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Abstract—This paper introduces Interactional Motivation (IM) 

as a way to implement self-motivation in artificial systems. An 
interactionally motivated agent selects behaviors for the sake of 
enacting the behavior itself rather than for the value of the 
behavior’s outcome. IM contrasts with extrinsic motivation by 
the fact that it defines the agent’s motivation independently from 
the environment’s state. Because IM does not refer to the 
environment’s states, we argue that IM is a form of self-
motivation on the same level as intrinsic motivation. IM, 
however, differs from intrinsic motivation by the fact that IM 
allows specifying the agent’s inborn value system explicitly. This 
paper introduces a formal definition of the IM paradigm and 
compares it to the reinforcement-learning paradigm as 
traditionally implemented in Partially Observable Markov 
Decision Processes (POMDPs).  
 

Index Terms—Developmental learning, self-motivation, 
constructivist learning, autonomous agents.  
 
 

E propose a new form of self-motivation for artificial 
agents and robots: interaction-centered motivation, or, 

more concisely, interactional motivation (IM). In essence, we 
define an IM mechanism as the association of (a) a value 
function associated with the possible interactions that exist 
between the agent and the environment, and (b) an 
unsupervised learning mechanism that learns to select 
behaviors that maximize this value function over time. The 
key difference with traditional reinforcement learning resides 
in the fact that the value function is a function of behaviors 
(interactions) rather than of states. 
 Motivation is generally defined as a driving force that 
initiates and directs behaviors. It is widely acknowledged that 
an agent that selects behaviors to maximize a value function 
over time conforms to this definition, and, therefore, 
implements a form of motivation. Typically, a Partially 
Observable Markov Decision Process (POMDP) can be used 
to model an agent that learns to perform actions in search for 
rewarding situations [1]. The designer of the POMDP defines 
a set of states S, a set of actions U, and a reward function r : S 
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 ℝ that assigns values to states. The POMDP framework is 
represented in Figure 1. 
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Figure 1: Diagram of a POMDP showing the underlying Markov Decision 
Process (MDP), and the stochastic process v(yt|it) mapping the state it 
(resulting from action ut-1) to an observation yt, thus partially hiding the 
environment’s state from the agent. 
 

The designer of the POMDP interprets a state i ∈ S as a 
specific configuration of an agent in a virtual environment, 
and interprets u as an action that the agent performs in the 
environment according to the agent’s policy. In this case, the 
agent’s motivation is said to be extrinsic because the reward 
function r(i) is defined independently from the agent’s policy. 
Moreover, from the designer’s perspective, the agent’s 
motivation seems to come from something rewarding in the 
environment that is external to the agent itself.  

Extrinsic-motivation models, such as POMDPs, would in 
fact constitute models of animals that learn to act based on 
states of the world that have been identified a priori by 
someone else, if such animals existed. Here we argue that 
animals face a very different problem: the problem of 
identifying useful states of the world, with regard to the 
animal’s own motivation. This problem is related to the 
symbol-grounding problem: grounding the agent’s knowledge 
in its own activity [5]. Especially in the field of developmental 
robotics, we expect the meaning of the agent’s knowledge to 
derive from the agent’s own motivations and experiences 
rather than from a provided interpretation of the world [10].  
 The notion of intrinsic motivation has been proposed as a 
way to implement motivation independently from any 
specification of the environment. Examples of intrinsic 
motivation systems are curiosity [7], search for predictability 
and control [2], and search for simplification of knowledge or 
compressibility of data [9]. With intrinsic motivation, the 
value system is generally not made explicit in the form of 
numerical values. Instead, it is implicitly characterized by the 
resulting behavior of the system. 
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 In between extrinsic and intrinsic motivation, we propose 
here the notion of interactional motivation as a way to specify 
an inborn value system without referring to the environment. 
Figure 2 illustrates the IM paradigm with a formalism similar 
to the formalism used in figure 1, to allow for the comparison 
with POMDPs. 
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Figure 2: The Interactional Motivation framework. Here, the interaction cycle 
starts with the agent rather than with the environment. yt reflects the feeling 
resulting from performing action ut in state it rather than reflecting the 
resulting state it+1. r is a function of ut and yt rather than of it+1. 
 

In the IM paradigm, the reward r is a function of the action 
u and of the observation y rather than of the state i. We 
consider the association of an action with the observation that 
results from that action to be a sensorimotor pattern (ut,yt). 
Sensorimotor patterns are particularly well exemplified by 
tactile interactions. Indeed, a tactile interaction is the 
combination of a movement and the sensory stimulation 
generated by the movement. We have shown in previous 
studies [3] that a similar approach can be taken to model 
vision, following Merleau-Ponty’s idea that vision is “a 
palpation with the look” [6]. In the following, we refer to a 
sensorimotor pattern (u,y) by the term scheme proposed by 
Piaget in his constructivist epistemology [8]. 

Conceptually, the agent enacts schemes for their own sake 
rather than for the value of the outcome that they produce. To 
make this concept concrete, consider an agent that is 
motivated to find food. The traditional state-based modeling 
approach consists of attributing value to states where the agent 
has reached food. In contrast, the IM approach consists of 
defining a scheme that consists of eating food, and attributing 
a positive value to this scheme (a biting action with a good-
taste observation). In the former case, the designer defines a 
priori what entities in the world constitute food for the agent, 
whereas, in the latter case, the agent is left to discover what 
entities in the world afford the interaction of eating on its own. 

We define the notion of enacting a scheme as performing 
action u and obtaining observation y. Note that an intention to 
enact scheme (u,y) may in fact result in enacting scheme (u,y') 
if the resulting observation y' is different from the expected 
observation y. The agent may intend to enact (u,y) that has a 
positive value but end up enacting (u,y') that has a negative 
value. Consequently, the agent must construct knowledge of 
the world so that it can predict the consequences of enacted 
schemes and seek situations that lead to positive schemes and 
avoid situations that lead to negative schemes. This learning 
process is open-ended because the agent has no goals 
predefined as reward states. 

Another difference with POMDPs is that the distribution v 
is now a function of the state it and the action ut, rather than of 
the resulting state it+1. With this new definition, v(yt|it,ut) 
specifies the observation y obtained after performing a given 
action u in a given state i. This difference is important because 
it means that the observation y does not always inform the 
agent about the same property of the environment each time, 
in contrast to observations in a POMDP. For example, we 
have implemented IM agents for which the observation is a 
single bit [4]. At each time step, the meaning of the 
observational bit yt depends on the action ut that produced it. 
When ut corresponds to feel to the left then yt informs the 
agent about the presence or absence of an object on the left; 
when ut corresponds to try to move forward then yt informs the 
agent about the success or failure of this attempt (depending 
on a possible obstacle). However, the agent initially ignores 
this meaning. We expect IM agents to demonstrate that they 
learn this meaning by progressively adapting their behavior to 
maximize the value function r. We show examples of such 
agents online (http://e-ernest.blogspot.fr/).  
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