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Abstract Access control is one of the most common and versatile mechanisms used for
information systems security enforcement. An access control model formally describes
how to decide whether an access request should be granted or denied. Since the role-
based access control initiative has been proposed in the 90s, several access control
models have been studied in the literature.

An access control policy is an instance of a model. It defines the set of basic facts
used in the decision process. Policies must satisfy a set of constraints defined in the
model, which reflect some high level organization requirements. First-order logic has
been advocated for some time as a suitable framework for access control models. Many
frameworks have been proposed, focusing mainly on expressing complex access control
models. However, though formally expressed, constraints are not defined in a unified
language that could lead to some well-founded and generic enforcement procedures.

Therefore, we make a clear distinction by proposing a logical framework focusing
primarily on constraints, while keeping as much as possible a unified way of expressing
constraints, policies, models, and reference monitors. This framework is closely tied to
relational database integrity models. We then show how to use well-founded procedures
in order to enforce and check constraints. Without requiring any rewriting previous to
the inference process, these procedures provide clean and intuitive debugging traces
for administrators. This approach is a step toward bridging the gap between general
but hard to maintain formalisms and effective but insufficiently general ones.
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1 Introduction
1.1 Access control models, policies and constraints

Security policies are sets of laws and rules governing the security of organizations.
They can cover areas from internal organizations rules to national laws, from structural
(e.g., fire protection) to organizational aspects (e.g., emergency phone lines). An Access
Control (Ac) (or authorization) policy is a specialized form of security policy, dedicated
to permission management. AC aims at enforcing confidentiality and data integrity.

Within information systems, an AC policy is structured according to an AC model,
which formally describes the structure of the policy. A model defines how to decide
whether an access request (i.e., an action on an object issued by a subject pertaining to
a user) should be granted or denied using a set of rules. For instance, in the Role-Based
Access Control (RBAC) models family, roles are assigned to users, and permissions are
assigned to roles (Sandhu et al., 1996; Ferraiolo et al., 2003). An RBAC policy is a set
of assignments between users and roles and between roles and permissions. The core
rule of the RBAC models family states that an access request is granted if and only if
the issuer endorses a role with this privilege.

Since the RBAC initiative, several models have been studied in the literature.
These models have extended RBAC (e.g., Generalized-Temporal-RBAC (Joshi et al.,
2005) or Geographical-RBAC (Damiani et al., 2007)), and have organized policies by
additional concepts to enhance their expressive power and flexibility (e.g., Workflow-
RBAC (Wainer et al., 2003, 2007), Team-Bac (Thomas, 1997), Task-Bac (Thomas
and Sandhu, 1997), Organization-Bac (Miege, 2005)). Throughout these propositions,
First-Order Logic (FoL) has been advocated as a general framework suitable to for-
malize AC models and policies.

In addition to innovative concepts and relations (e.g., roles and hierarchies) for
organizing policies, AC models have integrated the concept of constraints. Constraints
reflect some high level organization requirements that must be enforced within policies.
With the development of Ac models, several kinds of constraints have been defined.
The most prominent one is the mutual exclusion, which has been proposed in order
to enforce separation of duties (Li et al., 2004). Other kinds of constraints have been
defined: some mutual exclusion variants, prerequisite constraints or constraints over
hierarchies (Crampton, 2003; Jaeger and Tidswell, 2001).

Actually, constraints may express different requirements on policies. Generally
speaking, constraints are policy properties that can be classified in the following basic
classes:

— (conditional) absence of values (e.g., mutual exclusion),
— (conditional) existence of (constrained) values (e.g., prerequisite),
— (conditional) uniqueness of values (e.g., uniqueness of ancestor in a hierarchy).

These different classes of constraints share a common objective, which is to restrict
the set of policies expressible over a model to the set of consistent ones. For instance,
in the RBAC setting, the definition of roles a and b as mutually exclusive means that
no user should be assigned to a and b. Thus, the set of expressible policies is restricted
to the set of policies in which no user is assigned to both a and b.



1.2 Problem statement and contribution

Constraints attempt to ensure that policies are consistent. Verifying the consistency of
policies is a paramount task. Indeed an inconsistent policy can lead to an unexpected
behaviour of the AC system that may completely ruin the benefits of the AC system:

— illegitimate access: exclusion constraints aim at ensuring that some activities are
carried out by different users, for instance to prevent that the same user from
initiating a payment and authorizing a payment. If a policy does not satisfy the
exclusion constraints, one unique user may be able to circumvent the separation of
duties and gain unlegitimate access,

— deny of legitimate access: conversely, a constraint can express that every user has
the right to log into the system. Failing to verify such a constraint may lead to
users to be unable to do anything,

— difference between expected behaviour and real behaviour: some constraints are
implicitly expected from a model. For instance, when dealing with a role hierarchy,
it is relevant and quite natural to prevent graph cycles. Failing to verify such
constraint may lead to circular inheritance that implies that all the roles have the
same set of permissions. Moreover, in a RBAC setting, such a set would be the union
of all permissions assigned to at least one role in the cycle,

— unpredictable behaviour: in the worst case, if core constraints like basic integrity
requirements of policy (e.g., uniqueness of user related to a subject) are not satisfied,
the whole system may be compromised.

In order to express these constraints in an homogeneous way, a formal language
able to handle broad classes of constraints is necessary. It should allow the definition of
new classes of constraints and should be able to capture general integrity requirements
of Ac models. This language must have clear semantics, and provide well-founded
automated proof procedures for consistency checking.

To address these issues we adopt a top-down approach, starting with a framework
focusing primarily on constraints. This framework relies on database integrity theory.
‘We have chosen to present it in a logical setting, but other formalisms, such as tableaut,
could have been used. AC models and policies are then formally defined using one of the
Datalog languages, which is also a fragment of the database integrity language. This in-
teresting property allows for expressing the whole AC system, including models, policies
and constraints, in a single and homogeneous framework. AC models foundations and
semantics are described in section 2. Without being universal, the obtained framework
can still express several classical models and extensions found in the literature.

We then define AC constraints in section 3. We make use of relational data depen-
dencies, in order to model AC constraints. Dependencies are able to capture complex
integrity requirements in an homogeneous way. For instance, one of the properties con-
sidered as fundamental in the RBAC standard (Ferraiolo et al., 2003, property 3.2, p.60)
(this property is quoted in section 3.5) can be modelled by means of data dependencies.
To the best of our knowledge, the property (3.2) has not been modelled and taken into
account in any other logical framework for Ac.

In section 4, we define a set of well-founded operations that can be used to help
Ac models designers and policy administrators in making constraints design and ad-
ministration easier. These operations are generic and can be used over any model built
upon the structure defined in sections 2 and 3.



We have implemented the framework and validated our approach with automated
formal proofs based on previous results in the literature that had been manually proved.
These results are presented in section 4.6. Moreover, the proofs obtained are quite
readable as no prior rewriting is performed (such as clausal form), for it may obfuscate
human analysis.

Our approach tries to encompasses many concepts found in the Ac literature, but
it does not take into account some peculiarities of very dedicated models. For instance,
our framework does not encompass authentication (Jim, 2001) and delegation (Li et al.,
2003; Wainer et al., 2007). Section 6 evaluates the major design decisions of the frame-
work. The very last section concludes this paper and gives the main directions for
future work. For sake of clarity and applicability, most of the examples of in this paper
are based upon the RBAC model and further extensions.

2 Access Control Framework

This section defines an access control framework able to express several classical models
and extensions found in the literature. As we will see in the next section, this framework
is a subset of the general framework proposed for access control constraints, that relies
on database integrity theory.

Without lack of generality, we operate a clear distinction between models and poli-
ctes: AC models defines structures and AC policies are instances of these structures. In
such a perspective, AC design is the task of defining Ac models, whereas administration
of Ac is the task of defining policies, which is up to administrators.

FoL has been advocated a suitable formal framework to formalize AC models and
policies (Li et al., 2003; Jim, 2001; DeTreville, 2002; Bertino et al., 2003; Li and
Mitchell, 2003; Barker and Stuckey, 2003; Halpern and Weissman, 2003; Miége, 2005).
From the logical point of view, an Ac model both define :

— a vocabulary, i.e., the set of sorts and relations between sorts used to organize access
privileges (e.g, subjects, roles, permissions, assignments of roles to subjects)

— a set of so-called rules expressed in a first-order language built over the vocabu-
lary, i.e., the policy that states how privileges are derived from base concepts and
relations (e.g., a subject is granted some access only if it endorses some role with
the corresponding access right).

Section 2.1 defines the vocabulary and states of an Ac model. Section 2.2 defines
rules and policies. The generic definition of an AC model is summarized in section 2.3.

2.1 Access control vocabulary and state

An Ac model relies on vocabulary: a set of sorts and relations between sorts. Sorts are
the main concepts used to organize rights (e.g., users and roles. ..). Relations define
how sorts are related in the model (e.g., assignments between users and roles). The
goal of an AC system is to determine whether an access (an action on an object) issued
by a subject that represents a user is granted or not. Thus, the main sorts of subjects,
users, actions and objects have to be defined in any AC model.

Sorts partition the set of constants in a policy. This property is tied to the many-
sorted FoL framework. It is shown that many-sorted FOL can be reduced to one-
sorted FoL (i.e., classical logic) by assigning a specific unary predicate symbol Dg
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Fig. 1 The core vocabulary edb of RBAc.

called domain predicate symbols to each sort S (Gallier, 1986, chapter 10, p. 460). In
our framework, we implicitly operate this transformation by assigning a unique unary
predicate symbol to each sort. The vocabulary is represented in the relational formalism
according to the standard terminology used in databases.

Definition 1 Access control vocabulary. The vocabulary Voc of an ACc model is the
union of a set Sorts of unary predicate symbols called sorts and a set Rels of n-ary
predicate symbols called relations.

The sorts of users (User), subjects (Subject), actions (Action) and objects (Object)
must be present in any AC vocabulary.

Figure 1 illustrates the core vocabulary of RBAC models. This vocabulary is com-
posed of five sorts (drawn by rectangles in figure 1): User, Subject, Role, Action and
Object. Moreover, four relations are defined (drawn by diamonds in figure 1): URA
betwen User and Role, PRA between Role, Action and Object, SU between Subject
and User and SR between Subject and Role.

We define the state of an Ac model, which is a set of facts defined over the core
vocabulary edb. The state of an Ac model is the extensive part of a policy, which can
practically be stored in a Relational Database Management System (RDBMS). Following
traditional axioms of logical interpretation of relational databases, we assume that
constants are distinct and that states are finite.

Definition 2 Access control state. To each sort S € Sorts is associated a set of con-
stants S called its domain. Domains are pairwise disjoint: SNS' =0 for all S # 8’ in
Sorts. To each relation R € Rels of arity n between sorts Sy ...Sn, is associated the
set R=S1 x...xSy.

An access control state I on an AC vocabulary Voc is a mapping from each sort S €
Sorts to a finite subset of S, called its active domain, and from each relation R € Rels
to a finite subset of R.

In the context of RBAC, the term AcC state (a.k.a. RBAC database) has first been
coined by (Gavrila and Barkley, 1998). A toy sample of an RBAC state I (over vocab-
ulary shown in figure 1) is given in table 1. In this state, the sort User takes its values
from the set {Alice,Bob, Charly}, Role from {ri,r2,rs,ra}, Action from {r,w,x} and
Object from {filel,file2, file3}

In this state, Bob is assigned both roles r1 and r3 and Bob endorses these roles in
two different sessions, namely S2 and S3. The rules of RBAC models allow inferring
that Bob can read filel, file2 and file3 as the role ry is granted r access on filel,
file2 and file3.



PRA
Role Action Object
URA

ry r filel
User Role T r file2
Alice ry ry r file3
Alice ro r2 w filel
Bob 1 r3 W file2
Bob r3 r3 r filed
Charly ry r3 W filed
Charly Ty r3 X filed
T4 w file3
ra r filed
SR Ty w filed
Subject Role Ta X filed

S1 Ty SU
S1 ro Subject User
52 N S1 Alice

S3 r3

S4 r S2 Bob
2 s3 Bob
sS4 Charly

Table 1 A sample RBAC state.

2.2 Access control rules and policies

In this section we define the Ac rules. Rules express the deductive principles of an AC
model. From a set of rules P and a state I, it is possible to compute derived relations
on which the access decision process is based. The state is the minimal knowledge from
which a complete policy may be derived using the set of rules.

For instance, in order to prevent administrators from inserting redundancies in a
policy, several algebraic properties of relations are commonly assumed: transitivity,
reflexivity or symmetry for instance. These properties are expressed in intenso by
means of rules. Thus, administators only have to insert the minimal knowledge in the
state. The complete policy is obtained by applying the set of rules P as a closure
operator producing new facts.

In the case of complex Ac models, defining derived relations within the model
is a mandatory prerequisite in order to obtain a maintainable state. This separation
between extensive relations in the state and intensive relations in the policy is a design
choice made according to the recommendations addressed to the RBAC standard (Li
et al., 2007), in particular the third suggestion:

Suggestion 3: “The standard should make a clear distinction between base
relations and derived relations.”

Several fragments of FoL have been used as formal languages for modelling Ac
rules. DATALOG-based models are considered expressive enough to capture complex AC
policies (Bertino et al., 2003), (Miége, 2005), (Jim, 2001), (Barker and Stuckey, 2003).
We focused our work on FoL rules of DATALOG ™, which has been recognized as fruitful
to formalize Ac models (Li and Mitchell, 2003).



We operate the main following specializations on FOL by selecting DataLoc® as a

formal language for rules: functions, negation and disjunction are not allowed. Formally,
DATALOGC sentences are formal expressions of the form:

VX Ri(X1) A ... A Rn(Xn) A(X) = Ro(Xo)

where Vi € 0..n, R; are symbols from Voc and X; are sequences of logic variables of
length equal to the arity of R;. The left-hand side of a rule (R1(X1) A... A Rn(Xn) A
(X)) is called the body of the rule its right-hand side (Rg(Xy)) is called its head. X is
the set of variables that appear in the body. 1/1()2) is a conjunction of linear arithmetic
constraints (e.g., <, >, =, #) over variables and constants of same sorts.

S}

Definition 3 Access control rules. The rules of and AC model is a set P of DataLoc®

sentences.

P defines a partition on the vocabulary Voc: idb Nedb = O and idb U edb = Voc. idb,
for intensive database, is the set of relations that appear in the heads of the rules and
edb, for extensive database, is the set of relations that appear only in the bodies of the
rules but not in their heads.

The definition of the component P that captures rules is generic. It encompasses the
main notions introduced in the literature to organize AC policies. Next subsections focus
on three main derived relations that are commonly used in AC models : authorization
triple, hierarchies and mutual exclusion. We can now formally define AC policies.

Definition 4 Access control policy. The semantics of rules is given by the standard
FoL model-theoretic interpretation of DATALOGE rules.

Given an AC state I of a model AC = (Voc, P), an access control policy I' over a
given state I is a logical model of P stated T' =P with I C T.

The existence of a decidable procedure which computes the interpretation I’ from
I ensures that it is always possible to compute the policy and consequently to an-
swer whether an access request is granted or denied. DATALOG’s (and its major ex-
tension such as DATALOGY, C-DATALOG or DATALOG ) restrictions ensure that there
is a unique minimal model of P and that this model can be computed in a finite
time (Abiteboul et al., 1995, theorem 12.5.2, p. 301). Uniqueness of the minimal model
ensures that for given state and set of rules there is a unique derived policy. The finite
time property ensures that computation of the policy if decidable and thus, it ensures
that access control requests will be always answered.

2.2.1 Derivation of authorizations

We have defined the structure of an AC model, however deriving authorizations from
state has not been explained yet. As coined by Lampson in his seminal paper (Lampson,
1974), the aim of access control is to take a boolean AC decision upon an AC request. An
AC request is a triple subject, action, and object. The reference monitor which enforces
AC acts as a Non-bypassable, Evaluatable, Always Invoked and Tamperproof (NEATI)
proxy between subjects and objects. It takes authorization decisions upon the policy.

L http://www.ois.com/Products/MILS-Technical-Primer.html



LA, 0) = Access(S, A, O)
,A,0) = Static(U, A, O)
,A,0) = Dynamic(U, A, O)

SR(S, R) A PRA(R
URA(U, R) A PRA(R
SU(S,U) A Access(S

Table 2 Rules for fundamental triples in RBac.

Definition 5 Fundamental triples. The three following fundamental triples symbols
must appear in the intensive database idb, and the set of rules P must define how
to derive the corresponding relations Access C Subject X Action x Object, Static C
User x Action x Object and Dynamic C User x Action x Object.

The relation Access is the set of AC permissions granted to subjects. Static is the set of
permissions granted to users independently of the subjects they use. Dynamic is the set
of permissions granted to users through the subjects. The inclusion Dynamic C Static
must hold in any model.

Authorizations decisions are based upon triples Access derived from the state.
Thus, the reference monitor can be modelled as a function:

F : Subject x Action x Object — { false,true}

_ [ true if (s,a,0) € Access
Fls,0,0) = {false otherwise

The three rules showed in table 2 define the triples in the RBAC model. Accord-
ing to the sample toy state of table 1, user Bob is assigned to two roles ri and
r3. One may be interested by the authorizations statically granted to Bob which is
{(r,fileq), (r,filey), (r,files), (w,files), (r, files), (w,files), (x,files)} by means
of the query:

{(a, 0) | Static(Bob,a,0)}

2.2.2 AC models hierarchies

The RBAC standard contains two major features to make Ac administration easier:
role hierarchies and constraints. Hierarchies are a way to reduce redundant user and
permission-role assignments. Roles are given a preorder (reflexive, transitive) < mod-
elling an s a relationship. Relation r1 < 79 means that every permissions granted to
role r are granted to ro and that each user who is a member of role r; is also a member
of r1. Our framework generalizes this approach and takes recommendations of Li et al.
(2007) into account:

Suggestion 4: “The Reference Model should maintain a relation that con-
tains the role dominance relationships that have been explicitly added, and up-
date this relation when the role hierarchy changes.”

For any sort S € edb of an AC model, we define two relations: a dominance relation
SeniorDg € edb stored in the state, and an inheritance relation Seniorg € idb defined
as the reflexive transitive closure of SeniorDg. Please note that we use suffix D to
distinguish between extensive and intensive predicate.

Definition 6 Inheritance. A sort S € edb of an Ac model is given an inheritance
relationship if a dominance relation SeniorDg with SeniorDg C S x S is defined in
edb and if the following three rules are defined in P:



SeniorDg(S,S') = Seniorg(S,S’)
SeniorDg(S,S") A Seniorg(S’,S"”) = Seniorg(S,S")
S(ID) = SeniorDg(ID,ID)

If defined, a Seniorg relation should be used in the definition of Ac triples. For
instance, in the RBAC models with role hierarchies, the rule deriving the Access relation
is redefined as follows, in order to take the role hierarchy into account:

SR(S, R) A Seniorg(R,R') N PRA(R', A,0) = Access(S, A, O)

State from table 1 is an instance of the flat RBAC model, without role hierarchy.
Assume that we add rs into roles and that rs inherits ra Senior gy (rs, r1). With the
extended Access rule, any user who is assigned to rs has at least r access on filel,
file2 and file3 because these permissions are granted to rj.

2.2.8 Mutual exclusion relation

Another important feature introduced in the Ac literature is mutual exclusion, which is
the main constraint defined in the RBAC standard (Ferraiolo et al., 2003). For instance,
one may define that no user can be assigned to both roles r3 and r4, because they stands
for mutually incompatible roles.

As it is the case for hierarchies, mutual exclusion needs two relations: an extensive
one SoDD and an intensive one SoD which is its symmetric closure. Moreover, when
both an exclusion and an inheritance relation have been defined on the same sort,
an additional rule must be defined in P, to ensure that exclusion is propagated via
inheritance (Gavrila and Barkley, 1998).

Definition 7 Mutual ezxclusion. A sort S € edb is given a mutual exclusion relation-
ship if a core separation relation SoDDc C S x S is defined in edb and if a relation
SoDg C S x S is defined with the following two principles in the set of rules P:

SoDDg(S,S8') = SoDs(S,S")
SoDg(S,S") = SoDg(S',S)

If an inheritance relation Seniorg is also set on a sort S, then the following rule must
be defined:

SoDg(S,S") A Seniorg(S”,S) = SoDg(S,S")

Last definition is still incomplete: we have not defined which constraint the mutual
exclusion relation really enforces. We have neither expressed that an inheritance rela-
tion should be antisymmetric nor that a subject should be assigned to a unique user.
As a matter of fact, we have only expressed how to define the policy I'. We will show
in the next section how to define the conditions upon which the policies are consistent
according to a set of constraints.

For instance, in the toy RBAC state of table 1, one states that rs and rs are
mutually exclusive by adding SoDg,j.(r3,r4) into the state. It may be a way to ensure
that request (allowed to rz) and approval (allowed to rs) of major expenditure are
done by two separate people. In the toy RBAC state, it should be inconsitent to state
SoDRoie(r1,T3) because user Bob is assigned to both.
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2.3 Framework summary

Policies are logical models (in the model-theoretic sense) of a theory defined by an Ac
model. The word model is indeed prone to confusion. We use the term (Ac) model to
refer to the structure that describes how rights are organized and granted (i.e., the
meaning of model in the AcC literature). We explicitly use the term logical model to
refer to a model-theoretic interpretation which satisfies a set of closed FoL formulae.

This preliminary modelling step is paramount for addressing further issues. The
proposed framework is closely related to the deductive database paradigm. In this
paradgim, a database is defined with a schema (i.e., the Ac vocabulary Voc) and
a set of deduction rules (i.e., expressed in DATALOG).

An Ac state is considered as a set of relational data structured accordingly to a
given vocabulary. A policy is a set of facts derived from a state and a set of rules.
Formally, we have defined an Ac model as a pair AC' = (Voc, P) composed as follows:

— Voc, the access control vocabulary: a set of unary relations called sorts and n-ary
relations between these sorts. This vocabulary sets the core of the Ac model used
to organize the policies. An intepretation I of edb is a state.

— P:aset of DaTALOGE rules defining the Ac model rules. These rules allow deducing
consequent facts from I, thus defining an intensive vocabulary idb and a policy T’
over idb.

One of our main objectives is to treat constraints as first class citizens. In the
next section, we will extend the definition of (simple) Ac model to be a triple AC' =
(Voc, P, X). This refinement includes a set X' of FOL formulae modelling the Ac model
constraints. They are expressed by data dependencies, which subsume the expressive
power of traditional deductive database such as DataLoc®. As shown in this paper,
this enhanced expressivity is needed to model complex integrity constraints found in
Ac models. Whereas formulae of P allow deducing the policy from a given state, those
from X restrict I and I'. The definition and usage of X are defined in the next section.

3 Access Control Constraints

Among the formal tools available in the database area, data dependencies (a.k.a in-
tegrity constraints) have been defined to capture integrity requirements on relational
data. In a unification attempt, they have been defined as FoL sentences (Abiteboul
et al., 1995, Chapter 10). In the proposed framework, dependencies are used to capture
AC constraints: they capture formal integrity requirements of policies.

3.1 Data dependencies

Dependencies share common characteristics with DATALOG deduction rules, but they
form a larger subclass of FOL sentences. Data dependencies are categorized into classes
of increasing expressivity. The best known classes are functional (FD), inclusion (IND)
and multivalued (MvD) dependencies (Abiteboul et al., 1995). Expressive classes have
been developed to express complex statements on relational data. They can model
semantic relationships in spatial, temporal or multimedia databases.
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One of the most general form of dependencies is constrained tuple-generating de-
pendencies (¢TGD) (Maher and Srivastava, 1996) which are FoL sentences having the
following syntax (we reuse convention from section 2.2):

VX Ri(X1) Ao A Rn(Xn) Ap(X) =
3z Ql(Yl) ARERNA Qm(Ym) /\¢>(Y)

where Z does not designate the whole set of variables in the head but only those which
are not already bound by a universal quantifier (Z =Y — X).
Special forms of dependencies considered in this paper are restriction of cTGD:

1. Constraint-Generating Dependencies (CGD), head is restricted to constraints:
VX Ri(X1) A ... ARu(Xn) Ap(X) = ¢(X)
2. Nullity-Generating Dependencies (NGD), head is empty?:
VX Ri(X1)A ... ARn(Xn) Ap(X) =L

3. Full Tuple-Generating Dependencies or Total Tuple-Generating Dependencies (Full-
TGD) do not include existentially quantified variables:

VX Rl(Xl) AR /\Rn(Xn) = Ql(X{) ATEE /\Qm(Xin)

4. Tuple-Generating Dependencies (TGD) or Generalized Dependencies, generalize
both FTGD and IND but do not allow constraints:

VX Ry(X1)A ... ARy(Xp) = 3Z Q1(Y) Ao . AQm(Ym)

Dependencies are used either to restrict authorized values in a policy when their
heads do not include atoms (e.g., CGD, NGD), or to impose presence of tuples if some
other ones are already present in the policy (e.g., IND, MVD, TGD). Note that NGD allow
the expression of negative requirements as ¢ =1 is logically equivalent to —¢.

In our framework, the set of constraints over an AC model is denoted as X. It
captures conditions that must hold in the policy. The expressivity of dependencies is
needed to capture desirable properties which cannot be expressed in P, which relies
on the Dataroc® fragment, mainly due to the absence of existential quantifier. From
the logical perspective the P U X of rules and constraints is a logical theory, i.e., a set
of closed FoL formulae.

Definition 8 Access control model. An access control model is a triple AC = (Voc, P, X)),
where X is a set of constraints expressed as data dependencies.
The semantics of constraints is given by the standard FOL model-theoretic interpreta-

tion of dependencies. An access control policy I' built from a state I is consistent iff
IEX.

The next subsections describe how dependencies are used to express various security
requirements of models in an homogeneous way: integrity of states, algebraic proper-
ties, semantics of mutual exclusion, constraints on authorizations and administrative
prerequisites.

2 | stands for a logical antilogy (e.g., 0 = 1)
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SR(S,R) = 3U SU(S,U)
SU(S, U)ASU(S,U") = U=U
SU(S,U)ASR(S,R) = URA(U,R)

Table 3 Integrity requirements for SU relation in RBac.

3.2 Integrity constraints on AC states

We define a category of constraints ensuring that relations are well-founded. For exam-
ple, whenever a relation over sorts exists, the sorts must exist too. Thus, the sentence
URA(U, R) = User(U) A Role(R) should be enforced in any RBAC policies: a role can
be assigned to a user only if both the user and the role exist. This can be considered
as an equivalent to foreign key constraints in RDBMS. These kinds of constraints ensure
that what is actually stored is consistent. This leads to the definition of well-founded
state.

Definition 9 Well-founded state. Let A be a set of constraints A C X involving only
symbols of the extensive database edb, such that for each n-ary relation R € edb over
sorts S1...Sn € edb, A contains an inclusion dependency of the form:

R(ID1,...,IDyn) = S1(ID1) A ... A Sn(IDy)
Let 1 be a state. Then I is well-founded if I |= A.

For instance, in the RBAC standard it is defined that each subject has to be assigned
to a unique user and that a role can be used by a subject only if the role is assigned
to the user who owns the subject. These constraints can be defined by dependencies as
shown in table 3. These requirements are satisfied by the RBAC state given in table 1,
thus this state is a well-founded one.

The dependencies paradigm allows the formalization of the next suggestion found
in the critique of the RBAC standard (Li et al., 2007):

Suggestion 2: “The standard should accommodate RBAC systems that allow
only one role to be activated in a session”

This constraints can be captured in a straightforward way by means of a functional
dependency that enforces a key constraint SR(U, R) A SR(U, R') = R = R'. Actually,
this requirement is not satisfied by table 1, because Alice endorses two different roles
in session S1.

3.3 Algebraic constraints of relations

Ac models hierarchies are commonly defined as partial orders for avoiding cycles (e.g.,
(Kuhn, 1997) for RBAC or (Miége, 2005) for ORBAC). Moreover, a mutual exclusion is
defined as irreflexive to prevent a sort from being mutually exclusive with itself (e.g.,
(Li et al., 2004)). As example, antisymmetry of inheritance relation and irreflexivity of
mutual exclusion in RBAC can be expressed by dependencies, as given in table 4.
Moreover, some additional properties may be desirable. For example some mod-
els (e.g., Lattice-Bac (Sandhu, 1993)) organize sorts using forests of trees, forests of
inverted trees or lattices (posets in which any two elements have a join and a meet).
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These additional requirements over Seniorg and SeniorDg relations can be expressed
by cabp. Note that the restriction of a hierarchy to a lattice could not be expressed
in DATALOG-based framework, because these frameworks lacks existentially quantified
variables, and the property states that there ezists some meet and join for any given
pair of elements.

Definition 10 Restricted hierarchies. Let Seniorg € idb be an intensive inheritance
relation computed from an extensive one SeniorDg € edb. Seniorg is called a limited
hierarchy of type:
— forest of trees, if X' contains the following FD:
SeniorDg(S,S"), SeniorDg(S,S") = 8" = S”
— forest of inverted trees, if X' contains the following FD:
SeniorDg(S',S), SeniorDg(S"”,8) = S = 5"
— lattice, if X' contains the following FTGD:

S(8"),S(S") = 38, Seniorg(S’,S,1),Seniors(S"”,S1)
S(8"),S(S") = 3ST Seniors(ST,S’), Sentors(St,S")

3.4 Semantics of mutual exclusion

Although the intensive SoDg € idb relation ensures that there is a mutual exclusion on
sort S, the principles of mutual exclusion can be applied from different perspectives.
In the RBAC model, if two roles r and 7’ are stated as mutually exclusive, several
interpretations can exist (Crampton, 2003). All these different semantics can be stated
respectively by means of cGp:

— no user could be assigned to both roles r and r':

SoDpote(R,R') AURA(U,R) N\NURA(U,R') = L

no subject could be assigned to both r and r’:
SoDpRote(R,R') ANSR(S,R) A SR(S,R') = L
— no common permission could be granted to both r and 7'
SoDpote(R, R) A PRA(R, A,0) A PRA(R', A,0) = L
— no action over a common object could be granted to both r and r’:
SoDpote(R,R') APRA(R, A,0) APRA(R,A',0) = 1
For instance, according to the first semantics, it is inconsistent to add SoD g (r1,T2)
in the state given in table 4, because Alice is granted both roles r1 and ry. Accord-
ing to the second semantics, there is an inconsistency because of session S1. However,

according to the third semantics, there is no inconsistency because no permission is
granted to two different roles.

Seniorgoie(R, R') A Seniorgoie(R',R) = R=R
SODROle(R7 R) = 1

Table 4 Antisymmetry of role hierarchy, and irreflexivity of mutual exclusion.
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Access(S,A,0) = 3R SR(S,R) A PRA(R,A,O)
Static(U,A,0) = 3R URA(U,R) A PRA(R, A,O)
Dynamic(U,A,0) = 35S SU(S,U) A Access(S, A, O)

Table 5 Constraints on authorizations in RBac.

3.5 Constraints on authorization relations

The RBAC model imposes that any authorization must be granted via a role (Ferraiolo
et al., 2003):

Property 3.2: “A subject s can perform an operation op on object o only
if there exists a role r that is included in the subject’s active role set and there
ezrists an permission that is assigned to r such that the permission authorizes
the performance of op on o”.

This property can be considered as fundamental in structured AC models. Defining
intermediate sorts between users and permissions is a way to simplify administration
tasks. Bypassing these sorts is error-prone and may lead to ambiguities within policies.
Thus, we argue that such a property defined for RBAC should be generalized. To the best
of our knowledge, this property is neither captured in logic-based modelling attempts
of RBAC, nor in extended models.

Definition 11 Property of authorizations. If there is a rule in P with head Access
(resp. Static, Dynamic) and hypothesis ¥, then there is a corresponding constraint in
X of the form Access = 1 (resp. Static, Dynamic) that makes the rule an if and only
if condition.

According to the rules for triples given in table 2, the constraints of table 5 can be
derived. These TGD use existentially quantified variables shared among multiple predi-
cates. Such sentences can not be expressed in DATALOG-based frameworks because they
lack the existential quantifier. This quantifier is needed to capture so called invented
values in the database terminology, i.e., unknown values that have to be present in a
policy to ensure its consistency.

3.6 Administrative prerequisite

An administrative prerequisite enforces the presence of tuples before allowing adminis-
trative operations (Ferraiolo et al., 2003). Administrative operations counsist in updates,
insertions and deletions of tuples within the state I. If any administrative prerequisite,
expressed by some dependencies, is violated, the transaction initiated by the adminis-
trator will not be committed.

Definition 12 Administrative prerequisite. An administrative prerequisite constraint
imposes the presence of tuples in I'. A transitive prerequisite relation Requiredp € idb
over a relation R is defined as the transitive closure of a relation RequiredDp € edb.
Prerequisite constraints can be modelled as (constrained) TGD in X by an auziliary
relation RequiredDp of the following form, where the predicate R is present in both
the sentence body and head:

VX R(XR)A...A Requiredr(X) A ¢(X) = 3Z R(XR) A ... Ap(Y)
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For instance, in the RBAC models, administrative prerequisites are used for pre-
venting administrators from assigning roles to users if some other role has not already
been defined. This is an example of a prerequisite over the relation URA. The follow-
ing sentences express these statements. Defining RequiredD(r1,r2) in I imposes that
whenever a user is assigned to ro, then there must be at least one user assigned to 2.

RequiredD(R, R'), Required(R',R"") =  Required(R,R")
URA(U, R), Required(R,R)) = 3U' URA(U’, R))

4 Constraint verification

From now on, we have defined the three basic components of an Ac model. The task of
defining the vocabulary Voc (the names of subjects, roles, assignments, etc.), the set
of administrative rules P and the set of integrity constraints Y is dedicated to the AC
model designer. Administrators define only the state I, as I’ = P(I) is computed from
I and P. The policy is consistent if I’ = ¥. Thus, from a logical perspective, there
are only a few differences between P and X which can be considered as a whole as a
logical theory T'= P U X.

4.1 Formal characterization

The main difference between P and X lays in their usage: rules are used for computing
the policy from the state, whereas constraints are used to impose restrictions on au-
thorized instances of I'. Notice that the uniqueness and computability of I’ is ensured
by the properties of the fragment of FoL used for P.

In this section we rely on two theoretical problems over logical theories:

— the satisfaction problem. Answering whether a policy I’ satisfies a given FOL sen-
tence o: I' = 0. This problem is central for computing I’ from I, for answering
queries and for checking whether a policy satisfies the set of constraints for a given
model. The satisfaction problem is decidable for the class of formulae used for
AC = (Voc, P, X).

— the logical implication problem. Answering whether a set of closed formulae T log-
ically implies a closed formula o: T |= o or, in other words, deciding if any policy
model of a theory T is also a model of the single sentence o. This problem is central
for simplifying logical theory or for checking model consistency from an abstract
perspective, without considering any state. This problem is decidable in the class
of FTGD extended with constraints. However, it is semi-decidable (it may not halt
for negative answers but will always halt for positive ones) for larger classes of
dependencies such as ¢TGD.

As dependencies such as CTGD are strictly more expressive than DATALOGC, and as

they share the same FOL semantics, we will actually treat the sentences of P as depen-
dencies to build and homogeneous logical theory T made of rules and constraints.Thus,
it is possible to use the same proof procedures for both rules and constraints without
distinction.

We have implemented the proof procedures for dependencies presented in (Beeri
and Vardi, 1984), (Maher and Srivastava, 1996) and (Coulondre, 2003) to validate
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our approach. As shown in section 4.6, our prototype allows automatizing the consis-
tency checking of RBAC policies and furnishing proof of previous results independently
proposed (Gavrila and Barkley, 1998).

4.2 Administrative review

One of the features expected from an access control model implementation is the ad-
manistrative review. This set of operations has been defined in the RBAC standard:
“When URA and PRA relation have been created, it should be possible to view the
contents of those relations from both the user and role perspectives|...|”. In the present
framework, administrative reviews are simple conjunctive queries over I’. Therefore,
the requirements of the standard definition are met.

Definition 13 Administrative reviews. Any conjunctive query (from the standard database
sense) built upon the vocabulary Voc is an administrative review.

Examples of queries built upon the RBAC model vocabulary Voc are respectively
(1) the set of permissions granted directly (without hierarchy) to users through their
roles , (2) the set of users who can execute an object, whatever it is, (3) the set of users
who are assigned the role ry:

1. {(u,a,0) | 3r URA(u,r) N PRA(r,a,0)},
2. {u|3s,0,r SU(s,7) A SR(s,r) A SeniorD(r,r’) N PRA(r',x,0)}
3. {u| URA(u,r1)}

The answer to the last query, on the state given in table 1, is {Alice, Bob, Charly}.
When I only is queried, we can rely upon any RDBMS to provide the querying mech-
anism, as the state is stored in extension in relational tables. The technical difficulty
is to compute and to query the policy I'. As far as DATALOG or DataLoc®
I’ can be computed quite efficiently. This computation is still valid as long as I is
not modified, thus allowing some caching optimizations techniques. We suggest four
approaches to compute the policy I’ from a state I and rules P:

is chosen,

use recursive queries and advanced features provided by common RDBMS. For in-

stance, Microsoft sQL-Server offers the Common Table Expression system which

allows (restricted) recursive queries. From the logical point of view, this kind of
feature can be seen as restrictions of DATALOG (e.g., set-based operations are not
provided),

— use triggers and stored procedures to compute I' on the fly on each modification
of I. This approach can be implemented for simple access control models (when
cardinality of T is small enough), but will become hard to maintain if many roles
are defined. Indeed it is needed to code specific procedures for each FOL sentence
in P.

— use a deductive database engine. Several efficient engines have been developed, for

instance piv® or xsB?. They can compute I’ and include recursive queries and

simple forms of dependencies. However, expressive dependencies such as TGD are
not handled.

http://www.dbai.tuwien.ac.at/proj/dlv/
http://xsb.sourceforge.net/
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— develop an external inference engine out of an existing RDBMS while relying on
the mechanisms from the RDBMS for access and modification of state. As basic
operations are common to both computation of I’ and logical inference over T
(see next section), we have implemented this approach in a library dedicated to
expression and inference of general classes of dependencies.

4.3 Policy completeness and consistency

The validity of an Ac policy is checked by verifying, given a model AC = (Voc, P, X)),
whether I’ |= ¥. Unsatisfaction of a set of constraints by a policy can fall into two
categories:

— the policy is inconsistent: some CGD or NGD are not satisfied. For instance, a policy
is said to be inconsistent if antisymmetry, irreflexivity or exclusion relations are
not satisfied,

— the instance is incomplete: some TGD are not satisfied. For instance, a policy is said
to be incomplete if some properties of authorization relations or administrative
prerequisites are not satisfied.

If a policy is inconsistent or incomplete, administrators have to correct the state.
Whenever a policy is inconsistent, deletion of existing facts or value updates should
be favored. Whenever a policy is incomplete, addition of facts should be privileged.
Examples of possibles corrections of inconsistent or incomplete policies are given in
table 6.

Dependency Type Correction in the state
ropert antisymmetry EGD Deletion of cycles

property irreflexivity NGD Deletion of edges

tree hierarchy EGD Deletion of ancestors
restrictions  inverted-tree hierarchy EGD Deletion of descendant

lattice hierarchy TTGD Addition of edges

prerequisite CTGD Addition of requirement
constraints  exclusion NGD Deletion of assignments

hierarchy /exclusion NGD Deletion of assignments

Table 6 Examples of inconsistent or incomplete policies corrections

4.4 Static policy comparison

Several Ac models have introduced dynamic sorts. For instance, in the RBAC family, the
unique dynamic sort is subject, the other ones (role, user, action, object, permission) are
static, as well as relations between them (e.g., user-role assignment U RA, permission-
role assignment PRA). This specialization can be expressed according to the rights
granted to administrators over the state. Sorts and relations in edb can be categorized
as follows:
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— static: only administrators can modify this part of the state. Static aspects are
stable according to the execution of the system and do not depend on the end-user
activity.

— dynamic: administrators are not the only ones having the right to modify this part
of the state. For instance, the sort of Subject in RBAC acts on behalf of an user. A
SU is created each time a user logged into the system. In AC models involving time
or space, these sorts and relations are out of the sovereignty of the administrators.

It is straightforward to define static comparison of policies from the relational
paradigm. In section 2.2.1, we have defined three fundamental authorization triples,
i.e., Access, Dynamic and Static. Considering the last one, we can compare static
restriction of policies by comparing the sets of tuples in Static.

Definition 14 Static comparison of policies. Let be 11 and I two consistent and com-
plete policies, expressed on two different AC models ACy et ACs.
Let Staticy be the set of static authorization triples of Iy, and Staticy be the set of
static authorization triples of Ia. Staticy € I/1 D Iq et Statico € I/2 D 1Is.

The policy 11 is as or more more restrictive than I iff:

Static; C Statico
The policy 11 is as or more more permissive than Iy iff:
Staticy O Statico
The policies Iy and I2 are equivalent iff:
Static; C Statico and Staticy O Statics

Actually, static sorts constitute the backbone of Ac models. For instance, roles
in RBAC, labels in MAC, organizations in ORBAC or tasks in TRBAC are static sorts.
Thus, it is worth verifying static enforcement of AcC policies, as this can ensure that
most robust properties are valid in any state of the policies (Li et al., 2004).

4.5 Model properties

Whereas previous subsections have been devoted to policy checking, this section con-
siders AC models from an abstract perspective, without reference to any particular
policy or state. The main problem we address is logical implication, in particular for
model simplification purposes. For example, in the case of a new tailored Ac model,
where many collaborative designers from different sites might be involved, the associ-
ated logical theory may become quite large (e.g., hundreds of rules and statements).
Thus, for practical purposes, it is necessary to reduce the size of the theory.

Definition 15 Redundancy in an AC model. Let be T = P U X the logical theory of
an AC model made of rules and constraints. Let be o € T, if T\{o} = o then the
dependency o is said redundant, moreover T\{c} and T have the same models.
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The authors of Maher and Srivastava (1996) give two bottom-up (also known as
forward) chase procedures for solving the implication problem of cTaD: given a set of
cTGD X, and a single cTGD o (of the form ¢ = 1), determine whether in every policy
where X is satisfied, o is also satisfied. If the chase procedures successfully stop, then
X logically implies o, stated briefly as X = o.

The operational nature of proof procedures for cTGD is based on the concept of tu-
ple (a grounded atom, with no variables). The procedures saturates a symbolic database
made of tuples by repeated applications of dependencies, to produce a model of the set
of dependencies. In a precise sense, this model is the most general possible one, it is a
canonical universal one Call et al. (2008).

Maher and Srivastava’s procedures keep the same strategy as the original chase
of Beeri and Vardi (1984) extended to deal with constraints. For sake of clarity, original
algorithm is given on page 29. Its design is the core of other procedures for dependencies
and it is conceptually simpler to understand. It’s theoretical complexity has been shown
to be exponential (Beeri and Vardi, 1984). The very basic outline of the chase is as
follows, input is a set of dependencies X' and a single dependency o:

1. initialization: the chase picks a valuation p to hypothesize the existence of some
tuples so that the body ¢ of o is satisfied,

2. main loop: treats X as a closure operator generating tuples X'(¢), that is repeatedly
applies dependencies from X to produce new facts,

3. exit condition: at the end of each loop, the following conditions are checked and
three termination cases are possible:
(a) if X(¢) contains an inconsistency, return X' = o vacuously,
(b) if X(¢) contains an instance of ), that is there is a valuation v that extends p

such that v(¢) € X(¢), return X |= o,

(c) if X(¢) neither produces new facts nor contains a instance of 1, return X' [~ o.

The cTGD implication problem is semi-decidable: the procedure always halt when
the answer is positive, but may run forever if the answer is negative. However, there
are some interesting decidability results holding in various subclasses of cTGD such
as (Weakly) Guarded-TGD that include existentially quantified variables (Cali et al.,
2008). For example, the chase is decidable for TGD having no existentially quantified
variable (Beeri and Vardi, 1984).

4.6 Sample result

This section illustrates the proposed approach by simplifying integrity properties of
mutual exclusion and inheritance defined over a common sort. For this illustation, we
use the set of integrity properties for RBAC models defined by Gavrila and Barkley
(1998). In the present approach, these properties are modelled by constraints in X.
The authors have manually proved that the set of properties in table 7 can be reduced
to a smaller set. Using some proof procedures for dependencies, we can simplify their
logical theory by eliminating redundancies.

We provide a sample execution trace obtained using a prototype. This prototype,
written in C++, can handle the cTGD as well as its subclasses. It relies on an external
constraint solver over reals to handle constraints. Three different chases have been
implemented : (Beeri and Vardi, 1984), (Maher and Srivastava, 1996) and (Coulondre,
2003). Given a logical formalization of an Ac written using dependencies, the prototype
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Description

o1 any two roles assigned for a same user are not in separation of duties
URA(User, Role1),URA(User, Rolez), SoD(Role1, Roles) = L

o2 no role is mutually exclusive with itself
SoD(Role, Role) = L

o3 mutual exclusion is symmetric
SoD(Roley, Rolea) = SoD(Rolez, Roleq)

o4 any two roles in ssd do not inherit one another
Senior(Role1, Rolea), SoD(Role1, Rolea) = L

o5 there is no role inheriting two roles in ssd
SoD(Role1, Rolea), Senior(Senior, Role1 ), Senior(Senior, Roleg) = L

o6 If a role inherits another role and that role is in SSD with a third one,
then the inheriting role is in SSD with the third one.
Senior(Senior, Role), SoD(Role1, Rolez) = SoD(Senior, Role2).

Table 7 Logical characterization of RBAc constraints (Gavrila and Barkley, 1998)

is used to simplify the model, to compute the policy for a given state, to check the
consistency of the policy and to answer administrative queries. Static comparison of
policies have not been implemented yet.

The following trace is the result of the execution of the cTGD chase of Maher
and Srivastava (1996) implemented in the prototype. Initially, the dependency base is
loaded with o2, 03 and og of table 7. The goal is to prove that {o32, 03,06} = 05. The
following trace is a formal proof of this entailment.

——————————————————————————— Dependencies in base : 4----------------m—————-
[0] (for all)[R1,R2] SoDD(R1,R2)->SoD(R1,R2).

[1] (for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).

[2] (for all)[R] SoD(R,R)->error(reflex) {(1=\=1)}.

[3] (for all)[R,R1,R2] SoD(R1,R2),senior(R,R1)->SoD(R,R2).

Tuples :

[0] SoD(_r1_0,_r2_0); -1;

[1] Senior(_r_0,_r1_0); -1;

[2] Senior(_r_0,_r2_0); -1;

seed : SoD(_r1_0,_r2_0),Senior(_r_0,_r1_0),Senior(_r_0,_r2_0)
goal : {(1=\=1) }
tgdGoal : (for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1),Senior(R,R2)-> {(1=\=1)}.

Hypothesize three tuples SoD(r1,r2), Senior(ro,r1) and Senior(ro, rz) from the body
of g5.

stepNumber : 1
B B
Treating [1]... ’(for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).’
Added to tuples: SoD(_r2_0,_r1_0); 1;
Added to activations: {R1:_r1_0,R2:_r2_0}; O;
...[1] treated

Treating [3]... ’(for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1)->SoD(R,R2).’
Added to tuples: SoD(_r_0,_r2_0); 3;
Added to activations: {R:_r_O,R1:_r1_0,R2:_r2_0}; 0,1;

Added to tuples: SoD(_r_0,_r1_0); 3;
Added to activations: {R:_r_O,R1:_r2_0,R2:_ri1_0}; 3,2;
...[3] treated
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With o3 (sentence [11, mutual exclusion is symetric), SoD(r2,r1) is derived. Next, ap-
plying o6 (sentence [3], ezclusion is propagated through inheritance) twice, SoD(xo, r2)
et SoD(ro,r1) is derived.

stepNumber : 2

B

Treating [1]... ’(for all)[R1,R2] SoD(R1,R2)->SoD(R2,R1).’
Added to tuples: SoD(_r2_0,_r_0); 1;

Added to activations: {R1:_r_O,R2:_r2_0}; 4;

Added to tuples: SoD(_r1_0,_r_0); 1;

Added to activations: {R1:_r_O,R2:_r1_0}; 5;
...[1] treated

Treating [3]... ’(for all)[R,R1,R2] SoD(R1,R2),Senior(R,R1)->SoD(R,R2).’
Added to tuples: exclusion(_r_0,_r_0); 3;

Added to activations: {R:_r_O,R1:_r2_0,R2:_r_0}; 6,2;
...[3] treated

Next, using o3 (sentence [11), SoD(r2,10) and SoD(r1,ro) are deduced. Thus, by og
(sentence [3]), SoD(ro,ro) is derived.

stepNumber : 3

Treating [2]... ’(for all)[R] SoD(R,R)->Error(reflex) {(1=\=1)}.’
Added to tuples: Error(reflex); 2;
Added to store: (1=\=1)
Added to activations: {R:_r_0}; 8;

...[2] treated

there is an inconsistency in the constraint store F|=g vacuously (VACUOUSLY)
number of rules applied for closure F(1):7

this chase was :0.088197 seconds long

number of tuples generated:10

Finally, applying o2 (sentence [2], exclusion is irreflezive), an antilogy is derived.
Thus, the chase procedure proved that {o2,03,06} |= 05. The prototype can be used
to derive other sample theorem from the dependencies of table 7. Let be X' the six
dependencies shown in the table. The chase procedures can prove that X\{o4} | 04,
\{o5} E o5 and that X\{o4,05} = 04,05.

This example illustrates the utility of the proposed framework. Given an AC model
AC = (Voc, P, X)), an automated proof of non-trivial properties can be provided. For
instance, besides the above obtained theorems, we have been able to derive the following
results:

— read and write access over an objet in Mandatory Access Control (MAc) are granted
to a subject iff the subject’s clearance level is equal to the object’s confidentiality
level (Sandhu, 1993),

— a root role which inherits all other ones cannot exist in an RBAC policy where two
roles are mutually exclusive (Benantar, 2006),

— dynamic authorizations are a subset of static authorizations in RBAC policies (Fer-
raiolo et al., 2003).
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5 Related work
5.1 General comparison

Our work is closely related to (Barker and Stuckey, 2003) which expresses RBAC models
in constraint logic programming, to (Halpern and Weissman, 2003) which identifies a
subset of ForL for Ac models, to (Bertino et al., 2003) which describes a C-DATALOG
framework for representing AC models, to (Jajodia et al., 2001) which defines a flexible
access control framework, to (Li and Mitchell, 2003) which uses DaTaLoc® and (Miege,
2005) which uses the DATALOG ™ for defining the ORBAC model. Our main goals were
to provide a framework for AC which:

— makes a clear separation between policies and models and has a clear semantics,
— is expressive enough to capture and generalize roperties of Ac models,

treats policy constraints as first-class citizens,

provides readable algorithm execution traces for designers and administrators.

The background we have settled in section 2 is based on DataLoc®. This logical
framework has been often treated as a middle-ground formalism to which many other
logical based frameworks can be reduced, for instance in the work of (DeTreville, 2002;
Jim, 2001; Bertino et al., 2003; Li and Mitchell, 2003). Moreover, DataLoc® has shown
to be able to capture several AC models, and various extensions of RBAC model (Joshi
et al., 2005; Damiani et al., 2007). As the present framework subsumes DATALOGC7 it
can basically capture these models.

The main difference with the above previous work is the fruitful use of data depen-
dencies as a unifying logical framework which encompasses both traditional AC rules
and integrity constraints. Thus, constraints are expressed in the very same model, and
not expressed in an independent and different framework. As constraints are integrity
requirements of policies, we argue that integrating them in the model as soon and as
tightly as possible is a step towards ensuring AC robustness.

We rely on some known results for data dependencies, in order to provide well-
founded tools for reasoning on policies. An interesting feature of these proof procedures
is that they do not require any prior translation of FOL formulae of rules P and integrity
constraints X (e.g., by means of Skolemization or rewriting rules). This property leads
to native clear traces of automated proofs, as given in section 4.6. This greatly enhances
the readability of inference results for design and maintenance purposes. Finally, by
means of the prototype, we have been able to re-prove in an automated way some
interesting results found in the literature.

5.2 Frameworks built upon DATALOG

(Bertino et al., 2003) and (Li and Mitchell, 2003) have used the DATALOG frame-
work, respectively C-DATALOG which allows object-oriented definitions, and DATA-
Loc® which includes constraints. These frameworks are able to capture extended RBAC
models such as Temporal-RBAC (Bertino et al., 2001). The basic components of the
present proposition (sections 2 and 2.2) reuse and extend some of their formal models.
(Li et al., 2003), (Jim, 2001), and (DeTreville, 2002) have extended DATALOG with
specific constructions which are reduced into standard DATALOG formulae. However,
we have not used rewriting procedures which may cloud the debugging steps and puzzle
administrators.
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5.3 Other frameworks built upon logic

(Jajodia et al., 2001), (Barker and Stuckey, 2003) and (Halpern and Weissman, 2003)
describe logical programs able to express general AC models. These propositions ad-
dress the problems arising with the use of closed policies (in which access is by default
denied and authorizations are only positive), open policies (access is granted by default)
or hybrid policies (authorizations and denial can be both explicitly defined). Miege
(2005) use DATALOG ™ to deal with negative authorization (prohibition). These logical
frameworks allow a permissive use of negation in formal sentences, whereas we chose
to favor existential quantifiers. However, our framework is able to support a restrictive
use of negation by means of NGD for instance. Our framework captures complex in-
tegrity requirements considered as fundamental in RBAC, which are not expressible in
other ones. Moreover, we provide an effective procedure to automatize administrative
operations.

Our framework is tightly linked to the database area and makes a clear distinction
between policies and models. This separation, advocated by (Li et al., 2007), is not
explicit in the work of Barker and Stuckey (2003) and Halpern and Weissman (2003),
as well as in the logic programming paradigm on a more general point of view. Finally,
we have reused and extended some definitions of (Ferraiolo et al., 2003) (properties
of RBAC) and results of (Gavrila and Barkley, 1998) (consistency of RBAC databases)
which were not integrated into other frameworks.

5.4 Access control constraints

Constraints have received much attention in Ac models. RBAC is argueably one of
their most prominent representatives for which many kinds of constraints have been
proposed (Gligor et al., 1998; Ahn and Sandhu, 1999; Crampton, 2003). These sug-
gestions either define and categorize new kinds of constraints (e.g., the variations on
mutual exclusion outlined in section 3.4) or proposed specification languages for con-
straints. Most of these constraints are defined as a way to enforce separation of duties,
and are variants of mutual exclusion.

The algebra of Li and Wang (2008) for specifying constraints encompasses these
approaches but consider constraints as high-level organization requirements. Qur ap-
proach is quite different, in the sense that constraints are defined closer to the model
at a lower level. Thus, we can capture intrinsic properties (e.g., constraints on au-
thorization triples, prerequisites) as well as general integrity requirements (e.g., states
well-foundedness, algebraic properties of relations) which are usually taken into account
separately.

6 Discussion

This section discusses the main choices we made. We divide this section into the AcC
structure design choices and the FoL fragment choice.



24

6.1 Design and administration

By drawing a distinction between an Ac model and an Ac policy instanciated from a
model, we can define two AC-related activities:

— model design is the task of defining the Ac model. The model designer sets up the
sorts and relations of the model (Voc), its rules (P) and the properties that must
be enforced (X). For instance, a model designer may define that tasks and roles are
used to structure policies. As an analogy in the database field, the model designer
counterpart is the database administrator, who defines tables (Voc), views (P) and
keys between tables (X).

— policy administration is the task of defining the state I. The policy administrator
sets up the facts of an Ac model instance, but can not define I’ directly because it
is automatically derived from I using P. According to the above example, a policy
administrator sets that physician and surgeon are roles, and is responsible for
assigning these roles to individuals. As an analogy in the database field, the policy
administrator counterpart is an end-user, whose job is to query and modify the
policy, but who is not able to modify the schema.

6.2 Model structure

In section 2, we introduced the structure of AC' = (Voc, P, X') made of three compo-
nents and we defined the major design choices we have made:

— Ac models are defined as logical theories while being narrowed to decidable frag-
ments without negation, disjunction nor function symbols in P,

— the vocabulary is partitioned into sorts and relations in a many-sorted FoL paradigm,

— rules (P) and constraints (X) are distinguished,

— the difference between a state I and a policy I is logically made explicit.

One may argue that these choices are somewhat restrictive. The administrator’s
tasks are limited to extensive policies management, i.e., to tuple management in the
Ac state. It might be possible to allow them to expressed their own formulae in P or X.
However, we think this is not desirable, as this would blur the responsabilities between
designers and maintainers and would introduce higher policy checking complexity. In
such an approach, the stability of the Ac models would not be guaranteed through the
policies lifetime, in particular consistency and interoperability of updated models.

6.3 Fragments of logic for access control

The logical fragment of FOL we used to define P and X is quite restrictive: nega-
tion, disjunction and function symbols are not allowed. The main argument is that we
obtain a unique and computable model of P. Computability is necessary because the
reference monitor has to answer each access request. Uniqueness for integrity checking
purposes is required, in order to avoid checking the satisfaction of X over multiple
models of P. Moreover, uniqueness may ease the understanding of intensive policies by
administrators.

Furthermore, we chose to have a more expressive framework for constraints than for
rules, by favoring ezistential quantification over negation. The main goal is to be able
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to model some of the most important constraints commonly identified for Ac models,
which cannot be expressed in DATALOG models. Even with a quite simple ACc model
(for instance, with a few sorts, relations and principles), most of the properties given
in section 3 require existentially quantified variables (e.g., sessions integrity properties,
restricted hierarchies, authorizations properties and administrative prerequisites).

7 Conclusions and perspectives

In this paper, we presented a logical framework AC = (Voc, P,X) for Ac models,
which relies on three abstract components. The key idea is to express and handle
AcC models, policies and constraints in an homogeneous way within the very same
logic background by means of database integrity theory (not to deploy AC policies in
databases). We then showed how to use well-founded procedures in order to enforce and
check constraints, and to provide a formal trace of inferences. The proposed framework
is not universal because of the choice we made to focus on access control constraints
and to treat them as first-class citizens. It however allows for expressing several classical
models and extensions found in the literature. It also takes into account some major
recommendations that had been previously addressed to RBAC models. Moreover, the
expressivity of general classes of dependencies allows capturing most of the Ac model
properties considered as fundamental.
We envision several extensions and perspectives:

— extension of the FOL subclasses, to capture new properties of models. However,
algorithms decidablity and tractability should be taken into account. As an exam-
ple, it may be interesting to use some decidable subclass of TGD by imposing some
restrictions on existentially quantified variables, as it is the case for negation in
stratified-DATALOG for instance,

— explore automated maintenance of databases (Chomicki and Marcinkowski, 2005),
and data integration (Fagin, 2006) to fix non-consistent policies. Data integration
may be a fruitful perspective for policies creation expressed in different models (Li
et al., 2009),

— broadening the scope of policies. Indeed, it would be valuable to model adminis-
trative policies, which define administrator rights over Ac policies. This could be
useful for instance when a huge policy requires several administrators, each of them
being allowed to handle only a part of the policy.

— another emerging topic is usage control and privacy protection. The basic compo-
nents and definitions we presented can be used to define next generation AC models
and policies, as it has been done with RBAC models (Ni et al., 2009).
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A Chase algorithm

Input : X :aset of TéDp and EGD

Input : 0 =¢ — ¢ :a TGD or and EGD

Output: true iff ¥ = o or false only if ¥ [~ o

begin

{initialization}

let I an empty (symbolic) instance of R

let v an arbitrary valuation of ¢’s variables

let I' the set of valuations used for each dependency

for atom R;(c1,...,cq) in v($) do

L I+ TUR;(ct,...,cn)

{main loop}

while I’ # I do

I'+1I

foraec X, a:=a—bdo

for valuation p such that p(a) € I do

if (a,p) € I' then

if a is ¢ TGD then
for R;(c1,...,cn) in u(b) do

if Ri(cl, ey Cn) € I then

L | I+ IUR;(ct,...,¢a)

else
for c; = cj in pu(b) do
L replace all occurences of c; in I by c;

| eI

{exit condition}
if 0 is a TGD then
for Ri(c1,...,cn) in v(y) do
L if Ri(c1,...,¢n) in I then
L return true

else
for c; = cj in v(¢v) do
L if c; = cj or if (ci or cj) is not in I then
L return true

end
return false (fixpoint is reached)
Algorithm 1: Chase algorithm from Beeri and Vardi (1984)



