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Combinatorial Maps for 2D and 3D Image
Segmentation

Guillaume Damiand and Alexandre Dupas

1 Introduction

In the image analysis framework, image segmentation is one of the main issues, and
probably the most discussed one in the literature. Image segmentation methods were
subject of numerous research papers. Surveys on existing approaches can be found,
for example, in [32, 23, 36, 22, 24]. Image segmentation is usually the first step
before any algorithm for computer vision, such as, i.e., object recognition, is applied.
The segmentation operation consists of grouping the elements of an image, usually
known as pixels or voxels (for 2D and 3D images, respectively), in homogeneous
areas called regions. Each region is uniform regarding some properties based on
intensity (gray levels), texture, or colors. The set of regions forms a partition of the
image elements, and thus any pixel or voxel of the image belongs to exactly one
region.

For efficiency purposes, some segmentation algorithms need an effective repre-
sentation of the image partition and operations so that the partition can easily be
modified. The cost related to the partition modification is closely connected to the
data structure related to the particular segmentation algorithm. One of the first data
structures described in the literature is the region adjacency graph, called RAG [33].
Regions of the image are represented by the vertices of a graph, and the edges are
linking each pair of vertices if the two corresponding regions are adjacent. How-
ever, a RAG does not describe all the relations between regions in 2D images, and
in higher dimensions it is even more so. To overcome this issue, other solutions are
available in the literature. In dual graphs approach [35, 28], two graphs are used: a
RAG is coupled with its dual. While dual graphs solve some of the issues of RAG,
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this solution is not complete, and moreover it is meant to only represent 2D images
partitions.

Several solutions based on 2D combinatorial maps have been proposed [6, 14,
7, 19, 5, 9], and then extended in 3D [4, 8]. These models have advantages that
justify their use. First, combinatorial maps fully describe the topology of the image
partition in regions, that is, the representation of all cells of the partition and all the
incidence and adjacency relations between these cells. Second, combinatorial maps
allow efficient algorithms to retrieve information and modify the partition. Finally,
combinatorial maps are defined in any dimension allowing to easily generalize the
algorithms. For these reasons, combinatorial map based models have been used in
many works in image segmentation [2, 3, 12, 26, 15].

The objective of this chapter is to present all the basic knowledge required to im-
plement a generic 2D and 3D image segmentation algorithm based on combinatorial
maps. We start in Sect. 2 by introducing combinatorial maps and the related defini-
tions. Then, we give several notions about 2D and 3D images, and finally we define
topological maps, which are specific combinatorial maps describing a partition of
an image in regions. In Sect. 3 we give the generic segmentation algorithm based
on the global merging operation. The algorithm is generic because it is defined in
any dimension, and it takes as parameter two functions allowing to control its be-
havior depending on the image properties. To illustrate the genericity, we introduce
four different segmentation criteria based on different information. As our interest
in combinatorial maps is to fully describe the topology of image partitions, we use
this asset and propose a segmentation criterion based on a topological invariant: the
Betti numbers. In Sect. 4, we show how to compute Betti numbers in the topologi-
cal map framework, and we propose two segmentation criteria that allow, with the
generic segmentation algorithm, to explore a segmentation method that take into ac-
count some topological features. Finally, Sect. 5 presents some experiments of 2D
and 3D image segmentation using the different criteria proposed in this chapter.

2 Topological Maps

In this section, we introduce the basic notions leading to the definition of a topo-
logical model used to represent 2D and 3D image partition. We start by introduc-
ing combinatorial maps that describe subdivided objects in any dimension. Then,
we recall the basic notions related to images (pixels, voxels, adjacency, regions,
inter-elements). Last, we present 2D and 3D topological maps which are specific
combinatorial maps that describe 2D and 3D image subdivisions.



Combinatorial Maps for 2D and 3D Image Segmentation 3

2.1 Combinatorial Maps

An nD combinatorial map is a model representing an nD subdivided orientable ob-
ject by describing all its cells, and all the neighborhood relations between these
cells. We denote by i-cell a cell in dimension i: 0-cells are called vertices, 1-cells
edges, 2-cells faces, and 3-cells volumes. Neighborhood relations are defined on the
basis of the incidence and adjacency relations. Two cells c1 and c2 are adjacent if
they have the same dimension i, and if they share a common (i− 1)-cell c. In this
case, c is said to be incident to c1 and to c2. Incidence relation is symmetric: if c1 is
incident to c2, then c2 is incident to c1. Moreover, the incidence relation is extended
by transitivity: two cells c1 and c2 are incident if there is a path of cells starting from
c1 to c2 such that each couple of consecutive cells are incident (see Fig. 1(a) for an
example in 2D).
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Fig. 1 (a) Example of 2D orientable subdivision. The object is composed of five 0-cells (numbered
from 1 to 5), seven 1-cells (labeled from a to g) and four 2-cells (labeled f1 to f4). Edges a and b
are adjacent since they share vertex 4, and faces f1 and f2 are adjacent along edge a. Thus, vertex
4 is incident to edge a, and edge a is incident to face f1. By transitivity, vertex 4 is incident to face
f1. (b) Corresponding 2D combinatorial map. Darts are represented by numbered black segments
ending with arrows. Two darts linked by β1 are drawn consecutively (for example, β1(1) = 2) and
two darts linked by β2 are drawn parallel to each other in reverse orientation connected by a little
gray segment (for example, β2(1) = 13).

Any orientable nD subdivided object cannot be described by an nD combina-
torial maps: only quasi-manifold orientable objects without boundary can. Quasi-
manifold means that an object consists only of (n− 1)D quasi-manifold orientable
objects glued together along (n−1)-cells. Note that in 2D, quasi-manifolds are man-
ifolds, but this is no more true in higher dimension. “Orientable” means that it is
possible to define a global orientation “left” and “right” in each point of the object.
Lastly, “without boundary” means that each (n− 1)-cell is without boundary, and
that the boundary of each n-cell is fully described by (n−1)-cells.

An nD combinatorial map is defined as a set of basic elements, called darts, with
one to one mappings defined onto the set of darts. Each dart describes a part of a
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0-cell, a 1-cell, . . . , an n-cell. The mappings β allow to link together darts and thus
group the darts that describe the same cell. Definition 1 gives the definition of nD
combinatorial maps (see [29, 30] for definitions and more details on combinatorial
maps).

Definition 1 (nD combinatorial map). An nD combinatorial map (or an n-map) is
a n+1-tuple M = (D,β1, . . . ,βn) where:

1. D is a finite set of darts;
2. β1 is a permutation1 on D;
3. ∀i : 2≤ i≤ n: βi is an involution2 on D;
4. ∀i, j: 1≤ i < i+2≤ j ≤ n: βi ◦β j is an involution3.

Intuitively, given a dart of an n-map, β1 gives the next dart of the same face,
and βi gives the dart of the adjacent i-cell (see example in Fig. 1(b)). The property
that the represented object is without boundary ensures that any dart is linked to
another dart by βi, which is a prerequisite of the permutation property. Moreover, the
quasi-manifold property ensures that there are at most two i-cells along each (i−1)-
cell belonging to the same (i+1)-cell, which explains why βi is an involution. We
denote by β0 the permutation β

−1
1 . Note that this is only a notation and not a new

permutation.
The last line of the definition (βi ◦β j is an involution) ensures the quasi-manifold

property. This condition guarantees that when two darts of two i-cells are linked by
βi+1, all the darts of the two cells are also linked two by two by βi+1. Intuitively, this
means that two i-cells are either disjointed or completely identified, but they cannot
be partially identified.

Now, thanks to darts and the β relations, we can retrieve the cells of the subdivi-
sion which are implicitly represented in combinatorial maps by sets of darts and by
the orbit notion.

Definition 2 (orbit). Let Φ = { f1, . . . , fk} be a finite set of permutations on D. We
denote by 〈Φ〉 the permutation group generated by Φ . This is the set of permutations
obtained by any composition and inversion of permutations contained in Φ . The
orbit of a dart d with respect to Φ is defined by 〈Φ〉(d) = {φ(d)|φ ∈ 〈Φ〉}.

Intuitively, the orbit 〈Φ〉(d) is the set of darts that can be reached from d by using
any combination of permutations in Φ . Each i-cell of an nD combinatorial map is
obtained by a specific orbit:

Definition 3 (i-cell). Let M = (D,β1, . . . ,βn) an n-map, d ∈ D, and i ∈ {0, . . . ,n}.
The i-cell incident to d, denoted by ci(d), is:

• if i = 0: 〈β1 ◦β2, . . . ,β1 ◦βn〉(d);
• otherwise: 〈β1, . . . ,βi−1,βi+1, . . . ,βn〉(d).

1 A permutation on a set D is a one to one mapping from D onto D.
2 An involution f on a set D is a one to one mapping from D onto D such that f = f−1.
3 βi ◦β j is the composition of both permutations: (βi ◦β j)(x) = βi(β j(x)).



Combinatorial Maps for 2D and 3D Image Segmentation 5

Due to the definition of cells as sets of darts, the incident and adjacency relations
on cells can easily be tested. Two distinct cells c1 and c2 are incident if c1∩ c2 6= /0,
and two distinct i-cells c1 and c2 are adjacent if there are two darts d1 ∈ c1 and
d2 ∈ c2 satisfying d1 = βi(d2) (or d2 = βi(d2) in the case of 1-cells).

We can see an example of 2D combinatorial map in Fig. 1(b). In 2D, a 2-map is
a triplet M = (D,β1,β2) and the last line of the definition (βi ◦β j is an involution)
does not apply. Face f3 (2-cell) corresponds to 〈β1〉(7)= {7,8,9,10}, edge a (1-cell)
corresponds to 〈β2〉(3) = {3,5} and vertex 1 (0-cell) corresponds to 〈β1 ◦β2〉(13) =
{2,9,13}. Edge b and face f3 are incident since b = {2,8}∩ f3 = {7,8,9,10} 6= /0,
and f2 and f3 are adjacent since 2 ∈ f2, 8 ∈ f3 and 2 = β2(8).

One main advantage of combinatorial maps is their definition in any dimension.
We can see an example in 3D in Fig. 2. A 3D combinatorial map is a 4-tuple M =
(D,β1,β2,β3) such that β1 ◦β3 is an involution. A 3-cell (volume) corresponds to
〈β1,β2〉(d); a 2-cell (face) to 〈β1,β3〉(d); a 1-cell (edge) to 〈β2,β3〉(d); and a 0-cell
(vertex) to 〈β1 ◦β2,β1 ◦β3〉(d).

(a) (b)

Fig. 2 (a) Example of 3D orientable subdivision. The object is composed by nine 0-cells, sixteen
1-cells, ten 2-cells and three 3-cells (the cube, the pyramid, plus an unbounded volume not drawn).
(b) Corresponding 3D combinatorial map having 144 darts. The 64 darts describing the unbounded
volumes are drawn in gray thin lines.

2.2 Removal Operations

The basic operations used to simplify a combinatorial map are the removal oper-
ations. These operations were first defined on generalized maps [11, 10] and then
transposed to combinatorial maps [20, 21]. An i-removal operation allows to remove
an i-cell while possibly merging the two incident (i+ 1)-cells around the removed
cell. There are several removal operations since we can remove an i-cell in an n-map
for any i : 0≤ i < n.

However, removing an i-cell is not always possible: there is a constraint that the
i-cell must satisfy: the notion of removable cell. Intuitively the removable constraint
ensures that there are at most two (i+1)-cells around the removed cell. Otherwise
it is not possible to automatically decide how to modify the different (i+ 1)-cells
while removing the i-cell.
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Definition 4 (Removable cell). An i-cell c in an n-map is removable if 0 ≤ i < n,
and if i = n−1 or ∀d ∈ c,βi+1 ◦βi+2(d) = βi+2 ◦β

−1
i+1(d).

As explained above, the notion of being removable is related to the number of
(i+1)-cells around the removed cell which is the notion of degree of a cell.

Definition 5 (Cell degree). Let c be an i-cell in an n-map, with 0≤ i< n. The degree
of c is the number of (i+1)-cells incident to c.

We can easily prove that if an i-cell c is removable, then its degree is at most 2
(i.e. equal to 1 or 2 since it is not possible to have a degree equal to 0 by definition
of cells).

Now, we give a generic definition of removal operations. This is Definition 6
which is valid for any removable i-cell with 0 < i < n. Intuitively, the definition
“modifies” only βi relations for the neighboring darts of the removed i-cell.

Definition 6 (i-removal operation). Let M = (D,β1, . . . ,βn) be an n-map, and c
a removable i-cell, with 0 < i < n. The combinatorial map M′ = (D′,β ′1, . . . ,β

′
n)

obtained by removing c from M is defined by:

• D′ = D\ c;
• ∀ j : 1≤ j ≤ n: ∀d ∈ D′:

– if j = i and d ∈ β
−1
i (c)\ c: β ′j(d) = (β j ◦β j+1)

k(β j(d)),
with k the smaller positive integer such that (β j ◦β j+1)

k(β j(d)) /∈ c;
– otherwise: β ′j(d) = β j(d).

β
−1
i (c) is the set of darts {β−1

i (d)|d ∈ c}. This is the set of darts which are
neighbors of c by βi. In the removal definition, only darts of β

−1
i (c) \ c have their

βi modified since all the darts of c are removed by the operation. For all these darts,
the new β ′j are defined by β ′j(d) = (β j ◦β j+1)

k(β j(d)). Intuitively, we jump over the
removed darts until we obtain a dart that does not belong to c.

We can see in Fig. 3 two examples of removal operations in a 3D combinatorial
map. First, we want to remove a 2-cell represented by the darts drawn in bold black
in Fig. 3(a). The darts, neighbors of the removed darts by β2 and drawn in bold gray,
are the only darts modified by the operation, for example β ′2(1) = β2 ◦β3 ◦β2(1) =
2. Second, we want to remove the edge represented by the darts drawn in bold
black in Fig. 3(b). Only neighbor darts of these darts by β0 are modified by the
operation, for example β ′1(3) = β1 ◦β2 ◦β1(3) = 4. Note that this edge is removable
in the combinatorial map of Fig. 3(b) (in the sense of Definition 4) but not in the
combinatorial map of Fig. 3(a) because there are more than two 2-cells incident to
this edge.

We have a specific case for 0-removal operation, that is the removal of a vertex.
This is due to the inhomogeneous definition of combinatorial maps where β1 is
a permutation while other β are involutions. We can see in Definition 7 the main
difference with the generic definition. Indeed, we need to modify all the β links of
neighbor darts of the removed cell. Moreover, the definition of the modified relation
is different.
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Fig. 3 Example of some removals operations in a 3D combinatorial map (only partially drawn).
(a) The initial configuration from which we want to remove the 2-cell drawn in bold black. (b) The
resulting map obtained after the 2-removal. The two volumes incident to the removed 2-cell are
merged. Now we want to remove the 1-cell drawn in bold black. (c) The resulting map obtained
after the 1-removal. The two faces incident to the removed edge are merged.

Definition 7 (0-removal operation). Let M = (D,β1, . . . ,βn) an n-map, and c a re-
movable 0-cell. The combinatorial map M′ = (D′,β ′1, . . . ,β

′
n) obtained by removing

c from M is defined by:

• D′ = D\ c;
• ∀ j : 1≤ j ≤ n: ∀d ∈ D′:

– if d ∈ β
−1
j (c)\ c: β ′j(d) = β j((β1)

k(d)),
with k the smaller positive integer such that β j((β1)

k(d)) /∈ c;
– otherwise: β ′j(d) = β j(d).

Here, contrary to the general case, we do not need to only modify βi, but all the
β . This is due to the definition of cells. Indeed, given an i-cell c, with 0 < i < n, we
know that for any dart d ∈ c, β j(d) ∈ c, ∀ j 6= i. This property ensures that only βi
has to be modified, but this is no more true for vertices.

2.3 Images, Regions and Inter-elements

In this chapter we are interested in 2D and 3D images segmentation, and thus we
now recall some usual notions. A pixel (resp. voxel) is an element of the discrete
space ZZ2 (resp. ZZ3), associated with a value (for example a color or a gray level).
A 2D image is a set of pixels and a 3D image is a set of voxels.

Two pixels p1 = (x1,y1) and p2 = (x2,y2) are 4-adjacent if |x1−x2|+ |y1−y2|=
1. Two voxels v1 = (x1,y1,z1) and v2 = (x2,y2,z2) are 6-adjacent if |x1−x2|+ |y1−
y2|+ |z1− z2| = 1. A 4-path (resp. 6-path) between two pixels (resp. voxels) b and
e is a sequence of pixels (resp. voxels) (b = e1, . . . ,ek = e) such that any couple of
consecutive pixels (resp. voxels) of the path are 4-adjacent (resp. 6-adjacent).
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A set of pixels S (resp. voxels) is 4-connected (resp. 6-connected) if there is a
4-path (resp. 6-path) between any couple of pixels (resp. voxels) of S with all the
elements of the path belonging to S.

A region R is a maximal set of 4-connected pixels (resp. 6-connected voxels)
having the same label. To avoid having a specific process for the image borders,
we consider an infinite region, usually called R0, that surrounds the image (i.e. this
region is the complement of the image). If a region R j is completely surrounded by
a region Ri we say that R j is enclosed in Ri.

We can see in Fig. 4 an example of a 2D labeled image and the illustrations of
the main notions.

R4

R0

R1 R2

R3

R5

0 9

0

5

pp1

p4

p3

p2

Fig. 4 Example of a 2D labeled image having 10 pixels in x axis, and 6 pixels in y axis. Pixel
p = (5,1) belongs to region R3. Pixel p is 4-adjacent to pixels p1 = (4,1), p2 = (5,0), p3 = (6,1)
and p4 = (5,2). The image contains five regions (labeled from R1 to R5), plus the infinite region
R0. R4 is enclosed into region R3, and regions R2 and R3 are enclosed into region R1.

In the interpixel or intervoxel framework [27, 25], pixels or voxels are not the
only considered elements. We also consider all the elements of a cellular decompo-
sition of the paving of ZZn. In 2D, pixels are unit squares, linels are unit segments
separating two squares, and pointels are points at the extremity of linels. In 3D,
voxels are unit cubes, surfels are unit squares separating two voxels, and linels and
pointels definitions are similar to the 2D case (see example in Fig. 5).

3D2D

voxel

surfel

pointel

linel

pixel

Fig. 5 Interpixel and intervoxel elements.
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2.4 Topological Maps

A topological map is a combinatorial map describing an image. For this reason,
topological maps are not as general as combinatorial maps since they have some
particular properties implied by the specifics of the described partitions. We present
here only the main principle of topological maps. Interested readers can found more
details in the referenced papers.

Given a 2D labeled image, the problem is to describe the partition in regions us-
ing a combinatorial map. We want to describe the multi-adjacency relations between
regions, to retrieve all the regions adjacent to a given one, and to know how many
times two regions are adjacent. Thus, we have to build a combinatorial map where
each edge corresponds exactly to a maximal set of linels between two regions [1, 9].
However, using a combinatorial map is not enough to represent all the information
contained in the image. We need to add an interpixel matrix to represent the geom-
etry of the regions, and a tree of regions to describe the enclosed relations between
the regions. This is the notion of topological map given in Definition 8.

Definition 8 (2D topological map). Given a 2D labeled image, its 2D topological
map is a data structure composed of three parts:

• A minimal 2D combinatorial map describing the partition of regions: the external
boundary and each cavity of each region is described by one cycle of darts, linked
by β1. Note that the infinite region is a special case since it does not have an
external boundary but only one internal boundary. Each edge of the combinatorial
map corresponds to a maximal frontier between two regions;

• An interpixel matrix containing all the linels that belong to a region boundary,
and all the pointels having a degree greater than two;

• An enclosed tree of regions describing all the enclosed relations between the
regions.

The 2D combinatorial map is minimal in number of cells which means there is
no combinatorial map that describes the same partition in regions with a smaller
number of cells. This minimal property ensures that we represent each maximal
frontier between two regions by exactly one edge in the map. We can see in Fig. 6
an example of a 2D labeled image and the corresponding 2D topological map.

The topological map definition can be extended in 3D by using a 3D minimal
combinatorial map, an intervoxel matrix, and an enclosed tree of regions. This defi-
nition is given in Definition 9 and detailed in [8].

Definition 9 (3D topological map). Given a 3D labeled image, its 3D topological
map is a data structure composed of three parts:

• A minimal 3D combinatorial map describing the partition of regions: the exter-
nal boundary and each cavity of each region is described by volumes (i.e., orbits
〈β1,β2〉). As in 2D, the infinite region is a special case since it does not have an
external boundary; it has only one internal boundary. Each face of the combina-
torial map corresponds to a maximal frontier between two regions, and each edge
corresponds to a maximal junction between faces;
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Fig. 6 Example of 2D topological map. (a) A 2D labeled image. (b) The minimal combinatorial
map describing the image. Darts are numbered from 1 to 14. Regions R2, R4, and R5 have only one
external boundary, thus only one β1 cycle of darts. Regions R1 and R3 have one cavity, and thus
two β1 cycles of darts, one for their external boundary, and one for their cavity. (c) The interpixel
matrix. (d) The enclosed tree of regions.

• An intervoxel matrix containing all the surfels that belong to a region boundary,
all the linels having a degree greater than two, and all the pointels having a degree
greater than two;

• An enclosed tree of regions describing all the enclosed relations between regions.

Figure 7 shows an example of a 3D labeled image and the corresponding topo-
logical map.

3 Image Segmentation Algorithm

Now, we present a bottom-up segmentation algorithm based on topological maps
[15]. The guiding principle consists in successively merging adjacent regions satis-
fying a given criterion starting with an initial partition represented by a topological
map. The initial partition can be a partition where each pixel/voxel is in its own
region, a partition where pixels/voxels having same color are grouped, a partition
which is an over-segmentation of the initial image, or any other kind of partition.
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r2

r3

(a) (b)
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r0
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(d)

Fig. 7 An example of 3D topological map. (a) A 3D labeled image. (b) The minimal combinatorial
map describing the image. (c) The intervoxel matrix. (d) The enclosed tree of regions.

A bottom-up approach is chosen here since it allows to incrementally update re-
gions characteristics without the need of running through all the pixels/voxels of the
region. Such incremental update is not possible for top-down or mixed approaches.

3.1 The Global Merging Algorithm

The principle of the global merging algorithm consists in merging each couple of
adjacent regions of a given topological map satisfying a given criterion. To opti-
mize the algorithm and minimize topological maps modifications, we decompose
the process in two steps:

1. Symbolic merging: regions are “merged” by using union-find trees; no modifica-
tion is made on the topological map;

2. Effective merging: the topological map is modified to group together all regions
that belong to the same union-find tree.

For the symbolic merging, we use an union-find tree forest [34] to partition the set
of regions in disjointed sets. Each region has a reference to its father in a union-find
tree. To handle trees, we use two functions: f ind(r) which, given a region r, finds
the root of the union-find tree, and union(r1,r2) which, given two different regions
r1 and r2 merges their trees. Before starting the symbolic merging, we initialize the
pointer of each region to the region itself. This means that each region r is in its own
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union-find tree since we have f ind(r) = r. During the symbolic merging, an external
process successively merges couples of regions. The external process can be driven
by the user who selects some regions to merge during an interactive session, or as
we will see in the next section, by a segmentation algorithm. The merging of the
two union-find trees containing regions r1 and r2 is simply done by modifying the
father pointer of the root of one tree to the root of the other tree. To improve the
complexity of this step, we use the two following heuristics:

• We put the smaller tree (in terms of the number of regions) as a child of the
largest one during the union function;

• We compress the path from region r and its root r′ during the f ind(r) function;
for that we assign the father of all the regions between r and its root to r′.

Thanks to these two heuristics, it is proved in [34] that union and find operations
on disjoint sets represented by trees can be considered as constant time operations.
Figure 8 shows a simple example of the symbolic merging.

0 9

0
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(a)

0 9

0

5

(b)

Fig. 8 Illustration of the symbolic merging. The father relation of union-find trees is represented
by bold black arrows. (a) An initial forest of union-find trees where each pixel belongs to its own
region; thus each pixel is the root of its own union-find tree. (b) Result of the symbolic merging of
each couple of 4-adjacent pixels having same label (in this example we do not use the two heuristics
to simplify the figure). Each pixel has an unique father, and thanks to these union-find tree, we can
simply test if two pixels belong to the same region just by testing if f ind(p1) = f ind(p2).

We use the union-find trees during the second step of the global merging algo-
rithm. The objective of this step, presented in Algo. 1, is to merge all the regions
that belong to a same union-find tree in the topological map. The principle of this
algorithm is to test for each couple of adjacent regions r1 and r2 whether they belong
to the same union-find tree. In this case we remove all the (n−1)-cells that separate
the two regions.

We can efficiently test each couple of adjacent regions thanks to the relations
represented in the topological map. We run through all the darts of the map. Each
dart d belongs to its region r1, and each dart βn(d) belongs to a region r2 adjacent
to r1. The foreach loop allows testing all the couples of adjacent regions in a
time linear to the number of darts. Moreover, if two regions are adjacent k times,
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Algorithm 1: Effective merging step
Input: An nD topological map T ;

Disjointed sets partitioning the regions of T .
Result: T is modified so that all regions belonging to the same union-find tree are merged in

an unique region.

let toSimpli f y be an empty set of darts;
foreach dart d in T do

if f ind(region(d)) = f ind(region(βn(d))) then
toSimpli f y← toSimpli f y∪ one dart per (n−2)-cell incident to cn−1(d);
remove cn−1(d);

simplify(toSimpli f y);
recompute the enclosed tree of regions;

they are separated by k different (n−1)-cells. If the two regions belong to the same
union-find tree, all these (n−1)-cells are removed since during the foreach loop,
we will consider one dart for each of these cells, and for each of these darts the
condition f ind(region(d)) = f ind(region(βn(d))) will be satisfied.

If we remove an (n− 1)-cell, we might need to simplify the topological map
because it does not possess the minimal number of cells property anymore. Indeed,
the degree of each (n−2)-cell incident to the remove cell is decreased by one, and
thus these cells can possibly be simplified. To solve this issue, during the effective
merging, we keep one dart per each (n− 2)-cell incident to a removed (n− 1)-
cell, and these cells will be tested during a post-processing simplification step. This
simplification step is specialized for 2D and 3D topological maps since in 2D we
only need to test and possibly simplify vertices, while in 3D we need to test and
possibly simplify edges, then test and possibly simplify vertices (see [9] and [8] for
details and Fig. 9 for an example in 2D).

3.2 The Segmentation Algorithm

In our approach, the segmentation algorithm, given in Algo. 2, is only a specific case
of the global merging algorithm. In fact, as we have seen in the previous section, it is
enough to control the symbolic merging step to propose a segmentation algorithm.
Then, the effective merging step will modify the initial partition and will produce
the topological map representing the result of the segmentation.

Algorithm Algo. 2 is a generic segmentation algorithm taking as parameters an
nD topological map which describes an initial partition, two functions giving a
weight for each (n− 1)-cell, and a criterion to determine whether an (n− 1)-cell
must be removed.

The initial topological map can be either initialized with a region for each im-
age element, or it can be any initial partition, for example obtained by a pre-
segmentation step. The two functions allow to tune the segmentation algorithm by
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Fig. 9 Example of effective merging. (a) A topological map describing a 2D labeled image where
each pixel is in its own region. (b) The combinatorial map obtained after the first step of the ef-
fective merging (removal of 1-cells) given the disjoint sets shown in Fig. 8(b). This map is not
minimal since some vertices are removable. (c) The combinatorial map obtained after the sim-
plification step. This is the 2D topological map of the partition in regions given by the disjoint
sets.

Algorithm 2: Generic Segmentation Algorithm
Input: An nD topological map T associated with an image I;

A function weight(c) giving a weight of each (n−1)-cell;
A boolean function criterion(d) returning true if cell c(n−1)(d) must be removed.

Result: T represents the optimal segmentation of I for the weight and criterion functions.

L← sorted list of one dart per (n−1)-cell of T according to weight;
foreach dart d ∈ L do

r1← region(b); r2← region(βn(b));
if r1 6= r2 and criterion(d) then

r← union(r1, r2);
update region r;

effective merging of regions of T ;
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using any kind of information associated with cells and regions of the topological
map (see Sect. 3.3 for some examples of such functions).

Before processing the regions, we start by sorting the list of (n−1)-cells accord-
ing to the weight function. This allows us to start with the consideration of a couple
of regions that are close with respect to the given weight. In Sect. 5, we show that
this approach gives a better result that processing edges randomly.

The main loop of the algorithm consists of testing all couples of adjacent regions,
and in merging them if the given criterion returns a true value. The merging is only
made in the symbolic way using the union find trees. The last line of the algorithm
is the effective merging step presented in Algo. 1.

The algorithm is generic since it is defined in any dimension, and can be tuned
easily by modifying the weight and criterion functions. Its time complexity is linear
in number of darts of the topological map, times the complexity of the criterion
function. As we will see in the next section, most of our criteria have constant time
complexity, and thus the segmentation algorithm becomes linear in number of darts
of the map.

3.3 Different Criteria of Segmentation

The main interest of our approach is the genericity and the possibility to mix dif-
ferent criteria associated with a different type of cells (for example a colorimetric
criteria associated with the regions, and a gradient associated with the edges). To
illustrate these interests, we present here four segmentation criteria, based on:

• The range of gray levels in the regions;
• The gradient of the (n−1)-cells separating regions;
• External/internal contrasts of the regions and (n−1)-cells;
• The size of the regions and the gradient of (n−1)-cells.

All these criteria are defined for nD topological maps, and use different kind
of information (cells, adjacency and incidence relations, geometrical information,
etc.). Moreover, the information used can often be initialized without additional
complexity cost during the topological map construction, and can often be used and
updated in constant time which results in efficient segmentation algorithms.

3.3.1 Range of Gray Levels

The first version is a basic criteria based on gray levels of pixels. We associate
with each region an interval [gmin,gmax] of min gray level and max gray level of all
the pixels contained in the region. The value of each interval is initialized during
the construction of the topological map (without modifying the complexity of the
construction).
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The weight function is given in Algo. 3. We define the weight of the removal
of a cell cn−1(d) by the difference between the length of the new interval of the
two merged regions around cn−1(d) and the maximum length of the two original
intervals of r1 and r2. Thanks to this definition, the weight is zero if one interval is
included into another, or if the two interval are equal. The weight increases if the
two region intervals move away.

Algorithm 3: Weight function based on gray levels ranges
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

r1← region(d); r2← region(βn(d));
dist0← max(r1.gmax− r1.gmin, r2.gmax− r2.gmin);
dist1← max(r1.gmax, r2.gmax) - min(r1.gmin, r2.gmin);
return dist1−dist0;

The removal criterion given in Algo. 4 returns true if the length of the new inter-
val after the merging of the two regions around cn−1(d) is smaller than a threshold
τ given by the user.

Algorithm 4: Removal criterion based on gray level ranges
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

r1← region(d); r2← region(βn(d));
dist1← max(r1.gmax, r2.gmax) - min(r1.gmin, r2.gmin);
return dist1 < τ;

Since we associate an interval with each region, we have a direct access to each
information associated with the darts (region(b), βn(d), r.gmin and r.gmax) and thus
the two algorithms have a constant time complexity.

Moreover, when two regions r1 and r2 are merged during the symbolic merging,
we can easily, and in constant time, update the interval of the region r which is the
union of r1 and r2: we only have to set r.gmin← min(r1.gmin, r2.gmin), and r.gmax←
max(r1.gmax, r2.gmax).

3.3.2 Gradient on (n−1)-cells

Another criterion often used in image segmentation is an image gradient. We as-
sociate with each (n− 1)-cell c a value corresponding to the gradient of c. More
precisely, for each inter-element i belonging to c the gradient is the sum of the ab-
solute difference of the gray levels of the two image elements around i. As for the
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previous criterion, the gradient of each (n−1)-cell is initialized during the construc-
tion of the topological map without modifying the complexity of the construction.
However, gradients are associated with (n−1)-cells and not with the regions. This
illustrate an interesting feature of topological maps as we can associate information
with any cell and possibly mix information associated with different type of cells.

The first approach is to use the gradient in the segmentation algorithm is to con-
sider the gradient of each cell cn−1(d) as its weight. Then, the merging criterion
returns true if the gradient of cn−1(d) is smaller than a threshold τ given by the user.
The problem of this approach is that it does not account for the fact that if we re-
move an (n−1)-cell, it will result in the merging of the two regions around this cell,
and thus it will remove all the (n− 1)-cells between these two regions. If we only
consider the current (n− 1)-cell, the merging criterion can return true because its
associated gradient is small, even if merging the two incident regions will remove
other (n−1)-cells with stronger gradients.

To solve this problem, we define the weight function given in Algo. 5 which takes
into account all the (n−1)-cells which will be removed if we merge the two regions
incident to the considered cell cn−1(d).

Algorithm 5: Weight function based on gradients
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

res← 0;
r2← region(βn(d));
foreach dart d′ ∈ cn(d) do

if d′ not marked treated then
if region(βn(d′)) = r2 then

res← res+ cn−1(d′).gradient;

mark treated all the darts of cn−1(d′);

return res;

In this algorithm, we run through all the darts d′ ∈ cn(d) to sum all the gradients
of all the (n−1)-cells separating the same two regions.

The removal criterion given in Algo. 6 returns true if the sum of all the gradients
of all the (n−1)-cells separating the two regions is smaller than a threshold τ given
by the user. This test can be achieved by reusing the weight function and comparing
its value with the threshold.

Algorithm 6: Removal criterion based on gradients
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

return weight(d)< τ;
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Due to these definitions, all the (n−1)-cells that separate the same couple of re-
gions have the same weight and thus give the same answer for the removal criterion.
Moreover, when two regions are merged during the symbolic merging, there is no
modification to apply to gradient values. Lastly, during the simplification step of the
effective merging, if two (n−1)-cells are merged, the gradient of the new (n−1)-
cell is the sum of the two gradients of the original cells. Note that the complexity of
the weight and removal criterion algorithms is linear in number of darts of cn(d).

3.3.3 External and Internal Contrasts

This method is based on the segmentation algorithm proposed by Felzenszwalb and
Huttenlocher in [17, 18] which uses a criterion based on intensity differences be-
tween neighboring pixels in 2D images. In the original work, authors used region
adjacency graphs to represent the image partition. In [15] we transposed this method
for topological maps and extended it to 3D, but as with the previous criteria, we can
extend this criterion in any dimension thanks to the topological maps.

To define this criterion, we associate with each region an internal contrast, called
int, which is the minimal gray level difference between two adjacent image elements
of the region. We also associate an external contrast (called ext) with each (n−1)-
cell c, which is the minimal value for each inter-element i belonging to c of the
absolute difference of the gray level of the two image elements around i. These
contrasts are initialized during the construction of the topological map.

Thanks to these two values, we can define the weight function given in Algo. 7
which is equal to the external contrast of the considered (n−1)-cell.

Algorithm 7: Weight function based on contrasts
Input: A dart d of an nD topological map.
Result: The weight of the removal of cn−1(d).

return cn−1(d).ext;

According to the original work of Felzenszwalb and Huttenlocher [17, 18], the
removal criterion given in Algo. 8 returns true if the external contrast of the con-
sidered (n−1)-cell is smaller than the minimal internal contrast of the two incident
regions. These two internal contrasts are weighted by a threshold function f allow-
ing the user to control the degree to which the external variation can actually be
larger than the internal variations. We can use any defined positive function for f .
In practice, we use the same function than the one proposed by the authors of the
original method: f (r) = k/|r| with |r| the size of region r (i.e., its number of image
elements), and k a constant defined by the user and allowing to tune the algorithm.

The two algorithms have a constant time complexity since we have a direct access
to all the information. Moreover, when two regions are merged in region r during
the symbolic merging, it is proved in [17] that the internal contrast of r is equal to
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Algorithm 8: Removal criterion based on contrasts
Input: A dart d of an nD topological map;

A threshold function f .
Result: true iff cn−1(d) must be removed.

r1← region(d); r2← region(βn(d));
return cn−1(d).ext ≤ min(r1.int + f (r1), r2.int + f (r2));

the external contrast of the removed cell, while there is no modification on external
contrasts. Thus, we can update the contrast in constant time during the symbolic
merging.

3.3.4 Size of Regions

We present now the last criterion which illustrates one more time the interest of
our generic approach. Indeed, thanks to topological maps, we can use different cells
and associate different type of information with these cells, but we can also mix
colorimetric criteria and geometrical ones. To illustrate this possibility, we present
a criterion which mixes the size or regions and the range of gray levels given in
Sect. 3.3.1. Thanks to these two pieces of information, the proposed criterion allows
removing all the small regions (i.e., regions with size smaller than a given threshold)
by merging them to the closer regions in their neighborhood (closer in the sense of
range of gray levels).

For the weigh function, we use the function already given in Algo. 3 based on the
distance between the ranges of the two regions, and the range of the region after the
union. This allows to start processing the cn−1(d) cells that separate closer regions.

For the removal criteria, we use Algo. 9 which do not use range of gray levels, but
which is based on region sizes. This criterion returns true if one of the two regions
incident to the considered (n− 1)-cell is smaller than a given threshold. Thanks to
this criterion, we ensure that at the end of the process, all the regions have their size
greater than the threshold. As we will see in our experiments, this process can be
used as post-processing step to remove small regions that are often due to noise in
the original image.

Algorithm 9: Removal criterion based on sizes
Input: A dart d of an nD topological map;

A threshold τ .
Result: true iff cn−1(d) must be removed.

r1← region(d); r2← region(βn(d));
return size(r1)< τ or size(r2)< τ;
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The range of gray levels and the size of regions can be computed during the topo-
logical map extraction, and can both be updated in constant time after the merging
of two regions during the symbolic merging.

4 Betti Numbers and Topological Criteria

We presented a generic segmentation algorithm that is parametrized by two func-
tions weight, and criterion. The algorithm controls the symbolic merging step of
the global merge operation to produce the optimal segmentation of the image. We
also introduced several criteria based on intensity values of the image, or on simple
geometrical property like the region size. While such kind of criteria are commonly
used to define segmentation algorithm, topological features are equally important to
retrieve useful information from the image segmentation. The presence of a cavity in
a 2D region representing a plain object might indicate of a defect in the production
factory. Tunnels in a 3D region might be an indication of a segmentation error if, for
instance, the segmented object is known for not having any. Thus, we want to define
criteria that account for topological features, and that can be used in conjunction
with geometric or colorimetric criteria.

In computational topology, topological invariants characterize some of the topo-
logical feature we want to take into account. One of the most well known invariants
is the Euler characteristic χ of a 2D surface which is linked to the genus of the sur-
face. The genus allows to discriminate between sphere-like surfaces and torus-like
surfaces. Definition 10, found in [31], defines the value of the Euler characteristic as
the alternating sum of number of cells for cellular complexes. For instance, in 2D,
the Euler characteristic is equal to the sum of the number of faces and the number
of vertices minus the number of edges.

Definition 10. The Euler characteristic χ(r) of a region r in an nD space is defined
as: χ(r) = ∑

n
i=0(−1)i#ci, with #ci is the number of i-cells belonging to r.

While the Euler characteristic allows to uniquely qualify a topological property
for 2D surfaces, it is not the same for 3D volumes like regions in a 3D topological
map. Other invariants are, for instance, Betti numbers that express some topological
features like the number of cavities or the number of tunnels of a region, and work
both in 2D and 3D.

4.1 Betti Numbers

In computational topology, Betti numbers are the rank of the homology group gen-
erators, an advanced topological invariant. From a practical point of view, Betti
numbers of an object represent the number of holes in each dimension. The first
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Betti number, noted b0, counts connected components of the object. In 2D, the sec-
ond Betti number, b1 counts the number of cavities in the object. In 3D, the second
Betti number, b1 counts tunnels and the third Betti number, b2 is equal to the number
of cavities of the object. For closed oriented nD objects, as regions in a 2D or 3D
image, Betti numbers bk with k > n are equal to zero. For instance, non-zero Betti
numbers of the 2D region r1 in Fig. 10(a) are b0 = 1 and b1 = 1 and the non-zero
Betti numbers of the 3D object presented in Fig. 10(b) are b0 = 1, b1 = 3 and b2 = 2.

(a) (b)

Fig. 10 Example of Betti numbers. (a) In 2D for region r1: b0 = 1, b1 = 1; (b) In 3D: b0 = 1,
b1 = 3, b2 = 2.

Definition 11 of [31], establishes a relation between Betti numbers and the Euler
characteristic of an object. The relation gives an alternative approach to compute the
Euler characteristic.

Definition 11. The Euler characteristic χ(r) of a region r in nD is defined as the
alternating sum of Betti numbers: χ(r) = ∑

n
i←0(−1)ibi(r), where the bi(r) are the

Betti numbers of region r.

Computing Betti numbers allows to use the number of connected components,
the number of tunnels (in 3D), or the number of cavities to serve as criteria during a
segmentation step. In the following sections, we present how Betti numbers can be
computed in topological maps and how they can be used as segmentation criteria.

4.2 Computation Algorithms using Topological Maps

In this section, we present the computation of Betti numbers using information pro-
vided by the topological map representing an image partition. We avoid the complex
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computation of homology group generators as we only require the rank of these
groups. The goal is to compute Betti numbers in 2D and 3D image partitions us-
ing the practical definition of Betti numbers. Thus, depending on the dimension of
the topological map, we count the number of connected components, the number of
tunnels, and the number of cavities to obtain the Betti numbers.

In the following, the computation algorithms of Betti numbers of region r of
topological map M are explained. First, we detail the algorithms in the 2D case.
Second, we present the modifications needed to handle 3D image partitions.

4.2.1 Computation of Betti Numbers in 2D Image Partition

The number of connected components of region r in a 2D image partition is equal
to the first Betti number b0(r). By definition of topological maps, a region is a 4-
connected set of pixels. Thus, each region has only one connected component. The
first Betti number is constant and equal to one: b0(r) = 1 for all region r.

The number of cavities of a region r in a 2D image partition is equal to the second
Betti number b1(r). Note that the set of enclosed regions of region r fills the cavities
of region r, and each 8-connected component of the enclosed regions fills exactly
one cavity of region r. Counting the number of connected components of enclosed
regions allows to retrieve the number of cavities, and thus the second Betti number.
In the topological map framework, a tree of region represents the enclosed relation.

The tree of regions is organized so that each connected component Renclosed of
regions enclosed in a region r is represented in the tree by a representative region
which is in direct relation with r. For instance, r has a direct enclosed relation with
ri ∈ Renclosed , and the other regions within Renclosed \ ri can be retrieved using the
connected component relation. Thus, in a 2D topological map, the second Betti
number b1(r) of region r is obtained by counting the number of regions having a
direct enclosed relation with r.

4.2.2 Computation of Betti Numbers in 3D Image Partition

There are analogies between the definition of the two first Betti numbers in 2D
and the definition of the first and third Betti numbers in 3D. By definition of a 3D
topological map, regions are 6-connected sets of voxels. Thus, as in 2D, there is
only one connected component for each region implying that the first Betti number
is constant and equal to one: b0(r) = 1 for any region r.

The third Betti number b2(r) counts the number of cavities of a region r following
the same principle as the second Betti number in a 2D topological map. The 3D
region tree represents the enclosed relation, and regions enclosed within region r fill
up the cavities of r. The tree of regions is organized as the tree of region in a 2D
topological map. Thus, in a 3D topological map, counting the number of regions in
direct enclosed relation with region r gives b2(r), the third Betti number of region
r.
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4.2.3 Computation of the Second Betti Number in 3D Image Partition

In 3D, the second Betti number b1(r) counts the number of tunnels of region r. As
there is no simple way to determine the number of tunnels of a region in 3D topolog-
ical maps, we use the relation between the Betti numbers and the Euler characteristic
given by Definition 11.

The computation of the Euler characteristic using the alternated sum of volumes,
faces, edges, and vertices is only valid if the volume is represented by a cellular
complex composed of i-cells homeomorphic to i-balls. As the topological map is
not a full cellular complex since it only represents cells that belong to the border
of the regions of the partition, the represented cells of a region do not satisfy the
prerequisite for direct computation of χ using Definition 10.

In [13], the authors present the computation of the sum of Euler characteristics
of each border of region r represented by a 3D topological map. We call this sum
Euler characteristic of the border of region r denoted χ ′(r). The computation of the
alternating sum of cells belonging to the border of a region is possible since the
topological map represents all cells belonging to the border of each region.

In [16], the authors define the notion of implicit cells that allows to convert a
region represented in a 3D topological map as a cellular complex. Using the fact that
the regions in topological maps are composed of only one connected component of
voxels, the authors prove Proposition 1 which gives a relation between χ and χ ′ for
region r represented by a 3D topological map.

Proposition 1. The Euler characteristic χ(r) is linked to the Euler characteristic of
the border χ ′(r) by the relation χ(r) = χ ′(r)/2 with r – a region of a 3D topological
map.

In Proposition 2, we use Definition 11 and Proposition 1 to obtain the second
Betti number of region r of a 3D topological map as a function of the Euler charac-
teristic of the border of r, the number of connected components of r, and the number
of cavities of r. The complete proof of Proposition 2 can be found in [16].

Proposition 2. In a 3D topological map, the second Betti number b1(r) of region r
is given by b1(r) = b0(r)+b2(r)−χ ′(r)/2.

We have defined the computation formulas of Betti numbers for regions repre-
sented by 2D and 3D topological maps. But these formulas do not allow to compute
the Betti numbers for a set of regions as the ones defined during the segmentation
process in the symbolic step of the global merging algorithm. To propose such a
feature, we introduce in Sect. 4.3 the incremental computation algorithms of Betti
numbers.

4.3 Incremental Computation Algorithms

In Sect. 4.2, we have defined simple formulas that allow to compute the Betti num-
bers of any region in 2D and 3D topological maps. To use Betti numbers as topo-



24 Guillaume Damiand and Alexandre Dupas

logical criteria during segmentation operation, we need incremental computation
algorithms that efficiently update Betti numbers during merge operations.

Symbolic regions are a composition of regions merged in a same disjoint-set
of regions during the symbolic step of the global merging algorithm. Incremental
computation algorithms have to handle symbolic regions as if they already had been
merged together. We use special border coverage algorithms to this purpose remov-
ing the need to take a special care of such configurations.

In 2D and 3D image partitions represented by topological maps, the number of
connected components per region is constant and equals to one. The value of the
first Betti number b0(r) never changes. The second Betti number in 2D and the third
Betti number in 3D count the cavities of the region. In Sect. 4.3.1, we propose an
incremental approach that updates the number of cavities during the merging of two
regions from the symbolic merge step. In Sect. 4.2.3, the number of tunnels in a 3D
image partition represented by a topological map cannot be obtained directly. To
overcome this issue, we give in Sect. 4.3.2 algorithms used to incrementally com-
pute the Euler characteristic of the border, the number of connected components,
and the number of cavities so that we can use the formula provided by Proposition 2
linking these values to the value of the second Betti number in 3D topological maps.

4.3.1 Incremental Computation of the Number of Cavities

The incremental computation of the number of cavities in a topological map during
the merging of two regions r1 and r2 consists in computing the number of connected
components of the enclosed regions after the merge which is the number of internal
borders of a region. Let region r1 and region r2 be adjacent. In the following, we
suppose that region r1 is not enclosed in region r2. This leads to three possible
configurations (we can assume this because if it is not the case we only have to
swap the notations of r1 and r2):

1. Merging r1 and r2 does not change the number of cavities;
2. Merging r1 and r2 removes a connected component of enclosed region, if r2 fills

completely a cavity of r1;
3. Merging r1 and r2 adds new connected components of enclosed regions (either

by surrounding new components of enclosed regions or splitting an existing con-
nected component into several chunks).

The number of components of the border of a region is linked to the number of
cavities: as there is only one connected component of regions, the number of cavities
is equal to the number of borders minus one, the external border. To compute the
changes in the number of borders, we use Proposition 3 proved for the 3D case in
[16] and also valid in 2D. In the proposition, k is the number of new internal borders.

Proposition 3. Let r1 and r2 be two adjacent regions such that r1 < r2. We have
#borders(r1∪ r2) = #borders(r1)+#borders(r2)+ k−2, where k is the number of
borders containing part of the external border of r2 and that are not between r1 and
r2.
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We have now a formula linking the number of cavities of a region with the num-
ber of borders of the union of two regions. Let us details the algorithm that we use
to effectively compute the number of new borders. First, we define the notion of
inner border of two regions r1 and r2 as the border composed by the cells that lies
between r1 and r2. We implement traversal algorithms allowing to run through darts
of the border ignoring inner borders. That algorithm is a slightly modified version
of the classical border traversing algorithm with the exception that if the next dart to
be traversed belongs to an inner border, we ignore the corresponding cell (an edge
in 2D), and proceed with the next suitable cell (the next non-inner edge around the
vertex in 2D). The principle is to cover the border as if region r1 and r2 are merged.

An example presenting inner cells in a 2D topological map is presented Fig. 11.
The border traversing algorithm, starting in the top left corner of r1, and going to the
right comes to vertex 1. The classical coverage algorithm would go through the edge
e1. Since we want to cover the border as if r1 ∪ r2 is a unique region, the coverage
algorithm proceeds with the next edge that is not marked as inner. Thus the next
edge is the one leading to the top right corner.

e1

e2

e3

1

2

3

4

5

Fig. 11 Example of inner cells in a 2D topological map. The inner cells of the union of regions
r1 ∪ r2 are the edges e1, e2, e3, and the vertex 4. Vertices 1, 2, 3, and 5 belong to the boundary of
the inner border and thus are not qualified as inner cells.

Now, we implement the border counting mechanism which allows to compute
the number of borders of the union of two adjacent regions r1 and r2. The algorithm
first runs through the external border of r1 and marks as inner and processed each
dart d such as region(βn(d)) equals r2. Then, we count the number of connected
components of cells that contains a dart of r1 without traversing any inner border.
Using the previously computed and stored value for the number of borders of region
r1 and region r2, the algorithm returns the number of borders of the union of r1 and
r2.

Figure 12 illustrates the incremental border counting algorithm during the eval-
uation of the union of regions r1 ∪ r2 on a 2D topological map. In the figure, the
border counting algorithm, starting from a dart belonging to region r2 and edge e1
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allows to discover two borders. The new internal border is surrounding regions r3
and r4 and the external border surrounding regions r1 and r2.

e1

e2

e5

e4 e3

e6

e7

e8e9

e10

Fig. 12 Illustration of the incremental computation of the number of cavities for the union of
regions r1 ∪ r2. Edges e1 and e2 are inner cells for r1 ∪ r2. For the purpose of this example, we
suppose the starting dart belongs to region r2 and to the edge e1. The two borders discovered
by the algorithm are the internal border composed of edges e3, e4, e5, and the external border
composed of edges e6 through e10.

Now we can use this algorithm to compute incrementally the number of cavities
of two regions that are going to be merged. The differences between the number
of cavities in 2D regions and the number of cavities in 3D regions are the cells
used to describe the border of a region. In 2D topological maps, border cells are
vertices and edges whereas in 3D the border cells are vertices, edges, and faces.
The core algorithm does not change except for the orbit used in the border traversal
algorithms. In the 2D case, the orbit 〈β1〉 gives the darts of the border of a region
and the involution β2 is used to retrieve the region on the other side of the border.
In the 3D case, the orbit 〈β1,β2〉 describes the border of a region and a dart of the
region on the other side of the border is obtained by the involution β3.

The time complexity of the incremental computation of the number of cavities of
the union of regions r1∪ r2 depends on the number of darts of the external border of
r2 and the number of darts of the border of r1 in contact with region r2.

4.3.2 Incremental Computation of the Number of Tunnels in 3D

The incremental computation of the number of tunnels of a region r represented in
a 3D topological map consists in computing incrementally each member of the for-
mula presented in Proposition 2. The number of connected components is constant,
and since the number of cavities can be obtained incrementally using the method
proposed in Sect. 4.3.1, we detail here the incremental computation of the Euler
characteristic of the border of the union of r1 and r2, denoted χ ′(r1∪ r2).
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In a 3D topological map, a border is a surface composed of faces, edges, and
vertices. There may be one or several surfaces between two adjacent regions; these
are the inner surfaces. We call inner cells the cells that entirely belong to the inner
surfaces: that is cells such that the region of each dart representing the cell is either
r1 or r2. Proposition 4 gives an incremental computation formula to obtain the Euler
characteristic of the border of the union of two regions r1 and r2 from the Euler
characteristic of the border of the two regions and the Euler characteristic of the
inner surfaces between the two regions. Proof of Proposition 4 is available in [16].

Proposition 4. χ ′(r1∪ r2) = χ ′(r1)+χ ′(r2)−2χ(inner(r1,r2))

Figure 13 presents an example of incremental computation of the number of
tunnels for the union of regions r1∪ r2 detailing the incremental computation of χ ′.
The resulting region has one tunnel and zero cavity.

Fig. 13 Illustration of the incremental computation of the number of tunnels for the union of
regions r1 ∪ r2 in a 3D topological map. Edges drawn in gray show the shape of the region. The
edges drawn in black are actual cells represented in the topological map. The faces drawn in dark
gray are inner faces, χ(inner(r1,r2)) is equal to two (two faces). The values of χ ′(r1) and χ ′(r2)
are equal to two (two vertices, three edges, and three faces). The resulting value for χ ′(r1 ∪ r2) is
equal to zero which corresponds to the expected value for a torus surface. The number of tunnels
obtained after using the formula is one.

We can ignore cells that partially belong to inner surfaces: they form the border
of the inner surfaces, and there is an equal number of edges and vertices. Since we
are only interested in the Euler characteristic and not in the actual number of cells
used to represent the union of regions r1 and r2 border, we can ignore these cells:
the Euler characteristic of the border of inner surfaces is always zero.

The algorithm that computes incrementally χ ′(r1 ∪ r2) for the union of two re-
gions r1 and r2 is defined as follow. The prerequisite for the incremental computa-
tion of χ ′ is to initialize the χ ′ value for each region in the first partition represented
by a topological map. This is done either by counting cells and using the algorithm
proposed in Sect. 4.2, or by using the incremental approach during the extraction of
the topological map as presented in [13]. The χ ′ value is stored for each region.

The incremental algorithm is divided in two processing loops. In the first loop,
we run through darts of the surface of r1 that are in contact with r2. Then each
dart belonging to an inner face is marked accordingly. We also count the number of
inner faces that are discovered. In the second loop, we count the number of the inner
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vertices and the number of the inner edges. Using the fact that the darts belonging to
inner faces are marked, we conclude that a cell is inner if all darts used to represent
the cell are marked as inner. In the final step, we compute the Euler characteristic of
the inner border. We retrieve the χ ′ value for both region r1 and region r2, and we
use the formula from Proposition 4 to obtain the Euler characteristic of the border
of the union of the two regions around the dart d. Then, with the incrementally
computed value for the number of cavity, we use the formula from Proposition 2 to
obtain the number of tunnels.

The algorithm has a linear time complexity with the number of darts belonging
to 〈β1,β2〉(d) (a subset of the darts used to represent cells of the border of region
r1). In fact, each dart of the orbit is processed at most four times during the course
of the algorithm. Darts belonging to the inner cells of r1∪r2 are also covered during
the cell counting part of the algorithm, but their number is linearly proportional to
the number of darts in the orbit.

4.4 Implementation of Topological Criteria in the Segmentation

The incremental computation of Betti numbers allows to anticipate the number of
tunnels and cavities during a region merging process. Thus, we can use the number
of cavities, or the number of tunnels as a removal criterion during the segmentation.

Weight functions can be defined according to topological properties, for instance,
one can prioritize cells whose removal do not change the topology of the regions.
However, due to region merging, a cell removal that does not change topological
features such as the number of cavities in a simple two regions merging might do
so after several other removals. It seems unlikely that such a weight function has
any interest for the segmentation part, and thus we keep weight functions given in
Sect. 3.3 based on intensity values of the image.

We propose to define two new criteria that handle topological properties like:

1. Forbidding topological changes for regions;
2. Reducing the number of cavities.

These criteria can be mixed with other criteria such as the ones presented in
Sect. 3.3 to control some colorimetric properties of the resulting regions. In such a
case, the idea is to check successively the different criteria and allowing the merge
if all criteria return a true value.

The first criterion, known as constant topology criterion and given in Algo. 10,
returns true if all the Betti numbers remain constant. That is, if each Betti number of
the resulting region is equal to the sum of the same Betti numbers of the two initial
regions (except for the number of connected components which is constant).

The second criterion, given in Algo. 11, returns true if the total number of cavities
is reduced. That is if the number of cavities of the resulting region is smaller than
the sum of the numbers of cavities of the initial regions.
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Algorithm 10: Removal criterion based on constant Betti numbers
Input: A dart d of an nD topological map.
Result: true iff cn−1(d) must be removed.

r1← region(d); r2← region(βn(d));
for i← 1 to n do

b← compute incrementally bi for r1∪ r2;
if b 6= bi(r1)+bi(r2) then return false;
;

return true;

Algorithm 11: Removal criterion based on decreasing number of cavities
Input: A dart d of a 3D topological map.
Result: true iff c2(d) must be removed.

r1← region(d); r2← region(β3(d));
C← compute incrementally the number of cavities of r1∪ r2;
return C ≤ #cavities(r1)+#cavities(r2);

Since we have a direct access to each information associated with darts (region(b),
βn(d)) and to each Betti number (bi(r)), the two algorithms have a time complexity
equal to the time complexity of the incremental computation algorithms which are
linearly proportional to the number of darts used to represent the cells of the border
of the regions.

The incremental computation method implies that, if two regions r1 and r2 are
merged during the symbolic merging, we update in constant time the Betti numbers.
This is achieved by storing the values computed during the evaluation of the topo-
logical criteria and using them to update the values of the symbolic region r1∪ r2 if
the two regions are merged.

5 Experimental Results

We present some segmentation results obtained using the segmentation algorithm
proposed in the previous section. First, we present some results obtained using dif-
ferent criteria with the generic segmentation algorithm and topological maps. Then,
we introduce topological constraints inside the segmentation algorithm to obtain
partitions that constraint the number of cavities or tunnels.
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5.1 Generic Criteria

We show some segmentation results obtained using the different criteria presented
Sect. 3.3. Figure 14 shows the segmentation of a classical 2D image using the in-
tensity range criterion, and the segmentation of simulated body positron emission
tomography (PET) 3D image using the contrast criterion. We also apply removal
of small regions to obtain a cleaner partition. In Fig. 14(c), we process edges in a
random order, that is without a meaningful weight function. The obtained partition
has more regions and some regions, which have a similar intensity (like background
regions) cannot be merged together due to the intensity range constraint.

(a) (b) (c) (d) (e)

Fig. 14 Sample partitions using the range and contrast criteria. (a) Original “fishing boat” image;
(b) Partition of the “fishing boat” image using the range criterion (range=100); (c) Partition of
the “fishing boat” image using the range criterion with a random weight function (range=100);
(d) Slice of a simulated body PET scan (luminosity and contrast have been edited); (e) Slice of the
simulated PET 3D image segmented using the contrast criterion with the removal of small regions
(k=2500, minimum size for regions 500 voxels).

The small region criterion allows removing small regions that do not appear to
be relevant to the obtained partition. An example of the use of such a criterion is
show in Fig. 15 where the initial partition Fig. 15(b), obtained using the range cri-
terion, contains lots of small regions. Using the small region removal criterion in
conjunction with a weight function that orders the edges by the intensity difference
between the two adjacent regions, we obtain the partition presented Fig. 15(c) where
the regions are larger.

5.2 Constraint on Betti Numbers

In Fig. 16, we show the impact of topological constraints applied to a segmentation
of the 2D image presented Fig. 16(a). We use the range criterion to obtain an ini-
tial segmentation shown in Fig. 16(b). In this segmentation there are regions with
cavities. Starting with the initial partition, increasing the range threshold, and con-
straining the number of cavities by a constant, we obtain the segmentation proposed
in Fig. 16(c). If the cavity count is allowed to decrease from the cavity count in
the initial partition, the result is slightly different, as shown in Fig. 16(d). Some ob-
jects disappeared as the regions representing them are merged with the background.
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(a) (b) (c)

Fig. 15 Partitions obtained from a 2D image using the small region criterion. (a) Original image;
(b) Partition obtained using the range criterion with a threshold of 50; there are many small regions;
(c) Partition obtained from the previous partition, by using the segmentation algorithm with a the
small region threshold set to 25. There are no more small regions of size less than 25 in the partition.

Moreover, some small cavities, like dots in the dice, are removed while they are
preserved if the number of cavities remains constant.

(a) (b) (c) (d)

Fig. 16 Segmentation of a 2D image using a topological constraint to limit the number of cavi-
ties. (a) Original image; (b) Initial partition obtained with a range criterion (threshold set to 100);
(c) Partition obtained from (b) if the number of cavities is constant with a range threshold set to
150; (d) Partition obtained from (b) if the number of cavities decreases with a range threshold set
to 150.

Figure 17 illustrates the results obtained by a segmentation algorithm that con-
trols the number of tunnels in objects. Without topological constraint, the segmenta-
tion using the intensity range criteria produces a 2-torus (a region with two tunnels)
as seen in Fig. 17(a). If no tunnels are allowed, the segmentation result uses three
regions to represent the same object, none of them having a tunnel (Fig. 17(b)). Fi-
nally, if one tunnel per region is allowed, the segmentation result uses two regions
to represent the object: one of them has a tunnel and the other one has none. This
is due to the ordering of the border of the segmentation algorithm that merges the
regions (Fig. 17(c)).
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(a) (b) (c)

Fig. 17 Segmentation of a 3D object using a topological constraint to limit the number of tunnels.
(a) Original partition of the object without a topological constraint on the number of tunnels per
region, the region has two tunnels; (b) Partition obtained if the number of tunnels is minimized: the
same object is represented by three regions without a tunnel; (c) Partition obtained if the allowed
number of tunnels does not excess one: the same object is represented by two regions, one having
a tunnel while the other has none.

6 Open Problems and Discussion

In this chapter, we presented an efficient and generic image segmentation algorithm
based on topological maps. The algorithm is generic because it is defined in any
dimension, and it is controlled by two functions that change its behavior. In order
to specify the segmentation process, we define several segmentation criteria using
different kind of information associated with the regions or the cells represented
by topological maps. A method of computation of topological invariants, the Betti
numbers, based on the complete representation of cells and the relationship between
them in topological maps, is presented. We introduce new topological criteria using
Betti numbers that control the number of cavities and tunnels in regions of an im-
age partition. This process is an example of topological control during image seg-
mentation. We provide some experiments of 2D and 3D image segmentation using
different criteria to enlighten the use of topological maps for image segmentation.

There are several open problems and possible extensions for image segmenta-
tion using topological maps. From a theoretical point of view, the main issue to
tackle involves the definition of topological maps in any dimension. The problem
is to construct a minimal combinatorial map that describes an nD image partition
into regions. In 2D and 3D, we propose a constructive definition that is proved in
[9, 8]. Starting from a combinatorial map describing all the elements of the image,
the model is refined by successive simplifications using removal operations. The
process produces the minimal map representing the partition of the image. The prin-
cipal difficulty is to guarantee the preservation of all topological information during
the cell removals while obtaining the minimal number of cells in the combinatorial
map. One can directly extend the constructive definition in higher dimensions since
combinatorial maps and removal operations are defined in any dimension. The con-
straints required to preserve all the topological information may also be stated for
any dimension, but guaranteeing that the obtained combinatorial map is minimal,
remains an open problem. This is not an issue for the particular topic of image seg-
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mentation since the generic algorithm does also work in non-minimal combinatorial
maps. However, this is not satisfying since two different combinatorial maps may
describe the same partition.

Another theoretical problem is the computation of Betti numbers and their use
as criteria for image segmentation in any dimension. Currently, we only have com-
putation algorithms in case of 2D and 3D topological maps. This issue is related
to the problem of combinatorial balls’ characterization. Actually, Betti numbers are
defined for a cellular complex where each cell is homeomorphic to a topological
ball. As there is no combinatorial way to recognize if a cell is a topological ball,
there is no easy way to compute Betti numbers. This is also an open problem in
computational topology. In 2D and 3D, we solve this problem by using the Euler
characteristic of each border of regions and the implicit cells, but this solution is not
available in higher dimensions. An extension of this problem is the computation of
other topological invariants such as the homology group generators for regions in a
topological map.

Future works that do not raise theoretical questions might include the develop-
ment of alternative segmentation methods using topological maps. In this work, we
presented a bottom-up segmentation approach that uses the removal operation to
group regions and obtain the final segmentation. Using the split operation, which
divides a region in smaller regions, one can develop a top-down approach. Starting
with the whole image in a unique region, the final partition is obtained by succes-
sive splits of regions. New criteria based on region properties should be developed
to support the top-down approach as the method raises new issues. One aspect of
such criteria is to define how regions are split from the geometrical and topological
point of views. An example of topological criterion we envision is the split of a re-
gion based on the number of tunnels or cavities. An initial idea is to split a region
to remove a tunnel or a cavity from that region: this criteria might gain from the
computation of the homology group generators to guide the split operation. Another
idea is to split a region with multiple cavities such as each of the resulting regions
has exactly one cavity.

To broaden the use of topological maps in computer vision related works, we
also want to tackle real world image segmentation issues. In preliminary experi-
ments, we obtained interesting results regarding the use of Betti numbers as criteria
for image segmentation. Using image segmentation with topological maps, in con-
junction with topological criteria like constraints on Betti numbers, could ease the
development of image segmentation tools. This should be fully demonstrated by
applying image segmentation with topological maps to real use cases and compare
results to existing approaches. Experts from the field should be brought along to de-
fine the goals of the segmentation tool and evaluate the results. New criteria, based
on different parameters should also be introduced and mixed with the existing ones
to produce better results.
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