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Introduction

Since early developments in image processing and image understanding, many tools have been developed in order to quantify the geometry of a digital shape. Such digital shapes can be defined for instance either from a segmentation process as a subset of image pixels sharing the same colorimetric information, or as the result of the digitization of a continuous object.

In many applications, it is important to have a geometrical quantification or description from measurements which are invariant under a specific class of transforms (rotation, translation, and scaling) or which preserve important geometrical features (characteristic points, local convexity, etc.). In this context, we usually consider differential or integral quantities evaluated either on the digital shape or its boundary. Beside such type of quantification, we can distinguish two classes of geometrical descriptors. The first class corresponds to global descriptors which associate a global numerical quantity with each shape. In this class, we have arc length or perimeter estimators of digital shape boundaries, but also integral quantities such as geometrical moments approximated on the digital shape. The second class contains local estimators which usually associate a numerical quantity with each point of the shape. For example, curvature or normal vector estimators at boundary points belong to this class.

When defining an algorithm that evaluates such descriptors on digital shape, so called estimator, the evaluation of such estimator accuracy may be challenging. In the literature, several approaches have been proposed. The first one is application driven and consists in validating the estimators within a complete shape description pipeline. For instance, one can evaluate a curvature estimator in a global characteristic points estimation framework of contours.

One can also evaluate the accuracy of the estimator in terms of expected properties. For instance, we can evaluate the stability of a curvature estimator when rotations of input shapes are given.

A more formal evaluation process consists in comparing the estimated quantities with exact Euclidean values on a family of continuous shapes in a multigrid asymptotic framework. More precisely, let X be a family of compact simply connected subsets of R 2 with continuous curvature fields. We denote by D(X,h) the Gauss digitization of X ∈ X with grid step h, seen as a union of pixels of side h in R 2 . For sake of clarity, we shorten in the sequel D(X,h) into D and denote its complementary by D. Moreover, let us assume that D contains at least one pixel, i.e.

|D|≥1.

In this multigrid framework, comparing the estimated quantity to the expected Euclidean one when h tends to zero is called the multigrid convergence analysis of an estimator [START_REF] Klette | Digital Geometry-Geometric Methods for Digital Picture Analysis[END_REF]. Indeed, at a given resolution, infinitely many shapes have the same digitization, which hampers the objective comparison of estimators. For estimators of local geometric quantities like tangent or curvature, few results exist. We may quote some convergence results for tangent estimators [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF]. And there is no correct convergence results for curvature as far as we know.

In this chapter, we use this multigrid comparison framework in order to review and evaluate existing local and global estimators on digital shapes. A important contribution is to have considered a large set of estimators in a unique technical framework: the DGtal open-source library [START_REF]DGtal: digital geometry tools and algorithms library[END_REF]. DGtal is a generic open source library for Digital Geometry programming for which the main objective is to structure different developments from the digital geometry and topology community. For the purpose of this chapter, we use DGtal to represent multigrid digital objects and shapes, to define the geometric estimators and we provide ways to compare estimated values to expected Euclidean ones.

The chapter is organized as follows: Sect. 13.2 focuses on global estimators (area, moments and arc length) and Sects. 13.3, 13.4, and 13.5 are devoted to local estimators, tangent, and curvature, respectively. In all cases, each section starts with a formal definition of the multigrid convergence of an estimator. In Sect. 13.6,wediscuss on implementation details of both the estimator and the comparative evaluation framework.

Global Estimators

Multigrid Convergence for Global Estimators

Multigrid convergence is an interesting way of relating digital and Euclidean geometries. The idea is to ask for discrete geometric estimations to converge toward the corresponding Euclidean quantity when considering finer and finer shape digitizations (here, Gauss digitization). The following definition is taken from Definition 2.10 of [START_REF] Klette | Digital Geometry-Geometric Methods for Digital Picture Analysis[END_REF].

Definition 1 (Multigrid convergence for global geometric quantities)

A discrete geometric estimator Ê of some geometric quantity E is multigrid convergent for a family of shapes X and a digitization process D iff for all shape X ∈ X, there exists a grid step h X > 0 such that the estimate Ê(D(X,h),h) is defined for all 0 <h<h X and

Ê D(X,h),h -E(X) ≤ τ X (h),
where τ X : R + → R + is with null limit at 0. This function is the speed of convergence of the estimator.

The convergence of most estimators depends on the family of shapes in the Euclidean plane that is considered. We therefore introduce several standard families that will be used to define the range of validity of multigrid convergence theorems. A curve is said to be C n if it has continuous n-th order derivatives.

• The family of all finite convex shapes in the Euclidean plane is denoted with X C . • The family of convex sets whose boundary is a C n arc with positive curvature everywhere is denoted by X n-SC . • The family of all planar piecewise n-smooth convex set is denoted with X n-PW-SC .

These sets are convex sets whose boundary consists of a finite number of C n arcs with positive curvature everywhere except at arc endpoints. Clearly X n-SC X n-PW-SC .

For experiments, we will use shapes that are representative of these families. Several representative shapes digitized at different scales are illustrated in Fig. 13.1. They will be used for the upcoming experiments on global and local geometric estimators. 

Area and Moments

Designing a multigrid convergent estimator of the area is fairly simple. We define the area estimator by counting  as

Â(Y, h) = h 2 (i,j )∈Y 1, (13.1) 
where Y is an arbitrary digital shape and h the grid step. This estimator just counts the number of h-grid square in Y and normalizes the result with the area of each grid square. As reported in [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF], Gauss and Dirichlet knew already that this area estimator was multigrid convergent for finite convex shape (X C ) with a speed O(l • h), where l is the shape perimeter. Huxley [START_REF] Huxley | Exponential sums and lattice points[END_REF] improves the bound to O(h 15 11 (log 1 h ) 47 22 ) for the family X 3-PW-SC . This simple estimator has thus super-linear convergence for a rather wide class of shapes.

Klette and Žunić [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF] follow the idea of (13.1) to design the discrete (p, q)moment estimator m p,q , for integers p, q ≥ 0, as follows:

m p,q (Y, h) = h 2+p+q (i,j )∈Y i p • j q .
(13.2)

These estimators approximate the (p, q)-moments of a shape X, which are defined as m p,q (X) = X x p y q dxdy. Their speed of convergence is summed up in Table 13.1. In a similar way, central moments may be approximated. We refer the reader to [START_REF] Klette | Multigrid convergence of calculated features in image analysis[END_REF] for further details. Note that moments can be used to determine for instance the center of gravity or the orientation of a shape. Furthermore, several rotational invariant quantities can be obtained as combination of (p, q)-moments. For instance, Zernike and Legendre moments widely used in many 2D and 3D shape indexing and retrieval are linear combination of (p, q)-moments [START_REF] Novotni | Shape retrieval using 3D Zernike descriptors[END_REF][START_REF] Teague | Image analysis via the general theory of moments[END_REF]. Hence, convergence results on (p, q)-moments lead to convergence of Zernike and Legendre moments as well.

The previous estimators require to visit all points of the digital object, and not only its boundary. The computational complexity of these estimators is thus O(1/h 2 ). However, a discrete variant of Green theorem allows to compute these quantities by simply visiting the shape boundary, thus reducing the computational complexity to O(1/h) for convex shapes. See Lien [START_REF] Lien | Combining computation with geometry[END_REF] for a generic discrete Green theorem framework and Brlek et al. for a digital geometry application [START_REF] Brlek | The discrete green theorem and some applications in discrete geometry[END_REF].

Perimeter and Length Estimators

It is more complex to estimate the perimeter of a digital shape. Indeed, enumerating the number of grid steps of the digital shape boundary does not lead to a reliable perimeter estimator. It is called the naive perimeter estimator Lnaive and is defined as

Lnaive (Y, h) = h σ ∈∂Y 1. (13.3) 
This estimator overestimates the shape perimeter. Indeed, it is clear that it always returns the perimeter of the axis-aligned bounding box of the shape.

Therefore first approaches to length estimation tried to assign different weights to different local configurations so as to be more precise. The Rosen-Proffitt estimator [START_REF] Proffitt | Metrication errors and coding efficiency of chain-encoding schemes for the representation of lines and edges[END_REF] and BLUE (best linear unbiased) estimator [START_REF] Dorst | Length estimators for digitized contours[END_REF] belong to this category. However it was proved in Tajine and Daurat [START_REF] Tajine | On local definitions of length of digital curves[END_REF] that all these approaches can never achieve multigrid convergence, whatever the (finite) number of configurations taken into account.

More complex approaches are required to achieve convergence. We list below several of them, which are also experimentally compared (see Fig. 13.2). Most of them are not only valid for perimeter estimation but also for curve length estimation.

• The DSS length estimator LDSS , proposed by Kovalevsky and Fuchs [START_REF] Kovalevsky | Theoretical and experimental analysis of the accuracy of perimeter estimates[END_REF] ).H o w e v e r ,o nt h e boundary of a shape with linear parts, the convergence speed is O(h) for all the estimators except the naive one

• The FP length estimator LFP , proposed in [START_REF] Roussillon | Faithful polygonal representation of the convex and concave parts of a digital curve[END_REF], relies on yet another polygonal approximation of the digital contour. One can see it is a translated version of the MLP, where convex turns are translated outwards and concave turns are translated inwards by half-unit diagonal vectors. The advantage is that the polygon vertices form a subset of the grid points of the input contour. • Another approach to local length estimation and thus perimeter estimation is to integrate the tangent estimation along the curve [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF][START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF] (see also the next section on tangent estimation). The ST length estimator LST is based on the symmetric tangent while the λ-MST length estimator Lλ-MST is based on the λ-convex combination of maximal segments [START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF]. More precisely, if a grid edge σ has direction vector t(σ ) and estimated unit tangent vector T(σ ), these two estimators are defined as:

LST (Y, h) = h σ ∈∂Y TST (σ ) • t(σ ), Lλ-MST (Y, h) = h σ ∈∂Y Tλ-MST (σ ) • t(σ ). (13.4) 
Some experimental evaluation of the multigrid convergence has been carried out for these estimators and is illustrated in Fig. 13.2. It appears that the perimeter of shapes with rectilinear boundaries is accurately estimated with any of the presented length estimators but for the naive one. However, for shapes with sufficiently smooth boundaries and positive curvature, the MLP and λ-MST have super-linear convergence and should be preferred. Note finally that only DSS, MLP, and λ-MST have proved multigrid convergence, but the found bounds are not necessarily tight. In Fig. 13.3, we present computational time for estimators implemented in DGtal release 0.4 (Naive, BLUE, RosenProffitt, DSS, MLP, FP). Convergence results for ST and λ-MST have been obtained from ImaGene library [START_REF]ImaGene: generic digital image library[END_REF]. In these graphs, we can observe the linear computational cost of all estimators with respect to the size of the contours. As expected, local estimators outperform the other ones, but a DSS based estimator is a good compromise between efficiency and theoretical multigrid convergence.

Summary

Table 13.1 summarizes multigrid convergence results for estimators of global geometric quantities. It appears that some theoretical bounds are not tight and that some others are yet to be proved.

Local Estimators

Multigrid Convergence for Local Estimators

Tangent direction, normal vector, curvature are local geometric quantities along the shape boundary. Thus, each of them is a function of the shape boundary. However, the contour of the shape digitization does not define the same domain. Therefore we cannot directly compare the true geometric function with the estimated geometric function. We provide below a definition of multigrid convergence for discrete local estimators. It is neither a parametric definition as in [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF] nor a point-wise definition as the standard multigrid convergence reported in [START_REF] Klette | Digital Geometry-Geometric Methods for Digital Picture Analysis[END_REF]. Furthermore, for the sake of simplicity, there is no direct mapping between the contour and its digitized counterpart as proposed in [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF]. It is a geometric definition, stating that any digital point sufficiently close to the point of interest has its estimated geometric quantity 

 X C O(h) Gauss, Dirichlet area  X 3-PW-SC O(h 15 11 +ǫ ) [28] moments m p,q X 3-PW-SC O(h) [36] moments m p,q X 3-SC O(h 15 11 +ǫ ) [36] length LDSS Convex polygons ≈ 4.5h [37] length LDSS X 3-PW-SC (unknown) O(h) [37] length ǫ-sausage Convex polygons ≈ 5.844h [2] length LST X C (unknown) O(h) [11] length LFP X C (unknown) O(h) [63] length LMLP X C ≈ 8h [65] length LMLP X 3-PW-SC O(h) O(h 4 3 ) [65] length Lλ-MST X 3-PW-SC O(h 1 3 )O ( h 4 
3 ) [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF] which tends toward the expected local value of the geometric function. This definition of multigrid convergence imposes shapes with continuous geometric fields. Of course, one can afterward relax this constraint by splitting the shape boundary into individual parts where the geometric function is continuous. Let us recall that X is some family of shapes in the Euclidean plane. We denote by D(X,h) the Gauss digitization of X ∈ X with grid step h. For any x in the topological boundary ∂X of X,letQ(X, x) be some local geometric quantity of ∂X at x.Adiscrete local estimator Q is a mapping which associates with any digital contour C, a point y ∈ C and a grid step h, some value in a vector space (e.g., R for the curvature). We are now in position to define the multigrid-convergence of this estimator:

Definition 2

The estimator Q is multigrid-convergent for the family X if and only if, for any X ∈ X, there exists a grid step h X > 0 such that the estimate Q(D(X,h),y,h) is defined for all y ∈ ∂D(X,h) with 0 <h<h X , and for any

x ∈ ∂X, ∀y ∈ ∂D(X,h) with y -x 1 ≤ h, Q D(X,h),y,h -Q(X, x) ≤ τ X,x (h),
where τ X,x : R + * → R + has null limit at 0. This function defines the speed of con-

vergence of Q toward Q at point x of ∂X.
The convergence is uniform for X when every τ X,x is bounded from above by a function τ X independent of x ∈ ∂X with null limit at 0.

It is worthy to note that, for sufficiently regular shapes (par(r)-regular shapes [START_REF] Latecki | Preserving topology by a digitization process[END_REF]), there exists a grid step below which the boundary of the shape digitization has same topology as the shape boundary ( [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF], Theorem B.5). Furthermore, these two boundaries are very close. Indeed, there exists a grid step below which for any x ∈ X there is a y ∈ ∂D(X,h) with yx 1 ≤ h and conversely for any y ∈ ∂D(X,h), there is a x ∈ X with y -

x 1 ≤ h [39, Lemma B.9].
Therefore the previous definition of multigrid convergence guarantees that the estimated local quantity converges toward the true local geometric quantity everywhere along the shape boundary.

Methodology for Experimental Evaluation

When multigrid convergence theorems have been established, we will reference them and indicate the known convergence rate. We nevertheless carry out an experimental evaluation of many different estimators for two reasons: (1) few convergence theorems exist for local estimators, and (2) practical error bounds at finite scale are also important for the end-user.

In the next sections, we apply the following methodology for analyzing estimators:

1. Test shapes. We use the shapes of Fig. 13.1 for the experiments. They are representative of the different shape families that we are studying. Indeed, shapes composed of linear parts, smooth parts and corners, arise naturally in image analysis. When the tangent field is not continuous (square, triangle), only the average error is significant. 2. Graphs of estimations with respect to ground truth. We display the graphs of the estimated values for different estimators (functions Q) and the expected graph (function Q). 3. Error measures for decreasing h. We study the following measures:

ǫ abs (X,y,h)= Q X,x(y) -Q D(X,h),y,h (13.5) 
or (when a vector) ǫ abs (X,y,h)= det Q X,x(y) , Q D(X,h),y,h (13.6)

ǫ rel (X,y,h)= ǫ abs (X,y,h) |Q(X,x(y))| (13.7) ǫ abs (X, h) = 1 #D(X,h) y∈D(X,h) ǫ abs (X,y,h) (13.8) ǫ rel (X, h) = 1 #D(X,h) y∈D(X,h)
ǫ rel (X,y,h) (13.9) Here x(•) is a mapping associating to each digitized point a point on the shape boundary that is close enough ( yx(y) 1 ≤ h). The same mapping is used for all estimators. 4. When known, computational complexities for computing estimators will be given. Otherwise, for fair comparisons, we only measure computation times for estimators implemented in the DGtal library (see Sect. 13.6).

This methodology allows us to evaluate experimentally the accuracy and multigrid convergence properties of discrete local geometric estimators. Section 13.4 studies tangent estimators and Sect. 13.5 studies curvature estimators. Their implementation in a common framework is discussed in Sect. 13.6.

Tangent

The aim of tangent estimators is to determine what is locally the shape boundary direction. For curves γ(s)(at least C 1 ) defined as functions of a curvilinear abscissa s, the tangent vector is defined as dγ ds , which is a unit vector. The tangent direction φ(s) is defined as the angle between this unit vector and the x-axis.

Tangent Estimators

Given a digital contour and a digital point, tangent estimators return a unit vector. For easier view, it is also possible to plot the angle of the tangent vector w.r.t. the x-axis. It is clear that the grid edge direction (see arrows in Fig. 13.9d for an illustration) is a very bad tangent estimator, since on any shape in X 1-SC it will have points with ǫ abs or ǫ rel close to π 2 . More complex approaches are necessary. Digital tangent estimators have been thoroughly compared in [START_REF] Lachaud | Analysis and comparative evaluation of discrete tangent estimators[END_REF][START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF]. They have been compared to continuous approaches in [START_REF] De Vieilleville | Experimental comparison of continuous and discrete tangent estimators along digital curves[END_REF][START_REF] De Vieilleville | Comparison and improvement of tangent estimators on digital curves[END_REF]. We describe below some representative tangent estimators, which will be compared experimentally.

• A first natural approach is to use a local least-square fit of a polynomial [START_REF] Cazals | Estimating differential quantities using polynomial fitting of osculating jets[END_REF][START_REF] Lewiner | Curvature and torsion estimators based on parametric curve fitting[END_REF].

These techniques define a fixed window-size q. Around the point of interest they use 2q + 1 samples which are used to find the polynomial of given degree that best fit these data in the least-square sense. We focus here on low-degree polynomials. The LR tangent estimator TLR-q is the linear-regression with the window size q.T h eICIPF tangent estimator TICIPF-q is the implicit parabola fitting of window size q, made independently on each coordinate. They were found to be representative of that kind of methods [START_REF] De Vieilleville | Experimental comparison of continuous and discrete tangent estimators along digital curves[END_REF][START_REF] De Vieilleville | Comparison and improvement of tangent estimators on digital curves[END_REF]. • A second approach is to see the digital contour as a discrete signal (x[t],y[t]) and to convolve it with a Gaussian derivative of a given kernel σ . This is very similar to the binomial convolution approach of [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Fiorio | Curvature estimation for discrete curves based on autoadaptive masks of convolution[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF]. Therefore, we choose the H1-0GD tangent estimator TH1-0GD [START_REF] De Vieilleville | Comparison and improvement of tangent estimators on digital curves[END_REF], which defines locally the window size as the longest maximal digital straight containing the point. A slight variant is proved to be multigrid convergent in O(h

3 ) for smooth shapes in X 3-SC , while its experimental convergent rate is excellent [START_REF] De Vieilleville | Comparison and improvement of tangent estimators on digital curves[END_REF] for smooth shapes.

• The MCMS tangent estimator TMCMS defines the tangent as the direction of the most-centered maximal digital straight segment containing the point of interest [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: application to the curvature[END_REF]. It is proved to be uniformly multigrid convergent in O(h 3 ) in [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF][START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF].

• The λ-MST tangent estimator Tλ-MST is based on the λ-convex combination of the direction of the maximal digital straight segments containing the point of interest [START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF]. The function λ is a mapping governing the way these directions are combined. We use here a simple triangle function f , such that f(0) = 0,

f(1) = 0, f(0.5) = 1. It is proved to be uniformly multigrid convergent in O(h 1 3 
) in [START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF][START_REF] Lachaud | Fast, accurate and convergent tangent estimation on digital contours[END_REF].

• The BC tangent estimator TBC considers the digital contour as a discrete signal (x[t],y[t]) and convolves it with discrete binomials and a discrete difference operator, so as to mimic the convolution by a Gaussian derivative [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF]. We use the suggested mask size of d.h -43 , where d is the continuous shape diameter. It is proved to be uniformly multigrid convergent in O(h 2 3 ) in [START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF].

• The MATAS tangent estimator TMATAS is an adaptation of the median filter commonly used in image processing [START_REF] Matas | Estimation of curvature and tangent direction by median filtered differencing[END_REF]. If (P i ) are the vertices of the grid contour, this method consists in choosing the median orientation among the following 2q vectors centered on P i : (P i-q P i ,...,P i-1 P i , P i P i+1 ,...,P i P i+q ).

Experimental Evaluation

We have run these estimators on two representative shapes (the square is representative of X C , the ellipse is representative of X 3-SC ) at different steps (coarse h = 1, medium h = 0.1). Results are displayed in Fig. 13.4. Only MCMS and λ-MST detect perfectly straight parts and corners. Others tend to smooth around corners, the amount of smoothing being dependent on the (chosen) size of the window. Furthermore, LR and ICIPF oscillate around the correct value on straight parts. It is more difficult to tell which estimator is the best along the boundary of smooth curved parts. MCMS produces a staircase-like function but keeps the convexity of the shape. MATAS, LR and ICIPF may also oscillate and create false concavities. BC and λ-MST follow nicely the ground truth function. Overall, λ-MST seems to be the most versatile and accurate at these resolutions. Experiments on other shapes confirm the presented behaviors of these estimators. We now turn ourselves to the asymptotic behavior of these estimators, namely their possible multigrid convergence. We focus on the average absolute error of the tangent vector, i.e. ǫ abs (X, h) (see (13.8)). The error plots displayed in Fig. 13.5 show that tangent estimators with fixed window size are not multigrid convergent. This is the case of LR, ICIPF and MATAS estimators. Interestingly, but not surprisingly, small window sizes bring better precision at low scale while greater window sizes bring better precision at fine scale. This is clearly the problem of such estimators: they require a user to choose the best possible scale according to the input data.

If we look at the other estimators (H1-0GD, MCMS, λ-MST, BC), the window size is automatically determined, either globally by d.h -4 Fig. 13.4 Plots of tangent directions as a function of the grid edge index for several shapes and several tangent estimators. For each row, the shape and the digitization step is given. Left column: BC and MCMS estimators. Right column: MATAS estimator with window 10, ICIPF estimator with window 0, LR estimator with window 10, λ-MST estimator, H1-0GD estimator. Note that for a clearer view, only a representative part of the plot is displayed, and that due to implementation, grid edges indices of the first column are different from the ones of the second column Fig. 13.5 Plots in log-scale of the average absolute errors of tangent vectors as a function of the grid step for several shapes and several tangent estimators. For each row, the shape and the digitization step is given. Left column: MATAS estimator with windows 5 and 10, LR estimator with windows 5 and 10, ICIPF estimator with window 10. Right column: BC estimator, MCMS estimator, λ-MST estimator, H1-0GD estimator However, their convergence speed may vary greatly. BC is good for smooth convex shapes, but has low convergence speed on shapes with inflexion points or linear parts. H1-0GD is excellent on smooth shapes for a fine enough sampling, but is not 

3 ) (here) TBC X 1-SC O(h 2 3 )O ( h 2 3 ) [51] TBC X 1-PW-SC ? O(h 1 3 ) (here) Tλ-MST and TMCMS Polygons O(h) O(h) [39] Tλ-MST and TMCMS X 1-PW-SC ? O(h 2 3 ) [16] Tλ-MST and TMCMS X 3-SC O(h 1 3 )O ( h 2 3 ) [39] TH1-0GD Polygons ? not convergent (here) TH1-0GD X 1-PW-SC ? ≈ O(h 2.5 3 ) [16] TH1-0GD X 3-SC O(h 1 3 )O ( h 2. 1 
3 ) [START_REF] De Vieilleville | Comparison and improvement of tangent estimators on digital curves[END_REF] good on shapes with linear parts. MCMS and λ-MST are the most versatile. λ-MST is preferable to get a continuous tangent. Convergence results are summed up in Table 13.2.

Curvature

For curves γ(s) (at least C 2 ) defined as functions of a curvilinear abscissa s,t h e curvature κ can be defined in three different, but essentially equivalent ways:

(i) norm of the second derivative: κ(s) =| d 2 γ ds 2 |, (ii) derivative of the tangent orientation: if φ(s) is the angle between the tangent and a given line, κ(s) = dφ ds , (iii) inverse of the osculating circle radius: if ρ(s) is the radius of the osculating circle, κ(s) = 1/ρ(s).

Given a grid point of a digital contour, curvature estimators are expected to return a value in R close to the curvature of the underlying shape. Estimating the curvature by finite differences over the two neighbors of a given grid point returns either a positive (resp. negative) high value in convex (resp. concave) corners (±1/ √ 2) or a null one in runs and is thus a very bad solution.

Many curvature estimators have been proposed in the literature to cope with this problem. They are roughly based on one of the three above-mentioned definitions as it has been noticed in [START_REF] Hermann | A comparative study on 2d curvature estimators[END_REF][START_REF] Worring | Digital curvature estimation[END_REF].

In methods (i) and (ii), derivatives are often approximated from the convolution of either the tangent orientation [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: application to the curvature[END_REF][START_REF] Vialard | Geometrical parameters extraction from discrete paths[END_REF][START_REF] Worring | Digital curvature estimation[END_REF] (i), or the digital contour viewed as a discrete signal (x[t],y[t]) [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Fiorio | Curvature estimation for discrete curves based on autoadaptive masks of convolution[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF] (ii). They can also be computed from some polynomials of a given degree locally fitted to the digital contour [START_REF] Hermann | A comparative study on 2d curvature estimators[END_REF][START_REF] Marji | On the detection of dominant points on digital planar curves[END_REF].

Tangents and osculating circles used in methods (ii) and (iii) often rely on fitting techniques, either in a continuous setting (least square line or arc fitting [START_REF] Worring | Digital curvature estimation[END_REF]), or in a discrete setting to limit the arithmetic effects: digital straight segments [START_REF] Feschet | Optimal time computation of the tangent of a discrete curve: application to the curvature[END_REF][START_REF] Vialard | Geometrical parameters extraction from discrete paths[END_REF], digital level layers (extension to polynomials of higher degrees) [START_REF] Gérard | Introduction to digital level layers[END_REF][START_REF] Provot | Estimation of the derivatives of a digital function with a convergent bounded error[END_REF], approximation of the osculating circle with digital straight segments [START_REF] Coeurjolly | Discrete curvature based on osculating circle estimation[END_REF][START_REF] Coeurjolly | Estimation of curvature along curves with application to fibres in 3d images of paper[END_REF][START_REF] Hermann | A comparative study on 2d curvature estimators[END_REF], digital circular arcs [START_REF] Roussillon | Accurate curvature estimation along digital contours with maximal digital circular arcs[END_REF].

In most approaches, a user-given window or smoothing parameter is used so as to remove the jaggedness of digital contours and to make it continuous [21-24, 49, 51, 68, 70]. Few curvature estimators do not require an external parameter and we chose to focus on these methods.

Curvature Estimators

The curvature estimators that do not require any parameter either rely on discrete primitives such as digital straight segment (DSS), digital circular arc (DCA), or on global optimization such as the Global Minimum Curvature estimator [START_REF] Kerautret | Curvature estimation along noisy digital contours by approximate global optimization[END_REF].

In this section, we compare the following curvature estimators:

• The MS estimator κMS [START_REF] Coeurjolly | Discrete curvature based on osculating circle estimation[END_REF] used only the length of maximal DSS to estimate the radius of the osculating circle. The method relies on the assumption that maximal DSS of the digitization of a Euclidean circle behave like chords of height h and length Θ(h 1 2 ). Maximal DSS are however almost always tighter and the length of maximal DSS has been provedtobeinO(h 1 2 ) but in Θ(h 2 3 ) on average [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF].

• The CC estimator κCC [START_REF] Coeurjolly | Estimation of curvature along curves with application to fibres in 3d images of paper[END_REF] (HK2005 in [START_REF] Hermann | A comparative study on 2d curvature estimators[END_REF]), associates with any grid point of a digital contour, the curvature of the circumscribed circle of a triangle defined by the extremities of its two digital half-tangents. It has been proved to be convergent if the length of maximal DSS is in

Ω(h 1 2 ) [8]
. This condition is however not fulfilled because the length of maximal DSS has been proved later to be in Θ(h 2 3 ) on average [START_REF] De Vieilleville | Convex digital polygons, maximal digital straight segments and convergence of discrete geometric estimators[END_REF].

• Another estimation of the osculating circles can be obtained from the maximal DCA along the digital contour [START_REF] Roussillon | Accurate curvature estimation along digital contours with maximal digital circular arcs[END_REF]. The MDCA estimator κMDCA is the piecewise constant function that associates with any grid point of a digital contour the curvature value of the most centered maximal DCA.

Although this approach seems quite natural, it has been proposed only recently due to the lack of available implementation of on-line DCA recognition algorithms [START_REF] Coeurjolly | An elementary algorithm for digital arc segmentation[END_REF][START_REF] Kovalevsky | New definition and fast recognition of digital straight segments and arcs[END_REF][START_REF] Roussillon | On three constrained versions of the digital circular arc recognition problem[END_REF]. It is a natural extension of the tangent estimator based on the most centered maximal DSS (MCMS tangent estimator in Sect. 13.4)t o the osculating circle estimation problem. As a result, the λ-MST tangent estimator used to improve this tangent estimator may probably improve this curvature estimator.

The MDCA estimator has been proved to be convergent [START_REF] Roussillon | Accurate curvature estimation along digital contours with maximal digital circular arcs[END_REF] if the length of the maximal DCA along the digital contour of the digitization of strictly convex shapes with continuous curvature field is in Ω(h 1 2 ), which is observed on average. • The GMC curvature estimator κGMC [START_REF] Kerautret | Curvature estimation along noisy digital contours by approximate global optimization[END_REF] computes the curvature of the shape that minimizes its squared curvature among all the Euclidean shapes that may be digitized as a digital set close to the input. The first step consists in computing the whole set of maximal DSS. This processing provides tangent and arc length estimations (Sect. 13.2.3 and Sect. 13.4) used to bound the set of valid shapes in the tangential space (φ(s), s). In this tangential space, the polygonal line that minimizes its length is then computed to approximate the shape of piecewise constant curvature that minimizes its squared curvature.

The minimization is performed by an iterative numerical technique that stops when the difference between the squared curvature of the last two solution shapes is less than a small quantity, set to 1.10 -8 in what follows.

• Finally, for comparisons, we also introduce the BC curvature estimator κBC [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF], which is computed from derivative estimations, obtained through a discrete difference operator applied on the digital contour viewed as a discrete signal (x[t],y[t]) convolved by a binomial kernel of a given size. The mask size is an input parameter that is not easy to determine, but following [START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF], it has been set to d.h -4 3 where d is the diameter of the continuous shape. The multigrid convergence of the estimation of the first (resp. second) derivative at rate O(h 23 ) (resp. O(h 4 9 )) has been proved in [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF]. 

Experimental Evaluation

We first plot the curvature values provided by the MS estimator (resp. CC estimator) in Fig. 13.6a (resp. Fig. 13.6b) when applied to the digital contour of Fig. 13.1j.

Because a maximal DSS is a good neighborhood to check the local convexity and concavity of a digital curve [START_REF] Roussillon | Faithful polygonal representation of the convex and concave parts of a digital curve[END_REF], the MS estimator provides positive curvature values in convex parts, negative curvature values in concave parts and null curvature values around inflection points (Fig. 13.6a). However, the MS estimator systematically over-estimates the true curvature values in the convex parts and underestimates the true curvature values in the concave parts. The deviation is important at low resolution and increases as the grid step h decreases. This is clearly a bad (and not convergent) estimator.

The CC estimator does not respect the convex and concave parts of the digital contour (see the peak of positive curvature value near the starting point in Fig. 13.6b), it oscillates a lot but gives correct results on average at low resolution.

In Fig. 13.7, we compare the curvature plots derived from the MDCA, GMC, BC estimators to the ground-truth.

The visual deviation between the estimated graphs and the ground-truth graph reflects the average absolute error. For either estimator, the curvature estimations are more accurate for the ellipse than for the flower. For either shape, the curvature values obtained from any estimator get closer to the ground-truth (Fig. 13.7) and the absolute error decreases as the grid step h decreases.

For the ellipse and the flower, at grid step h = 0.01, the MDCA estimator and the BC estimator are better than the GMC estimator.InFig.13.7, their graphs are hardly confounded with the ground-truth graph.

In Fig. 13.8, the average absolute error has been plotted against the grid step h. The CC estimator is not convergent and has the highest errors. However, the other estimators ( κMDCA , κGMC , κBC ) appear to be multigrid convergent.

We experimentally observed that the MDCA estimator has low absolute errors that decrease as the grid step h decreases. The convergence speed on average of the The GMC estimator and the BC estimator have usually higher errors. The BC estimator has lower errors than the MDCA estimator for the ellipse and for the flower at low resolution (when the grid step is decreasing from 1 to 0.3). The GMC estimator has however always higher errors than the MDCA estimator.

The GMC estimator and the BC estimator have usually a slower convergence speed: • respectively O(h 1.2 ) and O(h 0.6 ) for the circle (note that the GMC estimator is sensitive to the stop criterion of its optimization process when errors are small), • respectively O(h 0.32 ) and O(h 0.5 ) for the ellipse,

• O(h 0.32 ) for the flower (but note that the error graph of the BC estimator is not straight and further experiments should be done at smaller grid steps to get the convergence speed).

Eventually the MDCA, GMC, BC estimators appear to be experimentally multigrid-convergent, but there is no correct theoretical convergence results for curvature estimation as far as we know, contrary to the case of tangent estimation (Sect. 13.4).

Implementation

In this section, we discuss about implementation details of both the geometrical estimators presented in the previous sections, and the experimental evaluation framework. All the estimators described in this chapter have been implemented in DGtal [START_REF]DGtal: digital geometry tools and algorithms library[END_REF]. DGtal is an open-source C++ library focusing on the implementation of digital geometry objects and concepts. For short, it allows to represent images and objects in n-dimensional digital spaces equipped with both geometrical and topological tools.

In the context of this chapter, we will only consider the representation and the analysis of shape in dimension 2. As discussed in the introduction, the input digital object can be obtained either from an explicit description, from a segmentation processofanimage(iso-level,...),orasthedigitization D(X,h) of a continuous shape X ∈ X. For the first two cases, DGtal provides mechanisms to construct such digital sets either explicitly or from a contour tracking process. For the last case, DGtal implements various implicit and parametric continuous shapes for which some global and local geometrical quantities are known. All such shape implementations are model of a concept of CEuclideanShapes1 (see Fig. 13.1 for an illustration of DGtal Euclidean shapes). A digital object is thus obtained from a GaussDigitizer parametrized by a model of CEuclideanShapes a n dag r i ds t e ph. CEuclideanShapes models will be crucial for multigrid convergence analysis.

As discussed above and whatever the way the input digital object is specified, we need to access to its geometrical information in various ways:

• As a sequence of grid points, subset of Z 2 , e.g. for area and moment descriptors; • As a representation of its boundary, e.g. for tangent or curvature estimators.

In the latter case, several options exist to define and represent a shape contour. Most of the options depend on the underlying topological model (Kong's like digital topology or cellular topology). Furthermore, depending on the algorithm used to perform the analysis, one may prefer a sequence of chain codes, a sequence Fig. 13.9 Different representations of a Euclidean shape digitization: as a set of pixels (a), as a sequence of 4-connected pixels (b), as a sequence of 1-cell or linels (c), as a sequence of grid point displacements (d) of linels or a sequence of 4-connected grid points to describe the contour (cf. Fig. 13.9).

To obtain a generic and extensible implementation of contour based estimators, we have defined a GridCurve structure constructed upon a topological cellular model which aims to provide several facets of a shape contour. More precisely, given the result of the contour tracking process, it provides mechanism (Ranges and Iterators on Ranges) to process the boundary sequence either as a set of grid points or a set of linels. Hence, a local geometrical estimator on contour, or more precisely a model of CLocalGeometricalEstimator, have an interface containing at least the two following methods:

• void init(double h, ConstIterator & begin, ConstIterator & end,...): initialize the geometrical estimator with grid step h on a contour defined between iterators begin and end; • Quantity eval( ConstIterator & it): evaluate the estimator at the position it of the contour and return a Quantity.

In our framework, the type ConstIterator is a template parameter chosen in the contour iterator types provided in GridCurve.

Similarly, we have a concept of CGlobalGeometricalEstimator and models of this concept have an eval() method which returns a unique quantity for a shape (or subset of it).

Based on models of CEuclideanShapes, we can obtain expected continuous values using TrueLocalEstimatorOnPoints and TrueGlobalEstima-torOnPoints. Since both expected and estimated values are given by estimators with a consistent interface, it makes the multigrid comparison very simple. Indeed, it allows to design a generic CompareLocalEstimators which return a statistic on the difference of two estimator values.

In the following example, we illustrate the multigrid Euclidean shape construction and the comparison of three length estimators (RosenProffitt, DSS and MLP). In this example, we have detailed the overall process: shape construction and digitization, domain and Khalimsky space construction, contour tracking and finally, evaluation of estimators.

MLPLengthEstimator < PointsRange :: ConstIterator > MLPlength ; MLPlength . i n i t (h , rp . begin () , rp . end () , gridcurve . isClosed () ) ; trace . info () << "#Estimations" <<std :: endl ; trace . info () << "#h true RosenProffitt DSS MLP " <<std :: endl ; trace . info () << h << " "< <M _ P I * 2.0 << " " << RosenProffittlength . eval () << " " << DSSlength . eval () << " " << MLPlength . eval () << std :: endl ; } catch ( InputException e ) { std :: cerr << " " << " error in finding a bel . " << std :: endl ; return false ; }

Related Problems and Perspectives

Geometric Estimators Along Damaged or Noisy Contours

In real applications, images may have been damaged or acquisition devices may induce noise in the image data. Furthermore, binarization algorithms and segmentation algorithms may also damage the boundary of the regions or shapes. These contours are thus not anymore the perfect digitization of "nice" Euclidean shapes (e.g. shapes in X n-PW-SC ), and have parts that are winding where they should be straight. We will call them hereafter noisy contours (an example is given in Fig. 13.10 where a kangaroo shape has been damaged by Gaussian noise).

In the pattern recognition community, a lot of tools have been developed to analyze the geometry of noisy contours, especially to detect corner or dominant points (see for instance [START_REF] Marji | On the detection of dominant points on digital planar curves[END_REF]). These points are related to curvature information. However, these tools are not designed for estimating quantitatively the geometric characteristics of the contours but rather qualitatively. We only quote here works that give quantitative geometric information on perfect or noisy contours.

A common way to tackle noise along contours is to filter the contour with a smoothing kernel. The size of the kernel given by the user is more or less proportional to the amount of damage along the contour. The BC tangent estimator and the BC curvature estimator are members of this family of techniques [START_REF] Esbelin | Convergence of binomial-based derivative estimation for c2noisy discretized curves[END_REF][START_REF] Fiorio | Curvature estimation for discrete curves based on autoadaptive masks of convolution[END_REF][START_REF] Malgouyres | Binomial convolutions and derivatives estimation from noisy discretizations[END_REF]. These techniques are efficient when the contour is rather uniformly damaged, but they smooth indifferently noise and high-curvature parts of the contour (like corners).

Approaches based on fitting like the LR or ICIPF estimators [START_REF] Cazals | Estimating differential quantities using polynomial fitting of osculating jets[END_REF][START_REF] Lewiner | Curvature and torsion estimators based on parametric curve fitting[END_REF][START_REF] Worring | Digital curvature estimation[END_REF]arealso able to tackle noise along contours, since they tend to find the median or average polynomial that best approaches locally the data. Again, the window size parameter is used to suppress at the same time arithmetic effects and noise artifacts. This parameter is generally set by the user.

In the digital geometry community, a common technique is to use the so-called blurred segments [START_REF] Debled-Rennesson | Optimal blurred segments decomposition of noisy shapes in linear times[END_REF] instead of digital straight segment. Compared to digital straight segment whose thickness is always less than 1, blurred segments have a It is worthy to note that the noise level is almost everywhere proportional to the amount of contour degradation user-given maximal thickness. The noisy parts of contours are thus ignored when using a larger thickness. Several estimators just replace standard segments with blurred segments so as to take into account noisy contours. For instance, the curvature estimator presented in [START_REF] Nguyen | Curvature estimation in noisy curves[END_REF] is the noisy variant of the CC estimator. The GMC estimator also uses blurred segments to handle noisy contours. The thickness is generally set by the user.

Note that digital estimators based on digital straight segments (like the H0-1GD, MCMS and λ-MST tangent estimators, or the MDCA curvature estimator) can also be adapted to noisy contours by sub-sampling the input contour. For instance, we can use a 3 × 3 tile over the input contour so as to remove perturbation no greater than 1 pixel along the contour. However we have yet not run a full set of experiments so as to know if this approach leads to better estimators than the ones quoted in the preceding paragraphs.

Finally, all these techniques require the determination of one or several parameters in order to process at best noisy contours. This scale or smoothing parameter must not be too low otherwise damaged parts are considered high-curvature places or corners, but it must not be too high also in order to preserve features and to have accurate estimates of geometric information.

If a gray-level input noisy image is available, scale space analysis may provide information on the amount of noise [7,[START_REF] Elder | Local scale control for edge detection and blur estimation[END_REF][START_REF] Goshtasby | An adaptive window mechanism for image smoothing[END_REF][START_REF] Kervrann | An adaptive window approach for image smoothing and structures preserving[END_REF]. They cannot handle directly noisy contours. For noisy contours, Kerautret and Lachaud [START_REF] Kerautret | Multiscale analysis of discrete contours for unsupervised noise detection[END_REF] have recently proposed a method to automatically detect the meaningful scales of digital contours. It can give locally along the contour what is the amount of noise and the first scale at which the contour should be analyzed (see Fig. 13.10, and on-line demonstration [START_REF] Kerautret | Noise level and meaningful scale detection online demonstration[END_REF]). Their technique relies on the asymptotic properties of maximal digital straight segments. They have proposed a variant of λ-MST estimator for noisy contours, which uses the noise information given by the meaningful scales [START_REF] Kerautret | Meaningful scales detection along digital contours for unsupervised local noise estimation[END_REF].

Geometric Estimators in 3D and nD

In higher dimensions, several 2D estimators or frameworks can be extended. However, many open problems exist and beside the fact that a few proofs of multigrid convergence exist, a complete experimental multigrid evaluation of curvature estimators for instance has not been done yet on digital surfaces in Z 3 . In this section, we just give a brief overview of existing techniques:

• Surface area: to compute the area of a surface in Z 3 , a first solution is based on weighted local configurations [START_REF] Lindblad | Surface area estimation of digitized 3D objects using weighted local configurations[END_REF][START_REF] Windreich | Voxel-based surface area estimation: from theory to practice[END_REF]. The idea is to associate weights with local configurations of surface voxels or surfels. Then, given an object, the surface area is approximated by summing all weights associated with all configurations defined on the object surface. Similarly to the BLUE estimator, weights are given by a statistical analysis to minimize surface area error for a given class of shapes. By deriving results from the length case in dimension 2 [START_REF] Tajine | On local definitions of length of digital curves[END_REF], surface weighted configuration estimators can never achieve multigrid convergence. In [START_REF] Liu | Surface area estimation of digitized 3d objects using quasi-Monte Carlo methods[END_REF], the authors use statistical analysis and integral geometry to design a fast estimation of the surface area. Again, the quality of the estimation is controlled by a parameter (number of line probes). Another option is to generalize the discrete normal vector integration scheme as described in [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF][START_REF] Coeurjolly | A comparative evaluation of length estimators of digital curves[END_REF]. As detailed in [START_REF] Coeurjolly | Multigrid convergence and surface area estimation[END_REF], we can prove that if the normal vector estimation is multigrid convergent, then the integration of the vector field leading to the surface area estimation is multigrid convergent as well. • Normal vector field computation: at a point x on a smooth surface, the normal vector at x can be defined as the cross product of first order derivatives at x (tangent) of two curves lying on the surface crossing at x. In a digital context, given a surface element of a cellular representation of a digital surface, two natural digital 4-connected curves can be defined by the intersection of the surface with the two coordinate planes containing the surfel elementary normal vector. Hence, Lenoir et al. suggested to compute the normal vector at a surfel as the cross product of tangent computed on the two 2D digital curves [START_REF] Lenoir | Fast computation of the normal vector field of the surface of a 3d discrete object[END_REF]. Following this framework, multigrid convergence can be achieved if the tangent estimator used on the 2D curves is multigrid convergent [START_REF] Coeurjolly | Multigrid convergence and surface area estimation[END_REF][START_REF] Lachaud | Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète[END_REF]. The normal vector field of a digital surface in Z n , for arbitrary n, can be computed with a similar approach [START_REF] Lachaud | Geometric measures on arbitrary dimensional digital surfaces[END_REF]. • Curvature: For curvature computation on digital surfaces, only few estimators have been proposed in the digital geometry framework. We can cite Lenoir's slice based approach for the mean curvature estimation [START_REF] Lenoir | Fast estimation of mean curvature on the surface of a 3d discrete object[END_REF], Gauss map area evaluation for the Gaussian curvature [START_REF] Coeurjolly | Algorithmique et géométrie pour la caractérisation des courbes et des surfaces[END_REF], techniques based on integral invariants for both mean and Gaussian curvatures [START_REF] Bullard | Numerical methods for computing interfacial mean curvature[END_REF][START_REF] Pottmann | Integral invariants for robust geometry processing[END_REF][START_REF] Pottmann | Principal curvatures from the integral invariant viewpoint[END_REF]. Integral invariant techniques are definitely relevant in the digital geometry context, even in case of a noisy surface.

However, they require a window parameter which could be difficult to set for a large class of shapes. In computational geometry, several techniques have been proposed to construct accurate curvature estimators with bounded errors. Usually, bounds are parametrized by a sampling parameter for a given sampling hypothesis. An example of a sampling hypothesis for a smooth surface would be that the sampling density should be proportional to the curvature. In this context, convergence or stability of geometric estimators have been proposed as a function of the sampling parameter. In many situations the sampling theorems used in computational geometry do not match with the specific isotropic behavior of digital surfaces. In [START_REF] Amenta | Defining point-set surfaces[END_REF][START_REF] Chazal | Adaptive smoothing via contextual and local discontinuities[END_REF][START_REF] Merigot | Robust Voronoi-based curvature and feature estimation[END_REF], estimators are defined on point sets based on Voronoi structures and the error is given in terms of Hausdorff distance (which is consistent with digital surfaces). Investigating the links between computational geometry and digital geometry on this subject is a challenging problem.

Current Bottlenecks and Open Problems

As detailed in the previous sections, we can overview current theoretical bottlenecks in the design of discrete geometric estimators:

• Stability w.r.t. noise: Prior detection of the contour local noise level to be used as an estimator parameter, or with estimators which are theoretically robust to a given noise model. • Estimators of differential quantity of order 2: From our point of view, existing curvature estimators are not yet satisfactory since either no proof of multigrid convergence exists, or the convergence is controlled by an external parameter (e.g., window size or Gaussian kernel width). It would be interesting, for instance, to focus on the multigrid behavior of circular arc segment on digital 2D contours. Indeed, many proofs related to the length or the tangent estimation are based on the multigrid behavior of DSS. On digital surfaces and in higher dimension, we think that a better understanding of links between computational and digital geometry results would lead to new results in this domain.

Beside these theoretical bottlenecks, complete experimental multigrid evaluations are now mandatory when designing a new discrete estimator. With the help of both a theoretical methodology (multigrid shape database and error measures) and open-source libraries (ImaGene [START_REF]ImaGene: generic digital image library[END_REF]orDGtal [START_REF]DGtal: digital geometry tools and algorithms library[END_REF]), we expect to have a complete and stable experimental framework. An important future work would be to continue the implementation of existing estimators with comparative studies. In dimension 3, main bottlenecks are related to efficiency and computational costs. Indeed, in many Material sciences or Medical imaging applications, we may have to analyze digital shapes whose size achieves up to 2048 3 . In the implementation of 3D estimators, several theoretical and technical problems have to be addressed, such as out-of-core techniques, hierarchical data representation and adaptive algorithms, and others.
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 133 Fig. 13.3 Computation time for length estimators implemented in DGtal (Naive, BLUE, Rosen-Proffitt, DSS, MLP, FP). For the sake of clarity, abscissa corresponds to the size of the contour in number of grid points. Ordinate corresponds to timings in millisecond (Intel Xeon 2.27 GHz, DGtal 0.4)
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 135 Fig. 13.5 (Continued)
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 136 Fig. 13.6 Curvature plots for the flower, digitized with a grid step equal to 0.1( F i g .13.1j). MS estimator in (a)andCC estimator in (b)
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 137 Fig. 13.7 Curvature plots for two shapes digitized at three different resolutions, computed from MDCA, GMC, BC estimators
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 138 Fig. 13.8 The average absolute error has been plotted against the grid step h for the digitization of a circle in (a), an ellipse in (b)anda flower in (c)
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 13 Fig. 13.10 Noisy contour and noise detection along it by the method of [30]. The input image has been damaged by two different Gaussian noises in different regions. The thresholded shape has a boundary which is damaged in these regions (noisy contour in solid dark gray). The detector indicates for each contour point what is the local scale at which this part of the contour should be analyzed: the scale or noise level at a point is indicated by the size of the light gray box around it. It is worthy to note that the noise level is almost everywhere proportional to the amount of contour degradation
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 131 Known multigrid convergence for several estimators of global geometric quantities
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 132 Known multigrid convergence for several tangent estimators. LR, MATAS, ICIPF are not multigrid convergent
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for BC estimator, or locally by maximal digital straight segments for the remaining three. All these four estimators are experimentally multigrid convergent for most of the considered shapes.

DGtal uses a generic programming paradigm based on concepts and models of concepts. If a structure name starts from a capital "C", we describe a concept.
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