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Multigrid Convergence of Discrete 
Geometric Estimators

David Coeurjolly, Jacques-Olivier Lachaud, and Tristan Roussillon

Abstract The analysis of digital shapes requires tools to determine accurately their
geometric characteristics. Their boundary is by essence discrete and is seen by con-
tinuous geometry as a jagged continuous curve, either straight or not derivable.
Discrete geometric estimators are specific tools designed to determine geometric
information on such curves. We present here global geometric estimators of area,
length, moments, as well as local geometric estimators of tangent and curvature.
We further study their multigrid convergence, a fundamental property which guar-
antees that the estimation tends toward the exact one as the sampling resolution gets
finer and finer. Known theorems on multigrid convergence are summarized. A rep-
resentative subsets of estimators have been implemented in a common framework
(the library DGtal), and have been experimentally evaluated for several classes of
shapes. Thus, the interested users have all the information for choosing the best
adapted estimators to their applications, and readily dispose of an efficient imple-
mentation.

13.1 Introduction

Since early developments in image processing and image understanding, many tools
have been developed in order to quantify the geometry of a digital shape. Such
digital shapes can be defined for instance either from a segmentation process as a
subset of image pixels sharing the same colorimetric information, or as the result of
the digitization of a continuous object.
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In many applications, it is important to have a geometrical quantification or de-
scription from measurements which are invariant under a specific class of transforms
(rotation, translation, and scaling) or which preserve important geometrical features
(characteristic points, local convexity, etc.). In this context, we usually consider dif-
ferential or integral quantities evaluated either on the digital shape or its boundary.
Beside such type of quantification, we can distinguish two classes of geometrical de-
scriptors. The first class corresponds to global descriptors which associate a global
numerical quantity with each shape. In this class, we have arc length or perimeter es-
timators of digital shape boundaries, but also integral quantities such as geometrical
moments approximated on the digital shape. The second class contains local esti-
mators which usually associate a numerical quantity with each point of the shape.
For example, curvature or normal vector estimators at boundary points belong to
this class.

When defining an algorithm that evaluates such descriptors on digital shape, so
called estimator, the evaluation of such estimator accuracy may be challenging. In
the literature, several approaches have been proposed. The first one is application
driven and consists in validating the estimators within a complete shape description
pipeline. For instance, one can evaluate a curvature estimator in a global character-
istic points estimation framework of contours.

One can also evaluate the accuracy of the estimator in terms of expected prop-
erties. For instance, we can evaluate the stability of a curvature estimator when
rotations of input shapes are given.

A more formal evaluation process consists in comparing the estimated quantities
with exact Euclidean values on a family of continuous shapes in a multigrid asymp-
totic framework. More precisely, let X be a family of compact simply connected
subsets of R2 with continuous curvature fields. We denote by D(X,h) the Gauss
digitization of X ∈ X with grid step h, seen as a union of pixels of side h in R2.
For sake of clarity, we shorten in the sequel D(X,h) into D and denote its com-
plementary by D̄. Moreover, let us assume that D contains at least one pixel, i.e.
|D| ≥ 1.

In this multigrid framework, comparing the estimated quantity to the expected
Euclidean one when h tends to zero is called the multigrid convergence analysis of
an estimator [35]. Indeed, at a given resolution, infinitely many shapes have the same
digitization, which hampers the objective comparison of estimators. For estimators
of local geometric quantities like tangent or curvature, few results exist. We may
quote some convergence results for tangent estimators [21, 42, 51]. And there is no
correct convergence results for curvature as far as we know.

In this chapter, we use this multigrid comparison framework in order to review
and evaluate existing local and global estimators on digital shapes. A important con-
tribution is to have considered a large set of estimators in a unique technical frame-
work: the DGtal open-source library [18]. DGtal is a generic open source library for
Digital Geometry programming for which the main objective is to structure different
developments from the digital geometry and topology community. For the purpose
of this chapter, we use DGtal to represent multigrid digital objects and shapes, to
define the geometric estimators and we provide ways to compare estimated values
to expected Euclidean ones.
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The chapter is organized as follows: Sect. 13.2 focuses on global estimators (area,
moments and arc length) and Sects. 13.3, 13.4, and 13.5 are devoted to local esti-
mators, tangent, and curvature, respectively. In all cases, each section starts with a
formal definition of the multigrid convergence of an estimator. In Sect. 13.6, we dis-
cuss on implementation details of both the estimator and the comparative evaluation
framework.

13.2 Global Estimators

13.2.1 Multigrid Convergence for Global Estimators

Multigrid convergence is an interesting way of relating digital and Euclidean ge-
ometries. The idea is to ask for discrete geometric estimations to converge toward
the corresponding Euclidean quantity when considering finer and finer shape digi-
tizations (here, Gauss digitization). The following definition is taken from Defini-
tion 2.10 of [35].

Definition 1 (Multigrid convergence for global geometric quantities) A discrete
geometric estimator Ê of some geometric quantity E is multigrid convergent for a
family of shapes X and a digitization process D iff for all shape X ∈ X, there exists a
grid step hX > 0 such that the estimate Ê(D(X,h),h) is defined for all 0 < h < hX

and
∣

∣Ê
(

D(X,h),h
)

− E(X)
∣

∣ ≤ τX(h),

where τX : R+ → R+ is with null limit at 0. This function is the speed of conver-

gence of the estimator.

The convergence of most estimators depends on the family of shapes in the Eu-
clidean plane that is considered. We therefore introduce several standard families
that will be used to define the range of validity of multigrid convergence theorems.
A curve is said to be Cn if it has continuous n-th order derivatives.

• The family of all finite convex shapes in the Euclidean plane is denoted with XC .
• The family of convex sets whose boundary is a Cn arc with positive curvature

everywhere is denoted by Xn-SC .
• The family of all planar piecewise n-smooth convex set is denoted with Xn-PW-SC .

These sets are convex sets whose boundary consists of a finite number of Cn

arcs with positive curvature everywhere except at arc endpoints. Clearly Xn-SC �
Xn-PW-SC .

For experiments, we will use shapes that are representative of these families.
Several representative shapes digitized at different scales are illustrated in Fig. 13.1.
They will be used for the upcoming experiments on global and local geometric
estimators.
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Fig. 13.1 Digitization at two different grid steps (h = 1 or h = 0.1) of tests shapes: (a–d) the
square and triangle are in XC ; the circle (e, f) and the ellipse (g, h) belongs to X3-SC; the flower

(i, j), and the “accflower” (k, l) are in X3-PW-SC. All shapes have diameter 20

13.2.2 Area and Moments

Designing a multigrid convergent estimator of the area is fairly simple. We define
the area estimator by counting Â as

Â(Y,h) = h2
∑

(i,j)∈Y

1, (13.1)

where Y is an arbitrary digital shape and h the grid step. This estimator just counts
the number of h-grid square in Y and normalizes the result with the area of each
grid square.

As reported in [36], Gauss and Dirichlet knew already that this area estimator
was multigrid convergent for finite convex shape (XC ) with a speed O(l · h), where

l is the shape perimeter. Huxley [28] improves the bound to O(h
15
11 (log 1

h
)

47
22 ) for

the family X3-PW-SC . This simple estimator has thus super-linear convergence for a
rather wide class of shapes.

Klette and Žunić [36] follow the idea of (13.1) to design the discrete (p, q)-

moment estimator m̂p,q , for integers p,q ≥ 0, as follows:

m̂p,q(Y,h) = h2+p+q
∑

(i,j)∈Y

ip · jq . (13.2)

These estimators approximate the (p, q)-moments of a shape X, which are de-
fined as mp,q(X) =

∫∫

X
xpyqdxdy. Their speed of convergence is summed up in

Table 13.1. In a similar way, central moments may be approximated. We refer the
reader to [36] for further details. Note that moments can be used to determine for
instance the center of gravity or the orientation of a shape. Furthermore, several ro-
tational invariant quantities can be obtained as combination of (p, q)-moments. For
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instance, Zernike and Legendre moments widely used in many 2D and 3D shape
indexing and retrieval are linear combination of (p, q)-moments [56, 67]. Hence,
convergence results on (p, q)-moments lead to convergence of Zernike and Legen-
dre moments as well.

The previous estimators require to visit all points of the digital object, and
not only its boundary. The computational complexity of these estimators is thus
O(1/h2). However, a discrete variant of Green theorem allows to compute these
quantities by simply visiting the shape boundary, thus reducing the computational
complexity to O(1/h) for convex shapes. See Lien [47] for a generic discrete Green
theorem framework and Brlek et al. for a digital geometry application [3].

13.2.3 Perimeter and Length Estimators

It is more complex to estimate the perimeter of a digital shape. Indeed, enumerating
the number of grid steps of the digital shape boundary does not lead to a reliable
perimeter estimator. It is called the naive perimeter estimator L̂naive and is defined
as

L̂naive(Y,h) = h
∑

σ∈∂Y

1. (13.3)

This estimator overestimates the shape perimeter. Indeed, it is clear that it always
returns the perimeter of the axis-aligned bounding box of the shape.

Therefore first approaches to length estimation tried to assign different weights
to different local configurations so as to be more precise. The Rosen-Proffitt esti-
mator [59] and BLUE (best linear unbiased) estimator [19] belong to this category.
However it was proved in Tajine and Daurat [66] that all these approaches can never
achieve multigrid convergence, whatever the (finite) number of configurations taken
into account.

More complex approaches are required to achieve convergence. We list below
several of them, which are also experimentally compared (see Fig. 13.2). Most of
them are not only valid for perimeter estimation but also for curve length estimation.

• The DSS length estimator L̂DSS, proposed by Kovalevsky and Fuchs [37], re-
lies on a greedy decomposition of the input digital contour into Digital Straight
Segments (DSS). It starts from a point, then finds the longest DSS starting from
that point. The end point of the DSS defines a new starting point. The process
is repeated till the whole contour has been visited. The DSS end points form a
polygonal line. The length or perimeter of the digital contour is then simply de-
fined as Euclidean length of this polygonal line.

• The MLP length estimator L̂MLP, proposed by Sloboda et al. [65], also relies
on a polygonal approximation of the digital contour. For a given simple digi-
tal shape, the Minimum Length Polygon (MLP) is indeed the shortest Euclidean
curve which separates the interior pixel centers from the exterior pixel centers.
The length is then defined as the perimeter of this curve. Several linear-time al-
gorithms for computing the MLP are available [60, 63].
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Fig. 13.2 Absolute relative error for several length and perimeter estimators. It is clear that the
naive length estimator does not converge. The other estimators (DSS, MLP, FP, ST, λ-MST) present
a multigrid convergence. Note that experimentally the convergence speed for DSS, FP, and ST

on the ball is O(h) while MLP and λ-MST achieve a better bound of O(h
4
3 ). However, on the

boundary of a shape with linear parts, the convergence speed is O(h) for all the estimators except
the naive one

• The FP length estimator L̂FP, proposed in [63], relies on yet another polygonal
approximation of the digital contour. One can see it is a translated version of the
MLP, where convex turns are translated outwards and concave turns are translated
inwards by half-unit diagonal vectors. The advantage is that the polygon vertices
form a subset of the grid points of the input contour.

• Another approach to local length estimation and thus perimeter estimation is to
integrate the tangent estimation along the curve [8, 11] (see also the next section
on tangent estimation). The ST length estimator L̂ST is based on the symmet-
ric tangent while the λ-MST length estimator L̂λ-MST is based on the λ-convex
combination of maximal segments [42]. More precisely, if a grid edge σ has di-
rection vector t(σ ) and estimated unit tangent vector T̂(σ ), these two estimators
are defined as:

L̂ST(Y,h) = h
∑

σ∈∂Y

T̂ST(σ ) · t(σ ),

L̂λ-MST(Y,h) = h
∑

σ∈∂Y

T̂λ-MST(σ ) · t(σ ).
(13.4)

Some experimental evaluation of the multigrid convergence has been carried out
for these estimators and is illustrated in Fig. 13.2. It appears that the perimeter of
shapes with rectilinear boundaries is accurately estimated with any of the presented
length estimators but for the naive one. However, for shapes with sufficiently smooth
boundaries and positive curvature, the MLP and λ-MST have super-linear conver-
gence and should be preferred. Note finally that only DSS, MLP, and λ-MST have
proved multigrid convergence, but the found bounds are not necessarily tight. In
Fig. 13.3, we present computational time for estimators implemented in DGtal re-
lease 0.4 (Naive, BLUE, RosenProffitt, DSS, MLP, FP). Convergence results for ST
and λ-MST have been obtained from ImaGene library [29]. In these graphs, we can
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Fig. 13.3 Computation time for length estimators implemented in DGtal (Naive, BLUE, Rosen-
Proffitt, DSS, MLP, FP). For the sake of clarity, abscissa corresponds to the size of the contour
in number of grid points. Ordinate corresponds to timings in millisecond (Intel Xeon 2.27 GHz,
DGtal 0.4)

observe the linear computational cost of all estimators with respect to the size of
the contours. As expected, local estimators outperform the other ones, but a DSS
based estimator is a good compromise between efficiency and theoretical multigrid
convergence.

13.2.4 Summary

Table 13.1 summarizes multigrid convergence results for estimators of global geo-
metric quantities. It appears that some theoretical bounds are not tight and that some
others are yet to be proved.

13.3 Local Estimators

13.3.1 Multigrid Convergence for Local Estimators

Tangent direction, normal vector, curvature are local geometric quantities along the
shape boundary. Thus, each of them is a function of the shape boundary. However,
the contour of the shape digitization does not define the same domain. Therefore we
cannot directly compare the true geometric function with the estimated geometric
function. We provide below a definition of multigrid convergence for discrete local
estimators. It is neither a parametric definition as in [21] nor a point-wise defini-
tion as the standard multigrid convergence reported in [35]. Furthermore, for the
sake of simplicity, there is no direct mapping between the contour and its digitized
counterpart as proposed in [39]. It is a geometric definition, stating that any digital
point sufficiently close to the point of interest has its estimated geometric quantity
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Table 13.1 Known multigrid convergence for several estimators of global geometric quantities

Quantity Estimator Shape family Convergence speed References

Upper bound Observed

area Â XC O(h) Gauss, Dirichlet

area Â X3-PW-SC O(h
15
11 +ǫ) [28]

moments m̂p,q X3-PW-SC O(h) [36]

moments m̂p,q X3-SC O(h
15
11 +ǫ) [36]

length L̂DSS Convex polygons ≈ 4.5h [37]

length L̂DSS X3-PW-SC (unknown) O(h) [37]

length ǫ-sausage Convex polygons ≈ 5.844h [2]

length L̂ST XC (unknown) O(h) [11]

length L̂FP XC (unknown) O(h) [63]

length L̂MLP XC ≈ 8h [65]

length L̂MLP X3-PW-SC O(h) O(h
4
3 ) [65]

length L̂λ-MST X3-PW-SC O(h
1
3 ) O(h

4
3 ) [39]

which tends toward the expected local value of the geometric function. This defini-
tion of multigrid convergence imposes shapes with continuous geometric fields. Of
course, one can afterward relax this constraint by splitting the shape boundary into
individual parts where the geometric function is continuous.

Let us recall that X is some family of shapes in the Euclidean plane. We denote
by D(X,h) the Gauss digitization of X ∈ X with grid step h. For any x in the
topological boundary ∂X of X, let Q(X,x) be some local geometric quantity of ∂X

at x. A discrete local estimator Q̂ is a mapping which associates with any digital
contour C, a point y ∈ C and a grid step h, some value in a vector space (e.g., R for
the curvature). We are now in position to define the multigrid-convergence of this
estimator:

Definition 2 The estimator Q̂ is multigrid-convergent for the family X if and
only if, for any X ∈ X, there exists a grid step hX > 0 such that the estimate
Q̂(D(X,h), y,h) is defined for all y ∈ ∂D(X,h) with 0 < h < hX , and for any
x ∈ ∂X,

∀y ∈ ∂D(X,h) with ‖y − x‖1 ≤ h,
∣

∣Q̂
(

D(X,h), y,h
)

− Q(X,x)
∣

∣ ≤ τX,x(h),

where τX,x : R+∗ → R+ has null limit at 0. This function defines the speed of con-

vergence of Q̂ toward Q at point x of ∂X. The convergence is uniform for X when
every τX,x is bounded from above by a function τX independent of x ∈ ∂X with null
limit at 0.

It is worthy to note that, for sufficiently regular shapes (par(r)-regular shapes
[43]), there exists a grid step below which the boundary of the shape digitization has
same topology as the shape boundary ([39], Theorem B.5). Furthermore, these two
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boundaries are very close. Indeed, there exists a grid step below which for any x ∈ X

there is a y ∈ ∂D(X,h) with ‖y − x‖1 ≤ h and conversely for any y ∈ ∂D(X,h),
there is a x ∈ X with ‖y − x‖1 ≤ h [39, Lemma B.9].

Therefore the previous definition of multigrid convergence guarantees that the
estimated local quantity converges toward the true local geometric quantity every-
where along the shape boundary.

13.3.2 Methodology for Experimental Evaluation

When multigrid convergence theorems have been established, we will reference
them and indicate the known convergence rate. We nevertheless carry out an experi-
mental evaluation of many different estimators for two reasons: (1) few convergence
theorems exist for local estimators, and (2) practical error bounds at finite scale are
also important for the end-user.

In the next sections, we apply the following methodology for analyzing estima-
tors:

1. Test shapes. We use the shapes of Fig. 13.1 for the experiments. They are rep-
resentative of the different shape families that we are studying. Indeed, shapes
composed of linear parts, smooth parts and corners, arise naturally in image anal-
ysis. When the tangent field is not continuous (square, triangle), only the average
error is significant.

2. Graphs of estimations with respect to ground truth. We display the graphs of the
estimated values for different estimators (functions Q̂) and the expected graph
(function Q).

3. Error measures for decreasing h. We study the following measures:

ǫabs(X,y,h) =
∣

∣Q
(

X,x(y)
)

− Q̂
(

D(X,h), y,h
)∣

∣

(13.5)

or (when a vector) ǫabs(X,y,h) =
∣

∣det
(

Q
(

X,x(y)
)

, Q̂
(

D(X,h), y,h
))∣

∣

(13.6)

ǫrel(X,y,h) = ǫabs(X,y,h)

|Q(X,x(y))| (13.7)

ǫabs(X,h) = 1

#D(X,h)

∑

y∈D(X,h)

ǫabs(X,y,h) (13.8)

ǫrel(X,h) = 1

#D(X,h)

∑

y∈D(X,h)

ǫrel(X,y,h) (13.9)

Here x(·) is a mapping associating to each digitized point a point on the shape
boundary that is close enough (‖y − x(y)‖1 ≤ h). The same mapping is used for
all estimators.

4. When known, computational complexities for computing estimators will be
given. Otherwise, for fair comparisons, we only measure computation times for
estimators implemented in the DGtal library (see Sect. 13.6).
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This methodology allows us to evaluate experimentally the accuracy and multi-
grid convergence properties of discrete local geometric estimators. Section 13.4
studies tangent estimators and Sect. 13.5 studies curvature estimators. Their im-
plementation in a common framework is discussed in Sect. 13.6.

13.4 Tangent

The aim of tangent estimators is to determine what is locally the shape boundary di-
rection. For curves γ (s) (at least C1) defined as functions of a curvilinear abscissa s,
the tangent vector is defined as dγ

ds
, which is a unit vector. The tangent direction φ(s)

is defined as the angle between this unit vector and the x-axis.

13.4.1 Tangent Estimators

Given a digital contour and a digital point, tangent estimators return a unit vector.
For easier view, it is also possible to plot the angle of the tangent vector w.r.t. the
x-axis. It is clear that the grid edge direction (see arrows in Fig. 13.9d for an illustra-
tion) is a very bad tangent estimator, since on any shape in X1-SC it will have points
with ǫabs or ǫrel close to π

2 .
More complex approaches are necessary. Digital tangent estimators have been

thoroughly compared in [41, 42]. They have been compared to continuous ap-
proaches in [15, 16]. We describe below some representative tangent estimators,
which will be compared experimentally.

• A first natural approach is to use a local least-square fit of a polynomial [5, 46].
These techniques define a fixed window-size q . Around the point of interest they
use 2q + 1 samples which are used to find the polynomial of given degree that
best fit these data in the least-square sense. We focus here on low-degree polyno-
mials. The LR tangent estimator T̂LR-q is the linear-regression with the window
size q . The ICIPF tangent estimator T̂ICIPF-q is the implicit parabola fitting of
window size q , made independently on each coordinate. They were found to be
representative of that kind of methods [15, 16].

• A second approach is to see the digital contour as a discrete signal (x[t], y[t]) and
to convolve it with a Gaussian derivative of a given kernel σ . This is very similar
to the binomial convolution approach of [21, 23, 51]. Therefore, we choose the
H1-0GD tangent estimator T̂H1-0GD [16], which defines locally the window size
as the longest maximal digital straight containing the point. A slight variant is

proved to be multigrid convergent in O(h
1
3 ) for smooth shapes in X3-SC , while its

experimental convergent rate is excellent [16] for smooth shapes.
• The MCMS tangent estimator T̂MCMS defines the tangent as the direction of the

most-centered maximal digital straight segment containing the point of interest

[22]. It is proved to be uniformly multigrid convergent in O(h
1
3 ) in [39, 42].
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• The λ-MST tangent estimator T̂λ-MST is based on the λ-convex combination of
the direction of the maximal digital straight segments containing the point of
interest [42]. The function λ is a mapping governing the way these directions
are combined. We use here a simple triangle function f , such that f (0) = 0,

f (1) = 0, f (0.5) = 1. It is proved to be uniformly multigrid convergent in O(h
1
3 )

in [39, 42].
• The BC tangent estimator T̂BC considers the digital contour as a discrete signal

(x[t], y[t]) and convolves it with discrete binomials and a discrete difference op-
erator, so as to mimic the convolution by a Gaussian derivative [21, 51]. We use

the suggested mask size of d.h− 4
3 , where d is the continuous shape diameter. It

is proved to be uniformly multigrid convergent in O(h
2
3 ) in [51].

• The MATAS tangent estimator T̂MATAS is an adaptation of the median filter com-
monly used in image processing [53]. If (Pi) are the vertices of the grid contour,
this method consists in choosing the median orientation among the following 2q

vectors centered on Pi : (Pi−qPi, . . . ,Pi−1Pi,PiPi+1, . . . ,PiPi+q).

13.4.2 Experimental Evaluation

We have run these estimators on two representative shapes (the square is repre-
sentative of XC , the ellipse is representative of X3-SC) at different steps (coarse
h = 1, medium h = 0.1). Results are displayed in Fig. 13.4. Only MCMS and λ-
MST detect perfectly straight parts and corners. Others tend to smooth around cor-
ners, the amount of smoothing being dependent on the (chosen) size of the window.
Furthermore, LR and ICIPF oscillate around the correct value on straight parts. It
is more difficult to tell which estimator is the best along the boundary of smooth
curved parts. MCMS produces a staircase-like function but keeps the convexity of
the shape. MATAS, LR and ICIPF may also oscillate and create false concavities.
BC and λ-MST follow nicely the ground truth function. Overall, λ-MST seems to
be the most versatile and accurate at these resolutions. Experiments on other shapes
confirm the presented behaviors of these estimators.

We now turn ourselves to the asymptotic behavior of these estimators, namely
their possible multigrid convergence. We focus on the average absolute error of the
tangent vector, i.e. ǫabs(X,h) (see (13.8)). The error plots displayed in Fig. 13.5
show that tangent estimators with fixed window size are not multigrid convergent.
This is the case of LR, ICIPF and MATAS estimators. Interestingly, but not surpris-
ingly, small window sizes bring better precision at low scale while greater window
sizes bring better precision at fine scale. This is clearly the problem of such esti-
mators: they require a user to choose the best possible scale according to the input
data.

If we look at the other estimators (H1-0GD, MCMS, λ-MST, BC), the window
size is automatically determined, either globally by d.h− 4

3 for BC estimator, or lo-
cally by maximal digital straight segments for the remaining three. All these four es-
timators are experimentally multigrid convergent for most of the considered shapes.
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Fig. 13.4 Plots of tangent directions as a function of the grid edge index for several shapes and
several tangent estimators. For each row, the shape and the digitization step is given. Left column:
BC and MCMS estimators. Right column: MATAS estimator with window 10, ICIPF estimator
with window 0, LR estimator with window 10, λ-MST estimator, H1-0GD estimator. Note that for
a clearer view, only a representative part of the plot is displayed, and that due to implementation,
grid edges indices of the first column are different from the ones of the second column
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Fig. 13.5 Plots in log-scale of the average absolute errors of tangent vectors as a function of
the grid step for several shapes and several tangent estimators. For each row, the shape and the
digitization step is given. Left column: MATAS estimator with windows 5 and 10, LR estimator
with windows 5 and 10, ICIPF estimator with window 10. Right column: BC estimator, MCMS
estimator, λ-MST estimator, H1-0GD estimator

However, their convergence speed may vary greatly. BC is good for smooth con-
vex shapes, but has low convergence speed on shapes with inflexion points or linear
parts. H1-0GD is excellent on smooth shapes for a fine enough sampling, but is not
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Fig. 13.5 (Continued)

Table 13.2 Known multigrid convergence for several tangent estimators. LR, MATAS, ICIPF are
not multigrid convergent

Estimator Shape family Convergence speed References

Upper bound Observed

T̂BC Polygons ? O(h
1
3 ) (here)

T̂BC X1-SC O(h
2
3 ) O(h

2
3 ) [51]

T̂BC X1-PW-SC ? O(h
1
3 ) (here)

T̂λ-MST and T̂MCMS Polygons O(h) O(h) [39]

T̂λ-MST and T̂MCMS X1-PW-SC ? O(h
2
3 ) [16]

T̂λ-MST and T̂MCMS X3-SC O(h
1
3 ) O(h

2
3 ) [39]

T̂H1-0GD Polygons ? not convergent (here)

T̂H1-0GD X1-PW-SC ? ≈ O(h
2.5
3 ) [16]

T̂H1-0GD X3-SC O(h
1
3 ) O(h

2.5
3 ) [16]

good on shapes with linear parts. MCMS and λ-MST are the most versatile. λ-MST
is preferable to get a continuous tangent. Convergence results are summed up in
Table 13.2.
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13.5 Curvature

For curves γ (s) (at least C2) defined as functions of a curvilinear abscissa s, the
curvature κ can be defined in three different, but essentially equivalent ways:

(i) norm of the second derivative: κ(s) = | d2γ

ds2 |,
(ii) derivative of the tangent orientation: if φ(s) is the angle between the tangent

and a given line, κ(s) = dφ
ds

,
(iii) inverse of the osculating circle radius: if ρ(s) is the radius of the osculating

circle, κ(s) = 1/ρ(s).

Given a grid point of a digital contour, curvature estimators are expected to return
a value in R close to the curvature of the underlying shape. Estimating the curvature
by finite differences over the two neighbors of a given grid point returns either a
positive (resp. negative) high value in convex (resp. concave) corners (±1/

√
2) or a

null one in runs and is thus a very bad solution.
Many curvature estimators have been proposed in the literature to cope with this

problem. They are roughly based on one of the three above-mentioned definitions
as it has been noticed in [27, 70].

In methods (i) and (ii), derivatives are often approximated from the convolution
of either the tangent orientation [22, 68, 70] (i), or the digital contour viewed as a
discrete signal (x[t], y[t]) [21, 23, 51] (ii). They can also be computed from some
polynomials of a given degree locally fitted to the digital contour [27, 52].

Tangents and osculating circles used in methods (ii) and (iii) often rely on fitting
techniques, either in a continuous setting (least square line or arc fitting [70]), or in
a discrete setting to limit the arithmetic effects: digital straight segments [22, 68],
digital level layers (extension to polynomials of higher degrees) [25, 61], approx-
imation of the osculating circle with digital straight segments [12, 13, 27], digital
circular arcs [62].

In most approaches, a user-given window or smoothing parameter is used so
as to remove the jaggedness of digital contours and to make it continuous [21–
24, 49, 51, 68, 70]. Few curvature estimators do not require an external parameter
and we chose to focus on these methods.

13.5.1 Curvature Estimators

The curvature estimators that do not require any parameter either rely on discrete
primitives such as digital straight segment (DSS), digital circular arc (DCA), or on
global optimization such as the Global Minimum Curvature estimator [32].

In this section, we compare the following curvature estimators:

• The MS estimator κ̂
MS [12] used only the length of maximal DSS to estimate the

radius of the osculating circle.
The method relies on the assumption that maximal DSS of the digitization of

a Euclidean circle behave like chords of height h and length Θ(h
1
2 ). Maximal
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DSS are however almost always tighter and the length of maximal DSS has been

proved to be in O(h
1
2 ) but in Θ(h

2
3 ) on average [17].

• The CC estimator κ̂
CC [13] (HK2005 in [27]), associates with any grid point of a

digital contour, the curvature of the circumscribed circle of a triangle defined by
the extremities of its two digital half-tangents.

It has been proved to be convergent if the length of maximal DSS is in

Ω(h
1
2 ) [8]. This condition is however not fulfilled because the length of maxi-

mal DSS has been proved later to be in Θ(h
2
3 ) on average [17].

• Another estimation of the osculating circles can be obtained from the maximal
DCA along the digital contour [62]. The MDCA estimator κ̂

MDCA is the piece-
wise constant function that associates with any grid point of a digital contour the
curvature value of the most centered maximal DCA.

Although this approach seems quite natural, it has been proposed only re-
cently due to the lack of available implementation of on-line DCA recognition
algorithms [10, 38, 64]. It is a natural extension of the tangent estimator based
on the most centered maximal DSS (MCMS tangent estimator in Sect. 13.4) to
the osculating circle estimation problem. As a result, the λ-MST tangent estima-

tor used to improve this tangent estimator may probably improve this curvature
estimator.

The MDCA estimator has been proved to be convergent [62] if the length of
the maximal DCA along the digital contour of the digitization of strictly convex

shapes with continuous curvature field is in Ω(h
1
2 ), which is observed on average.

• The GMC curvature estimator κ̂
GMC [32] computes the curvature of the shape

that minimizes its squared curvature among all the Euclidean shapes that may be
digitized as a digital set close to the input.

The first step consists in computing the whole set of maximal DSS. This pro-
cessing provides tangent and arc length estimations (Sect. 13.2.3 and Sect. 13.4)
used to bound the set of valid shapes in the tangential space (φ(s), s). In this
tangential space, the polygonal line that minimizes its length is then computed to
approximate the shape of piecewise constant curvature that minimizes its squared
curvature.

The minimization is performed by an iterative numerical technique that stops
when the difference between the squared curvature of the last two solution shapes
is less than a small quantity, set to 1.10−8 in what follows.

• Finally, for comparisons, we also introduce the BC curvature estimator κ̂
BC

[21, 51], which is computed from derivative estimations, obtained through a dis-
crete difference operator applied on the digital contour viewed as a discrete signal
(x[t], y[t]) convolved by a binomial kernel of a given size. The mask size is an
input parameter that is not easy to determine, but following [51], it has been set

to d.h− 4
3 where d is the diameter of the continuous shape.

The multigrid convergence of the estimation of the first (resp. second) deriva-

tive at rate O(h
2
3 ) (resp. O(h

4
9 )) has been proved in [21, 51].
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Fig. 13.6 Curvature plots for the flower, digitized with a grid step equal to 0.1 (Fig. 13.1j). MS

estimator in (a) and CC estimator in (b)

13.5.2 Experimental Evaluation

We first plot the curvature values provided by the MS estimator (resp. CC estimator)
in Fig. 13.6a (resp. Fig. 13.6b) when applied to the digital contour of Fig. 13.1j.

Because a maximal DSS is a good neighborhood to check the local convexity
and concavity of a digital curve [63], the MS estimator provides positive curvature
values in convex parts, negative curvature values in concave parts and null curva-
ture values around inflection points (Fig. 13.6a). However, the MS estimator sys-
tematically over-estimates the true curvature values in the convex parts and under-
estimates the true curvature values in the concave parts. The deviation is important
at low resolution and increases as the grid step h decreases. This is clearly a bad
(and not convergent) estimator.

The CC estimator does not respect the convex and concave parts of the dig-
ital contour (see the peak of positive curvature value near the starting point in
Fig. 13.6b), it oscillates a lot but gives correct results on average at low resolution.

In Fig. 13.7, we compare the curvature plots derived from the MDCA, GMC, BC

estimators to the ground-truth.
The visual deviation between the estimated graphs and the ground-truth graph

reflects the average absolute error. For either estimator, the curvature estimations
are more accurate for the ellipse than for the flower. For either shape, the curvature
values obtained from any estimator get closer to the ground-truth (Fig. 13.7) and the
absolute error decreases as the grid step h decreases.

For the ellipse and the flower, at grid step h = 0.01, the MDCA estimator and
the BC estimator are better than the GMC estimator. In Fig. 13.7, their graphs are
hardly confounded with the ground-truth graph.

In Fig. 13.8, the average absolute error has been plotted against the grid step h.
The CC estimator is not convergent and has the highest errors. However, the other
estimators (κ̂MDCA, κ̂

GMC, κ̂
BC) appear to be multigrid convergent.

We experimentally observed that the MDCA estimator has low absolute errors
that decrease as the grid step h decreases. The convergence speed on average of the
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Fig. 13.7 Curvature plots for two shapes digitized at three different resolutions, computed from
MDCA, GMC, BC estimators

MDCA estimator is O(h0.5) (even maybe O(hα) with α > 0.5) for the ellipse and
the flower (Fig. 13.8b and c) but O(h2) for the circle.

The GMC estimator and the BC estimator have usually higher errors. The BC

estimator has lower errors than the MDCA estimator for the ellipse and for the
flower at low resolution (when the grid step is decreasing from 1 to 0.3). The GMC

estimator has however always higher errors than the MDCA estimator.
The GMC estimator and the BC estimator have usually a slower convergence

speed:
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Fig. 13.8 The average
absolute error has been
plotted against the grid step h

for the digitization of a circle
in (a), an ellipse in (b) and a
flower in (c)

• respectively O(h1.2) and O(h0.6) for the circle (note that the GMC estimator is
sensitive to the stop criterion of its optimization process when errors are small),

• respectively O(h0.32) and O(h0.5) for the ellipse,
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• O(h0.32) for the flower (but note that the error graph of the BC estimator is not
straight and further experiments should be done at smaller grid steps to get the
convergence speed).

Eventually the MDCA, GMC, BC estimators appear to be experimentally
multigrid-convergent, but there is no correct theoretical convergence results for cur-
vature estimation as far as we know, contrary to the case of tangent estimation
(Sect. 13.4).

13.6 Implementation

In this section, we discuss about implementation details of both the geometrical es-
timators presented in the previous sections, and the experimental evaluation frame-
work. All the estimators described in this chapter have been implemented in DGtal
[18]. DGtal is an open-source C++ library focusing on the implementation of dig-
ital geometry objects and concepts. For short, it allows to represent images and
objects in n-dimensional digital spaces equipped with both geometrical and topo-
logical tools.

In the context of this chapter, we will only consider the representation and the
analysis of shape in dimension 2. As discussed in the introduction, the input digital
object can be obtained either from an explicit description, from a segmentation pro-
cess of an image (iso-level, . . . ), or as the digitization D(X,h) of a continuous shape
X ∈ X. For the first two cases, DGtal provides mechanisms to construct such digital
sets either explicitly or from a contour tracking process. For the last case, DGtal im-
plements various implicit and parametric continuous shapes for which some global
and local geometrical quantities are known. All such shape implementations are
model of a concept of CEuclideanShapes1 (see Fig. 13.1 for an illustration
of DGtal Euclidean shapes). A digital object is thus obtained from a GaussDig-
itizer parametrized by a model of CEuclideanShapes and a grid step h.
CEuclideanShapes models will be crucial for multigrid convergence analy-
sis.

As discussed above and whatever the way the input digital object is specified, we
need to access to its geometrical information in various ways:

• As a sequence of grid points, subset of Z2, e.g. for area and moment descriptors;
• As a representation of its boundary, e.g. for tangent or curvature estimators.

In the latter case, several options exist to define and represent a shape contour.
Most of the options depend on the underlying topological model (Kong’s like digi-
tal topology or cellular topology). Furthermore, depending on the algorithm used
to perform the analysis, one may prefer a sequence of chain codes, a sequence

1DGtal uses a generic programming paradigm based on concepts and models of concepts. If a
structure name starts from a capital “C”, we describe a concept.
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Fig. 13.9 Different representations of a Euclidean shape digitization: as a set of pixels (a), as a
sequence of 4-connected pixels (b), as a sequence of 1-cell or linels (c), as a sequence of grid point
displacements (d)

of linels or a sequence of 4-connected grid points to describe the contour (cf.
Fig. 13.9).

To obtain a generic and extensible implementation of contour based estimators,
we have defined a GridCurve structure constructed upon a topological cellular
model which aims to provide several facets of a shape contour. More precisely,
given the result of the contour tracking process, it provides mechanism (Ranges
and Iterators on Ranges) to process the boundary sequence either as a set
of grid points or a set of linels. Hence, a local geometrical estimator on contour, or
more precisely a model of CLocalGeometricalEstimator, have an interface
containing at least the two following methods:

• void init(double h, ConstIterator & begin, ConstIterator

& end,...): initialize the geometrical estimator with grid step h on a contour
defined between iterators begin and end;

• Quantity eval( ConstIterator & it): evaluate the estimator at the
position it of the contour and return a Quantity.

In our framework, the type ConstIterator is a template parameter chosen in
the contour iterator types provided in GridCurve.

Similarly, we have a concept of CGlobalGeometricalEstimator and
models of this concept have an eval() method which returns a unique quantity
for a shape (or subset of it).

Based on models of CEuclideanShapes, we can obtain expected continuous
values using TrueLocalEstimatorOnPoints and TrueGlobalEstima-

torOnPoints. Since both expected and estimated values are given by estimators
with a consistent interface, it makes the multigrid comparison very simple. Indeed, it
allows to design a generic CompareLocalEstimators which return a statistic
on the difference of two estimator values.

In the following example, we illustrate the multigrid Euclidean shape construc-
tion and the comparison of three length estimators (RosenProffitt, DSS and MLP).
In this example, we have detailed the overall process: shape construction and dig-
itization, domain and Khalimsky space construction, contour tracking and finally,
evaluation of estimators.
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/ / . . . .

/ / h and r a d i u s are p a r a m e t e r s here

/ / . . . .

/ / Types

t y p e d e f Ball2D <Space > Shape ;
t y p e d e f Space : : P o i n t P o i n t ;
t y p e d e f Space : : R e a l P o i n t R e a l P o i n t ;
t y p e d e f Space : : I n t e g e r I n t e g e r ;
t y p e d e f HyperRectDomain <Space > Domain ;
t y p e d e f KhalimskySpaceND <Space : : d imens ion , I n t e g e r > KSpace ;
t y p e d e f KSpace : : S C e l l S C e l l ;
t y p e d e f GridCurve <KSpace > : : P o i n t s R a n g e P o i n t s R a n g e ;
t y p e d e f GridCurve <KSpace > : : ArrowsRange ArrowsRange ;
t y p e d e f P o i n t s R a n g e : : C o n s t I t e r a t o r C o n s t I t e r a t o r O n P o i n t s ;

/ / E u c l i d e a n b a l l

Shape aShape ( P o i n t ( 0 , 0 ) , r a d i u s ) ;

/ / Gauss D i g i t i z a t i o n

G a u s s D i g i t i z e r <Space , Shape > d i g ;
d i g . a t t a c h ( aShape ) ; / / a t t a c h e s t h e shape .

d i g . i n i t ( aShape . getLowerBound ( ) , aShape . ge tUpperbound ( ) , h ) ;

/ / The domain s i z e i s g i v e n by t h e d i g i t i z e r a c c o r d i n g t o

/ / t h e window and t h e s t e p .

Domain domain = d i g . getDomain ( ) ;

/ / C r e a t e c e l l u l a r space

KSpace K;

bool ok = K. i n i t ( d i g . getLowerBound ( ) , d i g . getUpperBound ( ) , t rue ) ;
i f ( ! ok ) {

s t d : : c e r r << " "
<< " e r r o r i n c r e a t i n g KSpace . " << s t d : : e n d l ;

re turn f a l s e ;
}
t r y {

/ / E x t r a c t s shape boundary

S u r f e l A d j a c e n c y <KSpace : : d imens ion > SAdj ( t rue ) ;
S C e l l b e l = S u r f a c e s <KSpace > : : f indABel ( K, dig , 10000 ) ;

/ / G e t t i n g t h e c o n s e c u t i v e s u r f e l s o f t h e 2D boundary

s t d : : v e c t o r < P o i n t > p o i n t s ;
S u r f a c e s <KSpace > : : t r a c k 2 D B o u n d a r y P o i n t s ( p o i n t s ,

K, SAdj ,
dig , b e l ) ;

t r a c e . i n f o ( ) << " # t r a c k i n g . . . " << e n d l ;

/ / C r e a t e GridCurve

GridCurve <KSpace > g r i d c u r v e ;
g r i d c u r v e . i n i t F r o m V e c t o r ( p o i n t s ) ;
t r a c e . i n f o ( ) << " # g r i d c u r v e c r e a t e d , h=" << h << e n d l ;

/ / r a n g e s

ArrowsRange r a = g r i d c u r v e . ge tArrowsRange ( ) ;
P o i n t s R a n g e rp = g r i d c u r v e . g e t P o i n t s R a n g e ( ) ;

/ / Three l e n g t h e s t i m a t o r s work ing on d i f f e r e n t c o n t o u r

/ / r e p r e s e n t a t i o n s

R o s e n P r o f f i t t L o c a l L e n g t h E s t i m a t o r < ArrowsRange : : C o n s t I t e r a t o r >
R o s e n P r o f f i t t l e n g t h ;

R o s e n P r o f f i t t l e n g t h . i n i t ( h , r a . b e g i n ( ) , r a . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;

DSSLengthEs t imator < P o i n t s R a n g e : : C o n s t I t e r a t o r > DSSlength ;
DSSlength . i n i t ( h , rp . b e g i n ( ) , rp . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;
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MLPLengthEst imator < P o i n t s R a n g e : : C o n s t I t e r a t o r > MLPlength ;
MLPlength . i n i t ( h , rp . b e g i n ( ) , rp . end ( ) , g r i d c u r v e . i s C l o s e d ( ) ) ;

t r a c e . i n f o ( ) << " # E s t i m a t i o n s " << s t d : : e n d l ;
t r a c e . i n f o ( ) << " #h t r u e R o s e n P r o f f i t t DSS MLP " << s t d : : e n d l ;
t r a c e . i n f o ( ) << h << " " << M_PI ∗2 . 0

<< " " << R o s e n P r o f f i t t l e n g t h . e v a l ( )
<< " " << DSSlength . e v a l ( )
<< " " << MLPlength . e v a l ( )
<< s t d : : e n d l ;

} ca tch ( I n p u t E x c e p t i o n e ) {
s t d : : c e r r << " "

<< " e r r o r i n f i n d i n g a b e l . " << s t d : : e n d l ;
re turn f a l s e ;

}

13.7 Related Problems and Perspectives

13.7.1 Geometric Estimators Along Damaged or Noisy Contours

In real applications, images may have been damaged or acquisition devices may
induce noise in the image data. Furthermore, binarization algorithms and segmenta-
tion algorithms may also damage the boundary of the regions or shapes. These con-
tours are thus not anymore the perfect digitization of “nice” Euclidean shapes (e.g.
shapes in Xn-PW-SC), and have parts that are winding where they should be straight.
We will call them hereafter noisy contours (an example is given in Fig. 13.10 where
a kangaroo shape has been damaged by Gaussian noise).

In the pattern recognition community, a lot of tools have been developed to ana-
lyze the geometry of noisy contours, especially to detect corner or dominant points
(see for instance [52]). These points are related to curvature information. However,
these tools are not designed for estimating quantitatively the geometric character-
istics of the contours but rather qualitatively. We only quote here works that give
quantitative geometric information on perfect or noisy contours.

A common way to tackle noise along contours is to filter the contour with a
smoothing kernel. The size of the kernel given by the user is more or less propor-
tional to the amount of damage along the contour. The BC tangent estimator and
the BC curvature estimator are members of this family of techniques [21, 23, 51].
These techniques are efficient when the contour is rather uniformly damaged, but
they smooth indifferently noise and high-curvature parts of the contour (like cor-
ners).

Approaches based on fitting like the LR or ICIPF estimators [5, 46, 70] are also
able to tackle noise along contours, since they tend to find the median or average
polynomial that best approaches locally the data. Again, the window size parame-
ter is used to suppress at the same time arithmetic effects and noise artifacts. This
parameter is generally set by the user.

In the digital geometry community, a common technique is to use the so-called
blurred segments [14] instead of digital straight segment. Compared to digital
straight segment whose thickness is always less than 1, blurred segments have a
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Fig. 13.10 Noisy contour and noise detection along it by the method of [30]. The input image
has been damaged by two different Gaussian noises in different regions. The thresholded shape
has a boundary which is damaged in these regions (noisy contour in solid dark gray). The detector
indicates for each contour point what is the local scale at which this part of the contour should be
analyzed: the scale or noise level at a point is indicated by the size of the light gray box around it.
It is worthy to note that the noise level is almost everywhere proportional to the amount of contour
degradation

user-given maximal thickness. The noisy parts of contours are thus ignored when us-
ing a larger thickness. Several estimators just replace standard segments with blurred
segments so as to take into account noisy contours. For instance, the curvature esti-
mator presented in [55] is the noisy variant of the CC estimator. The GMC estimator
also uses blurred segments to handle noisy contours. The thickness is generally set
by the user.

Note that digital estimators based on digital straight segments (like the H0-1GD,
MCMS and λ-MST tangent estimators, or the MDCA curvature estimator) can also
be adapted to noisy contours by sub-sampling the input contour. For instance, we
can use a 3 × 3 tile over the input contour so as to remove perturbation no greater
than 1 pixel along the contour. However we have yet not run a full set of experiments
so as to know if this approach leads to better estimators than the ones quoted in the
preceding paragraphs.

Finally, all these techniques require the determination of one or several param-
eters in order to process at best noisy contours. This scale or smoothing parameter
must not be too low otherwise damaged parts are considered high-curvature places
or corners, but it must not be too high also in order to preserve features and to have
accurate estimates of geometric information.

If a gray-level input noisy image is available, scale space analysis may provide in-
formation on the amount of noise [7, 20, 26, 34]. They cannot handle directly noisy
contours. For noisy contours, Kerautret and Lachaud [30] have recently proposed a
method to automatically detect the meaningful scales of digital contours. It can give
locally along the contour what is the amount of noise and the first scale at which the
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contour should be analyzed (see Fig. 13.10, and on-line demonstration [33]). Their
technique relies on the asymptotic properties of maximal digital straight segments.
They have proposed a variant of λ-MST estimator for noisy contours, which uses
the noise information given by the meaningful scales [31].

13.7.2 Geometric Estimators in 3D and nD

In higher dimensions, several 2D estimators or frameworks can be extended. How-
ever, many open problems exist and beside the fact that a few proofs of multigrid
convergence exist, a complete experimental multigrid evaluation of curvature esti-
mators for instance has not been done yet on digital surfaces in Z3. In this section,
we just give a brief overview of existing techniques:

• Surface area: to compute the area of a surface in Z3, a first solution is based on
weighted local configurations [48, 69]. The idea is to associate weights with local
configurations of surface voxels or surfels. Then, given an object, the surface
area is approximated by summing all weights associated with all configurations
defined on the object surface. Similarly to the BLUE estimator, weights are given
by a statistical analysis to minimize surface area error for a given class of shapes.
By deriving results from the length case in dimension 2 [66], surface weighted
configuration estimators can never achieve multigrid convergence. In [50], the
authors use statistical analysis and integral geometry to design a fast estimation of
the surface area. Again, the quality of the estimation is controlled by a parameter
(number of line probes). Another option is to generalize the discrete normal vector
integration scheme as described in [8, 11]. As detailed in [9], we can prove that if
the normal vector estimation is multigrid convergent, then the integration of the
vector field leading to the surface area estimation is multigrid convergent as well.

• Normal vector field computation: at a point x on a smooth surface, the normal
vector at x can be defined as the cross product of first order derivatives at x (tan-
gent) of two curves lying on the surface crossing at x. In a digital context, given a
surface element of a cellular representation of a digital surface, two natural digital
4-connected curves can be defined by the intersection of the surface with the two
coordinate planes containing the surfel elementary normal vector. Hence, Lenoir
et al. suggested to compute the normal vector at a surfel as the cross product of
tangent computed on the two 2D digital curves [45]. Following this framework,
multigrid convergence can be achieved if the tangent estimator used on the 2D
curves is multigrid convergent [9, 39]. The normal vector field of a digital surface
in Zn, for arbitrary n, can be computed with a similar approach [40].

• Curvature: For curvature computation on digital surfaces, only few estimators
have been proposed in the digital geometry framework. We can cite Lenoir’s slice
based approach for the mean curvature estimation [44], Gauss map area evalu-
ation for the Gaussian curvature [8], techniques based on integral invariants for
both mean and Gaussian curvatures [4, 57, 58]. Integral invariant techniques are
definitely relevant in the digital geometry context, even in case of a noisy surface.
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However, they require a window parameter which could be difficult to set for a
large class of shapes.

In computational geometry, several techniques have been proposed to con-
struct accurate curvature estimators with bounded errors. Usually, bounds are
parametrized by a sampling parameter for a given sampling hypothesis. An ex-
ample of a sampling hypothesis for a smooth surface would be that the sampling
density should be proportional to the curvature. In this context, convergence or
stability of geometric estimators have been proposed as a function of the sam-
pling parameter. In many situations the sampling theorems used in computational
geometry do not match with the specific isotropic behavior of digital surfaces. In
[1, 6, 54], estimators are defined on point sets based on Voronoi structures and
the error is given in terms of Hausdorff distance (which is consistent with digi-
tal surfaces). Investigating the links between computational geometry and digital
geometry on this subject is a challenging problem.

13.7.3 Current Bottlenecks and Open Problems

As detailed in the previous sections, we can overview current theoretical bottlenecks
in the design of discrete geometric estimators:

• Stability w.r.t. noise: Prior detection of the contour local noise level to be used
as an estimator parameter, or with estimators which are theoretically robust to a
given noise model.

• Estimators of differential quantity of order 2: From our point of view, existing
curvature estimators are not yet satisfactory since either no proof of multigrid
convergence exists, or the convergence is controlled by an external parameter
(e.g., window size or Gaussian kernel width). It would be interesting, for instance,
to focus on the multigrid behavior of circular arc segment on digital 2D contours.
Indeed, many proofs related to the length or the tangent estimation are based
on the multigrid behavior of DSS. On digital surfaces and in higher dimension,
we think that a better understanding of links between computational and digital
geometry results would lead to new results in this domain.

Beside these theoretical bottlenecks, complete experimental multigrid evalua-
tions are now mandatory when designing a new discrete estimator. With the help of
both a theoretical methodology (multigrid shape database and error measures) and
open-source libraries (ImaGene [29] or DGtal [18]), we expect to have a complete
and stable experimental framework. An important future work would be to continue
the implementation of existing estimators with comparative studies. In dimension 3,
main bottlenecks are related to efficiency and computational costs. Indeed, in many
Material sciences or Medical imaging applications, we may have to analyze digital
shapes whose size achieves up to 20483. In the implementation of 3D estimators,
several theoretical and technical problems have to be addressed, such as out-of-core
techniques, hierarchical data representation and adaptive algorithms, and others.
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