
Editing Rules: Discovery and Application to
Data Cleaning

Thierno Diallo # ∗, Jean-Marc Petit #, and Sylvie Servigne #

LIRIS UMR 5205 CNRS/Université de Lyon,
INSA de Lyon, bâtiment B. Pascal

20, Avenue Albert Einstein - 69622 Villeurbanne cedex
∗Orchestra Networks SA

11 rue Scribe 75009 Paris-France
firstname.lastname@insa-lyon.fr

Abstract. Dirty data is a serious problem for businesses, leading to
incorrect decision making, inefficient daily operations, and ultimately
wasting both time and money. A variety of integrity constraints like
Conditional Functional Dependencies (CFD) have been studied for data
cleaning. Data repairing methods based on these constraints are strong
to detect inconsistencies but are limited on how to correct data, worse
they can even introduce new errors. Based on Master Data Management
principles, a new class of data quality rules known as Editing Rules (eR)
tells how to fix errors, pointing which attributes are wrong and what
values they should take.
However, finding data quality rules is an expensive process that involves
intensive manual efforts. In this paper, we develop pattern mining tech-
nics for discovering eRs from existing source relations (eventually dirty)
with respect to master relations (supposed to be clean and accurate). In
this setting, we propose a new semantic of eRs taking advantage of both
source and master data. The problem turns out to be strongly related
to the discovery of both CFD and one-to-one correspondences between
sources and target attributes. We have proposed efficient technics to ad-
dress these two subproblems.
We have implemented and evaluated our technics on real-life databases.
Experiments show both the feasibility, the scalability and the robustness
of our proposition.

1 Introduction

Poor data quality continues to be an important issue for companies. Erroneous,
incomplete or duplicate data leads to bad and poor business decisions which cost
a lot. There is an increased need for effective methods to improve data quality
and to restore consistency.

A variety of integrity constraints have been studied for data cleaning from
traditional functional and inclusion dependencies to their conditional extensions.

[6, 7, 14, 17]. These constraints help us to determine whether errors are present
in the data but they fall short of telling us which attributes are concerned by

the error and moreover how to correct it. Worst, heuristic methods based on
that constraints may introduce new errors when trying to repair the data. These
limitations motivate [16] to define Editing Rules, a new class of data quality
rules that tells how to fix errors, i.e. which attributes are wrong and what values
they should take. Editing Rules (eRs) are boosted by the recent developpement
of master data management (MDM [22, 11, 27, 29]) and then are defined in term
of master data, a single repository of high-quality data that provides various ap-
plications with a synchronized, consistent view of its core business entities. This
helps to fix and enrich dirty data using the corresponding values from master
data.

However, for eRs to be effective in practice, it is necessary to have technics
in place that can automatically discover such rules from both source relations
and their corresponding master relations. Indeed it is often unrealistic to rely
on human experts to design them by hand via an expensive and long manual
process. This practical concern highlights the need for studing the discovering
problem of eRs. On the one hand, it is worth nothing that any master relation
s is assumed to contain only pure, accurate and curated data. So it makes sense
to infer the ”truth” from master data: they can be seen as an Oracle with
respect to data quality. Cleary, the process of defining such master data from
existing data sources is out of the scope of this paper [22]. On the other hand, we
have to be more prudent and sceptic on data sources quality. Roughly speaking,
the problem statement can be given as follows: Given an operational database
d = {r1, r2, . . . , rn} and a master database m = {s1, s2, . . . , sp}, infer all eRs to
correct the database d with respect to the database m.
In the sequel, we assume the existence of both sources and master data. The
former can be inaccurate and dirty, the latter is curated and clean.

The discovery problem is, however, highly non trivial. It is already hard for
traditional dependencies and their corresponding conditional classes (CFDs and
conditional inclusion dependencies) [9, 12, 21].

Our approach is based on the following process:

1. Finding one to one attribute mapping between source and master relation.

2. Infering rules from master relation.

3. Applying rules on input source relation.

Contributions: In this paper we define and provide solutions for dicovering
eRs in databases provided with source data and master data. In particular we
make the following contributions:

1. We introduce a new semantic of eRs allowing to precisely define the discovery
problem as a pattern mining one.

2. We propose heuristics to apply eRs in a data cleaning process.

3. We present an experimental evaluation of our technics demonstrating their
usefulness for discovering eRs. We finally evaluate the scalability and the
robustness of our technics.

2

Related Works: This work finds similarities to constraint discovery and As-
sociation Rule (AR) mining. Plenty of contributions have been proposed for
Functional Dependencies inference and AR mining [2, 26, 18, 20, 25], but less for
CFDs mining [9, 15, 12]. In [9], authors propose a tool for data quality man-
agement which suggests possible rules and identify conform and non-conform
records. They present effective algorithms for discovering CFDs and dirty values
in a data instance, but the CFDs discovered may contain redundant patterns. In
[15], authors proposed three methods to discover CFDs. The first one is called
CFDMiner which mines only constant CFDs i.e. CFDs with constant patterns
only. CFDMiner is based on technics for mining closed itemsets [26]. The two
other ones, called CTANE and FastCFD, were developed for general (non con-
stant) CFDs discovery. CTANE and FastCFD are respectively extensions of well
known algorithms TANE [18] and FastFD [30] for mining FDs. In [12] authors
propose a powerfull method for mining frequent constant CFDs.
The problem we address is also related to mapping function discovery between
source and target schemas. Many contributions have been proposed in this
setting. For example authors in [4], based on INclusion Dependencies (INDs),
present the SPIDER algorithm that efficiently find all the INDs in a given rela-
tion. Authors in [19] construct a dependency graph as a measure of the depen-
dency between attributes. Then they find matching node pairs in the dependency
graphs by running a graph matching algorithm. In [31], authors propose a robust
algorithm for discovering single-column and multi-column foreign keys, which
can be used as a mapping algorithm for attributes. In addition many technics
have been proposed to identify one-to-one correspondences in different domains
such as schema matching [5, 28], ontology alignments [13] or understanding log-
ical database design [21].
Since introduction of eRs by [16], as far as we know, no contributions have been
made for the discovery problem of eRs.

Paper Organization: This paper is organized as follows. In section 2, we give
preliminary definitions. In section 3 we describe the problem statement. We give
details of our solutions for the eRs discovery problem in section 4. In section 5
we describe application of eRs to repair data. Section 6 presents an experimental
evaluation of our methods and section 7 finally concludes the paper.

2 Preliminaries

We shall use classical database notions (e.g. [1], CFDs and INDs terminologies
[7, 14, 17, 12, 21]). The relation symbol is generally denoted by R and the rela-
tion schema of R is denoted by sch(R). When clear from context, we shall use
R instead of sch(R). Each attribute A has a domain, denoted by DOM(A). A
relation is a set of tuples and the projection of a tuple t on an attribute set X
is denoted by t[X]. Given a relation r over R and A ∈ R, active domain of A
in r is denoted by ADOM(A, r). The active domain of r is noted ADOM(r).
Letters from the beginning of the alphabet (A,B,C, . . .) shall represent single

3

attribute whereas letters from the end of the alphabet (X,Y, Z, . . .) attribute
sets. For convenience, XY will refer to as X ∪ Y .

2.1 Conditional Functional Dependencies (CFDs)

The reader familiar with CFDs may skip this section. CFDs have been recently
introduced in the context of data cleaning [7]. They can be seen as an unification
of Functional Dependencies (FD) and Association Rules (AR) since they allow
to mix attributes and attribute/values in dependencies.

We now consider a relation schema R, the syntax of a CFD is given as follows:

Definition 1. Syntax: A Conditional Functional Dependency (CFD) ρ on R
is a pair (X → Y, Tp) where (1) XY ⊆ R, (2) X → Y a standard Functional
Dependency (FD) and (3) Tp is a pattern tableau with attributes in R.

For each A ∈ R and for each pattern tuple tp ∈ Tp, tp[A] is either a constant
in DOM(A), or an ‘unnamed variable’ denoted by ’ ’, or an empty variable
denoted by ’∗’ which indicates that the corresponding attribute does not contribute
to the pattern (i.e. A 6∈ XY).

The semantics of a CFD extends the semantics of FD with mainly the notion
of matching tuples.

Let r be a relation over R, X ⊆ R and Tp a pattern tableau over R. A tuple
t ∈ r matches a tuple tp ∈ Tp over X, denoted by t[X] � tp[X], iff for each
attribute A ∈ X, either t[A] = tp[A], or tp[A] =’ ’, or tp[A] =’∗’.

Definition 2. Semantic: Let r be a relation over R and ρ = (X → Y, T) a
CFD with XY ⊆ R. We say that r satisfies ρ, denoted by r |= ρ, iff for all
ti,tj ∈ r and for all tp ∈ T , if ti[X] = tj [X] � tp[X] then ti[Y] = tj [Y] � tp[Y].

That is, if ti[X] and = tj [X] are equal and in addition, they both match the
pattern tp[X], then ti[Y] and = tj [Y] must also be equal to each other and both
match the pattern tp[Y].

Example 1. Let r0 be a relation defined over ABCD (Figure 1). We can say
r0 |= (AC → D, (2, ∗, 0 ‖ 1)).

r0 A B C D

t1 : 0 1 0 2
t2 : 0 1 3 2
t3 : 0 0 0 1
t4 : 2 2 0 1
t5 : 2 1 0 1

Fig. 1. A Toy relation r0

4

We say that r satisfies a set Σ of CFD over R, denoted by r |= Σ if r |= ρ for
each CFD ρ ∈ Σ. A CFD (X → Y, Tp) is in the normal form [14], when |Y | = 1
and |Tp| = 1. So a normalized CFD has a single attribute on the right-hand side
and its pattern tableau has only one single tuple. In the sequel we consider CFDs
in their normal form, unless stated otherwise. A CFD (X → A, tp) is called:

– a constant CFD if tp [XA] consists of constants only, i.e. tp [A] is a constant
and tp [B] is also a constant for all B ∈ X.

– a variable CFD if the right hand side of its pattern tuple is the unnamed
variable ’ ’, i.e. tp[A] = ’ ’, the left-hand side involving either constants or
’ ’.

Compare to FDs, note that a single tuple relation may violate a CFD. It may
occur when the pattern tableau has at least one row with at least one constant
on the right-hand side. Given a relation, the satisfaction of a CFD has to be
checked with both every single tuple and every couple of tuples. More formally,
we get:
r violates a CFD ρ = (X → A, T), denoted by r 6|= ρ, iff

– there exists a tuple t ∈ r and a pattern tuple tp ∈ T such that t[X] � tp[X]
and t[A] 6� tp[A] . This may occur when tp[A] is a constant.

– or there exists ti, tj ∈ r and a pattern tuple tp ∈ T such that ti[X] = tj [X] �
tp[X] and ti[A] 6= tj [A]. We can assume that tp[A] = ’ ’ since otherwise the
violation is already covered by the single tuple violation.

Example 2. Figure 1, r0 6|= (A → D, (0, ∗, ∗ ‖ 2)). The tuple t3 violates the
constraint, indeed t3[A] = 0 and t3[D] 6= 2.

2.2 Editing Rules (eRs)

eRs syntax [16] is slightly rephrased in the following definition.

Definition 3. Syntax: Let R and S be two relation symbols. R is the relation
source symbol and S is the target master one. Let X (resp. Y) be a list of
distinct attributes from sch(R) (resp. sch(S)), A ∈ sch(R) \X,B ∈ sch(S) and
Z ⊆ sch(R). An eR ϕ over (R,S) is of the form ϕ :
((X,Y)→ (A,B), tp[Z]) where tp[Z] is a pattern tuple over R.

Let r ∈ sch(R) and s ∈ sch(S) be respectively a source and a master relation.
The semantics of eRs have been defined with respect to the insertion of a tuple
t in r [16]. The idea is to “correct” r using values of s with respect to pattern
selection applying on r.

Definition 4. Semantic: An eR ϕ = ((X,Y)→ (A,B), tp[Z]), with respect to
a master tuple tm ∈ s, is applied to t ∈ r to obtain t′ if:

1. t[Z] matches tp[Z]
2. t[X] = tm[Y]

5

r FN LN AC phn type str city zip item

t1 : Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH CD
t2 : Robert Brady 131 6884563 1 null Lnd null CD
t3 : Robert Brady 020 6884563 1 null null EH7 4AH DVD
t4 : Mary Burn 029 9978543 1 null Cad null BOOK

s FN LN AC Hphn Mphn str city zip DOB gender

s1 : Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 11/11/55 M

s2 : Mark Smith 020 6884563 075568485 20 Baker St. Lnd NW1 6XE 25/12/67 M

u ItemId Item DOF Price

u1 : 701B Book 04/03/10 45

u2 : 017A CD 11/10/10 11

u3 : 904A DVD 25/08/10 16

Fig. 2. source relation r and master database {s, u}

3. t′ is obtained by the update t[A] := tm[B]

That is, if t matches tp and if t[X] equals tm[Y], then tm[B] is assigned to t[A].

Example 3. Let us consider the tuples t1 and s1 in Figure 2. t1 is in a source
relation and s1 is in a master relation. It is known that if Area Code (AC) is 020,
city should be London (Lnd), and when AC is 131, city must be Edinburgh (Edi).
The tuple t1 is inconsistent: t1[AC] = 020 but t1[city] = Edi. So, an example of
eR that correct such an inconsistency is ((zip, zip) → ((AC), (AC)), tp1 = ()).
In that case, t1[AC] is changed to (131) taken from s1.
Similarly t1[FN] = Bob may be corrected using the right name s1[FN] = Robert
with respect to the eR ((phn,Mphn) → ((FN), (FN)), tp2[type] = (2)). That
is, if t[type] = 2 (indicating mobile phone) and if there is a master tuple s with
s[Mphn] = t[phn], then t[FN] := s[FN].

3 Problem Statement

The problem we are interested in can be stated as follows: given an instance r
from a source database d and an instance s from a master database m, it is to
find all applicable eRs on r with respect to s.
However, in a data mining setting, the previous semantic of eRs (Definition 4)
needs to be properly extended since it just involves tuple insertion. We need to
define a semantic to identify rules.
In the sequel, to alleviate notations the master database is reduced to a single
master relation. Taking into account a set of relations instead of a single relation
is doable easily.

Preliminary, we introduce a general schema mapping function f between
attributes of source relation and master relation. This function is based on the
following requirements:

6

– Each attribute of a source relation should have a mapping attribute in a
master relation, and only one.

– If two attributes A,B of a source relation have the same mapping attribute
in a master relation, then A = B.

Let sch(R) and sch(S) be respectively the source schema relation and the
master one.

Definition 5. A mapping function f from R to S, is defined as a total and
injective function; f : sche(R)→ sche(S)

By extension, forX ⊆ sch(R) we note: f(X) =
⋃
A∈X{f(A)}. The new definition

of eRs semantic can now be given.

Definition 6. New semantic: Let ϕ = ((X,Y)→ (A,B), tp[Z]) be an eR over
(R,S), r a source relation over R and s a master relation over S.

We say that ϕ is satisfied in (r, s) with respect to f , denoted by (r, s) |=f ϕ,
if:

1. f(X) = Y
2. f(A) = B
3. f(Z) = Z ′

4. s |= Y → B, tp[Z
′]

Example 4. Let ϕ = ((zip, zip)→ (AC,AC), tp = (EH74AH)) be an eR defined
on r, s of Figure 2. We can say that ϕ is satisfied in (r, s) with respect to the
identity function. Indeed, attributes are the same (i.e zip = zip) and s |= zip→
AC, tp = (EH74AH).

The problem of Discovering eRs (denoted by DER) is defined as follows:

Given a source relation r, a master relation s and a mapping function
f , find a cover of all eRs satisfied in (r, s) with respect to f .

4 Mining Editing Rules

In order to solve the DER problem, we have to deal with the following steps:

1. Specifying a mapping function f and discovering the mapping between at-
tributes related to f .

2. Discovering a cover of CFDs satisfied in s,
3. Propagating CFDs from s to r using f : for each discovered CFDs (Y →
B, tp[Z

′]), generating an eR ((f−1(Y), Y)→ (f−1(B), B), f−1(tp[Z
′])).

In the sequel, we first consider the simplest case: the input source relation
and master relation are defined over the same relation schema, i.e. the map-
ping function f is the identity function. Then we address the general case when
relation schemas are different.

7

4.1 Same Schemas on source and master relation

In this approach, let us assume that the schema of R is equal to the schema of
S. The syntax definition 3 of eRs is adapted accordingly as follows:.

Definition 7. New Syntax: Let R and S be two relation symbols with sch(R) =
sch(S). Let X be a list of distinct attributes from sch(R), A ∈ sch(R) \X and
Z ⊆ sch(R). An eR ϕ over (R,S) is of the form ϕ : (X → A, tp[Z]) where tp[Z]
is a pattern tuple over R.

This definition is closer to CFD definition. The CFDs discovery problem
has been already studied in [9, 12, 15]. In [12] we proposed efficient technics to
discover all constant CFDs satisfied by a given relation. We focus on two types
of technics inherited from FD inference: the first one extends the notion of agree
sets and the second one extends the notions of non-redundant sets, closure and
quasi-closure. The DER problem can be resolved as follows:

1. Discovering a cover of CFDs satisfied in s,
2. For each discovered CFDs (X → A, tp[Z]), generating the eR ((X,X) →

(A,A), tp[Z]).

4.2 Different Schemas on source and master relation

In this case, it is necessary to find out, through a mapping function, correspon-
dences between attributes of master relation and source relation. Different tech-
nics can be used to specify such a mapping function. For instance, one may relay
on attribute naming assumption not based on instances or, ontology alignment
[13], discovery of inclusion dependencies (INDs) [21, 4], both based on instances.

For a given correspondence, values should be as much as possible ”similar”,
i.e. some forms of INDs should exist between them. Clearly, due to the presence
of errors in source relations and due to the high quality data of the master
relation, the definition of such a correspondence should be flexible, which is
indeed possible with approximative unary INDs.

4.2.1 From source and master relations to INDs
We define the mapping function f with respect to unary INDs from the source

relation r to the master relation s. Efficient technics have been proposed to
discover such unary IND satisfied in a given database, among them we quote
[21, 4].

Let A and B be respectively single attributes. The unary IND A ⊆ B means
all values of attribute A are included in the bag of values of attribute B. An IND
candidate is satisfied when it fulfills the IND definition. For example in Figure
2, we have: Hphn ⊆ phn.

We want to identify all unary INDs based on both source and master re-
lations. To that end, we introduce a preprocessing of relations to be as much
as closer to association rule and transaction syntax. We call such preprocessing
condensed representation.

8

Given a common relation r over a schema sch(R) the condensed representa-
tion of r, denoted by CR(r), is defined by:
CR(r) = {(v,X)|v ∈ ADOM(r), X =

⋃
{A ∈ sch(R)|∃t ∈ r, t[A] = v}}. For a

set of relations, CR(r1, . . . , rn) =
⋃
i=1..n CR(ri).

Example 5. The condensed representation CR(r0) of relation r0 (Figure 1 re-
called below) is given as follows:

r0 A B C D
t1 : 0 1 0 2
t2 : 0 1 3 2
t3 : 0 0 0 1
t4 : 2 2 0 1
t5 : 2 1 0 1

CR(r0):

0 ‖ A B C
1 ‖ B D
2 ‖ A B D
3 ‖ C

For convenience concerning the condensed representation, we use the follow-
ing notations:

– CR(r).val = {v|(v,X) ∈ CR(r)}
– CR(r).v.atts = {X|(v,X) ∈ CR(r)}

The support of an attribute set X ⊆ R in CR(r), denoted by sup(X,CR(r)),
is defined by:

sup(X,CR(r)) = |{(v, Y) ∈ CR(r)|X ⊆ Y }|

The closure of an attribute A ∈ sch(R) with respect to CR(r), denoted by
A+
CR(r), is defined as:

A+
CR(r) =

⋂
(v,X)∈CR(r)

{X|A ∈ X}

Property 1. Let r be a relation over R and A,B attributes of R.
r |= A ⊆ B ⇐⇒ B ∈ A+

CR(r) ⇐⇒ sup({A,B}, CR(r)) = sup({A}, CR(r))

Proof. r |= R[A] ⊆ S[B].
For all v ∈ πA(r), ∃t ∈ r such that v = t[B]. So v ∈ πA(r) ⇐⇒ v ∈ πB(r).
∀(v,X) ∈ CR(r), A ∈ X ⇐⇒ B ∈ X.
So B ∈

⋂
(v,X)∈CR(r){X|A ∈ X}.

Finally B ∈ A+
CR(r)

A consequence of property 1 is on the computation of the closure: it is no
longer necessary to compute the intersection between attributes to extract INDs.

To identify all approximative unary INDs it is necessary to use a natural
error measure, called g′3 [21]. Let r be a source over schema R and let s be a
master relation over schema S.

g′3(R[X] ⊆ S[Y], {r, s}) = 1− max{|πX(r′)| : r′ ⊆ r, {r, s} |= R[X] ⊆ S[Y]}
|πX(r)|

9

Example 6. Figure 2: g′3(R[AC] ⊆ S[AC], {r, s}) = 1− (2/3) = 1/3

Correspondence between attributes can be characterized using such measure.

Definition 8. Let A ∈ sch(R), B ∈ sch(S) and ε a [0, 1]-threshold value.
We say that A corresponds to B in r, s with respect to ε, denoted by {r, s} |=ε

corr(A,B), if
g′3(R[A] ⊆ S[B], {r, s}) ≤ ε

By extension, we say that X corresponds to Y wrt ε if ∀A ∈ X,∃B ∈ Y such
that {r, s} |=ε corr(A,B)

The error measure can be also defined using the support of attribute sets as
follows:

Definition 9. Let r be a relation over R and A,B ∈ R.

error(A ⊆ B) =
sup({A,B})
sup({A})

Property 2. Let r be a relation over R and A,B ∈ R.

error(A ⊆ B) = g′3(A ⊆ B)

Thanks to definition 9 and property 2, we just need to compute the support
of every single attribute (item of size 1) and the support of every couple of
generated candidates attributes (CandidateGeneration) for A and B (itemsets
of size 2).
Therefore, we use the APRIORI [3] algorithm until level 2 without any threshold.

Algorithm 1 ScalableClosure

Require: A condensed representation CR of r and s
Ensure: F1, F2, itemsets and their supports of size 1 and 2 respectively
1: F1 = {(A, support(A))|A ∈ R}
2: C2 = CandidateGeneration(F1)
3: for all (v,X) ∈ CR(r) do
4: F2 = subset(C2, X) – Return the subset of C2 containing X
5: for all e ∈ F2 do
6: support(e)+ = 1
7: end for
8: end for
9: return F1, F2

4.2.2 From approximative unary INDs to a mapping function f
Given the source relation, the master relation and a ε threshold, our goal is find

mapping between attributes based on approximative unary INDs. A mapping
function can be defined in this setting as described in Algorithm 2.

10

Algorithm 2 (SR2MR) Mapping from Source Relation to Master Relation

Require: a source relation r over R, a master relation s over S
Ensure: A mapping function f from R to S
1: CR = Preprocessing(r, s);
2: (F1, F2) = scalableClosure(CR);
3: for all A ∈ R do
4: ((B, ε), F2) = FindBest(F1, F2, A);
5: while g′3(A ⊆ B) ≤ ε do
6: ε = ε+ 0.05
7: end while
8: f(A) = B
9: end for

10: return f

The first step of Preprocessing(r,s) computes for both relations the condensed
representation described in example 5. Itemsets F1, F2 respectively of size 1 and
2 and their supports are generated thanks to Algorithm 1. And for each attribute
A in R a corresponding attribute in S is mined by FindBest procedure with
respect to a mapping function f . When there is no corresponding attribute, the
ε threshold is decreased until one is found through approximative unary IND.
When many approximative unary INDs are concerned, the one with the biggest
cardinality is choosen. This procedure is presented on Algorithm 3 where the
symbol ⊥ refers to the default attribute.

Algorithm 3 FindBest

Require: F1, F2 itemsets of size 1 and 2 respectively and their supports , A ∈ R
Ensure: B ∈ S, a mapping attribute for A,

F2, remaining (itemsets,support) of size 2
1: Let (A, v) ∈ F1;
2: Let E = {(AiAj , v) ∈ F2|A = Ai or A = Aj}
3: if ∃(AB, v) ∈ E such that for all (X, v′) ∈ E, v ≥ v′ then
4: Remove all occurrences of B in F2

5: return ((B, v′

v
), F2)

6: else
7: return ((⊥, 1), F2)
8: end if

Finally Algorithm 2 outputs a total and injective function f whenever S ⊇ R.

4.2.3 Mining Editing Rules
The process of discovering eRs begins by computing the condensed representa-

tion of all the relations. Then we define the mapping function in order to find
one to one correspondences between attributes. Finally, with respect to the set

11

of satisfied CFDs in master data, we build the corresponding eRs to solve DER
problem.

Algorithm 4 Discovery of Editing Rules

Require: r a source relation, s a master relation, Σ the set of CFDs satisfied in s, ε
a threshold.

Ensure: eRs for r with respect to s
1: res = ∅;
2: f = SR2MR(r, s);
3: for all A ∈ R do
4: Let (s.B, err) = f(A);
5: CFD = {cfd ∈ Σ| cfd defined over s }
6: for all X → A, tp[Z] ∈ CFD do
7: if g(A ∪X ∪ Z) ∈ R then
8: if ∀B ∈ (A ∪X ∪ Z) such that f(g(B)).err ≤ ε then
9: res+ = (f−1(X), X)→ f−1(A), A), tp[f−1(Z)]

10: end if
11: end if
12: end for
13: end for
14: return res

5 Applying Editing Rules

Applying eRs is actually a process of repairing data [16]. Repairing data using
contraints is challenging specially for CFDs [7].

5.1 Main problems of data repairing with CFDs

5.1.1 CFDs violation
CFDs violation may be impossible to solve. To see this, consider a schema

R with {A,B,C} attributes, an instance I of R consisting of (a1, b1, c1) and
(a1, b2, c2), and a set Σ = {(A→ B, (,)), (C → B, ((c1, b1), (c2, b2)))} of CFDs.
Then I 6|= Σ and moreover concerned CFDs are in conflict, any repair of I has
to modify the values of some attributes in the left hand side of the CFD.

5.1.2 Application order
The correction of dirty tuples can cause some rules no more applicable. In this

setting the order in which they are applied is important in order to maximize
the number of rules used in practice to correct data. This issue is illustrated in
the following with respect to CFDs as example.
Let r1 be a relation defined on the following schema ABCDE, with a set of
CFDs.

12

r1 A B C D E

t1 : 0 0 1 2 3
t2 : 0 0 1 4 5

%1 = (DC → E, (∗, ∗, 2, 2 ‖ 5))
%2 = (AB → C, (0, 0 ‖ 2, ∗, ∗))
%3 = (CD → E, (∗, ∗, 1, 2 ‖ 5))
%4 = (CD → E, (∗, ∗, 1, 4 ‖ 5))

Fig. 3. a relation r1 over ABCDE and a set of CFDs

When the set of CFDs is applied in the order they appear on Figure 3, only
%2 is applied. There are no tuples matching pattern D = 2, C = 2 of %1 and they
are no tuples matching pattern of %3 and %4 because %2 changed the value of
t[C] from 1 to 2.

In another hand, if we apply the set in the following order %4, %3, %2 and %1
all of them are actually applied. This example highlights the importance of the
order in which rules are applied. Therefore it is necessary to develop heuristics
that maximize the number of rules used in practice.

5.2 Heuristics for data repairing

In the sequel we recall the runing example of [16] with some modifications to have
the same relation schema, i.e. Hphn, Mphn, DOB and gender attributes are
removed from master relation schema S. Similary phn, type and item attributes
are removed from R. Thus S and R schemas are now equal and contain FN ,
LN , AC, str, city and zip.

source : r FN LN AC str city zip

t1 Bob Brady 020 501 Elm St. Edi EH7 4AH

t2 Robert Brady 131 null Lnd null

t3 Robert Brady 020 null null EH7 4AH

t4 Mary Burn 029 null Cad null

master : s FN LN AC str city zip

s1 Robert Brady 131 51 Elm Row Edi EH7 4AH

s2 Mark Smith 020 20 Baker St. Lnd NW1 6XE

Fig. 4. Example from [16] modified.

Let us consider the example of Figure 4. The set of CFDs satisfied in the
master relation s includes:
s |= {(Zip→ AC, (EH74AH, 131)), (Zip→ str, (EH74AH, 51ElmRow))}
Then two eRs can be generated:

13

– ((Zip, Zip)→ (AC,AC), (EH74AH, 131))
– ((Zip, Zip)→ (str, str), (EH74AH, 51ElmRow))

Therefore, the tuple t1 in the source relation can be updated: t1[AC, str] is
changed to (131, 51 Elm Row).
Once eRs are discovered, we can now apply them to clean data.

5.2.1 Heuristic H0: Baseline
The use of eRs in a basic data cleaning process is described in Algorithm 5.

Discovered eRs Σ are used to correct dirty relation r. The number of corrected
tuples (cpt) is kept to evaluate the accuracy of the process.

Algorithm 5 Heuristic H0:Baseline

Require: r, Σ
Ensure: A new relation r′ |= Σ,

cpt, the number of corrected tuples of r.
1: cpt = 0;
2: r′ = r;
3: for all t ∈ r′ do
4: for all (X,Y)→ (A,B), tp[Z] ∈ Σ such that t � tp[Z] do
5: if t[X] � tp[Z] then
6: t[A] := t[B]
7: cpt+ +
8: end if
9: end for

10: end for
11: return r′, cpt

This strategy recalls the repairing algorithm BatchRepair provided by [10]
which addresses these issues. We simplify the procedure by correcting dirty values
using master relation values carried by eRs.

5.2.2 Heuristic H∗
0 : Baseline-Recall

In practice, Baseline (Algorithm 5) is more efficient when repeated (for the
same set of rules). The heuristic H∗0 called Baseline-Recall iterates over rules.
Therefore a rule not applied at a given iteration step i can be applied at the next
iteration step i+ 1. For example, on Figure 3 at a first step we apply the set of
rules %1, %2, %3 and %4 using heuristic H0. Only %2 is applied. As a consequence,
t[C] is changed from 1 to 2. Using heuristic H∗0 ensure a second iteration and
then %1 can be now applied because t2 matches the pattern of %1. Since we have
no garantee of terminaison, we have set a maximum value of iteration to 100.

14

5.2.3 Heuristic H1: Left-Hand-Side-Length-Sorted
We previously studied the importance of the order in which rules are applied

in order to maximize the number of rules used in practice. Several technics can
be used. For example, we can sort the rules with respect to the size (in term of
number of attributes) of their left hand side. The intuition is to apply rules with
less selectivity.

The Recall strategy can be also applied to H1 to obtain Left-Hand-Side-
Length-Sorted-Recall heuristic (H∗1). All these alternatives are experimentally
verified in the next section.

6 Experimental Study

We ran experiments to determine the effectiveness of our proposed technics. We
report our results using real dataset and provide examples demonstrating the
quality of our discovered eRs. In particular we use HOSP 1 dataset maintained
by the U.S. Departement of Health & Human Services, and come from hospitals
that have agreed to submit quality information for Hospital Compare to make
it public.

Our experiments were run using a machine with an Intel Core 2 Duo (2.4GHz)
CPU and 4GB of memory.

6.1 Discovering Editing Rules

Our experimental study has been set up in the same condition of [16]. We use the
same HOSP data and use the same three tables HOSP, HOSP MSR XWLK and
STATE MSR AVG. HOSP records the hospital information including provider
number (id), hospital name (hName), phone number (phn), state (ST), zip code
(ZIP) and address. HOSP MSR XWLK records the score of each measurement
on each hospital in HOSP, e.g. measure name (mName), measure code (mCode)
and the score of the measurement for this hospital (Score). STATE MSR AVG
records the average score of each measurement on hospitals in all US states, e.g.
state (ST), mName and state average (sAvg) the average score of all hospitals
in this state.
First we present mapping function extraction, then we experiment eRs mining.

6.1.1 Eliciting mapping function w.r.t. unary INDs
We have used Apriori algorithm [3] for mining mapping function from source

relation to master database. Many implementations exits, we have chosen the
open source implementation of [8] which ensure a polynomial behaviour in term
of response time. This step being easy we do not provide experimental results
(less than 10s).

1 http://www.hospitalcompare.hhs.gov

15

6.1.2 CFDs inference
In [16], authors manually designed for HOSP data 37 eRs in total, obtained by

a carefull analysis2. Five important ones cited by [16] are:
ϕ1 = ((zip, zip)→ (ST, ST), tp1[zip] = ());
ϕ2 = ((phn, phn)→ (zip, zip), tp2[phn] = ());
ϕ3 = ((mCode, ST), (mCode, ST))→ (sAvg, sAvg), tp3 = ());
ϕ4 = ((id,mCode), (id,mCode))→ (Score, Score), tp4 = ());
ϕ5 = (id, id)→ (hName, hName), tp5 = ());

Fig. 5. Scalability w.r.t. response time and memory usage

We have run the Cfun 3 open source implementation of constant CFDs dis-
covery [12] and we have been able to recover all eRs listed by [16].
For example the eR ϕ5 = (id, id)→ (hName, hName), tp5 = ()) is equivalent to
the set of constant CFDs in the form id→ hName.

All constant CFDs satisfied by the master relation have been extracted. Fig-
ure 5 shows the scalability with respect to response time and memory usage.
The algorithm scales lineary both for execution time and memory usage [12].

6.2 Data Repairing

The experimental protocol is defined as follows:

1. Duplicating experimental relation r to obtain r′.
2. Introducing noise into r′. Null values are introduce into the relation. The

noise rate of the relation is defined as the ratio of (number of noisy tuples)
/ (number of total tuples).

3. Discovering rules Σ from r.
4. Applying Σ to r′.

2 Note to the referee: At the time of the submission of our paper, authors of [16] do
not disclosed all their eRs, only 5 of them are publicly available

3 http://pageperso.lif.univ-mrs.fr/ noel.novelli/CFDProject/

16

We evaluate the scalability of the repair process. Figure 6 shows that the process
scales very well for source relation sizing from 4000 to 160000 tuples and for noise
rate of 5 and 10 percent.

Fig. 6. Scalability w.r.t. data correction and noise rate

We evaluate the quality of the repairing process embedded in the discovered
eRs. We show the accuracy in terms of pourcentage of errors corrected, defined
as the ratio of (total number of corrected tuples) / (total number of noisy tuples).
The source relation still may contain noises that are not fixed [10].

In the experiment of Figure 7 we have varied noise rate from 1 to 10 percent
and set the total number of tuples to 100 000. The repair quality decreases when
the noise rate increases, but it remains superior to 82 percent for all strategies.
Heuristics are quiet equivalent when inconsistencies are in low rate, less than 2%
of noise. Baseline (H0) implements the Algorithm 5 which apply rules on the
same order they are discovered and once. When the process is repeated the total
of effective rules applied increase, therefore “Baseline-Recall” (H∗0) increases the
accuracy rate. The benefit increases more when rules are sorted with respect
to the length of left hand sides. From H0 to “Left-Hand-Side-Length-Sorted”
H1 heuristic, the accuracy grows from 82 to 90% for a noise rate of 10%. The
combination of sorting with respect to left hand sides length and iteration (H∗1)
gives the best accuracy rate. We iterate hundred times for Recall heuristics.

7 Conclusion

Editing Rules are a new class of data quality rules boosted by the emergence
of master data both in industry [11, 27, 29] and academy [16]. In this paper we
propose a new semantic of Editing Rules in order to be able to infer them from

17

Fig. 7. Accuracy of data repair using Editing Rules

existing source database and a corresponding master database. Based on this
new semantic, we have proposed a mining process in 3 steps:

– Eliciting one to one correspondences between attributes of a source relation
and attributes of the master database.

– Mining CFDs in the master relations.
– Building Editing Rules.

Then we tackled the problem of data repairing from our discovered Editing
Rules. We have proposed a few heuristics for that. Finally, we have developed the
algorithms and ran experiments. Results obtained have shown that our approach
scale well in the size of the database and provides good repairing results.

Many perspectives exit, for instance the inference of many to many corre-
spondences instead of one to ones. The main problem is then to propagate the
CFDs into the source data with the “right” attribute. We quote also that the
notion of equivalence classes explored in [6] could be interesting in our setting.
We also plan to extend our propositions to deal with many source relations in
input.

18

References

1. S. Abiteboul, R. Hull, and V. Vianu. Fondations of Databases. Vuibert, 2000.
2. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets

of items in large databases. In Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on Management of Data, Washington, D.C., May 26-28, 1993,
pages 207–216. ACM Press, 1993.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-
ceedings of the 1994 VLDB International Conference, 1994. VLDB Press, 1994.

4. J. Bauckmann, U. Leser, F. Naumann, and V. Tietz. Efficiently detecting inclusion
dependencies. In ICDE, pages 1448–1450, 2007.

5. Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping.
Springer, 2011.

6. P. Bohannon, W. Fan, and M. Flaster. A cost-based model and effective heuristic
for repairing constraints by value modification. In In ACM SIGMOD International
Conference on Management of Data, pages 143–154, 2005.

7. P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for data cleaning. In Proceedings of the 23rd International
Conference on Data Engineering, ICDE 2007, April 15-20, 2007, The Marmara
Hotel, Istanbul, Turkey, pages 746–755, 2007.

8. C. Borgelt and R. Kruse. Induction of association rules: Apriori implementation. In
Proc. 15th Conf. on Computational Statistics (Compstat 2002, Berlin, Germany),
pages 395–400, Heidelberg, Germany, 2002. Physika Verlag.

9. F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB, 1(1):1166–
1177, 2008.

10. G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: Consistency
and accuracy. VLDB, 2007.

11. Deloitte and Oracle. Getting Started with Master Data Management. Deloitte and
Oracle White paper, 2005.

12. T. Diallo, N. Novelli, and J.-M. Petit. Discovering (frequent) constant condi-
tional functional dependencies. International Journal of Data Mining, Modelling
and Management (IJDMMM), Special issue ”Interesting Knowledge Mining”:1–20,
2012.

13. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE),
2007.

14. W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional de-
pendencies for capturing data inconsistencies. ACM Trans. Database Syst., 33(2),
2008.

15. W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional functional depen-
dencies. IEEE Trans. Knowl. Data Eng., 23(5):683–698, 2011.

16. W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules
and master data. In Proceedings of VLDB’10, Sept 2010.

17. L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On generating near-
optimal tableaux for conditional functional dependencies. Proc. VLDB Endow.,
1(1):376–390, 2008.

18. Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. Tane: An efficient al-
gorithm for discovering functional and approximate dependencies. The Computer
Journal, 42(3):100–111, 1999.

19. J. Kang and J. F. Naughton. On schema matching with opaque column names
and data values. In In SIGMOD, pages 205–216. ACM Press, 2003.

19

20. S. Lopes, J.-M. Petit, and L. Lakhal. Efficient discovery of functional dependen-
cies and armstrong relations. In EDBT, volume 1777 of LNCS, pages 350–364,
Konstanz, Germany, 2000. Springer.

21. S. Lopes, J.-M. Petit, and F. Toumani. Discovering interesting inclusion depen-
dencies: application to logical database tuning. Inf. Syst., 27(1):1–19, 2002.

22. D. Loshin. Master Data Management. Morgan Kaufmann, 2009.
23. M. J. Maher and D. Srivastava. Chasing constrained tuple-generating dependen-

cies. In PODS, pages 128–138, 1996.
24. R. Medina and L. Nourine. Conditional functional dependencies: An fca point of

view. In ICFCA, pages 161–176, 2010.
25. N. Novelli and R. Cicchetti. Fun: An efficient algorithm for mining functional and

embedded dependencies. In ICDT, pages 189–203, 2001.
26. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed

itemsets for association rules. In ICDT, pages 398–416, 1999.
27. D. Power. A Real Multidomain MDM or a Wannabe. Orchestra Networks white

paper, 2010.
28. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. The VLDB Journal, 10:334–350, December 2001.
29. P. Russom. Defining Master Data Management. the data warehouse institute,

2008.
30. C. Wyss, C. Giannella, and E. Robertson. Fastfds: A heuristic-driven, depth-first

algorithm for mining functional dependencies from relation instances extended
abstract. Data Warehousing and Knowledge Discovery, pages 101–110, 2001.

31. M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava. On
multi-column foreign key discovery. PVLDB, 3(1):805–814, 2010.

20

