
HAL Id: hal-01352977
https://hal.science/hal-01352977v1

Submitted on 13 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Procedural Locomotion of Multi-Legged Characters in
Dynamic Environments

Ahmad Abdul Karim, Thibaut Gaudin, Alexandre Meyer, Axel Buendia,
Saida Bouakaz

To cite this version:
Ahmad Abdul Karim, Thibaut Gaudin, Alexandre Meyer, Axel Buendia, Saida Bouakaz. Procedural
Locomotion of Multi-Legged Characters in Dynamic Environments. Computer Animation and Virtual
Worlds, 2012, 24 (1), pp.3-15. �10.1002/cav.1467�. �hal-01352977�

https://hal.science/hal-01352977v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Procedural Locomotion of Multi-Legged Characters
in Dynamic Environments

Ahmad Abdul Karim1 2, Thibaut Gaudin2, Alexandre Meyer1, Axel Buendia2 3, Saida Bouakaz1

1 Université de Lyon, CNRS
1 Université Lyon 1, LIRIS, UMR5205, F-69622, France

2 Spir.Ops Artificial Intelligence, Paris, France
3 CNAM−CEDRIC, 292, rue St Martin, 75003 Paris, France

Abstract
We present a fully procedural method capable
of generating in real-time a wide range of
locomotion for multi-legged characters in
a dynamic environment, without using any
motion data. The system consists of several
independent blocks: a Character Controller, a
Gait/Tempo Manager, a 3D Path Constructor
and a Footprints Planner. The four modules
work cooperatively to calculate in real-time the
footprints and the 3D trajectories of the feet
and the pelvis. Our system can animate dozens
of creatures using dedicated level of details
(LOD) techniques, and is totally controllable
allowing the user to design a multitude of
locomotion styles through a user-friendly
interface. The result is a complete lower body
animation which is sufficient for most of the
chosen multi-legged characters: arachnids,
insects, imaginary n-legged robots, etc.

Keywords: Procedural Animation, Level
Of Details, Multi-Legged Characters, Dynamic
Environments.

1 Introduction
Real or imaginary animals make frequent ap-
pearances in video games, films and virtual
world simulations. In this context, animated
virtual multi-legged characters like arachnids,
insects, crustaceans or any imaginary n-legged
robots/creatures make these virtual worlds be-
lievable and life like. The most common task

(a)

(b)

(c)

Figure 1: (a) Spider model avoids crates flagged as forbid-
den and steps on others flagged as safe (b) Ant
model on a height map (c) Imaginary 5-legged
Robot.

that these virtual multi-legged characters per-
form is locomotion: the ability to move in
these virtual worlds toward the points of in-
terest. These locomotion animations are quite
rich due to the variety of morphologies, gaits,
body sizes/proportions and due to the complex-

ity of the environment where these multi-legged
characters move: overcoming objects, cross-
ing uneven terrain, avoiding moving obstacles,
etc. The challenge of modeling such motions
arises from the lack of motion capture data
inherent to the difficulty to obtain them and
by the fact that existing animation techniques
mostly address human-like characters [1].

We propose a system (See Figure 1) that
procedurally generates locomotion animations
for dozens of multi-legged characters, without
any motion data, in real-time using dedicated
level of details (LOD) techniques, and with a
reactive adaptation to a dynamic environment.
We focused on generating plausible movements
[2] that are, at the same time, believable and
fully controllable. Our technique produces a
multitude of locomotion styles, generated out
of many input parameters like the creature
morphology, gait/tempo, the overall locomo-
tion speed, etc. These input parameters can
be edited through a user-friendly interface in
real-time. We propose a foot path planning
system that assign to each foot the best cou-
ple (footprint-trajectory), where the footprint
is selected among several candidates, and the
trajectory is the 3D path that reach this footprint.
Our system generates plausible locomotion an-
imation at different level of details (LOD): the
evaluation of the possible couples (footprint-
trajectory) may be adapted according to the
desired LOD, typically depending on quality
criteria such as the on-screen importance, vis-
ibility, etc. These footprints and trajectories
may change in real-time in a reactive manner
according to the dynamic of the environment
and the obstacles. Finally, our system generates
the pelvis trajectory according to the overall
desired direction, speed, the actual context of
the environment and the feet positions and feed-
backs. Thus, our procedural approach provides
two important features for interactive applica-
tions: reactivity and control.

2 Related Work
There are several techniques for generating lo-
comotion, Multon et al. in [3] and Van Welber-
gen et al. in [1] identified in their surveys the
three major techniques: data-driven, physics-
based and procedural. Notice that few of the

presented approaches were dedicated or tested
on the family of animals and creatures presented
in this paper, and to our knowledge, none ad-
dresses the performance issues with level of
details techniques introduced in our system.

Data-driven techniques use input data to
produce the animation (like Motion Capture
Data). These techniques, although the most
natural looking, are fixed for a specific mor-
phology and a specific context. Physics-based
techniques are more generic and adapt better
to the environment. They do so by simulating
the actual physical forces/torques that act on the
articulated body. But they are computationally
expensive due to the number of equations to
solve, which limits the number of characters
simulated at the same time. Several works
were proposed to overcome the problems of
the previous techniques or to mix them, like:
Adapting the motion data to different morpholo-
gies (Motion Retargeting) using inverse kine-
matics in [4, 5] or mesh based techniques in
[6]. Using inverted pendulum model (IPM)
[7] to avoid complex kinematics and dynam-
ics calculations on the original multi-segments
skeleton. In [8] they animate the upper body of
the character using Motion Capture data while
the lower body is animated using an IPM. In
[9] they optimize their IPM controller using
Motion Capture data. In [10] they animate a
quadruped in real-time using forward dynamics,
using forces data extracted out of real quadruped
Motion Capture data. Finally, several papers
introduce a specific offline optimization pass,
to accommodate for predefined environmental
topologies and changes [11, 12]. The lack of
motion data and the difficulties to obtain them
for the family of animals and creatures that
we simulate has led us to avoid data-driven
techniques. In our system we concentrated more
on generating plausible movements [2], making
it more adapted (performance wise) to real-time
applications than the physics-based ones.

Procedural techniques use mathematical
formulas and algorithms to generate the loco-
motion without any real motion data. They
do so using empirical and biomechanics con-
cepts. These techniques offer high level of
controllability over data-driven ones: practically
no morphological constraints, good adaptability
to the environment, etc. These techniques take

less computation time per character, making it
possible of animating several characters at the
same time in real-time. However, they may
suffer from the lack of naturality in the move-
ment, a disadvantage that we try to overcome
in this paper by integrating basic biomechanics
principles. We took inspiration from the work of
Boulic et al. in [13] on a human walking model
and the work of Singh et al. [14] that show how
avoidance in dynamic crowds can be improved
using biomechanics-based footstep planning.

In parallel to the locomotion animation, a path
and footprints planning are needed in order to
navigate through the environment. In [15] they
search valid footprints using probabilistic nav-
igation graphs that take into account posture
transition. Then, these footprints are substituted
with corresponding motion clips. Lamarche
in [16] generates navigation graphs and ceiling
information and uses these information to cal-
culate the best footprints around the optimized
trajectory, and to generate the final motion using
motion data, allowing for 3D navigation in com-
plex environments. Path planning techniques are
also largely studied in robotics. In [17, 18, 19]
(H7 Humanoid Robot™ and Boston BigDog™)
their planner produce the footprints using feed-
forward loops, correcting itself after each step
for adaptation. In [20] (Honda ASIMO™)
they plans a sequence of footstep positions to
navigate toward a goal location while avoiding
static and dynamic obstacles, their method uses
a time-limited planning horizon. Comparing
to our purpose of computer animation, robotics
have to deal with the complexity related to the
mobile robot mechanical constraints and with
the real world physics that we do not fully have.

Most of previously cited techniques are Foot
placement driven locomotion, where the feet
drive the locomotion and the overall trajectory
of the center of mass. In [21] they generate lo-
comotion by overlaying Motion Capture data on
predefined foot placement, while Torkos et al. in
[22] generate the locomotion of a quadruped
using external imposed footprints, and real-time
physics. These techniques suffer from the prob-
lem that the lower body (the legs) usually do
not control the locomotion. On the contrary,
the upper body imposes a logical trajectory
that the lower body tries to follow [23]. Our
system respects this concept: the pelvis adapt

its movement based on the feet feedback, but at
the same time it imposes the overall trajectory.

When considering locomotion of multi-
legged animals, the possibility of using real
data are strongly limited due to difficulties to
capture the motion of real creatures like dogs,
horses, insects, spiders, etc. and is sometime
impossible like for an imaginary 5-legged char-
acter. Thus, Girard et al. in [24, 25] propose a
fully procedural system to animate multi-legged
characters with visually plausible locomotion.
Their system is limited to planner terrains. Our
work can be considered as an extension into
dynamic environments. Johansen in [26] adapts
existing motion data (biped and quadruped) to
the environment using inverse kinematics and
footprints prediction. In [27] they animate a six-
legged character (a cockroach) using reduced-
linear articulated body dynamics and gait pat-
terns observed in biology. Wampler et al. in [28]
present a fully automatic method for generating
locomotion and gaits for legged animals based
on their shape and by the use of an off-line op-
timization pass that results in believable anima-
tions. In [29] they use intelligent retargetting of
2-4-6-legged Motion Capture data without any
morphological constraint (the user can design
their own creature). The objective of our system
is to achieve similar results with the procedural
techniques in real-time without using any off-
line components, and with much more control
in a dynamic complex environment.

Finally, as our method tries to generate plau-
sible and believable locomotion, we created our
controllers in a way that reflects many studies:
the effect of limb length and running speed on
time of contact and step length in [30], the
relationship between speed and step length in
humans in [31], and animal gaits: galloping,
trotting, pacing, etc. in [32].

3 Overall Locomotion Controller
Locomotion is the act of moving from one place
to another. For most terrestrial animals that
means putting one foot in front of the others in
a successive way until reaching the designated
point of interest (target). During a normal foot
movement there are two main phases explained
more in [33]: the stance phase where the foot
is blocked on the ground and the swing phase

Feet Path
Planning

Pelvis

Figure 2: System Overview

where the foot flies in a parabolic-like curve
toward its target without any ground contact.
Locomotion cycle is the act of repeating these
feet movements, based on a certain rhythm or
tempo. Our system follows these principles
when generating -procedurally and in real-time-
the locomotion of the multi-legged characters.
The main advantage of the procedural approach
is the reactivity as it adapts to the environment,
and the controllability (a list of all controllable
parameters is detailed in Section 3.1). Starting
from an environment defined by a height map
and several obstacles (moving or static), the
overall locomotion process is computed by four
blocks as shown on Figure 2.

• The character controller is the central main
structure that manages the overall loco-
motion of the multi-legged character (See
Section 3.2). It relies on the three other
structures to compute the motion of the feet
and the overall pelvis displacement.

• The gait manager regulates the feet tempo
according to the movement patterns de-
fined by the user (See Section 3.3).

• The 3D path constructor is a utility struc-
ture that construct a 3D trajectory of a foot
using an efficient discrete representation of
the environment that can be easily main-
tained and updated with dynamic objects
(See Section 4).

• The footprints planner evaluates for each
foot all the possible targets and trajectories
in real-time, and chooses the best couple of
footprint target and 3D trajectory (See Sec-
tion 5).

These four blocks work together in order to
generate the movement of the feet and the pelvis
in 3D. Now, to obtain the final lower body
locomotion movement we apply an inverse kine-
matics (IK) algorithm. We use a system called
the Cyclic Coordinate Descent (CCD) algorithm
[34, 35] which computes the position and orien-
tation of the legs joints that connect the pelvis
with its feet. We chose the CCD because of
its performance and simplicity: it minimizes the
error between the actual end effector position
and the desired one by iteratively modifying the
angle of the joints.

3.1 System Parameters

(b) (a)

Figure 3: Spider Model: (a) internal representation of
the spider model with its IK system, in pink
is the projected bounding box, in blue the feet
orientation. (b) the actual spider 3D model.

Our system generates the locomotion anima-
tions using several input parameters, that the
user provides or controls in real-time. All the
parameters (except the morphology parameters)
can be edited at any time by the user or by any
automatic character controller when the focus is
to animate a crowd of creatures. An overview of
all the parameters follows.

• Multi-legged character morphology: the
user provides an initial static skeleton that
can be associated with a skinned mesh.
To automatically map the morphology, the
user provides the system with the name
of each leg hip joint and the name of its
end effector (e.g. the joint before the foot).
Out of these inputs our system detects the
number of feet, leg sections, the relative
hip positions and the initial feet relative
positions. The user also needs to provide
the system with the desired leg joint limits
(for our CCD algorithm), real body center,
projected body bounding box, body thick-
ness, and finally the projected foot shape (if
it exists) an example is shown on Figure 3.

• Gait/Tempo: using our interface, the user
designs for each foot the stance and swing

phase cycle. These cycles describe the
pattern of the feet movement. The final gait
can be symmetrical or asymmetrical.

• Locomotion speed: speed of the move-
ment in meter per second.

• Step height: the preferred foot step height
in meter.

• Feet spacing: the preferred position of
each foot, relative to the pelvis.

3.2 Character Controller
The character controller is the coordinator of
the overall system. It is in charge of two main
tasks: managing the movement of the feet and
computing the pelvis 3D movement based on the
user needs and on the final positions of the feet.

3) Naive Target

Position

4) Preferred Target Position

Vertical Slice in the Environment

1) Initial Position

2) Step Length

(a)

Envi

ron

me

nt

1) Environment
Convex Hull

Multi-legged Character Body
Bounding Box Projection

2) Final
Convex Hull

3) Center
Projection

(b)

Figure 4: The vertical slice in the environment can contain
objects and obstacles, (a) computation of the
preferred footprint target for each foot. The
naive target position is calculated by querying
the environment about the elevation of the 2D
point resulted from the initial position + the
step length (b) Computation of the pelvis’ height
using several convex hulls that covers the envi-
ronment slice that interests us

Pelvis default movement: the 2D movement
of the pelvis on the ZX plan (assuming the
Y -axis is up) is calculated based on the speed
and orientation. While the computation of the
pelvis height is more complex, as shown on
Figure 4(b): we first construct a convex hull
based on the ground height underneath it and
the actual position of the feet. By projecting the

multi-legged character center on this convex hull
we get the needed pelvis height and by adding
the body thickness we get the actual pelvis
height. At the same time the character controller
adds an oscillating (sinusoidal) movement on
this pelvis height, based on the feet phases. The
pitch angle of the multi-legged character body
is calculated directly from the convex hull. It is
the slope of the line segment that contains the
projected center of the multi-legged character.

Foot Path Planning

For Each Foot

Do Nothing

Stance

Check 3D
Trajectory

Already in
Swing Phase

Valid? Yes

New to Swing Phase

No

Calculate Needed Target

Footprints
Planner

 Yes No

3D Path
Constructor

Foot State?

Forced Replan?

Figure 5: Main job of the character controller per foot:
based on the current foot state it can take differ-
ent decisions

Feet movement: Figure 5 explains how the
character controller manages the movement of
the feet (first task). At each time step, the
gait manager informs the character controller
about the feet that are going to enter swing
phase as detailed in Section 3.3. For each of
these feet a preferred footprint target is calcu-
lated. As shown on Figure 4(a), the foot step
length is calculated based on the current speed,
multi-legged character morphology and the foot
relative position that the user can impose as
illustrated and explained directly on Figure 6.
After calculating this foot step length, we use
the initial position of the foot to calculate the
preferred 3D target position in the environment
(See Figure 4(a)).

Finally, the character controller calls the foot
path planner to compute the 3D trajectory that
this foot will follow, as described in Section 5.
Feet that were already in swing phase may need
a new a 3D trajectory (path) for several reasons:
a new pelvis orientation (when turning), a new
desired relative position of the foot (Figure 6),
a new overall speed, or something changed in
the environment thus invalidating its current 3D
trajectory or its current target. In these cases the
character controller processes this foot as if it

just started its swing phase, and therefore it is
redirected to the previously explained foot path
planning phase. Stance feet are blocked on the
ground.

Character
Front

Feet with Equal Target
and Current Relative

Position

Foot Current
Relative Position

Foot Target
Relative
Position

Position
Interpolation

Top View

Figure 6: 8-Legged Character Feet Spacing Interface

Pelvis movement refining: After moving the
feet, the character controller refines the pelvis
movement based on the feet feedback (shown on
Figure 7). Each foot can choose a better target
that adapts better to the context (see Section 5).
In that case, the character controller averages
the offset between the preferred footprint targets
(Figure 7 in blue) and the effectively chosen
one (in green). The controller incorporates this
offset when it is quite significant, based on the
multi-legged character morphology, otherwise it
discards it.

Foot
Chosen
Target

Movement Direction
Pelvis

Foot
Pelvis

Needed
Target

2D Top View

Figure 7: Feet feedback: During the computation of the
pelvis displacement, we use the feet feedback.

3.3 Gait Manager

The role of the gait manager is to organize and
visualize the pattern of the feet’s cycle and to
perform the transition between patterns. Since a
locomotion is cyclic, it seemed natural to repre-
sent the gait/tempo with circles. As illustrated
on Figure 8, each circle represents a foot, with
the colored sectors representing the swing phase
portion of the foot movement. The feet needle
activates sectors and deactivates others based on
its current position while turning. Activating a
sector means that the corresponding foot should
enter in the swing phase.

Foot Currently in
Swing Phase Feet Needle

Needles
Rotation
Direction

Next Feet to enter
Swing Phase

Un-active

Foot 0
Foot 1
Foot 2
Foot 3

Figure 8: An example of a four feet’s gait as shown by the
gait manager. With this interface, the user can
edit the pattern.

Gaits interpolation/transition During a lo-
comotion cycle any creature changes its gait
constantly in order to adapt to the environment.
To accommodate for this changes in the gait
and to introduce more variety in the locomo-
tion styles, our gait manager allows the transi-
tion/interpolation between any needed gaits on
the fly. Each swing phase sector has a start and
a finish, we compute the transition to another
(destination) gait by simply interpolating the
start of the source sector toward the start of the
destination sector in the direction that does not
pass by the finish of the destination sector. On
Figure 9(a) we chose the clockwise direction
while on Figure 9(b) we chose the counterclock-
wise one. By doing so, the interpolation does
not pass by any area of the circle that the user
does not want to. The interpolation of the dura-
tion of the swing phase (the size of the sector) is
quite straightforward, and the speed of all these
processes can be fixed in advance by the user.
So, on each step and when the foot is not active
(in stance phase), we replace its disk with the
new disk calculated in the interpolation process,
resulting in seamless and logical interpolation.

4 3D Path Construction
During the swing phase, each foot has a cur-
rent position (source) and a desired footprint
target. The role of the 3D path construction is
to construct the foot 3D trajectory that navigates
through the environment, from this current posi-
tion toward the footprint target without colliding
with any obstacle. This 3D path construction is

Source Gait Destination Gait

Sector
Start

Sector
Finish

Foot 0
Foot 1

(a)

1 2 3 4 5

(b)

1 2 3 4 5

Clockwise
Interpolation

Counter
Clockwise

Interpolation

Figure 9: Interpolations Options: (a) deciding to do a
clockwise position interpolation based on the
actual disposition of the gait disks (b) deciding
to do a counter-clockwise position interpolation

requested several times with different footprint
targets by the foot path planner as it will be
explained in Section 5. The environment itself
can be very complex, and it can include several
objects represented by many triangles. That
is why we have oriented this path construction
process toward a discrete grid-based approach.
Indeed, once the environment is converted and
represented by our grid, the path computation
becomes independent of the object’s complexity.
We also have chosen this over a vectorial based
path planning because discrete algorithms are
easier to implement.

Grid-based representation of the environ-
ment. We convert the 3D environment near
the animated multi-legged character into two 2D
grids: the obstacles’ map and the elevations
map. The obstacles’ map describes the areas
of the environment where the feet are allowed
to pass, as illustrated on Figure 10(a). The
black cells represent the obstacles, and we call
them the forbidden cells. The elevations map
contains the elevation of the highest obstacle in
each cell as shown on Figure 11. These two
maps are computed using the terrain heightmap
and the objects: the bounding box of each object
is voxelized onto the maps. Concave objects are
subdivided into convex ones. We pre-compute
the map’s representation of static objects. While
we compute the map’s representation of dy-

(a)

(b)

Figure 10: (a) We firstly construct the path in a 2D
voxel-based representation of the environment
(yellow dots) and then generate the final curve
(in black) with a selection of waypoints (red
dots). (b) Using the elevations map and the
previous 2D trajectory we construct the 3D
trajectory.

namic objects when they move near our multi-
legged character. In order to avoid legs crossing,
we add for each foot the projection of the other
legs into the obstacles’ map as forbidden cells.

Start Position Pelvis Preferred Target

Figure 11: An example of our environment discretiza-
tion: pink spheres represents the ground, yel-
low spheres contain the corner of an obsta-
cle, green spheres contain an obstacle edge,
blue spheres are an obstacle interior and red
spheres are an obstacle size increase.

These maps are relatively small as they are
only computed around our animated multi-
legged character, speeding up calculations.
Since a foot could not be punctual, we use the
bounding box of the foot shape to increase the
size of the obstacles in the opposite direction

of the foot, as shown on Figure 12. Doing so
guarantees the non penetration of the foot with
the obstacles.

Foot Shape and
Orientation

Obstacle

Contextual
new obstacle

Foot Center

Figure 12: We increase each obstacle size using the
bounding box of the foot and its orientation in
order to better avoid collision.

Path construction. Always with a perfor-
mance concern, we firstly compute the trajec-
tory from the actual foot position toward the
targeted footprint in the ZX plan using the
projections of the source and the target on the
ZX plan (in black on Figure 11). Our system
uses a shortest path computation that processes
a Wavefront algorithm combined with the poten-
tial field method [36] for the obstacle avoidance.
This method is quite similar to the well-known
Dijkstra’s shortest path algorithm.

The resulting path off the wavefront algo-
rithm is constructed out of several cells that we
call the naive cells of the plan (in yellow on
Figure 10). We refine these naive cells, using
queries of line of sight (no intersection with
a forbidden cell) to eliminate unwanted cells,
and we obtain the final cells of the the plan (in
red). These cells are used to build the 2D path
represented by a parametric Hermite curve as
shown on Figure 10)(a).

We sample this 2D curve and elevate it in
3D using the elevations map. Resulting way-
points are used as control points to define a 3D
Hermite curve: this curve represents our 3D
trajectory through the environment as shown on
Figure 10(b).

5 Footprints and Feet Path
Planning

In Section 3.2, we explained that starting from
the initial foot position the character controller
calculates a preferred footprint target according
to the locomotion parameters and the surround-
ing environment (Figure 11). But these calcula-
tions do not take into consideration the actual
state of the foot and its preferences (e.g. the

preferred target calculated by the character con-
troller can be too close to an obstacle). That is
why in this step we calculate and assign to each
foot the best trajectory toward the best target in
the current environment.

5.1 Potential Footprints
Our algorithm evaluates several footprint tar-
gets by exploring the potential cells around
the preferred footprint (the one computed by
the character controller in Figure 11). Several
operations are done to do that. In both maps
(the obstacles’ map and the elevations map), we
firstly increase the size of the obstacles using
the foot shape (See Figure 12 and Figure 11 in
red). Secondly, to eliminate possible intersec-
tion with other feet we fill the obstacles’ map
with the position of these other feet. Thirdly,
we identify all the -potential- cells that may
accept a footprint: all the non-forbidden cells
that are not a size increase ones (Figure 13). For
each potential target, we calculate a score based
on several criteria’s: distance to the preferred
footprint, difference of elevation between the
footprint and the surrounding cells, leading or
not to a feet crossing, etc. The combination of
all these criteria’s provides the final cell’s score
(footprint score) that we normalize between 0
and 1. Figure 13 shows these scores.

5.2 Best Pair of Footprint and Path

Figure 13: Potential targets: the color varies from green
(best target) (score = 1) to blue (worst target)
(score = 0). Crossed cells are the cells
processed by our algorithm, in pink possible
trajectories, in black the chosen one.

Avoidance-wise. During the 3D path con-
struction (See Section 4), the forbidden cells in
the obstacles’ map designate the parts of the
environment that the 2D trajectory is going to
avoid and go around. This 2D trajectory passes
through cells that have an elevation. The 3D
path constructor uses this elevation to construct

the final 3D trajectory. The system uses this ob-
stacles’ map to process an obstacle: either going
around it or going over it. If the system wants to
go around an obstacle, it just needs to add it to
the obstacles’ map as forbidden cells. In that
way, the resulting 2D trajectory will definitely
go around it. While if the system wants to go
over an obstacle, it does not need to do anything
special as the obstacle is already present in
the elevations map. And the obstacle will be
avoided accordingly based on its elevation. In
order to achieve this avoidance distinction in an
optimal way in a complex environment (height
map plus obstacles), our system discretize the
elevations map on the Y -axis into slices (for
instance slices of 10cm). For each slice, the
system fills the obstacles’ map with the cells
that have higher elevation than this slice. In that
way, all calculated trajectories will go over all
obstacles, objects and pieces of the environment
that have an elevation lower or equal to the
slice’s elevation. At the same time, all calculated
trajectories will go around all obstacles, objects
and pieces of the environment that have an ele-
vation higher than the chosen slice’s elevation.

So each trajectory can go around or over each
obstacle, which generates multiple trajectories
toward a target. Each one of these trajecto-
ries has a score. Our search space is all the
possible trajectories that go from the starting
point toward all the possible targets. Out of this
multitude of possibilities, our main algorithm
picks up the best couple (target-trajectory) in an
intelligent way.

Our algorithm (result shown on Figure 13)
loops on all the possible targets based on their
score (in a descending way). For each one of
these targets, the algorithm first generates the
2D trajectory and scores it, if the score of the
couple (target-trajectory in 2D) is better than the
current best couple found till now, it continues.
Then it generates the 3D trajectory based on the
2D one and scores it, if the score of the new
couple (target-trajectory in 3D) is better than the
current best couple, then it tags this new couple
as the best one and continues. The algorithm
continues evaluating the couples until it reaches
a couple (target-trajectory in 3D) with a score
worse than the current best one, in this case it
stops and the current best couple is the best one.
So, at the end of the algorithm we obtain the best

footprint target and 3D trajectory that this foot
should follow. We calculate the length of this
3D trajectory, and using the needed time given
by the character controller, we move the foot on
the curve at a constant speed.

Trajectory scoring. We generate for each
created 2D/3D trajectory a score based on the
application specifications, like the total length of
the path, the acceleration and the curve tangents
profile, etc. For instance, the system shown in
the accompanying video prefers trajectories that
are more straight (direct) with less curvature,
a preference observed in biomechanics as it
minimizes the energy cost [37, 38].

6 Level of Details techniques
(LOD)

Our main algorithm (Section 5.2) execution time
can be controlled easily when simulating many
multi-legged characters in order to accelerate
the simulation itself. This comes from the
ability of controlling the number of evaluated
couples (target-trajectory) and from the ability
of controlling the size of the slices used when
avoiding obstacles. But in order to always
have a plausible locomotion, we start applying
this LOD after we find the first valid couple
(target-trajectory), in this way we ensure that
the algorithm will assign to each foot a valid
trajectory toward a valid target (although it is not
the best couple).

In our simulation and for off-screen charac-
ters, the algorithm stops directly when finding
this first couple. While for the on-screen char-
acters, we limit the number of couples evalu-
ated after finding this first couple in a linear
way based on the distance of that multi-legged
character from the camera. In this way for far
on-screen characters the algorithm stops also
when it finds the first couple. In the same way,
for off-screen characters the algorithm tries to
go over any obstacle using no slices (not going
around any obstacle). While for the on-screen
characters, we increase the size of the slices (for
example 10cm, 15cm...no slices) in a linear way
based on the distance of that character from the
camera. This LOD can be regarded as: the more
the character is far away from the camera (or
off-screen) the less our algorithm worries if the
chosen couple is comfortable. In next section

Table 1: Average computation time for 100 8-legged characters
Total for Characters Maps Preparation CCD IK Systems Average FPS

LOD 0.026s 0.004s 0.013s ~30fps
LOD Zoomed 0.028s 0.004s 0.006s ~30fps

No LOD 0.045s 0.004s 0.013s ~18fps

we speak about the actual performance of our
real-time system.

7 Results
In our implementation, the environment is rep-
resented by two classes of objects: the terrain
and the obstacles. A height map defines the
terrain and is loaded without any pre-processing
analysis (See Figure 11). The obstacles are
mainly represented by crates with various sizes
and orientations randomly generated on the ter-
rain (See Figure 1 and 14). These crates can be
static or can move on the terrain (See the accom-
panying video). Without changing anything in
the system, we have tested it on different kinds
of terrain (flat surface, smooth terrain, regular
stairs, etc.) with different kinds of obstacles
(static crates and moving ones). The size of the
discretization maps used in our tests is 70 × 70
with 7cm cells, which consumes little memory
and is precise enough since the maps describe
only the environment close to each animated
character. The animated multi-legged characters
gaits are inspired from biology studies [39, 40]

Figure 14: Simulation snapshot.

The results show that our system is well
adapted for real-time applications. In Fig-
ure 14 and in the accompanying video we show
many morphologically different characters ani-
mated in real-time using our test machine (Core
i7 2.7 GHZ, 8 GB RAM, 6870 ATI Radeon
HD with 1GB vRam). Table 1 shows average
computation time for 100 8-legged characters.

In LOD we make sure that all of the characters
are in the field of view of the camera, while in
LOD Zoomed we zoom on one character and
make sure that at least 50% of the characters are
shown on the screen. As we can observe, the
maps preparation is fixed, as it is pre-computed
once, for all characters at the same time. In LOD
Zoomed the system loses some computation
time per character as there are more characters
doing full search for the best couple, while in
the same time gains computation time in the IK
systems as we do not calculate the IK for the
off-screen characters.

8 Conclusions
We presented a system capable of procedu-
rally generating believable locomotion anima-
tion of several multi-legged characters (like
arachnids, insects, or any imaginary n-legged
robots/creatures) in real-time with no a priori
motion data nor any information about the en-
vironment. Our system is quite generic and can
be applied on a variety of morphologies. In run-
time the user can control many parameters like
the the gait, the speed, the direction, etc.

Nevertheless, the current system assumes that
the feet of the character can be represented by
a point. Our model does not include the feet’s
metatarsus, which has a great impact on the
naturalness of the locomotion when considering
more complex characters. As a future work, it
will be interesting to study this point, specially
for bipeds/humans. And to study the addition
of a flexible spine-like structure, which is essen-
tial when simulating quadrupeds [10]. We are
also planning on improving the pelvis behavior
to incorporate dynamic-like balance reactions.
Our system can serve as input to higher level
characters’ controllers that would like to provide
more animations than only the locomotion, like
touching objects for discovering the environ-
ment, studying insect’s behavior, etc.

References
[1] H. Van Welbergen, B. J. H. Van Basten, A. Egges,

Zs. M. Ruttkay, and M. H. Overmars. Real time
animation of virtual humans: A trade-off between
naturalness & control. Computer Graphics Forum,
29(8).

[2] Ronen Barzel, John F. Hughes, and Daniel N. Wood.
Plausible motion simulation for computer graphics
animation. In Proceedings of the Eurographics
workshop on Computer animation and simulation,
1996.

[3] Franck Multon, Laure France, Marie-Paule Cani-
Gascuel, and Gilles Debunne. Computer animation
of human walking: a survey, 1999.

[4] Michael Gleicher. Retargetting motion to new char-
acters. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques,
SIGGRAPH, 1998.

[5] Franck Multon, Richard Kulpa, Ludovic Hoyet, and
Taku Komura. From motion capture to real-time
character animation. In Motion in Games, 2008.

[6] Edmond S. L. Ho, Taku Komura, and Chiew-Lan
Tai. Spatial relationship preserving character motion
adaptation. ACM TOG, 29(4), 2010.

[7] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko,
Kazuhito Yokoi, and Hirohisa Hirukawa. The 3d
linear inverted pendulum mode: A simple modeling
biped walking pattern generation. In International
Conference on Intelligent Robots and Systems, 2001.

[8] Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B.
Cheng, Jehee Lee, and Tong-Yee Lee. Real-time
physics-based 3d biped character animation using an
inverted pendulum model. IEEE Transactions on
Visualization and Computer Graphics, 16(2), 2010.

[9] Taesoo Kwon and Jessica Hodgins. Control sys-
tems for human running using an inverted pendulum
model and a reference motion capture sequence.
In Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’10, 2010.

[10] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel
Reveret, and Michiel van de Panne. Locomotion
skills for simulated quadrupeds. ACM Trans. Graph.,
2011.

[11] Jia-chi Wu and Zoran Popović. Terrain-adaptive
bipedal locomotion control. ACM Transactions on
Graphics, 29(4):72:1–72:10, Jul. 2010.

[12] Jack M. Wang, David J. Fleet, and Aaron Hertzmann.
Optimizing walking controllers for uncertain inputs
and environments. ACM Trans. Graph., 29, 2010.

[13] Ronan Boulic, Nadia Magnenat-Thalmann, and
Daniel Thalmann. A global human walking model
with real-time kinematic personification. Vis. Com-
put., 6:344–358, November 1990.

[14] Shawn Singh, Mubbasir Kapadia, Glenn Reinman,
and Petros Faloutsos. Footstep navigation for dy-
namic crowds. In Symposium on Interactive 3D
Graphics and Games, I3D ’11. ACM, 2011.

[15] Min Gyu Choi and Jehee Lee. Planning biped loco-
motion using motion capture data and probabilistic
roadmaps. ACM Transactions on Graphics, 2003.

[16] F. Lamarche. Topoplan: A topological path planner
for real time human navigation under floor & ceiling
constraints. Computer Graphics Forum, 2009.

[17] James Kuffner Jr, Jr. Koichi, Nishiwaki Satoshi
Kagami, Masayuki Inaba, and Hirochika Inoue.
Footstep planning among obstacles for biped robots.
In Proc. of 2001 IEEE Intl. Conf. on Intelligent
Robots and Systems (IROS, pages 500–505, 2001.

[18] James Kuffner, Satoshi Kagami, Koichi Nishiwaki,
Masayuki Inaba, and Hirochika Inoue. Online foot-
step planning for humanoid robots. In in Proc. of
the IEEE Int. Conf. on Robotics and Automation
(ICRA’03, pages 932–937, 2003.

[19] Marc Raibert, Kevin Blankespoor, Gabriel Nelson,
and Rob Playter. Bigdog, the rough-terrain quaduped
robot.

[20] Joel Chestnutt, Manfred Lau, German Cheung,
James Kuffner, Jessica Hodgins, and Takeo Kanade.
Footstep planning for the honda asimo humanoid. In
in Proceedings of the IEEE International Conference
on Robotics and Automation, 2005.

[21] B. J. H. van Basten, P. W. A. M. Peeters, and
A. Egges. The step space:example-based footprint-
driven motion synthesis. Comput. Animat. Virtual
Worlds, 21, 2010.

[22] Nick Torkos and Michiel van de Panne. Footprint-
based quadruped motion synthesis. In In Graphics
Interface, pages 151–160, 1998.

[23] Alain Berthoz. La simplexité. Odile Jacob, 2009.
[24] Michael Girard and A. A. Maciejewski. Computa-

tional modeling for the computer animation of legged
figures. In SIGGRAPH, 1985.

[25] Michael Girard. Interactive design of 3d computer-
animated legged animal motion. IEEE Comput.
Graph. Appl., 7, 1987.

[26] Rune Skovbo Johansen. Dynamic Walking With
Semi-Procedural Animation. PhD thesis, 2009.

[27] Michael McKenna and David Zeltzer. Dynamic
simulation of autonomous legged locomotion. In
SIGGRAPH, New York, NY, USA, 1990. ACM.

[28] Kevin Wampler and Zoran Popović. Optimal gait and
form for animal locomotion. ACM Trans. Graph., 28,
2009.

[29] Chris Hecker, Bernd Raabe, Ryan W. Enslow, John
DeWeese, Jordan Maynard, and Kees van Prooijen.
Real-time motion retargeting to highly varied user-
created morphologies. ACM Trans. Graph., 27, 2008.

[30] Donald F. Hoyt, Steven J. Wickler, Edward, A. Cog-
ger, Department Of Biological Sciences, and De-
partment Of Animal. Time of contact and step
length: The effect of limb length, running speed, load
carrying and incline. J. Exp. Biol, 203, 2000.

[31] Arthur D. Kuo. A simple model of bipedal walking
predicts the preferred speed-step length relationship.
Journal of Biomechanical Engineering, 2001.

[32] Biren A. Patel Jesse W. Young and and Nancy J.
Stevens. Body mass distribution & gait mechanics
in fat-tailed dwarf lemurs (cheirogaleus medius) &
patas monkeys (erythrocebus patas). Journal of
Human Evolution, 2007.

[33] VERNE T. INMAN. Human locomotion. Canadian
Medical Association, 1966.

[34] David G. Luenberger. Linear and Nonlinear Pro-
gramming. Addison-Wesley, 1984.

[35] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell.
Linear and Nonlinear Programming. Wiley, 1983.

[36] O. Khatib. Real-time obstacle avoidance for manip-
ulators and mobile robots. 1990.

[37] R.M.N. Alexander. Optima for animals. Princeton
paperbacks. Princeton University Press, 1996.

[38] R.M.N. Alexander. Principles of animal locomotion.
Princeton University Press, 2003.

[39] Donald M. Wilson. Stepping patterns in tarantula
spiders. The Journal of Experimental Biology, 1967.

[40] R.W. Blake. Efficiency And Economy in Animal
Physiology. Cambridge environmental chemistry
series. Cambridge University Press, 2005.

	Introduction
	Related Work
	Overall Locomotion Controller
	System Parameters
	Character Controller
	Gait Manager

	3D Path Construction
	Footprints and Feet Path Planning
	Potential Footprints
	Best Pair of Footprint and Path

	Level of Details techniques (LOD)
	Results
	Conclusions

