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Abstract. We study the spin-1/2 Ising chain with multispin interactionsK involving

the product of m successive spins, for general values of m. Using a change of spin

variables the zero-field partition function of a finite chain is obtained for free and

periodic boundary conditions (BC) and we calculate the two-spin correlation function.

When placed in an external field H the system is shown to be self-dual. Using

another change of spin variables the one-dimensional (1D) Ising model with multispin

interactions in a field is mapped onto a zero-field rectangular Ising model with first-

neighbour interactionsK and H . The 2D system, with size m×N/m, has the topology

of a cylinder with helical BC. In the thermodynamic limit N/m → ∞, m → ∞, a 2D

critical singularity develops on the self-duality line, sinh 2K sinh 2H = 1.
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1. Introduction

The study of Ising models with m-spin interactions (m > 2) have been an active

field of research since the beginning of the seventies. The square-lattice eight-vertex

model solved by Baxter [1] was mapped onto an Ising model with two- and four-spin

interactions by Wu [2] and, independently, by Kadanoff and Wegner [3]. The Ashkin-

Teller model [4], a four-component system generalising the standard 2D Ising model,

was also formulated as an Ising model on the square lattice with two- and four-spin

interactions by Fan [5]. An Ising model with three-spin interactions on the triangular

lattice was solved by Baxter and Wu [6, 7]. One may also mention the pseudo-3D

anisotropic Ising models with four-spin interactions solved by Suzuki [8]. Let us note

that 2D and 3D Ising models in a field with multispin interactions of various forms have

been studied through intensive Monte Carlo simulations [9]. Most of these systems with

multispin interactions have interesting duality properties [10–12].
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Besides these models, then mostly of theoretical interest, systems with multiple

binary variables were considered to describe equilibrium polymerisation [13] and protein

folding [14,15]. Randomly frustrated p-spin Ising models have been introduced to mimic

spin glass behaviour [16–20], the limit p → ∞ corresponding to the exactly solvable

random-energy model [16, 17].

In the present work we study the 1D Ising model with Hamiltonian

−βHN [{σ}] = K
∑

k

σkσk+1σk+2 · · ·σk+m−1︸ ︷︷ ︸
m spins

+H
∑

k

σk , β = (kBT )
−1 . (1.1)

The multispin interaction K involves the product of m adjacent Ising spins, σk = ±1.

The system of N spins is placed in a field H . Note that the factor β has been absorbed

in K and H . The thermodynamic properties of the system follow from the partition

function,

ZN = Tr{σ} exp (−βHN [{σ}]) , (1.2)

where the trace, Tr{σ}(. . .), denotes a sum over the spin configurations,
∏

k

∑
σk=±1(. . .).

At H = 0, ground-state configurations are obtained by the periodic repetition of

the same pattern of m spins, leading to a spin product
∏m−1

l=0 σk+l equal to +1 (-1) for

K > 0 (K < 0). There are 2m−1 ways to construct these degenerate ground-states [21].

For example when m = 3, at H = 0 and K > 0, the four degenerate ground-states are

generated with the following patterns: + + +, +−−, −−+, −+−.

The zero-field problem for any value of m has been solved in the thermodynamic

limit using a mapping onto the k-SAT problem on a ring [22]. A detailed solution for

m = 3 and H 6= 0 has been given in reference [23]. A 2D generalisation of (1.1) is

obtained by coupling neighbouring 1D chains with multispin interactions through two-

spin terms [21]. In the strongly anisotropic limit, when the inter-chain coupling Kτ goes

to infinity while the multispin interaction K vanishes as 1/Kτ , the transfer operator at

H = 0 is related to a 1D quantum Ising chain with multispin interactions in a transverse

field [24, 25].

The paper is organised as follows: we consider a finite system for any value of m, at

first in zero external field. Using a change of spin variables we obtain exact expressions

of the partition function for free BC in section 2 and periodic BC in section 3. We

calculate the two-spin correlation function in section 4. Introducing the external field

H , the system is shown to be self-dual in section 5. Using a new change of spin variables,

the 1D Ising chain with multispin interactions K in an external field H is mapped onto

a 2D rectangular Ising model with first-neighbour interactions K and H . We conclude

in section 7 and some calculations are detailed in two appendices.

2. Partition function at H = 0 for free BC

For the zero-field problem with free BC the Hamiltonian reduces to:

−βH(f)
N [{σ}] = K

N−m+1∑

k=1

m−1∏

l=0

σk+l . (2.1)
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Figure 1. Sets of µ-variables entering into the expression of σk (2.4) when m = 3,

for different values of the distance N − k to the end of the chain. The µ-variables are

built of triplets of σ-variables (circles) except for the two last ones, µN−1 = σN−1σN

and µN = σN . All the σs except σk appear twice in the product in (2.4) and thus

contribute a factor of 1.

The form of the interactions suggests the following change of Ising variables [26–28]:

µk =

m−1∏

l=0

σk+l , k = 1, . . . , N . (2.2)

For k > N−m+1 the expression of µk involves non-existing spins σk+ l with k+ l > N .

The value of these ghost spins is fixed to 1 so that they do not contribute to the product.

Thus we have:

µN−m+2=σN−m+2σN−m+3 · · ·σN︸ ︷︷ ︸
m− 1 spins

, µN−m+3=σN−m+3σN−m+4 · · ·σN︸ ︷︷ ︸
m− 2 spins

, . . . , µN =σN . (2.3)

There is a one-to-one relationship between old and new spin variables. The inverse

transformation is given by:

σk =

q∏

r=0

µmr+k µmr+k+1 , mq + k = N − l , l = 0, . . . , m− 1 . (2.4)

The σs are non-local when expressed with the µs. See figure 1 for an illustration of this

relations for m = 3 †. Any set of σs lead to a unique set of µs and vice versa. µN and

σN are equal, the values of µN−1 and σN−1 are related, and so on.

Using (2.2) the Hamiltonian in (2.1) takes the following form:

−βH(f)
N [{µ}] = K

N−m+1∑

k=1

µk . (2.5)

Note that a field term H
∑

k σk in (2.1) would transform into a sum of highly non-local

interactions involving the strings of µ-variables in (2.4). The new spin variables are

† Note that for l = 0 the last spin in (2.4) is µN+1 = 1 since it is a product m ghost spins. Thus, the

last contribution to the product then comes from µN alone as shown in figure 1.
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non-interacting and the value of m enters only through the number of spins. Thus, for

free BC, the partition function is given by:

Z(f)
N = Tr{µ} exp

(
−βH(f)

N [{µ}]
)
=

N−m+1∏

k=1

Trµk
eKµk

︸ ︷︷ ︸
(2 coshK)N−m+1

N∏

l=N−m+2

Trµl
1

︸ ︷︷ ︸
2m−1

= 2N(coshK)N−m+1 . (2.6)

The free energy can be written as

F (f)
N = −kBT lnZ(f)

N = Nfb + Fs(m) , (2.7)

where

fb = −kBT ln(2 coshK) , (2.8)

is the bulk free energy per spin, in agreement with reference [22]. It is independent of

m, whereas the surface free energy

Fs(m) = (m− 1)kBT ln(coshK) , (2.9)

do depend on m.

3. Partition function at H = 0 for periodic BC

For periodic BC we consider a system with a number of spins which is a multiple of

m, N = mp, in order to respect the periodicity of the degenerate ground states. The

Hamiltonian then takes the following form:

−βH(p)
N [{σ}] = K

N=mp∑

k=1

m−1∏

l=0

σk+l , σN+k ≡ σk . (3.1)

Using the µ-variables defined in (2.2), together with the BC, σN+k ≡ σk, it can be

rewritten as:

−βH(p)
N [{µ}] = K

N=mp∑

k=1

µk , (3.2)

But due to periodic BC [26, 28]:

• The correspondence between old and new variables is no longer one-to-one. Actually

2m−1 different σ-configurations lead to the same µ-configuration.

• All the µ-configurations are not allowed. The µ-variables are no longer independent,

they have to satisfy m− 1 constraints.

Consider the new spin variable µk =
∏m−1

l=0 σk+l. It keeps the same value when an

even number of the σs are flipped (see figure 2). Thus the number of configurations of

the σs leading to the same value of µk is given by

gm =

⌊m/2⌋∑

j=0

(
m

2j

)
= 2m−1 , (3.3)
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Figure 2. The 23 σ-configurations leading to the same µ-variable when m = 4. Circles

correspond to σ spins, black circles to flipped σ spins.

where j = 0 counts the initial configuration.

Note that µk and µk+1 have m−1 spins in common,
∏m−1

l=1 σk+l. When the number

of flips for these common spins is odd, σk and σk+m have to be flipped in order to leave

µk and µk+1 unaffected. On the contrary, σk and σk+m must keep their original values

when the number of common flips is even. The same is true for µk+1 and µk+2, and so

on. It follows that the distribution of the flips is periodic with period m ‡. Once the

flips have been chosen for µk, there is no freedom left for the rest of the system. Thus

gm = 2m−1 gives the number of σ-configurations leading to the same µ-configuration.

Note that gm gives the ground-state degeneracy of HN [{σ}] when H = 0.

Let us now consider the constraints that the µ variables have to satisfy. Products

of the form µmq+nµmq+n+1 with n = 1, . . . , m− 1 can be rewritten as

µmq+n µmq+n+1 = σmq+n

m−1∏

l=1

(σmq+n+l)
2σm(q+1)+n = σmq+n σm(q+1)+n , (3.4)

using (2.2). In a product over q from 0 to p− 1 all the remaining σs appear twice thus

the following set of constraints have to be imposed to the µ-variables:

p−1∏

q=0

µmq+n µmq+n+1 = 1 , n = 1, . . . , m− 1 . (3.5)

See figure 3 for an illustration of these constraints when m = 3. Note that other

constraints can be defined but they follow from the fundamental ones given above. For

instance, terms of the form µmq+1 µmq+3 are obtained as the product of µmq+1 µmq+2 by

µmq+2 µmq+3.

These constraints can be implemented using the Kronecker delta representation,

δPn,1 =
1
2
(1 + Pn) , Pn =

p−1∏

q=0

µmq+n µmq+n+1 = ±1 , n = 1, . . . , m− 1 , (3.6)

to eliminate the states for which Pn = −1 in the partition sum over {µ}. Taking into

account the periodicity in the expressions of the constraints, it is convenient to write

the Boltzmann factor as:

exp
(
−βH(p)

N [{µ}]
)
=

p−1∏

r=0

m∏

l=1

eKµmr+l . (3.7)

‡ This is why N has to be a multiple of m.
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Figure 3. Sets of µ-variables entering into the expression of the constraints (3.5) for

m = 3 and N = 12. All the σs (circles) appear in pairs so that the products are equal

to 1.

Thus the partition function takes the following form,

Z(p)
N=mp = 2m−1Tr{µ}

p−1∏

q=0

m∏

l=1

eKµmq+l

m−1∏

n=1

(
1 + Pn

2

)
, (3.8)

where the first factor takes into account the multiplicity of the {σ}s for a given {µ}

and the last product ensures the satisfaction of the m−1 constraints. The denominator

in this last product cancels the front factor 2m−1 and we are left with the following

expansion:

m−1∏

n=1

(1 + Pn) = 1 +
m−1∑

n=1

Pn +
∑

1≤l<n≤m−1

PlPn + · · ·+
m−1∏

n=1

Pn . (3.9)

Since the expression of Pn in equation (3.6) is periodic with period m one can examine

the structure of the expansion on the first period (q = 0) alone and restore the product

over q in each term afterwards. So let us consider the product
∏m−1

n=1 (1 + µnµn+1).

Since µ2
k = 1 the different spins appear in the expansion in pairs, quadruplets, etc.

Actually, besides 1, the expansion generates products involving all the combinations of

even numbers of different spins taken from the set {µ1, µ2, . . . , µm}. The number of

terms obtained in this way is equal to 2m−1 − 1 as required (see (3.3)). For instance,

with m = 4, one obtains:

µ1µ2 + µ2µ3 + µ3µ4 + µ1µ
2
2µ3 + µ2µ

2
3µ4 + µ1µ2µ3µ4 + µ1µ

2
2µ

2
3µ4

= µ1µ2 + µ2µ3 + µ3µ4 + µ4µ1 + µ1µ3 + µ2µ4 + µ1µ2µ3µ4 . (3.10)

The original expansion in (3.9) can be rewritten as

m−1∏

n=1

(1 + Pn) = 1 +

⌊m/2⌋∑

l=1

(m2l)∑

αl=1

p−1∏

q=0

Ξαl
(q) , (3.11)

where αl denotes a combination of 2l spins taken from m and Ξαl
(q) is the product of

2l spins corresponding to the combination αl for the qth cell.
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Going back to (3.8), one may write:

Z(p)
N=mp = Tr{µ}

p−1∏

q=0

m∏

l=1

eKµmq+l +

⌊m/2⌋∑

l=1

(m2l)∑

αl=1

Tr{µ}

p−1∏

q=0

m∏

l=1

eKµmq+lΞαl
(q) . (3.12)

Summing over the spin configurations, the first term on the right gives (2 coshK)mp.

In the second term, each combination of 2l spins, αl, contributes a factor of the form

2m(coshK)m−2l(sinhK)2l for each value of q so that, finally:

Z(p)
N=mp = (2 coshK)mp +

⌊m/2⌋∑

l=1

(
m

2l

)
2mp(coshK)(m−2l)p(sinhK)2lp

= (2 coshK)N



1 +
⌊m/2⌋∑

l=1

(
m

2l

)
(tanhK)2lp



 . (3.13)

Let T be the site-to-site transfer matrix. From the above expression of the partition

function the eigenvalues of Tm, ωl = (2 coshK)m(tanhK)2l (l = 0, ⌊m/2⌋), and their

degeneracy, gl =
(
m
2l

)
, can be deduced (see appendix A).

The free energy is given by

F (p)
N = −kBT lnZ(p)

N=mp = Nfb − kBT ln



1 +
⌊m/2⌋∑

l=1

(
m

2l

)
(tanhK)2lN/m



 , (3.14)

where the m-dependant finite-size correction to the bulk term vanishes in the

thermodynamic limit.

4. Correlation function at H = 0

The two-spin correlation function GN (k, k
′) on a chain with free BC is given by:

GN(k, k
′) = 〈σk σk′〉 =

Tr{σ} exp (−βHN [{σ}])σk σk′

ZN

. (4.1)

For periodic BC a repeated use of (3.4) allows the expression of the correlation function

using µ spins when the distance between the σs is a multiple ofm but the implementation

of the constraints (3.5) is not easy. With free BC the inverse transformation (2.4) can

be used to re-express the correlation function for any value of the distance between the

spins.

Let us first consider the case where k′ − k is a multiple of m so that k = ms + n,

k′ = k +mt = m(s+ t) + n with n = 0, . . . , m− 1. Making use of (2.4), one obtains:

σms+n σm(s+t)+n =

s+t−1∏

r=s

µmr+n µmr+n+1 . (4.2)

Then the numerator in (4.1) can be rewritten as:

N = Tr{µ}

N−m+1∏

k=1

eKµk

s+t−1∏

r=s

µmr+n µmr+n+1 . (4.3)
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Figure 4. When k′ − k is a multiple of m (top) the product σk σk′ in (4.2) contains

only µjs with k ≤ j < k′. All other µs (with black circles) appear in pairs. Otherwise

(bottom), for m > 2, σk σk′ involves a string of µs going on until the end of the chain

with at least one unpaired µj with j > N −m+1 (here j = N) which makes the trace

vanish.

In this expression three different types of traces are involved: Trµk
eKµk = 2 coshK,

Trµk
eKµkµk = 2 sinhK and Trµk

1 = 2. There are N −m + 1 − 2t factors of the first

type, 2t factors of the second type and m− 1 factors of the third type so that:

N = 2m−1(2 coshK)N−m+1−2t(2 sinhK)2t = 2N(coshK)N−m+1(tanhK)2t . (4.4)

Inserting this expression in (4.1) and using (2.6) leads to

GN(k, k +mt) = (tanhK)2t = e−mt/ξ , (4.5)

where ξ is the m-dependant correlation length given by:

ξ = −
m

2 ln | tanhK|
. (4.6)

Note that the correlation function in (4.5) is independent of k because the µ spins are

non-interacting.

Suppose now that k = ms+n, k′ = m(s+t)+n′ with 0 ≤ n, n′ ≤ m−1 and n 6= n′.

When m > 2 the product σk σk′ involves a string of µs which does not stop before k′

since the remaining ones no longer appear systematically in pairs (see figure 4) §. In

particular there is at least one unpaired µj with j > N−m+1 making the trace vanish.

It follows that for m > 2:

GN(k, k +mt + n′′) = 0 , n′′ = n′ − n = 1, . . . , m− 1 . (4.7)

This result can be recovered by taking into account the invariance of the Hamiltonian

under the periodic flip of two spins for each period of m spins, as discussed below (3.3).

Consider the correlation function 〈σms+n σm(s+t)+n′〉 with 0 ≤ n, n′ ≤ m− 1 and n 6= n′.

The trace over {σ} is not affected by the periodic change of spin variables,

σmr+n′ → −σmr+n′ , σmr+n′′ → −σmr+n′′ , 0 ≤ n′′ ≤ m− 1 , n′′ 6= n, n′ , (4.8)

§ The case m = 2 is special in that all the µjs with j ≥ k enter into the expression (2.4) of σk.
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Figure 5. Top: position of the dual spin variables relative to the initial interactions for

m = 3 and m = 4. The two lattices coincide when m is odd. The dual lattice is shifted

by one-half of a lattice constant when m is even. When a dual spin or a product of dual

spins is negative, the corresponding initial interaction contributes to a non-vanishing

term in the high-temperature expansion (5.3). Bottom: a dual spin configuration and

the corresponding non-vanishing high-temperature diagram for m = 3 and periodic

BC. The σs under the dual spins systematically appear an even number of times on

each site.

so that, due the the change of sign in the spin product σms+n σm(s+t)+n′ , one obtains:

〈σms+n σm(s+t)+n′〉 = −〈σms+n σm(s+t)+n′〉 = 0 . (4.9)

Note that for m = 2 this argument does not apply since there is no place left for n′′ in

the interval [0, m− 1] once n and n′ have been chosen.

5. Self-duality under external field

The partition function for a non-vanishing external field H and periodic BC is given by:

Z(p)
N (K,H) = Tr{σ}

N∏

k=1

exp

(
K

m−1∏

l=0

σk+l

)
exp(Hσk) . (5.1)

Making use of the high-temperature expansion,

exp

(
K

m−1∏

l=0

σk+l

)
= coshK

∑

uk=0,1

(
tanhK

m−1∏

l=0

σk+l

)uk

,

exp(Hσk) = coshH
∑

vk=0,1

(σk tanhH)vk , (5.2)

and collecting the σis attached to the same site i, equation (5.1) can be rewritten as

Z(p)
N (K,H) = (coshK coshH)N Tr{u,v}

N∏

k=1

(tanhK)uk(tanhH)vk Tr{σ}

N∏

i=1

σωi

i ,

ωi = vi +

m−1∑

l=0

ui−l , (5.3)



Ising model with multispin interactions 10

where Tr{u,v} is a sum over the new variables uk, vk = 0, 1. The trace over {σ} is

non-vanishing and leads to a factor 2N only when all the ωis are even. This can be

systematically realised [29] by relating ui and vi to dual Ising spin variables si = ±1 as

follows (see figure 5):

ui =
1

2

(
1− si+(m−1)/2

)
, vi =

1

2

(
1−

m−1∏

l=0

si+l−(m−1)/2

)
. (5.4)

Note that the original lattice and its dual coincide when m is odd whereas the dual

lattice is shifted by 1/2 when m is even (see top of figure 5). Let us consider the

expression of the σ-exponent ωi in terms of dual spins:

ωi=
m+1

2
−
1

2

(
m−1∏

l=0

si+l−(m−1)/2+

m−1∑

l=0

si−l+(m−1)/2

)
. (5.5)

There are m dual spins entering in this expression from si−(m−1)/2 to si+(m−1)/2, each

spin contributing once in the sum and in the product. A dual configuration with all

these spins equal to +1 gives ωi = 0. When one of these spins is flipped, two terms in

the bracket change sign. This remains true with two flips because the product keeps

its initial value. More generally, with n flips on different dual spins, 2 × ⌊(n + 1)/2⌋

terms in the bracket change sign. Hence any dual spin configuration leads to an even

exponent ωi and to a non-vanishing graph in the high-temperature expansion. Thus

the trace over {u, v} in (5.3) can be replaced by a trace over the dual spins {s} ‖. The

partition function takes the following form,

Z(p)
N (K,H) = (2 coshK coshH)N Tr{s}

N∏

k=1

(tanhK)uk(tanhH)vk

= (sinh 2K sinh 2H)N/2Tr{s} exp

(
K̃

N∑

k=1

m−1∏

l=0

sk+l−(m−1)/2 + H̃

N∑

k=1

sk+(m−1)/2

)

= (sinh 2K sinh 2H)N/2Z(p)
N (K̃, H̃) , (5.6)

where we introduced the dual couplings,

K̃ = −
1

2
ln(tanhH) , H̃ = −

1

2
ln(tanhK) , (5.7)

such that:

sinh 2K̃ sinh 2H = 1 , sinh 2H̃ sinh 2K = 1 . (5.8)

As a consequence,

sinh 2K sinh 2H =
1

sinh 2K̃ sinh 2H̃
, (5.9)

and

sinh 2K sinh 2H = ±1 , (5.10)

‖ Note that, due to the single-spin terms in (5.4), each dual spin configuration leads to a different

diagram in the high-temperature expansion and vice-versa (see figure 5 for an illustration).
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Figure 6. Under the change of spin variables (6.2), the 1D Ising model with m-spin

interactions in an external field is mapped onto a rectangular Ising model on a cylinder

with helical BC. The first-neighbour interactions are equal to H along the helix and K

parallel to the cylinder axis. There are m spins per turn and N/m turns (here, m = 3

and N = 21).

which is invariant in the transformation, is a self-duality line. Equation (5.9) can be

used to rewrite (5.6) under the symmetric form:

Z(p)
N (K,H)

(sinh 2K sinh 2H)N/4
=

Z(p)
N (K̃, H̃)

(sinh 2K̃ sinh 2H̃)N/4
. (5.11)

The duality relations keep the same form for any value of m.

6. Mapping on a 2D Ising model when H 6= 0

We now consider the multispin Ising model in a field H with free BC and N = mp. The

Hamiltonian reads:

−βH(f)
N [{σ}] = K

N−m+1∑

k=1

m−1∏

l=0

σk+l +H
N∑

k=1

σk . (6.1)

Let us introduce a new set of Ising variables, {τ}, given by [8]:

τk =
N∏

i=k

σi . (6.2)

Thus we have

σk =

{
τk τk+1 k = 1, . . . , N − 1 ,

τN k = N ,
(6.3)

so that there is a one-to-one correspondence between the two sets of spin variables. The

multispin interaction in (6.1) transforms as
∏m−1

l=0 σk+l = τk τk+m except for k = N−m+1

where it gives τN−m+1. For the interaction with the external field, σk in (6.3) gives a
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first-neighbour interaction in the new variables except for the last spin. The transformed

Hamiltonian takes the following form:

−βHN [{τ}] = K

N−m∑

k=1

τk τk+m +H

N−1∑

k=1

τk τk+1 +KτN−m+1 +HτN , N = mp . (6.4)

Thus we obtain a 2D Ising model on a cylinder with helical BC. The longitudinal size

of the lattice is N/m and there are m spins per turn. The system is anisotropic with

two-spin interactions K in the direction of the cylinder axis and H along the helix.

Local fields, either H or K, are acting on two of the end spins (see figure 6).

When H = 0 one obtains m non-interacting Ising chains with first-neighbour

interactions K. For general values of N = mp + l there are l chains with p + 1 spins,

one chain with p spins for which a field K is acting on the last spin and m− l−1 chains

with p spins. The multiplicative contributions to the partition function for each chain

are respectively 2p+1(coshK)p, 2p(coshK)p and 2p(coshK)p−1. Collecting these factors,

the partition function Z(f)
N in (2.6) is recovered.

With the new variables the spin-spin correlation function translates into

GN(k, k
′) = 〈σk σk′〉 = 〈τk τk+1 τk′ τk′+1〉 , (6.5)

i.e., into an energy-energy correlation function on the 2D lattice (see figure 6). When

H = 0 and k′ = k +mt equation (6.5) gives a product of correlation functions for two

τ -spins at a distance t on two non-interacting Ising chains,

GN(k, k +mt) = 〈τk τk+mt〉〈τk+1 τk+mt+1〉 , (6.6)

each of which contributes a factor (tanhK)t, in agreement with (4.5). When k′ =

k+mt+n with n = 1, . . . , m−1 there remains at least one unpaired τ with a vanishing

average thus leading to (4.7).

When m = 1 the system corresponds either to N non-interacting σ-spins in a field

K+H or a chain of N τ -spins with first-neigbour interactions K+H and a field K+H

acting on the last spin. Using the high-temperature expansion, it is easy to verify that

the partition function is then [2 cosh(K+H)]N in agreement with (2.6) and (3.13) when

H = 0.

The symmetries of the partition function depends on the parity of m. Let us first

examine the original 1D Ising chain. A change of spin variables {σ} → {σ′ = −σ} does

not affect the trace operation but modifies the Hamiltonian for which H → −H and

K → (−1)mK so that:

ZN(K,H) =

{
ZN(−K,−H) , m odd ,

ZN(K,−H) , m even .
(6.7)

For the 2D system, according to (6.2), τk → τ ′k = (−1)N−k+1τk. Then for odd values of

m the spin flips are out of phase after one turn and both K and H change sign, whereas

for even values of m, the spin flips stay in phase and H alone changes sign, in agreement

with (6.7). This is illustrated in figure 7 for m = 3 and m = 4.
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Figure 7. Location of the spin flips (black circles) and new values of the couplings

on the cylinder with helical boundary conditions resulting from the change of spin

variables τk → τ ′k = (−1)N−k+1τk (N = 12 for m = 3 and N = 16 for m = 4).

In the thermodynamic limit, N/m → ∞, the free energy of the multispin chain in a

field develops a 2D Ising critical singularity ¶ on the self-duality line, sinh 2K sinh 2H =

1 when m → ∞. The free energy per spin is then given by the Onsager expression [30]:

fb=−kBT

[
ln 2+

1

2π2

∫ π

0

dθ

∫ π

0

dϕ ln(cosh 2K cosh 2H−sinh 2K cos θ−sinh 2H cosϕ)

]
.(6.8)

The case of finite m values is discussed in appendix B.

7. Conclusion

At H = 0, we have obtained exact results for the partition function of the finite-size

1D Ising model with m-spin interactions K, for free and periodic BC. The two-spin

correlation function have been calculated for free BC. The eigenvalues of the mth power

of the transfer matrix T and their degeneracy have been deduced from the expression

of the partition function with periodic BC.

At H 6= 0, the system with periodic BC is self-dual on the line sinh 2K sinh 2H = 1.

Our main result, obtained via a change of spin variables for a system with free BC, is

a mapping of the 1D Ising model with multispin interactions K in a field H onto an

anisotropic finite-size 2D Ising model with first-neighbour interactions K and H . The

2D system, with size m × N/m, has the topology of a cylinder with helical BC. Note

that a change of spin variables similar to (6.2) have been used in the reverse direction

by Suzuki [8] to map a 3D system with four-spin interactions onto a 2D system with

two-spin interactions.

¶ The local external fields on the end spins do not affect the bulk behaviour.
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In the thermodynamic limit, N → ∞, the free energy per spin of the multispin

Ising model in a field can be deduced from known results for the 2D model. When

m → ∞ it is given by Onsager result [30]. In this limit the 1D system is critical on

the self-duality line. The self-duality of the 1D system in a field actually appears as a

translation of the self-duality of the 2D system without external field. When m is finite,

the free energy per spin can be extracted from known results obtained by Liaw et al [31]

for the anisotropic 2D Ising model on a torus with helical boundary conditions in the

limit of an infinite major radius.

Since a field derivative in 1D corresponds to a derivative with respect to a two-

spin interaction in 2D, the two-spin correlation function in 1D becomes an energy-

energy correlation function in 2D. The magnetisation and the susceptibility of the 1D

multispin Ising model in a field have the same behaviour as the internal energy and the

specific heat, respectively. Both display the 2D critical behaviour when m → ∞. This

correspondence is also a consequence of the H −K duality.
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Appendix A. Transfer matrix at H = 0

When written in the basis {| + +〉, | + −〉, | − +〉, | − −〉}, the transfer matrix of the

model with 3-spin interactions, from |σkσk+1〉 to |σk+1σk+2〉, takes the form

T =




eK e−K 0 0

0 0 e−K eK

e−K eK 0 0

0 0 eK e−K


 (A.1)

in a vanishing external field. It is asymmetric and its eigenvalues are complex:

λ1 = 2 coshK , λ2,3,4 = 2
[
coshK (sinhK)2

]1/3
eik2π/3 , k = 0, 1, 2 . (A.2)

This oscillating behaviour is linked to the periodicity of the degenerate ground-states.

Taking the cube of the transfer matrix, i. e., transferring by one period from k to k+3,

one obtains a symmetric matrix

T
3 =




2 cosh 3K 2 coshK 2 coshK 2 coshK

2 coshK 2 cosh 3K 2 coshK 2 coshK

2 coshK 2 coshK 2 cosh 3K 2 coshK

2 coshK 2 coshK 2 coshK 2 cosh 3K


 , (A.3)

with real eigenvalues: 8 cosh3K and 8 coshK sinh2K, which is 3 times degenerate.

For any value of m the 2m−1 eigenvalues of Tm, ωl, and their degeneracy, gl, can be

extracted from the expression of the partition function with periodic BC. Since

Z(p)
N=mp = Tr(Tm)p =

⌊m/2⌋∑

l=0

gl ω
p
l (A.4)
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it follows from (3.13) that:

ωl = (2 coshK)m(tanhK)2l , gl =

(
m

2l

)
, l = 0, ⌊m/2⌋ . (A.5)

Appendix B. Free energy per site in the thermodynamic limit when H 6= 0

The partition function of the rectangular Ising model with helical boundary conditions

has been obtained on a torus in reference [31] +. This exact result can be exploited

in the limit where the major radius of the torus become infinite to calculate the free

energy per site of our system with transverse size m when N → ∞. It corresponds to

the thermodynamic limit of the Ising chain with multispin interactions in a field. Note

that, in this limit, the local field terms on the end spins becomes irrelevant.

With our notations the partition function of the rectangular Ising model on the

torus with size L×m (L = N/m), first-neighbour interactions K and H , and twisting

factor 1/m, is given by [31]

Zm,L = (2 coshK coshH)mLQm,L ,

Qm,L =
1

2

[
Im,L

(
1

2
,
1

2

)
+Im,L

(
1

2
, 0

)
+Im,L

(
0,

1

2

)
−sgn

(
T−Tc

Tc

)
Im,L (0, 0)

]
, (B.1)

where Tc is the critical temperature of the bulk system and

Im,L(α, β) =

m∏

p=1

L∏

q=1

{
λ0 − λ1 cos

[
2π

(
p+ α

m
−

q + β

mL

)]
− λ2 cos

[
2π

(
q + β

L

)]}1/2

,

λ0 =
cosh 2K cosh 2H

cosh2K cosh2H
, λ1 = 2

tanhH

cosh2K
, λ2 = 2

tanhK

cosh2H
. (B.2)

When L → ∞, Im,L(α, β) = Im,L(α, 0) so that, in this limit, one may write:

Qm,L =

{
Im,L

(
1
2
, 0
)
, T > Tc ,

Im,L

(
1
2
, 0
)
+ Im,L(0, 0) , T < Tc .

(B.3)

With

Am(α) = lim
L→∞

1

mL
ln
[
(coshK coshH)mLIm,L(α, 0)

]
, θ = lim

L→∞
2π

q

L
, (B.4)

one obtains:

Am(α) =
1

4πm

m∑

p=1

∫ 2π

0

dθ ln

{
cosh 2K cosh 2H − sinh 2K cos θ

− sinh 2H cos

[
θ − 2π(p+ α)

m

]}
. (B.5)

Thus, in the thermodynamic limit of the 1D Ising model with m-spin interaction K in

a field H , the free energy per spin is given by:

fb(m) = lim
L→∞

−
kBT

mL
lnZm,L=−kBT

[
ln 2+

{
Am

(
1
2

)
, T > Tc ,

max
[
Am

(
1
2

)
, Am(0)

]
, T < Tc .

]
(B.6)

+ A detailed study of finite-size effects in this geometry can be found in reference [32], unfortunately

for isotropic interactions, K = H .
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