
Authorization Policies for Materialized Views

Sarah Nait-Bahloul, Emmanuel Coquery, and Mohand-Säıd Hacid

Université de Lyon
Université Claude Bernard Lyon 1 LIRIS CNRS UMR 5205

43, bd du 11 novembre 1918
69622 Villeurbanne cedex, France

sarah.nait-bahloul,emmanuel.coquery,mshacid@liris.cnrs.fr

Abstract. In this paper, we propose a novel approach to facilitate the
administration of access control policies to ensure the confidentiality of
data at the level of materialized views. A materialized view stores both
the definition of the view and the rows resulting from the execution of
the view. Several techniques and models have been proposed to control
access to databases, but to our knowledge the problem of automatically
generating from access control policies defined over base relations the
access control policies that are needed to control materialized views is
not investigated so far. We are dealing with this problem by resorting
to an adaptation of query rewriting techniques. We choose to express
fine-grained access control through authorization views.1

Keywords: Database Security, Access Control, Authorization Views,
Materialized Views, Datalog.

1 Introduction

In the area of data management, the problem of access control was one of the
most sensitive issues. Several techniques and models have been proposed to im-
prove data security and to ensure data confidentiality (see, among others, [10][7]).
With the use of large systems like Data Warehouses [15] or Distributed Database
Systems [3], new security issues arise [9][13]. In our work, we focus on the prob-
lem of securing materialized views. A lot of organizations use relational DBMS
to store and manage their information and very often they resort to material-
ized views. A materialized view records the results returned by the query into a
physical table. In many settings, the views are materialized in order to optimize
access. For instance, in Data Warehouses, they can be used to precompute and
store complex aggregations. Thus, the user can use the materialized view as any
other base relation. In this context, ensuring security at the materialized view
level is as important as ensuring security at the level of tables. The question is
then how to ensure data security at the level of a materialized view? So far,
access control rules on materialized views are defined manually by an adminis-
trator by trying to comply with the basic ones.In a system containing tens or

1 This work is partially supported by the Rhône-Alpes Region, Cluster ISLE (Infor-
matique, Signal, Logiciel Embarqué).



2 Sarah Nait-Bahloul, Emmanuel Coquery, and Mohand-Säıd Hacid

hundreds of tables controlled by tens or hundreds of rules, it becomes impossi-
ble for administrators to deal with such large sets of rules and consider all the
relevant ones.
Based on our previous work [6], we propose a novel approach that compute new
access rules based on existing access rules over base relations. In our approach, we
consider fine-grained authorization policies that are defined and enforced in the
database through authorization views [10]. Figure 1 summarizes our approach.
The idea is the following: Given a set of base relations (with the corresponding
authorizations) and a set of materialized view definitions, synthesize a set of
authorization views that will be attached to the materialized views, such that
querying the materialized views through those authorization views does not de-
liver more information than querying the database through the original ones.
In this paper, authorization and materialized views are restricted to conjunctive
queries.
The rest of the paper is organized as follows: Section 2 discusses authorization
views. Section 3 presents our approach. In section 4, we present the related work.
We conclude in section 5.

Fig. 1. Security policies for materialized views: System architecture

2 Datalog for Authorization

Among the several proposed techniques and models to ensure data confidential-
ity, we are particularly interested by the ”Authorization views” [10]. They are
a well known database technique that provides content-based and fine-grained
access control. Authorization views are logical tables that specify exactly the
accessible data, either drawn from a single table or from multiple tables.
The goal of our work is to automatically determine the set of ”authorization
views” that will be attached to materialized views. Doing so, the user can query
her/his appropriate authorization views or (s)he can query the materialized views
and the system will rewrite the query using the authorization views. Thus, in
our proposal, we are independent of the way the materialized views are accessed.
Nevertheless, to facilitate the understanding of our approach and without loss
of generality, we assume that the user can query only the authorization views.
As we restrict our self to conjunctive queries, we use non recursive Datalog with-
out negation [1] as a formal framework for expressing access control rules. For



Authorization Policies for Materialized Views 3

example, the following rule defines an authorization view on the Doctor table:

av1(IdD, Dname, Dfname, Dspecialty)←

doctor (IdD, Dname, Dfname, Dadr, Dphone, Dspecialty, Dsalary).

The user has right to view the last name, the first name and the speciality of
doctors in the hospital, but not personal nor salary information.

3 Contribution

In this section we present our algorithm ACMV (Access Control to Material-
ized Views) that generates a set of authorization views AVMV that should be
attached to and defined on materialized views. The algorithm takes as input
two sets: (1) A set of views (AV), representing the authorization views defined
on the base tables and (2) a set of views (MV), representing the definitions of
materialized views.
The generated views should be secure. Secure means that the generated views
should not give access to information that are no allowed by the basic authoriza-
tion views. We have to guarantee that for each query on AVMV , there exists
an equivalent query on AV.
In order to automatically generate the relevant set of authorization viewsAVMV ,
we propose a novel approach based on query rewriting techniques. To ensure the
security property, we propose an algorithm that performs a double rewriting,
using the two sets of views (AV andMV).
We first describe the core of our algorithm which is based on query rewriting
technique, namely MiniCon [8]. We propose an adaptation of this algorithm to
the security context.

S-MiniCon: An Adaptation of the MiniCon algorithm to the security

context

The MiniCon algorithm [8] was initially proposed as an efficient method for an-
swering queries using views. It takes as input a query Q and a set of views V
and calculate all possible rewritings of Q using views in V, such that, for each
rewriting rw, we have rw ⊆ Q.
Let us take a simple example to show why we have to adapt the MiniCon algo-
rithm to the security context. Assume the query (1) shown below, which makes
a copy of the table patient(IdP,Name,Disease). The authorization view (2)
specifies an authorization access to the tuples (IdP,Name) of the patient rela-
tion.

q(IdP,Name,Disease)← patient(IdP,Name,Disease). (1)

av(IdP,Name)← patient(IdP,Name,Disease). (2)

We propose to rewrite the query q using the authorization view av in order to
determine which set of tuples in q is accessible given av. If we apply the original
MiniCon algorithm, the authorization view av will be considered as irrelevant.



4 Sarah Nait-Bahloul, Emmanuel Coquery, and Mohand-Säıd Hacid

The condition regarding the head variables is not satisfied [8]. But, if we do not
take the authorization view as relevant, no rewriting will be generated, i.e. no
tuple in q is accessible. It is too restrictive, since one can have access to the
tuples (IdP,Name) by projecting them out. Therefore, in our framework, we
propose to adapt the MiniCon algorithm by relaxing the condition on the head
variables.

ACMV algorithm: Effectively and efficiently apply the S-MiniCon

algorithm

In this section, we present our proposal that exploits a double rewriting. The
algorithm takes as input a set of views Q to rewrite and the two sets of views
AV and MV. For the first iteration, we define the set of views Q that specify
a full access toMV. The algorithm starts by rewriting each qi of Q using AV,
the result is a set of rewritings RWqi . Let RWqi = {rw1, ..., rwn}. This first
step determines which set of tuples of qi is accessible from AV. The second step
consists in checking if this set is also accessible fromMV . For this, the algorithm
rewrites each rwj of RWqi usingMV. We note RWrwj

, the rewritings generated
with this second rewriting.

Algorithm 1: Double rewriting

Input: q the view to rewrite

AV:Set of authorization views

MV: Set of materialized views

Output: RW: Set of Rewritings

q
exp = expansion(q)

RWq = S-MiniCon(qexp,AV)

foreach rewriting rwj of RWq do

rw
exp

j
= expansion(rwj)

RWrwj
= S-MiniCon(rwexp

j
,MV)

add RWrwj
to RW

end

return RW

In order to ensure the equivalence of the security property, the algorithm must
check whether the application of the double rewriting using AV and MV has
filtered tuples of Q. For this, we propose to check, for each qi, if the union
of the generated rewritings contains qi. We rely on subsumption [2] algorithm
for this check. We recall here that the application of the S-Minicon algorithm
will generate rewritings that do not necessarily have the same schema (we
have relaxed the condition on the head variables). So, to verify the contain-
ment, the algorithm selects only the comparable rewritings (CRW) and verify

if qi 6⊆
n⋃

j=1

CRWrwj
. A comparable rewriting [14] is a rewriting that has the



Authorization Policies for Materialized Views 5

same schema as the query. The subsumption test verifies that no tuple has been
filtered by the double rewriting. In other words, any tuple in qi can be accessed
by both AV and MV. The algorithm then terminates and returns qi as a new

authorization view on MV. Otherwise, qi 6⊆
n⋃

j=1

CRWrwj
, which means that

one of the two rewriting steps has filtered some tuples. In this case the double
rewriting algorithm is applied again by considering RWrwj

(for j from 1 to n)
as the set of queries to be rewritten.

Algorithm 2: ACMVAlgorithm

Input: Q: Set of views which give a full access on MV

AV: Set of authorization views on basic relations

MV: Set of materialized views

Output: AVMV: Set of authorization views on MV

while Q is not empty do

pick qi in Q

RW = DoubleRewriting(qi, AV, MV)

if
⋃

CRW subsumes qi then

Add qi to AVMV

else

Add RW to Q

return AVMV;

4 Related Work

Rosenthal and Sciore [11] have considered the problem of how to automatically
coordinate the access rights of the warehouse with those of sources. The frame-
work proposed by the authors determine only if a user has right to access a
derived table (based on explicit permission) but our proposal goes further by
determining which part the user has right to access in the derived table. Also,
the authors stated the inference rules at a high level. The properties of the un-
derlying inference system and the efficiency of the proposed algorithm were not
investigated and remain an open research issue.
In [4], the authors have built on [5] to provide a way to select access control rules
to be attached to materialized view definitions based on access control rules over
base relations. They resort to the basic form of the bucket algorithm which does
not allow to derive all relevant access control rules. Another limitation of this
work is that since they only deal with selection of rules, the framework remains
strongly dependent of the base relations. That is, the body of the derived rules
involves base relations only. In our work, we synthesize new rules from existing
rules where the body of the new rules makes reference to materialized views.

5 Conclusion

In the case of large organizations, the management of thousands of datasets
is very common. Ensuring data confidentiality in the presence of materialized



6 Sarah Nait-Bahloul, Emmanuel Coquery, and Mohand-Säıd Hacid

views is also important. In this work, we presented a novel approach for an au-
tomated method to derive authorization views to be attached to materialized
views. We also presented S-MiniCon algorithm, an adaptation of a query rewrit-
ing algorithm to the security context. As mentioned above, we have discussed
only conjunctive queries. In large systems, (e.g., data warehouses), materialized
views can be used to precompute and store aggregated data (e.g., sum of sales).
This framework should be extended to accommodate materialized views with ag-
gregations. For this purpose, we will consider algorithms for rewriting aggregate
queries using views [12].

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Trans. Database Syst., 15(2):162–207, 1990.

3. L. W. F. Chaves, E. Buchmann, F. Hueske, and K. Böhm. Towards materialized
view selection for distributed databases. In EDBT, pages 1088–1099, 2009.

4. A. Cuzzocrea, M.-S. Hacid, and N. Grillo. Effectively and efficiently selecting
access control rules on materialized views over relational databases. In IDEAS,
pages 225–235, 2010.

5. S. Nait-Bahloul. Inference of security policies on materialized views. rapport de
master 2 recherche. http://liris.cnrs.fr/∼snaitbah/wiki, 2009.

6. S. Nait-Bahloul, E. Coquery, and M.-S. Hacid. Access control to materialized views:
an inference-based approach. In EDBT/ICDT Ph.D. Workshop, pages 19–24, 2011.

7. L. E. Olson, C. A. Gunter, and P. Madhusudan. A formal framework for reflective
database access control policies. In ACM Conference on Computer and Commu-
nications Security, pages 289–298, 2008.

8. R. Pottinger and A. Y. Levy. A scalable algorithm for answering queries using
views. In VLDB, pages 484–495, 2000.

9. T. Priebe and G. Pernul. A pragmatic approach to conceptual modeling of olap
security. In In Proc. ER, pages 311–324. Springer-Verlag, 2001.

10. S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting
techniques for fine-grained access control. In SIGMOD Conference, pages 551–562,
2004.

11. A. Rosenthal and E. Sciore. Administering permissions for distributed data: Fac-
toring and automated inference. In In Proc. of IFIP WG11.3 Conf, 2001.

12. D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering queries with
aggregation using views. In VLDB, pages 318–329, 1996.

13. J. Steger, H. Gnzel, and A. B. 0004. Identifying security holes in olap applications.
In B. M. Thuraisingham, R. P. van de Riet, K. R. Dittrich, and Z. Tari, editors,
DBSec, volume 201 of IFIP Conference Proceedings, pages 283–294. Kluwer, 2000.

14. J. Wang, M. Maher, and R. Topor. Rewriting unions of general conjunctive queries
using views. In Proc. Conf. on Extending Database Technology, LNCS 2287, 2002.

15. J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design in
data warehousing environment. In VLDB, pages 136–145, 1997.


