e Stage 1. Solving the optimization problem i = (s,f, [0diag]) IN WhiCh [o4ag] IS @
diagonal matrix inM}*. The number of variables is then-n. An optimal valuea") =
(s, 80 [oll]) of a = (s, 3, [04ag) is estimated by solving the optimization problem
with the interior-point algorithm with the constraintg < s <1, 84 < 8 < 8., andeg <
[Odiagl11; - - - » [Odiagnn < 0y. The initial values, which satisfy the constraints, are roedi by
a(O) = (50760; [In])

« Stage 2. Solving the optimization problem |in.] with o = (s, 80, [651)] + [0ewd) i
which [oeq iS an extra-diagonal upper triangular matrixlify,. The number of variables
is thenn(n — 1)/2. An optimal valuea® = (s, sV [¢®)]) of a = (s, 5, [0]), in which
[02)] = [0{a] + [0 is estimated using an optimal val{ig,] of [oe.d, Which is estimated
by solving the optimization problem using the interiorqpoalgorithm without constraint
(only [oexd is the variable considered by the optimizer). Fas. ], the initial condition is
[05,]-

e Stage 3. Lets — a(B) = (s(V, 3, [c(?]). Stage 3 consists in computing the optimal value
BP € (B4, Bu] Of B such that3*P' = mingc (s, 4,1 J(c(B)) by using the trial method.

e Stage 4. Solving the optimization problem énand [o] with a = (s, 3%, [¢]) in which
[0] is an upper triangular matrix iMY. The number of variables is thard n(n + 1)/2.
An optimal valuea®* = (s, 3% [5°PY) of a = (s, 3%, [0]) is estimated by solving the
optimization problem with the interior-point algorithm tivithe constraints, < s <1 and
eo < [o)i1y. -+, [0]an < 0w (ONly s and[o] are the variables considered by the optimizer). The
initial condition isa(®) = (1), 3P [5(2)]).

APPENDIX G: CONSTRUCTION OF THE DAMPING MATRIXD)

The construction proposed fdD] corresponds to an adaptation of the representation pezbént
[71] (Eq. (45) of Chapter VI). Lefp!, ..., ¢"} be the first: elastic modes associated with the first
n eigenvalue® < \; < ... < \, of the linear undamped structure associated with the neatin
damped dynamical system and computed in solving Egs. (arid}5.11). Matri¥D] belonging to
M7}, is written as

D] =D 280 (VM = V) [M]@F ((M]5)" + 260 /A [M]. (G.1)
k=1
Using Eq. (5.12), it can be seen that
VITID] (V] = [D™)], (G2)

in which the reduced damping matfi®(™)] € M is diagonal and for which the diagonal entries
are (D], =2&4 v . For {k>n k' >n}, we have < []D)l(pk Lo >=2&4 /A, For
{k<n,k' >n} or for {k>n, k' <n}, we have< [D]e*, " >=0. The model defined by
Eqg. (G.1) allows for obtaining the constant damping i&tdor the firstn elastic modes and for

obtaining the damping rate&, v A /v\/ Ant1s--->&a VA /VAN} for the N —n elastic modes
{e" 1 ..., N} (that are not computed).

The assemblage of the full matii®] defined by Eq. (G.1) is never done.
e Letz be avector irRY. We then have

D)z = izmm— V) M@ < [M]¢" 2> +260/ M M)z, (G.3)
k=1

Accepted for publication in International Journal for Nuroal Methods in Engineering, 30 May 2016 (2016)
nmeauth.cls



NONPARAMETRIC PROBABILISTIC APPROACH TO UQ IN NONLINEAR MOELS 49

This equation shows that the complexity of the product ofrixéD] by vectorz is induced by
the product§M] *, ..., [M] ", [M]z, thatis to say by: + 1 products of the sparse matrix
[M] by a vector.

o Let [W] be the SROB with values iMy ,, and verifying Eq. (2.12) and Eq. (2.11). We then

have
WD W] =20 (VA — V) BF (89T 265 /N, (1] (G.4)
k=1

in which ¥* = [W]T[M] ¢ is a random vector with values ™.

APPENDIX H: CONSTRUCTION OF THE COST FUNCTION FOR THE IDENHICATION
OF THE HYPERPARAMETER IN THE APPLICATION PRESENTED IN SECGJDN 4

For constructing the cost function, we introduce the randmction w s dB™ (w; ) =
(dB™ (w; @), ..., dB{") (w; ) defined onB, with valued inR™- such that, for alj = 1,...,m,
(with m, = 122)

dB" (w; ) = logy (105" (w; @)]) (H.1)

inwhich0"™ (w: @) = (O (w; @), ..., O™ (w: @) iss defined by Eq. (5.18).
In order to define the target functions for constructing tlestdunction, we introduce the

functionsw — db™(w) = (dbF(w), ..., dB (w)) andw — db™ (W) = (db{™ (W), ..., db™ (W),
defined on3,, with values m]R’”o such that, foralj = 1,...,m,,
dbf'(w) = logy([5;(w)]) A" (w) =log;o (|6 (w)]), (H.2)

in which 8(w) = (01 (w), - . ., 0m, (w)) is defined by Eq. (5.8) and whetd™ (w) = (3" (w), ...,
65,72 (w)) is defined by Eq. (5.15). The cost function, defined by Eq.7R.i& rewritten here as

J(a) =wy Jmean (a) -+ (1 — U}J) JStd (a) , (H3)
in which
1 n
nean() = =3~ || [db*(w) — E{GB" (s )} ) o (H.4)
mean =7
Jstd (¢ = Z/ | (e (@ n) (w; @) w;(w) dw, (H.5)
in which the positive constantg,eanandcsyg are defined by
Cmean= Y _ / B (@)} 2wy (@) dw =D / 0™ (@) |2 w) (w) duw . (H.6)
j=1"Bo j=1"Bo
In  these  equations, V('™ (W)= (0" (W), . T (w)) and V(W)=
W (W), ..., 0% (w; ) are defined, foy = 1, ... m., by
W (w) = v [dBF(w) — dbl"™ (w)] (H.7)
in which~ > 0 is an amplitude factor and where
oV (i) = { B{dB{" (w; @)’} — (B{dB{" (w; a)})*} }/2. (H28)

In Egs. (H.4) to (H.6), forj =1,...m,, the functionw — w,(w) are bounded o, with values
in R*. In the application presented in Section 4, these functameschosen such that;(w) =

|d®' (w) — db™ (w)| for all w in B,.
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APPENDIX I: DESCRIPTION OF THE:-PARAMETRIC HDM FOR THE NUMERICAL
EXAMPLE OF SECTION 6

In this appendix, we describe theparametric HDM, which is the linear static computational
model defined by Egs. (6.1) and (6.2) fr= 1000 and N, = 2. The common part of the model
described in Appendix E is rewritten below in order to faeik the readability of the paper.

Let z1,...,zn5 be the points in0,1] such thatr; = (j —1)/(N —1). Let A,..., An be the
positive real numbers such thaf = 472k, and let[\] be the diagonal matrix ifM}, such
that [AJxxr = MOk Let [e] be the square matrix iV y such thatle];, = sin(kmz;). Let [®] =
[p!...o"] be the orthogonal matrix it obtained by the QR decomposition of matiix
(we thus havde] = [®] [R] with [®] [®]7 = [®]7[®] = [Ix] and therefore< " , " >= 61)
In addition, fork = 1,..., N, we haveyp! = [®];; = 0 andk, = [®] 1. = 0. The computational
HDM is then generated as follows:

e Matrix [K] in M}, is written as[K] = [®][\] [®]”. Consequently, Eq. (6.1) has a unique
solution such thag, = yny = 0.
e For u in Cp = [ fimin» tmax) C R, the vectorf(u) = (fi(n),..., fx(p)) in RY is written

as f(u) = gma(pt) ' 9(1) in which the vectorg(u) = (g1(1),...,gn(r)) in RY is
written asg(u) = 0.1 % + p 3 + 0.4 ° + 0.6 ° and whereyma(p) = max;—_1, . n g; (1)
Consequently, we havg (i) = fn(p) = 0.

o Let [b] = [On,nN.,) be the zero matrix iMy n,, except[b]i1 = [b]n N, =1 With N, = 2.
Matrix [B] in My n., such thafB]”[B] = [Ix.,] is written as the orthonormal basis for the
range offb] (for instance, using Matlab, [B] = orth [b]).
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