N
N

N

HAL

open science

Discovering (frequent) Constant Conditional Functional
Dependencies
Thierno Diallo, Noél Novelli, Jean-Marc Petit

» To cite this version:

Thierno Diallo, Noél Novelli, Jean-Marc Petit. Discovering (frequent) Constant Conditional Func-
tional Dependencies. International Journal of Data Mining, Modelling and Management, 2012, 3, 4,

pp.205-223. hal-01352932

HAL Id: hal-01352932
https://hal.science/hal-01352932

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01352932
https://hal.archives-ouvertes.fr

Discovering (frequent) constant conditional
functional dependencies

Thierno Diallo
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205,
and Orchestra Networks, Paris, France.
E-mail: thierno.diallo@liris.cnrs.fr

Noél Novelli*
Université de la Méditerranée, CNRS, LIF, UMR6166, France.
E-mail: noel.novelli@lif. univ-mrs.fr

Jean-Marc Petit
Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, France.
E-mail: jean-marc.petit@insa-lyon.fr

Abstract

Conditional Functional Dependencies (CFDs) have been recently in-
troduced in the context of data cleaning. They can be seen as an unifica-
tion of Functional Dependencies (FD) and Association Rules (AR) since
they allow to mix attributes and attribute/values in dependencies. In this
paper, we introduce our first results on constant CFD inference. Not sur-
prisingly, data mining techniques developed for functional dependencies
and association rules can be reused for constant CFD mining. We focus
on two types of techniques inherited from FD inference: the first one ex-
tends the notion of agree sets and the second one extends the notion of
non-redundant sets, closure and quasi-closure. We have implemented the
latter technique on which experiments have been carried out showing both
the feasibility and the scalability of our proposition.

1 Introduction

Initial work on dependency-based data quality methods focused on traditional
dependencies, such as Functional Dependencies (FD), that were mainly devel-
oped for database design 40 years ago. Their expressiveness often limits the
capture of inconsistencies or the specification of dependency rules. Even if some
error measures have been defined for FDs [18], none of them can easily capture
the frequency (or support) measure popularized by association rules (AR) min-
ing [2]. These limitations highlighted the need for extending either FDs to take
into account attribute/values or inversely, extending ARs to take into account
attributes.

In this setting, Conditional Functional Dependencies (CFD) have been re-
cently introduced in [5, 10] as a compromise to bridge the gap between these
two notions. They can be seen as an unification of Functional Dependencies

(FD) and Association Rules (AR) since they allow to mix attributes and at-
tribute/values in dependencies as illustrated by the following example.

Example 1.1 We borrow the running example given in [5]. Let cust be a re-
lation symbol describing a customer with country code (CC), area code (AC),
phone number (PN), name (NM), street (STR), city (CT) and zip code (ZIP).
A relation ro of cust is shown in Figure 1.

Let f, : CC,AC,PN — STR,CT,ZIP, fo : CC,AC — CT,ZIP and
f3: CC,ZIP — STR be three FDs. r¢ satisfies f1 and fo but violates f3 (e.g.
tuples ty and ts).

In contrast CFDs are contraints that hold on a subset of tuples rather than
on the entire relation. So the basic idea of CFDs is to define through a selection
formula (involving only equality) a subset of a relation on which some FDs hold.
For instance on occ=44(r0), the FD f3 : CC,ZIP — STR holds. Technically
this contraint is denoted by the CFD ¢g = (CC,ZIP — STR, (44, || _)),
where the symbol |’ is used to separate the left-hand side from the right-hand
side of the dependency and the symbol 7 represents any possible value. CFDs
that holds on 1¢ include also the following (and more):
¢1: (CC,AC, PN — STR,CT,ZIP(01,908, || ,NYC,))
¢2: (CC,AC, PN — STR,CT,ZIP(01,212, || ,PHI,))
¢3: (CC,AC — CT (01,215 || PHI))

ro | CC | AC PN NM STR CT 71P

ty:| 01 | 908 | 1111111 | Mike | Tree Ave. | NYC | 07974
to: | 01 | 908 | 1111111 | Rick | Tree Ave. | NYC | 07974
t3: | 01 | 212 | 2222222 | Joe | Elm Str. | NYC | 01202
ty: | 01 | 212 | 2222222 | Jim | Elm Str. | NYC | 01202
ts: | 01 | 215 | 3333333 | Ben | Oak Av. | PHI | 01202
tg: | 44 | 131 | 4444444 | Ian High St. | EDI | 03560
t7: | 44 | 140 | 5555555 | Kim | High St. | PHI | 03560

Figure 1: Relation rg on cust

From a data mining point of view, CFDs offer new opportunities to reveal
data inconsistencies or new knowledge nuggets from existing tabular datasets.

Data cleaning is the main application of CFDs [5]. The first step of this
application is detecting CFD violation, i.e. given a relation r on R and a set
Y of CFDs on R, find all the tuples in r that violate some CFD in X. In [5]
authors propose SQL queries to check single CFD violation, and then techniques
for single CFD are generalized to find violation of multiple CFDs. The second
and last step is CFD repairing where they allow attribute-value modifications
as a repair operation.

Clearly, it might be useful to discover CFDs from a particular database
instance. In this paper, we address the following problem, called CFD inference

Given a relation r, discover a cover of CFDs satisfied in r.

In [5, 10|, CFDs has been proposed and studied mainly from a theoreti-
cal perspective, their underlying application being data cleaning. They revise

classical problems (implication, consistency, axiomatization...) in data depen-
dencies for CFDs.

In [13], authors study the characterization and the generation of pattern tableaux
to realize the full potential of CFDs. In [22], a hierarchy of CFDs, FDs and
ARs has been proposed along with some theoretical results on pattern tableaux
equivalence. They use the work of [6], based on horizontal decomposition of a
relation, as a way to represent and reason on CFDs.

As far as we know, only two contributions have been made for CFD min-
ing [7, 11] while plenty of contributions have been proposed for FD inference
and AR mining (see for example [2, 25, 16, 19, 23] in the context of this pa-
per). In [7], authors propose a tool for data quality management which suggests
possible rules and identify conform and non-conform records. They present ef-
fective algorithms for discovering CFDs and dirty values in a data instance, but
the CFDs discovered may contain redundant patterns. In [11], authors pro-
posed three methods to discover CFDs. The first one is called CFDMiner which
mines only constant CFDs i.e. CFDs with constant patterns only. CFDMiner is
based on techniques for mining closed itemsets [25]. The two other ones, called
CTANE and FastCFD, were developed for general (non constant) CEDs discov-
ery. CTANE and FastCFD are respectively extensions of well known algorithms
TANE [16] and FastFD [27] for mining FDs.

Contribution In this paper, we introduce our first results on CFD inference
which can be seen as a clarification of some simple and basic notions underlying
CFDs. Not surprisingly, we point out how data mining techniques developed
for functional dependencies and association rules can be reused for constant
CFD mining. We focus on two types of techniques: the first one extends the
notion of agree sets and the second one extends the notion of non-redundant
sets, closure and quasi-closure. We have implemented the latter techniques on
which experiments have been carried out showing both the feasibility and the
scalability of our proposition.

Paper Organization In Section 2, basic notations for CFDs are given. In
Section 3, news notations are introduced to simplify CFDs. The first proposition
based on conditional agree sets to discover constant CFDs is made in Section 4.
The second proposition is based on the extension of FUN [23]: its main interest
is to take into account the frequency of CFDs to discover frequent constant
CFDs (Section 5). The experimental results are presented in Section 6 and then
we conclude and give some perspectives of this work in the last Section.

2 Preliminaries

We shall use classical database notions (e.g. [1] and CFDs terminology [5, 10,
13, 22]). We do not distinguish a relation symbol form its schema, i.e. a relation
symbol R is seen as a set of attributes from some universe. Each attribute A
has a domain, denoted by DOM(A). Given a relation r over R and A € R,
active domain of A in r is denoted by ADOM (A, r). A relation is a set of tuples
and the projection of a tuple ¢ on an attribute set X is denoted by ¢[X]. Letters
from the beginning of the alphabet (A, B, C,...) shall represent single attribute
whereas letters from the end of the alphabet (X,Y, Z,...) attribute sets. For

convenience, XY will refer to as X UY.

Consider a relation schema R, the syntax of a CFD is given as follows: A
Conditional Functional Dependence (CFD) p on R is a pair (X — Y, T),) where
(1) XY C R, (2) X — Y a standard Functional Dependency (FD) and (3) T,
is a pattern tableau with attributes in R. For each A € R and for each pattern
tuple t, € T, t,[A] is either a constant in DOM (A), or an ‘unnamed variable’
denoted by ’ ', or an empty variable denoted by ’+’ which indicates that the
corresponding attribute does not contribute to the pattern (i.e. A € XY).

The semantics of a CFD extends the semantics of FD with mainly the notion
of matching tuples.

Let r be a relation over R, X C R and T}, a pattern tableau over R. A tuple
t € r matches a tuple t, € T, over X, denoted by t[X] = ¢,[X], iff for each
attribute A € X, either ¢t[A] = t,[A], or t,[A] =", or t,[A] ="+,

Let r be a relation over R and p = (X — Y,T) a CFD with XY C R. We
say that r satisfies p, denoted by r |= p, iff for all ¢;,t; € r and for all ¢, € T, if
;[X] = t;[X] < t,[X] then t,[Y] = ¢;[Y] < t,[Y].

Example 2.1 The relation rg of the Figure 1 satisfies CFDs ¢y, ¢1 and ¢3
given in Example 1.

We say that r satisfies a set ¥ of CFD over R, denoted by r = X if r = p
for each CFD p € X.

Let 37 and 35 be two sets of CFD defined over the same schema R. We say
that ¥, is equivalent to X5 denoted by 31 = 35 iff for any relation r over R,
T ': 21 iff r ': 22.

An FD X — Y is a special case of CFD (X — Y,t,) where t, is a single
pattern tuple and for each B € XY, t,[B]="_".

Compare to FDs, note that a single tuple relation may violate a CFD. It
may occur when the pattern tableau has at least one row with at least one
constant on the right-hand side. Given a relation, the satisfaction of a CFD
has to be checked with both every single tuple and every couple of tuples. As
for classical FD, the non-satisfaction is much easier to verify: it is enough to
exhibit a counter-example, i.e. either a single tuple or a couple of tuples.

More formally, we get:
r violate a CFD p = (X — Y, T), denoted by r }~ p, iff

e there exists a tuple ¢ € r and a pattern tuple ¢, € T such that t[X] =< ¢,[X]
and t[Y] # t,[Y] or

e there exists t;,¢; € r and a pattern tuple ¢, € T such that ¢;[X] = ;[X] <

As we will see later, the first condition will turn out to be useless in the
context of CFD inference.

Example 2.2 In Figure 1 the relation ro does not satisfy these two CFDs:

e ¢: (CC,AC,PN — STR,CT,ZIP(01,212, || ,PHI,))
Indeed, t3 violates ¢o : t35 [CC, AC, PN| < (01,212,) butts [STR,CT,ZIP] #
(,PHI,).

o ¢ = (CC,CT — ZIP(01, ||)). Indeed, ty and ts violate ¢4 since
to [CC, CT] =13 [CC, CT] = (01,_), but to [ZIP} 75 ts [ZIP]

Let ¥ be a set of CFD and (X — Y,T,) a single CFD over R. ¥ implies
(X — Y,T,) denoted by ¥ |= (X — Y,T},) iff for every relation r over R, if
ri=Y thenr = (X - Y, T),).

Y (X — Y,T,) iff there exists a relation r over R such that r = X but
riE (X =Y, T,).

A CFD (X — Y,T,) is in the normal form [10], when |Y| =1 and |T,| = 1.
So a normalized CFD has a single attribute on the right-hand side and its
pattern tableau has only one single tuple.

Proposition 2.1 [10] For any set ¥ of CFD there exists a set X,y of CFD
such that each CFD p € ¥y,5 is in the normal form and X = X,,¢.

In the sequel we consider CFDs in their normal form, unless stated otherwise.
A CFD (X — A,tp) is called:

e a constant CFD if t, [X A] consists of constants only, i.e. t,[A] is a con-
stant and ¢, [B] is also a constant for all B € X.

e a variable CFD if the right hand side of its pattern tuple is the unnamed
variable ’_ 7, i.e. t,[A] =", the left-hand side involving either constants

or’ .
Proposition 2.2 [10] For any set ¥ of CFD over a schema R, there exists
a set 3. of constant CFDs and a set X, of variable CFDs over R such that

Y=%.U%,.

3 New notations for CFDs

We now introduce new notations for representing CFDs, which will turn out to
be very convenient to express known results in database theory.

3.1 Search space for constant CFDs

Usually, the search space for FDs and ARs is a powerset of the set of attributes
(or items). With CFDs, attributes have to be considered together with their
possible values. This is defined as follows for constant CFDs.

Definition 3.1 Let R be a relation symbol. The search space of constant CFDs
over R, denoted by SPcrp(R), is defined as follows:

SPopp(R) = {(A,a) | A € R,a € DOM(A)}

Formally, the search space is the powerset of SPcpp(R). This search space
for constant CFD is infinite if at least one of the attributes of R has an infinite
domain.

Let p=(A1... A, = A t,[A1 ... A, A)]) be a constant CFD over R.
Note that p can be seen as syntactically equivalent to X — A, with X =
{(A1,tp[A1])s - -+, (A, tp[An])} € SPeopp(R) and A = (A, ty[A]) € SPerp(R).

In the sequel, constant CFDs will be often represented using this new nota-
tion, with elements of SPcrp(R) only. Given A = (A,v) € SPorp(R), we
note A.att and A.val the values A and v respectively. By extension, given
X C SPcrp(R), X.att represents the union of attributes belonging to X, i.e.
X.att = Uz.x Aatt

The search space of constant CFDs is now defined to take into account a
relation r over R.

Definition 3.2 Let R be a relation symbol and r a relation over R. The search
space of constant CFDs for r, denoted by ASPopp(R,r), is defined as:

ASPerp(R,r) ={(A,a) | A€ R,a € ADOM(A,r)}
Since we consider finite relation only, this set is finite.
Example 3.1 Let r be the relation in Figure 2. For sake of clearness we denote

the couple (A;,v) by Ajv. We have:
ASPcpp(ABCD,r) = {A0, A2, B0, B1, B2,C0,C3, D1, D2}

r | A
tli
tQZ
t3:
t43
t52

C

— NN O~ =T
el i

NN O OO
OO O Wwo

Figure 2: A relation r over R = {A, B,C, D}

3.2 Minimality and covers of constant CFDs

A CFD X — A over R is said to be trivial if A.att € X.att. In the sequel we
consider nontrivial CFDs only.

A constant CFD X — A is said to be left-reduced on r if for any Y.att C
X.att,r Y — A

Intuitively none of its left-hand side attributes can be removed and none of
the constants in its left-hand side pattern can be “upgraded” to’ .

A minimal CFD [10] p on r is a non trivial, left-reduced CFD such that
r = p.

A canonical cover of a set X, of CFDs is a set Y. of minimal CFDs such
that X, = X...

From Propositions 2.1 and 2.2, we can now derive a new proposition when-
ever the set of CFDs comes from a relation.

Proposition 3.1 For any relation r, there exists a set 3. of constant CFDs
such that X, = X, %, being the set of satisfied CFDs in r.

The problem statement already given can be refined as follows:

Given a relation r, discover a canonical cover of constant CFDs
satisfied in r

Now, we have the following property related to the monotonicity of CFDs
w.r.t. to their partial order.

Property 3.1 Let r be a relation over R, X,Y C ASPcpp(R,r) such that
XCY ﬂld AfE ASPCF;D(RLI’) We have: . o o o
reX—>A=rkEY — A (or equivalentlyr Y - A=rEX —A)

3.3 Closure operator for constant CFDs

With these new notations, closure of attribute sets and pattern tuples defined
in [10] can be rewritten easily and most well known results in data dependency
theory can be rephrased (mainly from FDs).

Definition 3.3 Let X be a set of constant CFDs and X C SPcorp(R).
The closure of X with respect to ¥, denoted by Y;, is defined as follows:
Xy ={A€ SPcrp(R) | L X — 4}.

The operator .% defined on the powerset of SPcpp(R) is a closure operator,
i.e. extensive, monotonic and idempotent.

Example 3.2 Let X = {¢1, ¢} with ¢1 = (A — B,(0]| 1)) and ¢ = (B —
C, (1] 2)). For instance, we have:

{(A70)}§J = {(A70)7 (B7 1)7 (07 2)}7 {(A70>7 (B, 2)}*2 = {(A,O), (Bv 1)7 (Cv 2)7 (B7 2)}
and {(A’ 1)) (B’ 2)}’3 = {(A7 1)7 (B’ 2)}

Property 3.2 Let ¥ be a set of constant CFDs, X C SPcpp(R) and A €
SPQFD(EQ' o

Ae Xy iff S EX = A
Definition 3.4 Let X be a set of constant CFDs over R. The closed sets of %
with respect to R, denoted by CL(X), are defined as follows:

CL(X) ={X C SPerp(R) | X = Xy}

With the new notations introduced so far, it is worth noting that the main
notions useful for CFDs appear to be very close to their counterparts for func-
tional dependencies.

4 Discovering constant CFD using conditional agree
sets

We now introduce a new set called conditional agree set, an extension of tradi-
tional agree set [3].

We first define the conditional agree set between a single tuple and a pattern.
Let r be a relation over R, t € r a single tuple, ¢, a pattern tuple over R.

Definition 4.1 A conditional agree set between a single tuple t and a patternt,,
denoted by ag(t,tp), is defined by: ag(t,t,) = {(4,t[A]) | t{A] < t,[A4], A € R}.

Example 4.1 Let r be the relation over R = ABCD (cf. Figure 2).
t, =(0,1,3,) a pattern tuple.

ag(t1,tp,) = {A0, B1, D2}.

ag(ta,t,) = {A0, B1,C3, D2}.

Second we introduce the conditional agree set between two tuples and a
pattern. Let r be a relation over R, t;,ts two tuples of r and ¢, a pattern tuple
over R.

Definition 4.2 A conditional agree set between two tuples ti,t> andty,, denoted
by ag(ti,ta,t,), is defined by: ag(ti,ta,ty,) = {(A,t1[A]) | t[A] = t2[A] =
to[A], A € R}.

Example 4.2 Let r be the relation over R = ABCD (cf. Figure 2).
t, =(0,1,3,) a pattern tuple.
ag(t1;t27tp) = {AOaBlaDQ}

As expected, the main information we have from ag(t1,t2,t,) is a counter-
example when A =0, B =1 and D = 2. For instance, {t1,t2} ~ A0, B1,D2 —
CO0 or {tl,tg} E& AO,Bl,DQ — C3.

Now we define the conditional agree set between a relation and a pattern.
Let r be a relation over R and ¢, a pattern tuple over R.

Definition 4.3 The conditional agree set between v and t,,, denoted by ag(r,tp)
is defined by: ag(r,tp) = {ag(ti, t;,tp) | ti,t; €7, t; #t;}.

Lastly we define the conditional agree set with all possible pattern tuples of
a given relation r denoted by cag(r).

Definition 4.4 cag(r) =, ag(r,tp) for all pattern tuples t,.

Clearly we have the following result.

Property 4.1 Let t, be the pattern tuple such that t, [A] ="’ for all A € R.
We have:

cag(r) = ag(r;tp)

Example 4.3 Continuing the Example 4.2, we get:
cag(r) = {{A0B1D2}, {A0C0},{C0},{B1C0}, {A0}, {B1},{C0D1}, {A2C0D1}}

We are interested in enumerating the left-hand sides of all minimal CFDs

satisfied in r whose right-hand side is reduced to a single couple (attribute,
value).
We need to define the so-called walid portion of the relation r for which it
makes sense to determine CFDs with such a given right-hand side, say A in
ASPcrp(R,7). Clearly, the tuples ¢ of r such that t[A.att] # A.val are useless
as well as the attribute A.att.

In the sequel, we shall use the following notation:

Let A in ASPorp(R,r). The valid portion of r with respect to A, denoted by

' (A), is defined as: r'(A) = ﬂ'sz.att(aZvatt:Z'wl(r)).

Definition 4.5 The left-hand side of left-reduced constant CFD for A, denoted
by lhs(A,r), is defined by:

lhs(A,r) = {X C ASPcrp(R—A.att,r’(A)) |rEX — A and for allY C X,7 £ Y — A}

To characterize [hs(A,r), we borrow the same principles used for FD infer-
ence [20, 9].

We first define the maximal sets (with respect to set inclusion) of attribute/values
that do not satisfy the CFD.

Definition 4.6 The mazimal sets of not satisfied constant CFDs for Ainr,
denoted by max(A,r), is defined by:

max(A,r) = marc{X C ASPcrp(R — A.att,r'(A)) | r £ X — A}

From Property 3.1, we know that maximal sets are enough to capture invalid
CFDs.

Now we can bridge the gap between conditional agree sets and maximal
sets. Intuitively, we need to consider elements X of cag(r) such that A does not
belong to X (not a counter-example).

Property 4.2 max(A,r) = maxc{X € cag(r) | A ¢ X}

Example 4.4 Continuing the Example 4.3, we have:
max(A0,r) = {{B1C0},{C0D1}}

max(A2,r) = {{B1C0},{C0D1}}
max(B0,r) = {{ A0C0}, {C0D1}}
max(B1,r) = {{AOC0}, {A2C0D1}}
max(B2,r) = {{A2C0D1}}
max(CO,r) = {{A0B1D2}}
max(C3,r) = {{A0B1D2}}
max(D1,r) = {{A0C0},{B1C0}}
max(D2,r) = {{A0C0}, {B1C0}}

From the mazimal sets of elements (that do not satisfy the CFD), we have
to identify the minimal sets of elements that satisfy the CFD.

This kind of relationship has been heavily studied in many pattern enumer-
ation problems and has been formalized in [21].

So, to come up with the main result, we define the complement of elements
of max(A,r) in ASPcrp(R — A.att,r’(A)). For a given A, the search space is
the set of all possible couples of the form (attribute, value) from r/(A).

Definition 4.7 cmaz(A,r) = {ASPcpp(R—A.att,r'(A)—X | X € maz(A,7)}.

Example 4.5 Continuing the previous Example 4.4, let us consider cmax (A0,).
For A0, we have ASPcpp(R — A.att,r'(A0)) = {B0,C3,D2,B1,D1}. So
the complement of max(A0,r) with respect to ASPcrp(R — A.att,r'(A0)) is
emax(A0,r) = {{B0C3D1D2},{B0B1C3D2}}

For the other (attribute, value) couples, we have:
emax(A2,r) = {{B2D1},{B1B2}}

ecmazx(BO0,r) = {{D1}, {A0}}

emax(Bl,r) = {{A2C3D1D2}, {A0C3D2}}
cmax(B2,r) = {}

emax(CO,r) = {{A2B0B2D1}}
cemaz(C3,1) =

emax(D1,r) = {{A2B0B1B2}, {A0A2B0B2}}
emax(D2,r) = {{B1C3}, {A0C3}}

Now, the main result can be given. We reused the well-known connection
between positive and negative borders of interesting pattern enumeration prob-
lems representable as sets [21]. This connection relies on minimal transversal of
a hypergraph. A collection H of subsets of a finite set is a simple hypergraph if
VX eH,X#Dand (X, Y e Hand X CY — X =Y) [4]. A transversal T
of H is a subset of R intersecting all the edges of H, i.e. TNE # (,VE € H.
A minimal transversal of H is a transversal T such that it does not exist a
transversal T” of H, T’ C T. The collection of minimal transversals of H is
denoted by Tr(H).

Theorem 4.1 Let r be a relation over R and A € ASPorp(R,T).
Ihs(A,r) = TrMin(cmaz(A, 1))
where TrMin(H) is the set of minimal transversal of the hypergraph H [21].

The proof follows from the following arguments: the search space is a finite
subset lattice and the predicate is monotonic w.r.t. set inclusion (cf. Prop-
erty 3.1). The details are omitted.

Example 4.6 From previous examples, we have the following left-hand sides:
lhs

lhs(A0,r) = {{B0},{C3},{D2},{B1D1}}
lhs(A2,r) = {{B2},{B1D1}}
lhs(BO,r) = {{A0D1}}
lhs(B1,r) = {{C3},{D2},{A0A42},{A0D1}}
lhs(B2,r) = {}
hs(CO.) = {{A2}, {BO}, (B2}, (D1})
lhs(C3,r) =
lhs(D1,r) = {{A2},{B0},{B2}, {A0B1}}

(

Let r be a relation over R. The canonical cover of satisfied CFDs in r,
denoted by X..(R,), is defined by:

Yeel R 7) = U lhs(A,r) = A
ZGASPCFD(R,T)

Example 4.7 From the previous example, we obtain:

Yee(R,7)={ B0 — A0; C3 — A0; D2 — A0; B1D1 — A0; B2 — A2;
B1D1 — A2; AOD1 — B0; C3 — Bl; D2 — Bl; A0A2 — BI1;
A0D1 — Bl1; A2 — C0; BO —» C0; B2 — C0; D1 — (C0; A2 — D1;
B0 — D1; B2 — D1; AOB1 — D1; C3 — D2; AOB1 — D2 }.

Note that the CFD A0A2 — B1 does not make sense and have to be pruned
in a post-precessing stage. Such kind of CFDs can be seen as a side effect of
the dualization (transversal minimal computation).

As we have shown, inferring constant CFDs is an instance of the class of
interesting pattern enumeration problem. Therefore, existing implementations
can be easily modified to get CFDs, for instance using the iZi library [12].

10

Example 4.8 From the previous example, let us consider the CFD A0, D1 —
B1. Interestingly, there is no tuple that matches (0,1, ,1) in the relation of
Figure 2.

The previous example points out that the method proposed in this section
may produce “useless” CFDs, i.e. CFDs that do not match any tuple of r. This
could be addressed by taking into account the frequency of the CFD, i.e. the
number of tuples that match a given CFD. As a post-treatment, it requires a
full scan of the database and can be easily performed.

Nevertheless, it turns out that the notion of frequency (or support which tries
to capture the strength of a dependency) cannot be taken into account easily
a priori: the dualization (minimal transversal computation) does not allow to
take care of frequency during its computation. This is a non trivial issue which
is out of the scope of this paper.

The next section proposes a new approach able to integrate the frequency
constraint.

5 Frequent constant CFD discovery

We would like to be able to discover frequent constant CFDs in a relation, i.e
CFDs for which the number of tuples in the relation satisfying them is above a
given threshold.

Intuitively, the frequency of a CFD in a relation is the number of tuples that
match its pattern tuple, i.e. the size of the corresponding selection query.

Definition 5.1 Let § = (X — Y) be a constant CFD over R and r a relation
over R. The frequency of 6 in r, denoted by freq(0,r), is defined as follows:

freq(8,7) = lox (A=v)(7)]

(A,w)eXUY
Let € be an integer threshold value. A CFD 6 is said to be frequent in r, if
freq(@,r) > e.

As expected, the frequency is a monotonic predicate.

Property 5.1 Letr be a relation over R and X,Y C ASPcrp(R,7) such that
X C z and € a threshohi We have: o o
freq(Y,r) > e= freq(X,r) > € (or freq(X,r) <e= freq(Y,r) <e)

We need to define a test to decide whether or not a given CFD holds in
a relation. We know for a while that such a property exists for testing the
satisfaction of an FD in a relation. The following property is often used: r =
X =Y iff |nx(r)| = |rxy(r)|

For CFD, a similar property holds. It is stated below using the relational
algebra selection operator.

Property 5.2 Let R is a relation symbol, v is a relation over R,ﬁY,Y -
ASPcrp(R,7) and Cx,Cy are two selection formulas over X and Y respec-
tively.

rEX =Y iff l[oe_(r)] = locnc(r)| where Cx = /\(A,U)EX(A =) and
Oy = Nawer (4 =)

11

De@ition 5.2 Conditional non-redundant sets
Let X C ASPcorp(R,r) is a set of conditional attributes. o
X is a conditional non-redundant set in r if and only if AX' C X such that

|Uc;(7‘)| = |oc(r)].

The set of all conditional non-redundant sets in r is denoted by N'RS,.
Any set of conditional attributes not included in N'RS,. is called a conditional
redundant set.

Property 5.3 Let r be a relation over R and X,Y C ASPcorp(R,r) such that
X <Y. We have: B B
Y e NRS, = X € NRS, (or equivalently X ¢ NRS, =Y & N'RS,)

Clearly, Apriori-like algorithms can be used to discover frequent non-redundant
sets (conjunction of two monotonic predicates).

From the non-redundant sets, we extend the results given in [23, 24| (for FD
inference) to propose a new characterization of the canonical cover of CFDs in
which we integrate a frequency threshold. It is based on non-redundant sets,
frequency, closure and quasi-closure of CFDs. The definitions follow.

Now we can redefine the closure operator (cf. Definition 3.3) in this context.

Definition 5.3 Conditional attribute set closure in a relation
Let X be a set of conditional attributes, X C ASPopp(R,r). Its closure in 1 is
defined as follows:

Y;T =X U{A/A.att € R — X.att A\ loc(r)| = locenc (1]}

We introduce the concept of quasi-closure which allows to accumulate the
knowledge extracted from the subsets of the considered conditional attribute
set.

Definition 5.4 Conditional attribute set quasi-closure in a relation
The quasi-closure of a conditional attribute set X in ASPorpp(R,r), denoted by
Y;,,; is defined by:

Xy =XU |J X -4y,
AeX

According to the monotony property of the closure operator, we have: X C
Xy, C Xy

Through the following theorem, we prove that the set of constant CFDs
characterized by using the introduced concepts is the canonical cover of constant
CFDs for the relation 7.

Theorem 5.1
See. (Ry1) = {X = A | X € NRS,, freq(X,r) > ¢ and A € Xy, — Y;T}

12

We omit the proof.

The theoretical framework proposed is well adapted to implement a level-
wise approach for discovering CFDs from a relation. Our algorithm, called
CFuUN, is based on the concepts of Apriori to find all conditional non-redundant
sets. Once the conditional non-redundant sets discovered for each level and the
corresponding frequency (count), quasi-closure and closure, discovering CFDs
is trivial following Theorem 5.1. This philosophy is the same as that used for
the FD inference approach called FUN [23, 24]. The pruning rule is provided by
the Proposition 5.3 to extract only non-redundant sets.

Each level contains a collection of quadruplets < X, |X], Y;, Y; > that
respectively represents the candidate, its frequency, quasi-closure, and closure
as shown in the Figure 3. The algorithm starts by initializing the first two levels
0 and 1 then it follows by a loop through levels (line 3-8). Each loop computes
the closure (line 4) of non-redundant sets left in the previous level then the
quasi-closure (line 5) of candidates in the current level (cf. Definition 5.3). The
CFDs hold are displayed (line 6) according to the Theorem 5.1. The redundant
sets are removed from the current level (line 7, cf. Proposition 5.3) then the
next level can be generated (line 8) following the well-known Apriori technique.
The loop is over when the new level is empty. The algorithm completes by
displaying the CFDs discovered at the last valid level.

Algorithm CFun

1 Ly:=<0,1,0,0>

2 Li={<A|A,A A>| A€ ASPcrp(R,7) A |A.att| =1}

3 for (k:=1,Lpy#0;k:=k+1)do

4 ComputeClosures(Lx—1, L)
5 ComputeQuasiClosures(L, Lr—1)
6
7
8
9

DisplayCFDs(Li—1)
PruneRedundantSets(Lg, Lx—1)
Liy1 := GenerateCandidates(Ly)
ComputeClosures(Li_1, Ly)
10 DisplayCFDs(Li—_1)
end CFuN

Example 5.1 To illustrate the section (cf. Figure 3), we use the relation al-
ready described (cf. Figure 2). The first column of the following table is the
X candidate which can be or not a conditional redundant set. The candidate
prefized by *’ is a conditional redundant set. The second column corresponds
to the cardinality of X and the two last columns represent the conditional quasi-
closure and conditional closure of X. On the right, the CFDs discovered are
displayed.

Implementation technique We use the partitions representation introduced
in [8, 26] and often used for the FD inference problem (cf. [14, 15, 19, 23, 24]).
Indeed, one can compute quite efficiently the frequencies and generate only
valid combinations of candidates (for instance, AA is invalid and will not be
generated).

Example 5.2 To illustrate the use of partitions, we again take the relation Fig-
ure 2. The threshold is set to 1. The partitions following the attributes A and C

13

E3

< x| X3 P
A0 3 A0 A0
A2 2 A2 A2 CO0 D1 A2 — C0OD1
Bl 3 Bl B1
BO 1 BO A0 B0 CO D1 B0 — A0C0D1
B2 1 B2 A2 B2 C0 D1 B2 — A2C0D1
Co 4 Co C0
C3 1 C3 A0 B1 C3 D2 C3 — A0OB1D2
D2 2 D2 A0 B1 D2 D2 — A0B1
D1 3 D1 Co D1 D1 — CO0
A0 B1 2 A0 B1 A0 B1 D2 A0B1 — D2
A0 BO 1 A0 BO CO D1 A0 BO CO0 D1
A2 B1 1 A2 B1 C0 D1 A2 B1 C0 D1
A2 B2 1 A2 B2 C0 D1 A2 B2 C0 D1
A0 CO 2 A0 CO A0 CO
A0 C3 1 A0 B1 C3 D2 | AO B1 C3 D2
A2 CO 2 A2 C0 D1 A2 C0 D1
*A0 D2 2 A0 B1 D2 A0 B1 D2
A0 D1 1 A0 CO D1 A0 BO CO0 D1 A0D1 — BO
A2 D1 2 A2 C0 D1 A2 C0 D1
*A0 B1 CO 1 A0 B1 CO D2 | A0 B1 C0 D2

Figure 3: Illustration of the proposed characterisation

are 74 = {(1,2,3),(4,5)} and 7¢ = {(1,3,4,5),(2)}. The values corresponded
to equivalence classes are 0, 2 for A and 0, 3 for C. The product of w4 and
e is mac = {(1,3),(2),(4,5)}. The values corresponded are (0,0), (0,3) and
(2,0). It directly provides the conditional attributes with their frequency:
freg(< A0 >) =3, freq(< A2 >) =2, freq(< C0 >) =4, freq(< C3 >) =1,
freq(< A0,C0 >) =2, freq(< A0,C3 >) =1, freq(< A2,C0 >) = 2.
Hence the CFD A2 — CO0 is held since freq(< A2 >) = freq(< A2,C0)
Moreover, no impossible combinations have been generated.

>)=2.

6 Experiments

In order to assess performances, the approach described in Section 5 has been
implemented in C++. An executable file can be generated with Visual C++
9.0 or GNU g++ compilers. Various experimentations have been performed
on an Intel Pentium Centrino 2 GHz with 2 GB of main memory, running on
Linux operating system. More details of our implementation and the source
code are available at the following URL: http://pageperso.lif.univ-mrs.fr/ “noel.
novelli/CFDProject.

Source or executable code of |7, 11] have not been disclosed yet. To compare
our proposition, we used the same real life datasets. The experiments used real
datasets from the UCI machine learning repository (http://archive.ics.uci.edu/
ml), namely the Winsconsin breast cancer (WBC) and Chess datasets (also used
by others approaches). The following table summarises the real life datasets
characteristics.

Datasets #Attributes | #Tuples | Size (Ko)
Wirsconsin Breast Cancer 11 699 19 917
Chess 7 28 056 531 820

14

The Figure 4 shows the behavior of our approach applied on real life datasets
when the threshold of frequent CFD varies. The curves on the left-hand side
(resp. right-hand side) illustrate the execution time in seconds (memory usage
in Mo). As expected, when the minimal support increases, the execution time
and memory usage reduce.

We also generated synthetic data with our own random data generator: It is
a generator of uniform data for each column independently of each other. The
synthetic datasets are automatically generated using the following parameters:
|r| is the cardinality of the relation, |R| stands for the number of attributes and
c is the rate of correlation between attribute values. The more it increases, the
more satisfied CFDs exist in the datasets.

The Figure 5 shows the behavior when the number of tuples goes from 5000
to 50 000 on different synthetic datasets. The data correlation rate is set to 30%
to access the scalability of our proposition in the number of tuples. Indeed, it
allows us to fix the number of satisfied CFDs indepently of the number of tuples
(for a frequency support set to 1). The memory usage and the execution time
are linear according to the number of tuples.

The Figure 6 shows the behavior when the data correlation rates go from
30% to 70% on different synthetic datasets for a fixed number of tuples (set
to 5000) and a fixed number of attributes (set to 7). The idea is to study the
behavior of our algorithm when the search space of conditional attributes grows.

The execution time and the memory usage increase slightly according to the
data correlation rates which is a surprinsing result due to the inherent exponen-
tial complexity. The main reason comes from our very efficient implementation
based on partitions of attribute values.

Moreover, it is worth noting that our implementation does not consume
much memory ressources. For instance for a synthetic dataset with 1000000
tuples, and 9 attributes, the execution time is arround 31 seconds using 1 Gb of
main memory. These results appear to be of the same order (in response time)
than previous approaches [7, 11].

*wed o o lwed o
e oo L wBE - N
@ 04 | Chess —— ’Ea ii ;Eﬂes§ ——
g é” 12 -
Z 0.3 g 10
.5 \7\ 2 8
=] 0.2 b g
[} T 6
£ o1 3 5 a4
w .
= oL
0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Minimal support of frequent CFD Minimal support of frequent CFD

Figure 4: Execution time and memory usage for the Wisconcin Breast Cancer
and chess real life datasets

15

0.8 80

. 0.7 5 70
L 06 S 60
2 ()
g 0.5 ! 50
.S 0.4 2 40 N
= > .
5 o3 : 2 30 &
02 S £ 20 :
0.1 : 2 10
0B 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Number of tuples (x1000) Number of tuples (x1000)

Figure 5: Execution time and memory usage for various number of tuples

0.02 4
- 35
)
5 0.015 % 3
€ & 25 S L
= =
c 0.01 > 2
o <}
5 g 15
3] [}
L 0.005 = 1
i
0.5
0 0
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Data correlation rates Data correlation rates

Figure 6: Execution time and memory usage for various data correlation rates

7 Conclusion

In this paper, we have studied the discovery of constant conditional functional
dependencies in an existing relation. We have adapted two well-known ap-
proaches. The first one is based on Conditional Agree Sets and can be used
to extract CFDs without frequency constraint. The theoretical machinery we
have introduced is a contribution per se. The second one is an extension of
the FUN approach [24] whose advantage is to easily deal with the frequency
constraint. An efficient implementation has been proposed and tested against
different synthetic and real-life datasets.

As future work, the implementation of the approach based on conditional
agree sets has to be done, for example with the iZi library [12]. A thorough
experimentation evaluation campaign remains to be done to assess our results.
We also plan to address the problem of variable CFDs discovery. It is worth
noting that mining frequent CFDs share some characteristics with the prob-
lem of mining frequent projection-selection conjunctive queries (see for example
[17]). We plan to investigate the possible cross-fertilization between these two
problems.

References

[1] Serge Abiteboul, Rick Hull, and Victor Vianu. Fondements Des Bases De
Données. Vuibert, 2000.

16

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining associ-
ation rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data,
Washington, D.C., May 26-28, 1993, pages 207-216. ACM Press, 1993.

Catriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. On
the structure of armstrong relations for functional dependencies. J. ACM,
31(1):30-46, 1984.

Claude Berge. Graphs and Hypergraphs. North-Holland Mathematical Li-
brary 6. American Elsevier, 2d rev. ed. edition, 1976.

Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios
Kementsietsidis. Conditional functional dependencies for data cleaning.
In Proceedings of ICDE’07, April 15-20, Istanbul, Turkey, pages 746-755,
2007.

Paul De Bra and Jan Paredaens. Conditional dependencies for horizon-
tal decompositions. In Proceedings of the 10th Colloguium on Automata,
Languages and Programming, pages 67-82, London, UK, 1983. Springer-
Verlag.

Fei Chiang and Renée J. Miller. Discovering data quality rules. PVLDB,
1(1):1166-1177, 2008.

S.S. Cosmadakis, P.C. Kanellakis, and N. Spyratos. Partition Semantics
for Relations. Journal of Computer and System Sciences, 33(2):203-233,
1986.

J. Demetrovics and V.D. Thi. Some remarks on generating Armstrong and
inferring functional dependencies relation. Acta Cybernetica, 12(2):167—
180, 1995.

Wenlfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Con-
ditional functional dependencies for capturing data inconsistencies. ACM
Trans. Database Syst., 33(2), 2008.

Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming Xiong. Dis-
covering conditional functional dependencies. In Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009, March 29 2009
- April 2 2009, Shanghai, China, pages 1231-1234, 2009.

Frédéric Flouvat, Fabien De Marchi, and Jean-Marc Petit. Advanced Tech-
niques for Data Mining and Knowledge Discovery, chapter The iZi project:
easy prototyping of interesting pattern mining algorithms, pages 1-15.
LNCS. Springer-Verlag, September 2009.

Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu.
On generating near-optimal tableaux for conditional functional dependen-
cies. Proc. VLDB Endow., 1(1):376-390, 2008.

Y. Huhtala, J. Karkkéiinen, P. Porkka, and H. Toivonen. Efficient Dis-
covery of Functional and Approximate Dependencies Using Partitions. In
ICDE’98, Orlando, Florida, USA, pages 392-401, 1998.

17

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. TANE: An Ef-
ficient Algorithm for Discovering Functional and Approximate Dependen-
cies. The Computer Journal, 42(2):100-111, 1999.

Y. Huhtala, J. Kéarkkéinen, P. Porkka, and H. Toivonen. Tane: An efficient
algorithm for discovering functional and approximate dependencies. The
Computer Journal, 42(3):100-111, 1999.

Tao-Yuan Jen, Dominique Laurent, and Nicolas Spyratos. Mining all fre-
quent projection-selection queries from a relational table. In EDBT 2008,
11th International Conference on Extending Database Technology, Nantes,
France, March 25-29, 2008, Proceedings, pages 368-379, 2008.

Jyrki Kivinen and Heikki Mannila. Approximate inference of functional
dependencies from relations. Theor. Comput. Sci., 149(1):129-149, 1995.

Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Efficient discovery of
functional dependencies and armstrong relations. In EDBT 2000, volume
1777 of LNCS, pages 350-364, Konstanz, Germany, 2000. Springer.

H. Mannila and K-J. Réihd. Algorithms for Inferring Functional Depen-
dencies from Relations. DKF, 12:83-99, 1994.

H. Mannila and Hannu Toivonen. Levelwise search and borders of theories
in knowledge discovery. DMKD, 1(3):241-258, 1997.

Raoul Medina and Lhouari Nourine. A unified hierarchy for functional
dependencies, conditional functional dependencies and association rules.
In ICFCA, Lecture Notes in Computer Science, pages 235-248. Springer,
20009.

Noél Novelli and Rosine Cicchetti. Fun: An efficient algorithm for mining
functional and embeddeddependencies. In Proceedings of the 8th Interna-
tional Conference on Database Theory (ICDT’01), volume 1973 of Lecture
Notes in Computer Science, pages 189-203, 2001.

Noél Novelli and Rosine Cicchetti. Functional and embedded depen-
dency inference: a data mining point of view. Information Systems (IS),
26(7):477-506, 2001.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering
frequent closed itemsets for association rules. In ICDT, pages 398-416,
1999.

Nicolas Spyratos. The partition model: A deductive database model. ACM
TODS, 12(1):1-37, 1987.

Catharine Wyss, Chris Giannella, and Edward Robertson. Fastfds: A
heuristic-driven, depth-first algorithm for mining functional dependencies
from relation instances extended abstract. Data Warehousing and Knowl-
edge Discovery, pages 101-110, 2001.

18

