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Abstract. Efficient evaluation of complex SPARQL queries is still an open re-
search problem. State-of-the-art engines are based on relational database tech-
nologies. We approach the problem from the perspective of Constraint Program-
ming (CP), a technology designed for solving NP-hard problems. Such technol-
ogy allows us to exploit SPARQL filters early-on during the search instead of as
a post-processing step. We propose Castor, a new SPARQL engine based on CP.
Castor performs very competitively compared to state-of-the-art engines.

1 Introduction

As semantic web technologies adoption grows, the fields of application become broader,
ranging from general facts from Wikipedia, to scientific publications metadata, govern-
ment data, or biochemical interactions. The Resource Description Framework (RDF) [9]
provides a standard knowledge representation model, a key component for interconnect-
ing data from various sources. SPARQL [12] is the standard language for querying RDF
data sources. Efficient evaluation of such queries is important for many applications.

State-of-the-art SPARQL engines (e.g., Sesame [5], Virtuoso [6] or 4store [7]) are
based on relational database technologies. They are mostly designed for scalability, i.e.,
the ability to handle increasingly large datasets. However, they have difficulties to solve
complex queries, even on small datasets.

We approach SPARQL queries from a different perspective. We propose Castor,
a new SPARQL engine based on Constraint Programming (CP). CP is a technology
for solving NP-hard problems. It has been shown to be efficient for graph matching
problems [20, 15], which are closely related to SPARQL [3]. Castor is very competitive
with the state-of-the-art engines and outperforms them on complex queries.

Contributions. A first technical description of this work has been published in [13]. The
present paper presents a number of enhancements of the first Castor prototype, namely:

– more efficient data structures based on a total ordering of RDF values,



– the translation of solution modifiers to the constraints framework,
– the replacement of the SQLite backend by native triple indexes based on the RDF-

3x engine.

Finally, we have conducted more comprehensive benchmarks, now comparing Castor
with Virtuoso and 4store.

Outline. The next section describes the SPARQL language and how it is implemented
in state-of-the-art engines. Section 3 presents our CP approach of SPARQL queries.
Section 4 shows the major parts of our system. Section 5 contains the experimental
results.

2 Background

Data in the semantic web are represented by a graph [9]. Nodes are identified by URIs5

and literals, or they may be blank. Edges are directed and labeled by URIs. We will
call such a graph an RDF dataset. Figure 1b shows an example of RDF dataset. Note
that we can equivalently represent the dataset as a set of triples (Fig. 1a). Each triple
describes an edge of the graph. The components of a triple are respectively the source
node identifier (the subject), the edge label (the predicate) and the destination node
identifier (the object).

:Alice :worksFor :ACME .
:Alice :age 24 .
:Bob :worksFor :ACME .
:Bob :age 42 .
:Carol :worksFor :ACME .
:Carol :age 50 .
:Dave :worksFor :UnitedCorp .
:Dave :age 42 .

:ACME

:UnitedCorp

:Alice :Carol

:Bob :Dave

24

50

42

:worksFor

:worksFor

:worksFor

:worksFor

:age

:age

:age

:age

(a) Triple set (b) Graph representation

Fig. 1. RDF dataset example representing fictive employees.

SPARQL [12] is the standard query language for RDF. The basis of a query is a
triple pattern, i.e., a triple whose components may be variables. A set of triple patterns
is called a basic graph pattern (BGP) as it can be represented by a pattern graph to be
matched in the dataset. A solution of a BGP is an assignment of every variable to an
RDF value, such that replacing the variables by their assigned values in the BGP yields
a subset of the dataset viewed as a triple set. From now on, we will use the triple set
representation of the dataset. More complex patterns can be obtained by composing
BGPs together and by adding filters. Figure 2 shows an example SPARQL query with
one BGP and one filter.

5 For the sake of readability, throughout the paper we abbreviate URIs to CURIEs
(http://www.w3.org/TR/curie/).



SELECT * WHERE {

?p1 :worksFor :ACME . (P1)
?p1 :age ?age1 . (P2)
?p2 :worksFor :ACME . (P3)
?p2 :age ?age2 . (P4)
FILTER(?age1 < ?age2) (F)

}
?age1 ?age2

?p1 ?p2

:ACME

:age :age

:worksFor :worksFor

(a) SPARQL query (b) Associated pattern graph

Fig. 2. SPARQL query example on the dataset shown in Fig. 1. The query returns all pairs of
employees working at ACME, the first one being younger than the second one.

Formally, let U , B, L and V be pairwise disjoint infinite sets representing URIs,
blank nodes, literals and variables, respectively. An RDF dataset is a finite set of triples
G⊂ (U ∪B)×U× (U ∪B∪L). We respectively denote UG, BG and LG the finite set of
URIs, blank nodes and literals occurring in G.

A SPARQL query consists of two parts: a graph pattern and solution modifiers. The
graph pattern is defined recursively as follows.

– A basic graph pattern is a set of triple patterns P = BGP ⊂ (U ∪V )× (U ∪V )×
(U ∪ L∪V ). Without loss of generality, that definition forbids blank nodes from
appearing in a graph pattern: blank nodes can be replaced by variables (at least as
long as we do not use any SPARQL entailment regime). We denote VP the set of
variables in P.

– Let P be a graph pattern and c be a SPARQL expression such that every variable of
c occurs in P.6 PFILTERc is a constrained pattern. We denote Vc the set of variables
in c.

– Let P1 and P2 be graph patterns. P1 .P2, P1 OPTIONALP2 and P1 UNIONP2 are com-
pound patterns. We will ignore compound patterns as they are not relevant for
the contributions of this paper. However, they are handled by Castor as discussed
in [13].

A solution of a graph pattern P with respect to a dataset G is a mapping µ : VP→
UG ∪BG ∪ LG. We denote JPKG the set of all solutions. Let µ(P) (resp. µ(c)) be the
pattern (resp. expression) obtained by replacing every occurrence of a variable ?x ∈VP
(resp. Vc) with its value µ(?x). The solutions of a basic graph pattern BGP are

JBGPKG = {µ | µ(BGP)⊆ G} .

The solutions of a graph pattern P constrained by an expression c are

JPFILTERcKG = {µ ∈ JPKG | µ(c) evaluates to true} .

When evaluating a SPARQL query, the solution set of the graph pattern is trans-
formed into a list. Solution modifiers are then applied in the following order.

6 The condition on the variables appearing in c restricts the language to safe filters, without
limiting its expressive power [2].



1. ORDER BY sorts the list of solutions,
2. SELECT projects the solution on a set of variables, i.e., the domain of the solution

mappings are restricted to the specified set of variables,
3. DISTINCT removes duplicate solutions,
4. OFFSET n removes the n first solutions of the list,
5. LIMIT n keeps only the n first solutions of the list.

State-of-the-art SPARQL engines rely on relational database technologies to store
the datasets and execute the queries. Such systems can be divided in three categories [8].

– Triple stores store the whole dataset in one three-column table. Each row represents
one triple. Examples in this category are Sesame, 4store [7], Virtuoso [6], RDF-
3x [10] and Hexastore [19].

– Vertically partitioned tables maintain one two-column table for each predicate. The
resulting smaller tables are sometimes more convenient than the single large table
of triple stores. However, there is a significant overhead when variables appear in
place of predicates in the query. An example is SW-Store [1].

– Schema-specific systems map legacy relational databases to RDF triples using a
user-specified ontology. Queries are translated to SQL and performed on the re-
lational tables. Native RDF datasets can be transformed to relational tables if the
user provides the structure. Thus, such systems do not handle well the schema-less
nature of RDF.

For the purpose of this paper, we will focus on triple stores, which are very popular and
well-performing generic engines.

The solutions for a single triple pattern can be retrieved efficiently from a triple store
using redundant indexes. Combining multiple triple patterns however involves joining
the solution sets together, i.e., merging mappings that assign the same value to common
variables. Such operations can be more or less expensive depending on the order in
which they are performed. Query engines carefully construct a join graph optimizing
the join order. The join graph is then executed bottom-up, starting from the leaves, the
triple patterns, and joining the results together. Filters are applied once all their variables
appear in a solution set.

The join graph optimization problem has been largely studied for relational data-
bases (e.g., [11, 16]). Many results were also adapted to semantic web databases (e.g.,
[17]).

Figure 3 shows an example of executing a query in a triple store. Here, the filter
can only be applied at the very last stage of the evaluation, as it involves variables from
different parts of the query.

3 Constraint-based View of SPARQL Queries

The relational database approach to SPARQL queries focuses on the triple patterns to
build the solutions. We propose another view focusing on the variables.

A solution to a query is an assignment of the variables of the query to values of the
dataset. The set of values that can be assigned to a variable is called its domain. The
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JP1K = JP3K = {(:A),(:B),(:C)}
JP2K = JP4K = {(:A,24),(:B,42),(:C,50),(:D,42)}

J1AK = J1BK = {(:A,24),(:B,42),(:C,50)}
J1CK = {(:A,24,:A,24),(:A,24,:B,42),(:A,24,:C,50),

(:B,42,:A,24),(:B,42,:B,42),(:B,42,:C,50),

(:C,50,:A,24),(:C,50,:B,42),(:C,50,:B,42)}
JσFK = {(:A,24,:B,42),(:A,24,:C,50),(:B,42,:C,50)}

(a) Join graph (b) Bottom-up evaluation

Fig. 3. Executing the query from Fig. 2 in a triple store evaluates the join graph bottom-up. Note
that, depending on the used join algorithms, some intermediate results may be produced lazily
and need not be stored explicitly. The URIs of the employees are abbreviated by their first letter.

domain of a variable is initially the set of all URIs, blank nodes and literals occurring
in the dataset. We construct solutions by selecting for each variable a value from its
domain and checking that the obtained assignment satisfies the triple patterns and the
filters (i.e., the constraints).

Constructing all solutions can be achieved by building a search tree. Each node
contains the domains of the variables. The root node contains the initial domains. At
each node of the tree, a variable is assigned to a value in its domain (i.e., its domain is
reduced to a singleton), and constraints are propagated to reduce other variable domains.
Whenever a domain becomes empty, the branch of the search tree is pruned. The form
of the search tree thus depends on the choice of variable at each node and the order of
the children (i.e., how the values are enumerated in the domain of the variables). Let us
consider for example the query of Fig. 2. When assigning ?age1 to 42, we can propagate
the constraint ?age1 < ?age2 to remove from the domain of ?age2 every value which
is not greater than 42 and, if all values are removed, we can prune this branch.

This is the key idea of constraint programming: prune the search tree by using the
constraints to remove inconsistent values from the domains of the variables. Each con-
straint is used successively until the fix-point is reached. This process, called propaga-
tion, is repeated at every node of the tree. There are different levels of propagation. An
algorithm with higher complexity will usually be able to prune more values. Thus, a
trade-off has to be found between the achieved pruning and the time taken.

Figure 4 shows the search tree for the running example. At the root node, the triple
patterns restrict the domains of ?p1 and ?p2 to only :Alice, :Bob and :Carol, i.e., the
employees working at ACME, and ?age1 and ?age2 to {24,42,50}. The filter removes
value 50 from ?age1, as there is no one older than 50. Similarly, 24 is removed from
?age2. Iterating the process, we can further remove :Carol from ?p1 and :Alice from
?p2. Compared to the relational database approach, we are thus able to exploit the filters
at the beginning of the search.

The tree is explored in a depth-first strategy. Hence only the path from the root to
the current node is kept in memory. In most constraint programming systems, instead
of keeping copies of the domains along the path to the root, one maintains the domains
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Node D(?p1) D(?age1) D(?p2) D(?age2)

1 {:A,:B} {24,42} {:B,:C} {42,50}

2 :A 24 {:B,:C} {42,50}

3 :A 24 :B 42

4 :A 24 :C 50

5 :B 42 :C 50

(a) Search tree (b) Domains

Fig. 4. Executing the query in Fig. 2 with constraint programming explores the search tree top-
down. The triple patterns and filters are used at every node to reduce the domains of the variables.
The URIs of the employees are abbreviated by their first letter.

of the current node and a trail. The trail contains the minimal information needed to
restore the current domains to any ancestor node.

4 Implementation

We evaluated the constraint-based approach using a state-of-the-art CP solver in [13].
While such implementation delivered some results, the cost of restoring the domains
in generic solvers is too high for large datasets. Hence, we have built a specialized
lightweight solver called Castor.

Castor is a prototype SPARQL engine based on CP techniques. When executing a
query, a domain is created for every variable of the query, containing all values occur-
ring in the dataset. For efficiency, every value is represented by an integer. Constraints
correspond to the triple patterns, filters and solution modifiers. The associated pruning
functions, called propagators are registered to the domains of the variables on which
the constraints are stated. The propagators will then be called whenever the domains are
modified. The search tree is explored in a depth-first strategy. A leaf node where every
domain is a singleton is a solution, which is returned by the engine.

In this section, we describe the major components of Castor: the constraints and
their propagators, the representation of the domains, the mapping of RDF values to in-
tegers, and the triple indexes used to store the dataset and propagating the triple pattern
constraints.

4.1 Constraints

Constraints and propagators are the core of a CP solver. SPARQL queries have three
kinds of constraints: triple patterns, filters and solution modifiers. The associated prop-
agators can achieve different levels of consistency, depending on their complexity and
properties of the constraint. We first show the different levels of consistency that are
achieved by Castor. Then, we explain the propagators for the different constraints.

To be correct, a propagator should at least ensure that the constraint is satisfied once
every variable in the constraint is bound (i.e., its domain is a singleton). However, to re-
duce the search space, propagators can prune the domains when variables are unbound.



Propagators can be classified by their achieved level of consistency [4], i.e., the amount
of pruning they can achieve.

– A propagator achieving forward-checking consistency does nothing until all vari-
ables in the constraint are bound, except one. It then iterates over the domain of
the unbound variable, removing all values that do not satisfy the constraint. The
required operation on the domains is the removal of a value.

– Bound consistency ensures that the bounds (i.e., the minimum and maximum value)
of the domains of the variables in the constraint are consistent. A value is consistent
if there exists a solution of the constraint with that value. The required operation on
the domains is the update of a bound (i.e., increasing the lower bound or decreasing
the upper bound).

– Domain consistency ensures that every value in the domains of the variables in the
constraint are consistent. The required operation on the domains is the removal of a
value. Domain consistency is the strongest level of consistency we consider. How-
ever, propagators achieving domain consistency usually have a higher complexity
and could require maintaining auxiliary data structures.

Triple Patterns. A triple pattern is a constraint involving three variables, one for each
component. For ease of reading, we consider constants to be variables whose domains
are singletons. The pruning is performed by retrieving all the triples from the dataset
where the components of the bound variables correspond to the assigned value. Val-
ues of domains of unbound variables that do not appear in the resulting set of triples
are pruned. If the pruning is performed with only one unbound variable, we achieve
forward-checking consistency. Castor achieves more pruning by performing the pruning
when one or two variables are unbound. If all three variables are bound, the propagator
checks if the triple is in the dataset and empties a domain if this is not the case.

Filters. Castor has a generic propagator for filters achieving forward-checking consis-
tency. When traversing the domain of the unbound variable, we can check if the filter
is satisfied by evaluating the SPARQL expression as described by the W3C recommen-
dation [12]. It provides a fallback to easily handle any filter, but is not very efficient.
When possible, specialized algorithms are preferred.

For example, the propagator for the sameTERM(?x, ?y) filter can easily achieve
domain consistency. The constraint states that ?x and ?y are the same RDF term. The
domains of both variables should be the same. Hence, when a value is removed from
one domain, the propagator removes that value from the other domain.

Propagators for monotonic constraints [18], e.g., ?x < ?y, can easily achieve bound
consistency. Indeed, for constraint ?x < ?y, we have max(?x)<max(?y) and min(?x)<
min(?y). The pruning is performed by adjusting the upper bound of ?x and the lower
bound of ?y.

Solution Modifiers. The DISTINCT keyword in SPARQL removes duplicates from the
results. Such operation can also be handled by constraints. When a solution is found,
a new constraint is added stating the any further solution must be different from the



current one. The propagator achieves forward-checking consistency, i.e., when all vari-
ables but one are bound, we remove the value of the already found solution from the
domain of the unbound variable.

When the ORDER BY and LIMIT keywords are used together, the results shall only
include the n best solutions according to the specified ordering. After n solutions have
been found, we add a new constraint stating that any new solution must be “better” than
the worst solution so far. Such technique is known as branch-and-bound.

4.2 Mapping RDF Values to Integers

To avoid juggling with heavy data structures representing the RDF values, we map every
value occurring in the dataset to a numerical identifier. Such mapping is also common in
triple stores. The domains in Castor contain only those identifiers. An on-disk dictionary
allows the retrieval of the associated value when needed.

Let id(v) be the identifier mapped to the RDF value v. To efficiently implement
a bounds consistent propagator for the < filter, we want v1 <F v2 ⇒ id(v1) < id(v2),
where <F is the < operator of SPARQL expressions. The SPARQL specification only
defines <F between numerical values, between simple literals, between strings, be-
tween Boolean values, and between timestamps. The <F operator thus defines a partial
order.

To efficiently implement the ORDER BY solution modifier, we also want v1 <O v2⇒
id(v1) < id(v2), where <O is the partial order defined in the SPARQL specification.
This order introduces a precedence between blank nodes, URIs and literals. Literals are
ordered with <F . Hence, v1 <F v2⇒ v1 <O v2.

To map each RDF value to a unique identifier, we introduce a total order <T that is
compatible with both partial orders, i.e.,

∀(v1,v2) ∈ (U ∪B∪L)× (U ∪B∪L),v1 <O v2⇒ v1 <T v2 .

Values are partitioned into the following classes, shown in ascending order. The or-
dering of the values inside each class is also given. When not specified, or to solve
ambiguous cases, the values are ordered by their lexical form.

1. Blank nodes: ordered by their internal identifier
2. URIs
3. Plain literals without language tags
4. xsd:string literals
5. Boolean literals: first false, then true values
6. Numeric literals: ordered first by their numerical value, then by their type URI
7. Date/time literals: ordered chronologically
8. Plain literals with language tags: ordered first by language tag, then by lexical form
9. Other literals: ordered by their type URI

We map the values of a dataset to consecutive integers starting from 1, such that
v1 <T v2⇔ id(v1)< id(v2).



4.3 Variables and Domains

A domain is associated with every variable, representing the set of values that can be as-
signed to the variable. During the search, the domain gets reduced and restored. The data
structures representing the domain should perform such operations efficiently. There
are two kinds of representations. The discrete representation keeps track of every single
value in the domain. The bounds representation only keeps the lowest and highest value
of the domain according to the total order defined in Section 4.2. We propose a dual
view, leveraging the strengths of both representations.

Discrete Representation. The domain is represented by its size and two arrays dom and
map. The size first elements of dom are in the domain of the variable, the others have
been removed (see Fig. 5). The map array maps values to their position in the dom array.

d g f c b h a edom:

size
in domain removed

6 4 3 0 7 2 1 5map:

a b c d e f g h

Fig. 5. Example representation of the domain {b,c,d, f ,g}, such that size= 5, when the initial
domain is {a, . . . ,h}. The size first values in dom belong to the domain; the last values are those
which have been removed. The map array maps values to their position in dom. For example, value
b has index 4 in the dom array. In such representation, only the size needs to be kept in the trail.

To remove a value, we swap it with the last value of the domain (i.e., the value
directly to the left of the size marker), reduce size by one and update the map array.
Such operation is done in constant time.

Alternatively, we can restrict the domain to the intersection of itself and a set S. We
move all values of S which belong to the size first elements of dom at the beginning
of dom and set size to the size of the intersection. Such operation is done in O(|S|),
with |S| the size of S. Castor uses the restriction operation in propagators achieving
forward-checking consistency.

Operations on the bounds however are inefficient. This major drawback is due to the
unsorted dom array. Searching for the minimum or maximum value requires the traver-
sal of the whole domain. Increasing the lower bound or decreasing the upper bound
involves removing every value between the old and new bound one by one.

As the order of the removed values is not modified by any operation, the domain
can be restored in constant time by setting the size marker back to its initial position.
The trail, i.e., the data structure needed to restore the domain to any ancestor node of
the search tree, is thus a stack of the sizes.



Note that this is not the standard representation of discrete domains in CP. However,
the trail of standard representations is too heavy for our purpose and size of data.

Bounds Representation. The domain is represented by its bounds, i.e., its minimum and
maximum values. In contrast to the discrete representation, the bound representation is
an approximation of the exact domain. We assume all values between the bounds are
present in the domain.

In such a representation, we cannot remove a value in the middle of the domain as
we cannot represent a hole inside the bounds. However, increasing the lower bound or
decreasing the upper bound is done in constant time.

The data structure for this representation being small (only two numbers), the trail
contains copies of the whole data structure. Restoring the domains involves restoring
both bounds.

Dual View. Propagators achieving forward-checking or domain consistency remove
values from the domains. Thus, they require a discrete representation. However, propa-
gators achieving bounds consistency only update the bounds of the domains. For them
to be efficient, we need a bounds representation. Hence, Castor creates two variables
xD and xB (resp. with discrete and bound representation) for every SPARQL variable
?x. Constraints are stated using only one of the two variables, depending on which rep-
resentation is the most efficient for the associated propagator. In particular, monotonic
constraints are stated on bounds variables whereas triple pattern constraints are stated
on discrete variables.

An additional constraint xD = xB ensures the correctness of the dual approach.
Achieving domain consistency for this constraint is too costly, as it amounts to perform
every operation on the bounds on the discrete representation. Instead, the propagator
in Castor achieves forward-checking consistency, i.e., once one variable is bound the
other will be bound to the same value. As an optimization, when restricting a domain
to its intersection with a set S, we filter out values of S which are outside the bounds
and update the bounds of xB. Such optimization does not change the complexity of the
operation, as it has to traverse the whole set S anyway.

4.4 Triple Indexes

The propagator of the triple pattern constraint needs to retrieve a subset of triples from
the dataset, where some components have a specific value (see Section 4.1). The effi-
ciency of such operation depends on the way the triples are stored on the disk. Castor
makes use of indexes to retrieve the triples. An index sorts the triples in lexicographi-
cal order and provides efficient retrieval of triples with a fixed prefix. For example, the
SPO index sorts the triples first by subject, then by predicate and last by object. It can
be used to retrieve all triples with a specific subject or all triples with specific subject
and predicate. It can also be used to check whether a triple is part of the dataset. Castor
has three indexes: SPO, POS and OSP to cover all possible combinations.

The data structure underlying an index is based on the RDF-3x engine [10]. The
sorted triples are compressed and packed in pages (i.e., a block of bytes of fixed size, in
our case 16KB). Those pages are the leaves of a B+-tree. The tree allows one to find the



leaf containing the first requested triple in logarithmic time. After the decompression,
we can find the triple using a binary search algorithm.

Propagators are called multiple times at every node of the search tree. Thus, a set of
triples can be requested many times. To reduce the overhead of decompressing the leaf
pages containing the triples, we introduce a small least-recently-used cache of decom-
pressed pages. The size of the cache is currently arbitrarily fixed to 100 pages.

5 Experimental Results

To assess the performances of our approach, we have run the SPARQL Performance
Benchmark (SP2Bench) [14]. SP2Bench consists of a deterministic dataset generator,
and 12 representative queries to be executed on the generated datasets. The datasets
represent relationships between fictive academic papers and their authors, following the
model of academic publications in the DBLP database.

We compare the performances of four engines: Sesame 2.6.1 [5], Virtuoso 6.1.4 [6],
4store 1.1.4 [7] and our own Castor. Sesame was configured to use its native on-disk
store with three indexes (spoc, posc, ospc). The other engines were left in their default
configuration. We did not include RDF-3x in the comparison as it is unable to handle
the filters appearing in the queries. For queries involving filters, we have also tested a
version of Castor that does not post them as constraints, but instead evaluate them in a
post-processing step.

We have generated 6 datasets with 10k, 25k, 250k, 1M and 5M triples. We have
performed three cold runs of each query over all the generated datasets, i.e., between
two runs the engines were restarted and the system caches cleared with “sysctl -w

vm.drop_caches=3”. We have set a timeout of 30 minutes. Please note that cold runs
may not give the most significant results for some engines. E.g., Virtuoso aggressively
fills its cache on the first query in order to perform better on subsequent queries. How-
ever, such setting corresponds to the one used by the authors of SP2Bench, so we have
chosen to use it as well. All experiments were conducted on an Intel Pentium 4 3.2 GHz
computer running ArchLinux 64bits with kernel 3.2.6, 3 GB of DDR-400 RAM and a
40 GB Samsung SP0411C SATA/150 disk with ext4 filesystem. We report the time
spent to execute the queries, not including the time needed to load the datasets.

The authors of SP2Bench have identified four queries that are more challenging than
the others: Q4, Q5a, Q6 and Q7. The execution time of those queries, along with two
variations of Q5a, are reported in Figure 6.

Q5a and Q5b compute the same set of solutions. Q5a enforces the equality of two
variables with a filter, whereas Q5b uses a single variable for both. Note that such
optimization is difficult to do automatically, as equivalence does not imply identity
in SPARQL. For example, "42"^^xsd:integer and "42.0"^^xsd:decimal compare
equal in a filter, but are not the same RDF term and may thus not be matched in a BGP.
Detecting whether one can replace the two equivalent variables by a single one requires
a costly analysis of the dataset, which is not performed by any of the tested engines.
Sesame and 4store timed out when trying to solve Q5a on the 250k and above datasets.
Virtuoso does not differentiate equivalent values and treats equality as identity. Such
behavior breaks the SPARQL standard and can lead to wrong results. Castor does no
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Fig. 6. Castor is competitive and often outperforms state-of-the-art SPARQL engines on complex
queries. The x-axis represents the dataset size in terms of number of triples. The y-axis is the
query execution time. Both axes have a logarithmic scale.

query optimization, but still performs equally well on both variants thanks to its ability
to exploit the filter at every node of the search tree. Q12a replaces the SELECT keyword
by ASK in Q5a. The solution is a boolean value reflecting whether there exists a solution
to the query. Thus, we only have to look for the first solution. However, Castor still
needs to initialize the search tree, which is the greatest cost. Virtuoso and 4store behave
similarly to Q5a, but Sesame is able to find the answer much more quickly.

Executing Q4 results in many solutions (e.g., for the 1M dataset, Q4 results in 2.5×
106 solutions versus 3.5× 104 solutions for Q5a). The filter does not allow for much
pruning, as shown by the very similar performances between the two variants of Castor.
Nevertheless, Castor is still competitive with the other engines. None of the engines
were able to solve the query for the 5M dataset in less than 30 minutes.

Figure 7 shows the results for the other queries, except Q12c. Query Q12c involves
an RDF value that is not present in the dataset. It is solved in constant time by all
engines equally well. For all queries, Castor is competitive with the other engines or



Table 1. Castor is the fastest or second fastest engine for nearly every query. The ranking of the
engines is shown for each query. The last column is the average rank for every engine.

Query 1 2 3a 3b 3c 4 5a 5b 6 7 8 9 10 11 12a 12b Mean

Castor 2 2 2 2 2 2 1 1 2 2 1 1 2 3 2 1 1.8
4store 1 1 1 1 1 1 3 2 3 4 3 2 1 1 4 3 2.0
Virtuoso 4 3 3 3 3 3 2 3 1 1 2 3 3 2 3 2 2.6
Sesame 3 4 4 4 4 4 4 4 4 3 4 4 4 4 1 4 3.7

outperforming them. The sharp decrease of performances of Castor in Q11 between the
250k and the 1M datasets is due to the fixed size of the triple store cache. The hit ratio
drops from 99.6% to 40.4%.

For each query, we sort the engines in lexicographical order, first by the largest
dataset solved, then by the execution time on the largest dataset. The obtained ranks are
shown in Table 1. Castor is ranked first for 5 queries out of 16, and second for all other
queries but one. The 4store engine is ranked first on 8 queries, but does not fare as well
on the other queries. In most of the queries where 4store is ranked first, the execution
time of Castor is very close to the execution time of 4store. Virtuoso performs well on
some difficult queries (Q6 and Q7), but is behind for the other queries. Sesame performs
the worst of the tested engines.

6 Conclusion

We presented a Constraint Programming approach to solving SPARQL queries. In con-
trast to the relational database approach, we are able to exploit filters early-on during
the search without requiring advanced query optimization. We showed the main design
decision in the implementation of Castor, our prototype SPARQL engine based on CP
techniques. We compared Castor with state-of-the-art engines, showing the feasibility
and performance of our approach.

Castor is however still an early prototype. It has room for several improvements
and extensions. For example, the form of the search tree is defined by basic heuristic
functions. At each node, we select the variable with the smallest domain. An alternative
might be selecting central variables of star-shaped queries first. Also no research has
been done yet to find an optimal ordering of the propagators: they are simply called
successively until a fix-point is reached. To reach the fix-point more quickly, it would
be better to call first the propagators performing more pruning. Maybe selectivity esti-
mates, a tool used in relational databases [17], could be used to order the propagators.
This raises the more general question of whether and how optimization techniques used
in relational databases can be combined with the CP approach.

Acknowledgments. The authors want to thank the anonymous reviewers for their con-
structive comments. The first author is supported as a Research Assistant by the Belgian
FNRS (National Fund for Scientific Research). This research is also partially supported
by the Interuniversity Attraction Poles Programme (Belgian State, Belgian Science Pol-
icy) and the FRFC project 2.4504.10 of the Belgian FNRS.



10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso

Q2
BGP with small optional part

10ms

100ms

1s

10s

1min

10min

Castor
Sesame

4store

Virtuoso

Q1
BGP with 1 result

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso

Castor (no filters)

Q3b
Single-variable filter, few results

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso
Castor (no filters)

Q3a
Single-variable filter, many results

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store
Virtuoso

Castor (no filters)

Q8
Union with many “!=” filters

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso
Castor (no filters)

Q3c
Single-variable filter, no results

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso

Q10
Single triple pattern

10ms

100ms

1s

10s

1min

10min

Castor

Sesame

4store

Virtuoso

Q9
Union with variable as predicate

10k 50k 250k 1M 5M

10ms

100ms

1s

10s

1min

10min

Castor

Sesame
4store

Virtuoso
Castor (no filters)

Q12b
ASK version of q8

10k 50k 250k 1M 5M

10ms

100ms

1s

10s

1min

10min

CastorSesame

4store

Virtuoso

Q11
ORDER BY and LIMIT

Fig. 7. On simpler queries, Castor is also very competitive with state-of-the-art SPARQL engines.
The x-axis represents the dataset size in terms of number of triples. The y-axis is the query
execution time. Both axes have a logarithmic scale.
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