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Step size adjustment and extrapolation for time-stepping schemes
in non-smooth dynamics

C. Studer, R. I. Leine and Ch. Glocker

Institute of Mechanical Systems, Center of Mechanics, Department of Mechanical and Process Engineering,

ETH Zurich, CH-8092 Zurich, Switzerland

SUMMARY

In this paper we use step size adjustment and extrapolation methods to improve Moreau’s time-stepping
scheme for the numerical integration of non-smooth mechanical systems, i.e. systems with impact and
friction. The scheme yields a system of inclusions, which is transformed into a system of projective
equations. These equations are solved iteratively. Switching points are time instants for which the structure
of the mechanical system changes, for example, time instants for which a sticking friction element begins
to slide. We show how switching points can be localized and how these points can be resolved by choosing
a minimal step size. In order to improve the integration of non-smooth systems in the smooth parts, we
show how the time-stepping method can be used as a base integration scheme for extrapolation methods,
which allow for an increase in the integration order. Switching points are processed by a small time step,
while time intervals during which the structure of the system does not change are computed with a larger
step size and improved integration order. The overall algorithm, which consists of a time-stepping module,
an extrapolation module and a step size adjustment module, is discussed in detail and some examples are
given.

KEY WORDS: non-smooth dynamics; contact; time-stepping integration; step size adjustment; extrapo-
lation; higher order

1. INTRODUCTION

The modelling of mechanical systems with unilateral contacts and friction is a challenging task,
which is studied in the field of elastic as well as rigid body mechanics. An overwhelming number
of methods and approaches exist, of which a complete overview is outside the scope of this paper.
For contacts between elastic bodies within a finite element formulation, we refer to the works
of Simo and Laursen [1], Laursen [2], Klarbring [3] and Wriggers [4]. Contact between elastic



bodies are not the subject of this paper. However, the methods used in elastic and rigid body
contact mechanics are very similar. For contact between rigid bodies, we refer to Brogliato [5],
Brogliato et al. [6] and Eich-Soellner and Fiihrer [7]. Two main approaches for the modelling
of a rigid body system with unilateral contacts and friction exist. One possibility is to regularize
the non-smooth force laws that are associated with the unilateral contact and friction, i.e. the
contact and the friction forces are defined as a function of the penetration depth or volume and
the sliding velocity, respectively, see [8—11]. Such an approach leads to an ordinary differential
equation system, which can be simulated straightforwardly using a classical numerical scheme for
stiff systems, for example, an implicit Runge—Kutta scheme. The regularization of non-smooth
force laws leads to many numerical problems, i.e. stiff differential equations and spurious oscilla-
tions due to the stiffness of the contacts. Furthermore, the determination of suitable regularization
parameters can pose a problem. Another approach to handle mechanical systems with unilateral
contacts and friction is the non-smooth approach, which was originated by Moreau (see [12—14]).
Moreau suggested to describe the dynamics using differential measures and to describe the force
laws for unilateral frictional contact by set-valued force laws. The dynamics is therefore expressed
in Moreau’s approach by measure differential inclusions. The time evolution of the velocities
is in this approach not required to be continuous or smooth (but only required to be of locally
bounded variation). As a consequence, standard numerical integration techniques cannot be used
anymore. Instead, time-stepping schemes are used, which are essentially time discretizations of the
measure differential inclusion. Time-stepping schemes, which are used in non-smooth dynamics,
are not comparable to standard integration schemes such as Runge—Kutta, Newmark or Galerkin
methods. In this paper we restrict ourselves to the non-smooth approach, where we consider only
hard contact between rigid bodies. As integrator we use Moreau’s midpoint rule [13], being a
time-stepping scheme that has proven to be very robust. Of course, other well working numer-
ical integration schemes for non-smooth systems exist; see [13, 15-26]. The aim of this paper
is to improve the accuracy of Moreau’s integration scheme by using step size adjustment and
extrapolation [27, 28].

The constitutive behaviour of unilateral frictional contacts is described in the non-smooth
approach by set-valued force laws. The impenetrability of the contact and unilaterality of a normal
component of the contact force is described by Signorini’s law for normal contact, which is a
complementarity inequality relationship between contact distance and normal contact force. Fric-
tion is described by Coulomb’s law for dry friction, being a set-valued force law which relates
the friction force to the sliding velocity and normal contact force. A frictional unilateral contact
is therefore described by two set-valued force laws in our approach.

The time evolution of a non-smooth mechanical system can be divided into different ‘smooth
parts’, which are time intervals for which the set-valued force laws do not change their mode of
operation and the structure of the mechanical system does not change. This implies that closed
contacts remain closed and sticking contacts remain sticking during smooth parts of the motion.
The so-called switching points separate different smooth parts of the time evolution. In order to
administer the operation mode of each set-valued force law, we introduce a state vector 6 =¢6(¢),
which has an entry g; for each set-valued law. At switching time instants tg, the state g; of at least
one set-valued law changes, i.e. 6~ (t5) 6 (t5). A straightforward way to simulate non-smooth
systems 1is the event-driven approach [21, 29, 30]. Event-driven methods integrate the differential
equation system belonging to a smooth part of the motion with an arbitrary ODE or DAE integrator,
e.g. Runge—Kutta, Newmark or Galerkin methods. When encountering a switching time instant ¢,
the new state 6™ (¢g) is determined in order to set up a new differential equation system with possible



new initial conditions for further integration of the following smooth part. Event-driven methods
clearly distinguish between smooth integration and evaluation of impact and contact behaviour
at the switching points. The methods have been successfully implemented for systems with few
contacts. Event-driven methods are very accurate but bring a lot of administrative effort and are
not suited for accumulative switching points, because the methods aim at resolving all switching
points. Such an accumulative switching point occurs, for example, in the classical bouncing ball
system [5]. After each dissipative impact on the table, the ball will jump less high and the flight
time becomes less long. There will be an accumulation of switching points, i.e. infinitely many
impacts in a finite time, by the end of the ball’s movement. Furthermore, event-driven methods
request for each state ¢ a corresponding differential equation system, which becomes a problem
if the number of set-valued laws is large.

In contrast to event-driven approaches, time-stepping integration methods are well suited for
systems with many set-valued force laws and accumulative switching points, see [13, 15, 17-26].
The methods determine for each time step a discrete state 6, which applies for the entire time
step. In each time step the algorithm decides whether the whole time step is computed using the
assumption of a closed contact or an open contact and, if the contact is closed, whether it is sticking
or slipping. If the step size becomes small, then the evolution of the discrete state 6 and of the state
¢ becomes similar. Time-stepping methods with a constant step size do not distinguish between the
different smooth parts and switching points, and are therefore very robust and simple. The methods
are well suited for accumulative switching points, and simulations up to several thousand contacts
are possible. As a drawback, time-stepping methods require a very small time step size, and the
accuracy is less satisfactory. We will restrict ourselves to the time-stepping method of Moreau, see
[13,19,26]. To conclude, event-driven methods are very well suited for systems with few contacts
and long smooth parts of the motion, while time-stepping schemes have advantages for systems
with many contacts and many switching points. Our goal is to improve the time-stepping method
such that it enjoys some of the advantages of the event-driven scheme [27,28]. We choose the
time-stepping scheme of Moreau as base scheme, because it can handle systems with many as well
as with few contacts, the latter with an accuracy which is worse compared with an event-driven
scheme. Similar to the event-driven approach we distinguish between smooth parts and switching
points, which results in a step-size-controlled time-stepping algorithm. The step size of time steps
in which the system switches must be chosen very small in order to resolve the switching point
properly, while the step size of time steps without switching points can be taken much larger.
Furthermore, an extrapolation method based on the time-stepping scheme can be used to increase
the order of integration in the smooth parts. The resulting method can handle systems with few
contacts quite well by refining the step size at switching points and by using extrapolation in the
smooth parts of the motion. In addition, systems with many contacts can be handled by the method
because the underlying algorithm is still a time-stepping scheme.

2. NON-SMOOTH DYNAMICS

In this section we briefly discuss a possible mathematical formulation of non-smooth mechanical
systems. Detailed information is available in [26, 28,29, 31, 32]. In this paper we use set-valued
laws to describe non-smooth interactions between rigid bodies. A unilateral contact is described
by a set-valued law of the kind ‘Signorini’s law’, while a friction element is characterized by
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a set-valued law of the kind ‘Coulomb’s law for dry friction’. We distinguish between active
set-valued force laws, which can be expressed on the velocity level, i.e. set-valued force laws
associated with a closed unilateral contact or a friction element, and non-active set-valued force
laws, which describe, for example, an open unilateral contact. An active set-valued force law i
can be described on the velocity level by an inclusion of the form

—Y; €N g (hi) (1)

The relative velocities of the ith set-valued law are denoted by v;, and the forces by A;, respectively.
The convex set €; is the set of all admissible forces A;, whereas %; might also be state dependent
in case of friction. Note in this context that a unilateral frictional contact is modelled by two
set-valued force laws, one modelling the unilateral contact and the other characterizing the friction
element. Non-active set-valued force laws, i.e. open unilateral contacts, are neglected because it
is assumed that their force A; vanishes.

Example

A unilateral contact has a relative velocity y; and force A; pointing in the normal contact-surface
direction, and the convex set %; is the set of all positive real numbers RBL . The behaviour for a
closed unilateral contact on the velocity level yields

—pEN g () & %20, 320, Jip=0 2)

Either the closed unilateral contact is opening with 4; =0 and y; > 0 or the closed unilateral contact
stays closed, i.e. 4,20, y; =0.

The active set-valued force laws (1) are linked to the equations of motion by Lagrangian
multipliers (Lagrange I formulation),

n
Mia—h—> W1, =0 3)
i=1

—Yi € Vg, (M) 4)

in which the mass matrix is denoted by M =M(q, ¢) and the vector of all external and gyroscopic
forces is denoted by h=h(q, u, ¢). This vector also includes all spring and dashpot forces. The
vectors q and u=q denote the generalized coordinates and the generalized velocities, respectively.
The matrix W; =W, (q, t) and the Lagrangian multiplier A; represent the generalized force direction
and the force A; of the ith active set-valued law. The relative velocity v; is linked to the generalized
velocities u by v, = WiTu—i—Ci with §; =;(q, 7). In the case of a unilateral contact with gap function
gi=gi(q, 1) it holds that W; =w; = (0g;/0q) " and {; =(; =0g;/0t.

In the case of an impact, the equations of motion have to be integrated over the instantaneous
impact time, which yields the impact equations

M(u+—u_)—iWiA,-=0 (5)
i=1

Note that the pre- and post-impact velocities are denoted by u~ and u™, and that the integration
of the forces A; lead to the impulses A;. In addition to the impact equations, the mathematical
description of an impact requires an impact law. We choose Newton’s impact law, which can be
expressed as

—(v +eav) €N g (A) (6)
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The scalar ¢; denotes the restitution coefficient, and the convex set ; is the set of all admissible
impulsive forces A;, whereas &; might also be state dependent in the presence of friction. Note
that we use the impact law (6) not only for unilateral contacts but also for friction elements, for
which the set &; then contains all admissible impulsive tangential forces.

Example
As an example we consider Newton’s impact law for a closed unilateral contact,

—(7 e ) €N gr(A) & AZ0, 37 +ey 20, A +e97) =0 7)

The impact law accounts for two phenomena: an inversion of the relative velocity y; in the ith
unilateral contact due to a positive impulsive force A; acting in the same unilateral contact, and an
opening of a closed unilateral contact induced by an impulsive force occurring in another unilateral
contact of the mechanical system.

In what follows we discuss an example to introduce differential measures, which will be used
to describe a non-smooth system. The example intends to give the reader a short idea about
measures. The reader is referred to the literature on distribution and measure theory; see, for
example, [33, 34].

Example

Let x(¢) be the function depicted in Figure 1. The function x(¢) has a discontinuity at time ?p,
where tp <tp <tg. The derivative x(¢) of x(¢) is equal to a=const almost everywhere. At the
discontinuity t =tp, the standard notion of the derivative does not exist. At this time, the function
x has a left and a right limit x(¢p)™ and x(¢p)~, and we set X :=x(tp)* —x(tp)~. We aim
at determining the function value x(zg) for given a, X, and x(tp). We define a measure dx =
xdf+(xt —x7)dy=adr+ Xdn which has a Lebesgue integrable term ads and a purely atomic
part X dn. The term dy is a Dirac point measure for the discontinuity at time #p, which means that
the integral f{t} dn is equal to 1 if #=1p and O otherwise. Calculation of x(¢g) yields

IE
x(tg) :x(tB)—l—/ dx:x(tB)—l—/ adt—l—/ X dn
[tB.tE] tp [tB,tE]
=x(tp)+a(tg—tp)+X (8)

The equations of motion and the impact equation can be combined in an equality of measures

n
Mdu—hdr— > W;dP; =0 9)
i=l1

2(t) 0)
—

x|

>

| —= | —1
tg  tp tg tg  tp g
Figure 1. Function x(¢) with discontinuity at time 7p. The derivative x(¢) of x(¢) is equal to a almost

everywhere, except for a ‘single instantaneous infinite peak’ at time 7p.
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in which du=udr+ (™ —u")dy and dP; = P, dr+ (Pl.+ —P;)dn=»;dr+A;dn are differential
measures for velocity u and percussion P;, respectively. The set-valued impact law (6) and the
active set-valued force law (1) after integration can be combined in an inclusion

— ((1+8i)YBi+/ in) er/‘/(f[t ) (f dPi) (10)
[1B.1E] B-E [7B.1E]

in which dy; =v; dt—l—(y;r —7v; )dn is a measure for the relative velocity. The set of differential
measures d.of; =%; dt + <Z; dy must be understood as

d&/i={da,~|da,~=cidt—|—d,~dn,cie%,dl-e@,-}, /d&/:z{/dalaed} (11)

This approach must be seen from an engineer’s point of view and is only intended to give an idea
on how set-valued laws for non-impulsive motion (1) and impulsive events (6) can be combined
in a single formulation, which helps to obtain Moreau’s time-stepping scheme, see (16). In the
case of an impact-free motion, inclusion (10) yields

_ ((1_|_gl)yBl—|—f '.Yl- dt) EJV(f[t . ]%idt) (/ A dt) (12)
[7B.1E] B-E [7B.1E]

If tg — tp, then relation (12) reduces to inclusion (1), i.e.
—((1+&)yp +0) e N4, (i) = —vp; €Ny (Mi) (13)

In the case of an impact at 7p, the inclusion (10) yields

— (A +e)yg+75 —¥5)=— (ygi+8iygi)€‘/{/(f{t3}d&ii) (/{; }sz) =N g, (Ai) (14)
B

which can be simplified to the set-valued impact law (6).

3. TIME STEPPING

Time-stepping methods provide a discrete numerical scheme suitable for the simulation of non-
smooth mechanical systems. These methods are widely used, see [13, 15, 17-26], because of their
simplicity and their robustness. In contrast to event-driven methods, time-stepping methods enjoy
convergence results [12, 35]. Various time-stepping methods exist, and we will restrict ourselves
to a brief review of the midpoint method of Moreau, [13, 19, 26, 32]. We consider a time step with
step size Ar, of which begin and end points are denoted by the indices B and E, respectively.
Moreau’s midpoint method calculates a midpoint qp; =qp+upAr/2 and discretizes the measure
differential equation (9) as follows:

At
/ Mdu — My (ug —up), MM:M<QM»[B+—>
[tB.tE] 2

‘e At
/ hdr — hy,/As, hM=h(qM,llB,tB—|—7>
Ip
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N At
WdP; — WyP;, Wy=W <QM, tp+ 7)

[tB,tE]

n A
= MM(llE—uB)—hMAt—ZWM,'Pi=O (15)
i=1

The integrals in inclusion (10) can now be evaluated for the small finite time interval g —tp = At,

f dY; =Yg, — Vi
[tB.tE]

/ det; =: A (16)
[7B.tE]

/ dP; =: P
[tB.tE]

which yields a discrete set-valued law
—(vgi+eivp) €N 5 (PD) (17)

Note that (17) applies only to active set-valued laws, i.e. set-valued laws that can be described on
the velocity level. As friction elements are naturally defined on the velocity level, they are always
active and can always be described by (17). Considering unilateral contacts, Moreau’s midpoint
algorithm calculates the contact distances g; of all unilateral contacts at the midpoint q,s in order
to evaluate whether these are active (g;<0) or not (g; >0). Only active unilateral contacts can
be modelled by inclusion (17). Unilateral contacts that are non-active, thus open, are disregarded
because it is assumed that their contact force contribution is equal to O.

The discrete scheme (15) and (17) holds for both the smooth motion and the impact case, but
only for small time step sizes. Time-stepping schemes are very robust integration schemes and are
well suited for mechanical systems with several thousands of contacts. In Figure 2 we exemplarily
show thousand disks that are mixed. Between all the disks acts friction.

In what follows, we rewrite methods (15) and (17) in a convenient form and turn the
resulting inclusions into projective equations. Various approaches exist to arrive at the projective
equations, consider, for example, the natural map of Robinson [36,37], exact regularization
[21] or the saddle-point of the augmented Lagrangian [38,39]. The resulting projective equa-
tions can be solved iteratively, see, for example, [21,40—-44]. The relative velocities y; of
the ith set-valued law are linked to the generalized velocities u by y; =WLiu—|—§ v Wwith

Figure 2. Mixing thousand disks with Moreau’s time-stepping scheme.
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Crri =8 (qu, tyr). Using this relation, we can transform the discrete scheme (15) and (17) into

relative coordinates y; and P;. Elimination of v; yields n inclusions describing the individual
behaviour of the n set-valued laws

n

G,-jf’j+c,~>em§/i(f>i), i=1...n (18)
J

—(Ygi+eYpi)=— <

1

in  which G,-j:WAT,ﬁM;,fWMj denotes the local Delassus matrix and ¢;={+4+¢)yp; +

WLiM;/Ilh mAt 4+, The matrix € is a diagonal matrix containing the restitution coefficients ¢;.
The inclusions (18) can now be expressed as projective equations [43, 44],

A A n A
P; =prox ;, (Pi—i’i <Z Giij+Ci>), ri>0, i=1...n (19)

j=1
in which r; is an arbitrary positive scalar. The prox ;, (x) function determines the nearest point in
the convex set .«Z; to the function argument, i.e.

prox ;, (x)= argr{lin Ix—X|| (20)
)A(EMI'

Solving the n projective equations (19) yields the discrete percussion P;, after which the generalized
velocities ug and the positions

ugt+ug

5 At (21)

qe=(qp+

can be calculated. It is suggested that the system of projective equations (19) is solved iteratively,
for example, by an iterative scheme of the kind

1

A A n A
P =prox -, (Piv—i’i (Z GijP}+Ci>), i=1...n (22)
j=1

or
i

-1 R n A
ZGijP;+1+ZGijP;+Ci>>, i=1...n (23)
=1 j=i

pv+1 ~ DV )
P, =prox ? (Pi —7; (
J:

These two schemes (22) and (23) follow straightforwardly from the projective equations (19).
However, these two schemes are very closely related to the linear Jacobi and Gauss—Seidel relax-

ation schemes, which are discussed in the following. We aim at solving the linear system GP+c=0
iteratively. Therefore, we split the matrix G into two matrices B and C, i.e. G=B-+C, which
yields the iterative scheme

Bf)v+1+cf)v+c:() — f)v+1:_B—1(Cf)V+c) 24)

The matrix B has to be chosen such that it is easily invertible. Two natural choices exist: B=o~'D
and B=L+®~!D, where o is a diagonal matrix that contains the relaxation parameters. The
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matrices D and L contain the diagonal and the strictly lower triangular part of G, respectively. In
the first case we obtain the Jacobi relaxation scheme (JOR)

P'*! =P — @D ' (GP" +¢) (25)

and in the second case we obtain the Gauss—Seidel relaxation scheme (SOR), which can be
expressed as

Pt =P — @D (LP"H +(G—L)P" +¢) (26)

Both schemes can conveniently be transformed into local coordinates P;, ie.

Dv+1 DV —1
P =P! — ;D (
J

n A
Giij.+c,~>, i=1...n 27)
=1

for the JOR scheme and

i

Z G,’jP}H—l -+ Z Gl'jP;-l—Ci) , 1
=1 j=i

Pt =P! ;D' ( 1...n (28)
=

for the SOR scheme. When comparing the JOR and SOR schemes (27) and (28) with the schemes
(22) and (23), it is obvious that the latAter two schemes consist of a Jacobi or Gauss—Seidel relaxation
step for solving a linear system GP+c¢=0, combined with a projection. We therefore refer to
(22) and (23) as projected Jacobi (PJOR) and projected Gauss—Seidel (PSOR) relaxation schemes.
The factor r; is in close relation with the term ®;;D~!, i.e. r;I=w;; D!, where the entries of ®;;
cannot be chosen independently. For a detailed discussion on the iterative solution of projective
equations of type (19) we refer to [20,41-43, 45, 46].

4. ‘CONSTRAINT’ AND ‘IMPRESSED’ MODES

In this section, we investigate the system of projective equations (19) and their iterative solution
(22) or (23) more closely. Note that each projective equation has an associated set-valued law that
characterizes a unilateral contact, a friction element or an arbitrary other non-smooth element. We
will distinguish between set-valued laws in ‘constraint’ and ‘impressed’ modes and relate these
two terms to the projection behaviour of the prox -, functions. In the end of the section we give

i
a small example.

Consider the system of projective equations (19) in the solution point f’?o of the iterative
scheme, i.e.

A A n A
P =prox;, (Pfo—r,- <Z G P -I-Q')) (29)
l j:l

This equation can be fulfilled in two ways: either the argument x of the prox -, function lies in the

interior of set .o/ i» which yields prox ;, (x) =x, or the argument x of the prox ;, function does not

9



lie in the interior of set .7;, which yields the prox -, function to really project on the boundary

of set .o/ ;. In the first case we obtain

n A
> Gi P +ei=—(yg tevp) =0 (30)
j=1

1e. f’oo is chosen such that the constraint equation —(yg; +¢yp;) =0 is enforced. Therefore, we
denote the associated set-valued law to be in the ‘constraint” mode. In the second case, the discrete
percussion POO is impressed due to the projection on the boundary of the set </, and we denote
the as3001ated set-valued law to be in the ‘impressed’” mode. Using the terms ‘constraint’ and
‘impressed’” mode allows for a uniform terminology, which must not distinguish between unilateral
contacts, friction elements or other non-smooth elements, for example, a pre-stressed spring. The
terminology simply refers to the mathematical structure of the set-valued laws, i.e. whether the
laws enforce a constraint equation by a set-valued percussion P; or whether the laws impress a
percussion P; by an equation of the kind P; =f(y £i»Ypi)- Note that an integrator only cares about
this mathematical structure, i.e. physical criteria such as open or closed unilateral contact are not
needed. Using physical criteria such as open or closed unilateral contact is intuitive but offers the
following disadvantages: First, one has to guarantee that physical criteria really match the used
mathematical structure. This is not as easy as it seems. For example, a sticking friction element
will never have a vanishing relative velocity y; =0 due to numerical reasons. Therefore, tolerances
have to be introduced in order to decide whether the friction element sticks or not. In this context
it would be, for example, possible that the friction element is detected to be sliding by a physical
criterion, but that the mathematical structure remains in the ‘constraint’ mode, which yields a
contradiction due to numerical errors. Second, the implementation might not be so easy, as each
set-valued law requests its own physical detection procedure. When monitoring the mathematical
structure of the set-valued laws, all kinds of set-valued laws follow the same detection procedure,
which yields a very short, uniform and extendable implementation.

In practice, we examine the behaviour of the prox 7. functions at the very end of the iteration in
order to determine whether a set-valued law is in the ‘constraint’ mode or the ‘impressed’ mode.
We assign to a set-valued law i the state ; = 1 if the associated set-valued law is in the ‘impressed’
mode, otherwise the value ¢; =0.

Example

Consider a point mass that can move on a table in the x-direction. Between the point mass and
table acts friction with a maximal friction force a =umg. In addition, a force F pulls the point
mass in the x-direction. The velocity in the x-direction is denoted by u. The discrete time-stepping
scheme for this example reads as

m(ug—upg)—FAt—P=0, —(ug+eug)e N (P), o=[—alAt;aAt] (31)

Elimination of the velocity ug yields an inclusion expressed solely in terms of the discrete
percussion P,

FAt P .
_<—+—+(1+8)u3>emﬁ(m (32)
m m
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The projective equation becomes

N A FAt P
P=prox | P—r 74—;4—(14—8)%3 (33)

We assume that the velocity u p at the beginning of the time step is zero and examine the behaviour
of the system for different values of the external force F. If F is smaller than the maximal friction
force a, which means | F'| <a, then the point mass will stick on the table and the iterative solution
of the projective equation (33) has a fixed point at P=—FAs,

—FAt =prox ;,(—FAr) (34)

in which the prox ;, does not change the value of its argument. The force P fulfils the constraint

u =0, which can easily be verified by inserting P=—FAt in the equations of motion (31). If the
external force F is larger than the maximal friction force a, i.e. |F| > a, then the point mass will
slide on the table and the iterative solution of the projective equation (33) has a fixed point at
P= —alt,

At
—alt =prox., —alAt—r—(F —a) (35)
m

_—

<—alt

in which the prox ;, projects on the set o/ =[—aAt,aAt] and impresses a discrete percussion

A

P=—ar.

5. SWITCHING POINTS

In this section, we discuss how switching points can be detected within a time-stepping scheme.
Furthermore, we suggest a step size adjustment in order to resolve these switching points properly.

5.1. Detecting switching points

As already mentioned in Section 1, time-stepping schemes use for each time step m a discrete
state 6", which applies for the entire time step. This discrete state can easily be determined by
examining the behaviour of the prox ;, functions, as discussed in Section 4. If two successive

time steps m and m+1 have different discrete states 6" 756"”“, 1.e. if at least one set-valued

law changes from ‘impressed’ to ‘constraint’ mode or vice versa, then one of the two time steps
contains a switching point,

6" #£6™T! = Switching point either in time step m or m+1 (36)

In Figure 3 we see, for example, the time evolution of a system with four set-valued laws. We
recognize that the second set-valued law switches its discrete state 6, from O in the second time
step to 1 in the third time step. Thus, the corresponding switching point will be located between
t1 and 3. Note that the different discrete state 6 in the third time step does not necessarily imply
that the switching point is located in this time step, as it is also possible that it is located at the
end of the second time step.
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Figure 3. Time evolution of a non-smooth system with four set-valued laws. The behaviour

of the set-valued laws is indicated by the values 1 for the ‘impressed’ mode and O for the

‘constraint’” mode. The third time step has a discrete state different from its predecessor, and
the corresponding switching point will be located between #; and #3.

: I ......................... I drop back
i RERREERERREE | drop back
I } } - | drop back
] [ [ -
resolved

switching point

Figure 4. Switching point search by a regula falsi method. A change in the discrete state ¢ is indicated
by a change in the line style (solid to dotted).

Examples

These two examples aim at emphasizing that 6" #6" 1 does not necessarily induce that the
switching point is within time step m + 1. It can also be located at the end of time step m. Suppose,
for example, that a unilateral contact is open at the midpoint qy; but closed by the end of the
time step. Another example is given by the friction element discussed in the example of Section 4.
Imagine that the discussed point mass is sliding on the table having a velocity u g, and imagine
that no external force F is present. Owing to the sliding force —a the point mass will stop after
a time lapse Atj =upm/a. Examining the corresponding projective equation (35) we recognize
that the friction element will only be in the ‘constraint’” mode if the step size is larger than
Aty=(14¢e)upm/a. For any time step with step size between Af; and Af,, the prox 5/ function

will still project on set </ and the friction will be in the ‘impressed” mode, although the point
mass will stick on the table by the end of the time step.

5.2. Resolving switching points with minimal step size

In Section 5.1 we have discussed how time steps that contain switching points can be detected.
In what follows we aim at decreasing the step size At of such time steps in order to resolve the
switching points properly. The main idea is to use a regula falsi approach. In the case of a detected
switching point (6™ 756'm+1), we drop back to the beginning of the predecessor time step m and
continue the integration with a smaller step size (for example, At — Ar/2) until another switching
point is detected. Then we drop back again and repeat this procedure until a minimal step size
Atpin 1s reached which resolves the switching point properly. After having resolved the switching
point, the step size can again be increased until a maximal step size Afyax 1S reached, for example,
by a factor 2 in each smooth step. This procedure is depicted in Figure 4. Note that, in the case
of a detected switching point (6" #6" 1, we drop back to the beginning of the time step m,
because the switching point can be located either in the time step m or m+1; see (36). Thus, we
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reject both the time steps m and m+1. A more detailed algorithmic description of this procedure
is given in Section 9.

6. INTEGRATION ORDER OF MOREAU’S MIDPOINT RULE

In what follows we briefly discuss the integration order of Moreau’s time-stepping method. We
remember that an integration scheme is called of order p if the absolute value of its local error
eL(tme1) =y(tna1) — U is smaller than an arbitrary bounded constant K1, multiplied by Azr? +
In this case, it holds for the global error eg(t;,+1)=y(tm+1) —vm+1 that its absolute value is
smaller than an arbitrary constant Kg multiplied by Az?. Note that y(z,,+1) is the exact value at
time t,41, V41 1S the approximation after one integration step started with y(¢,,) and v, is the
approximation gained after several integration steps.

Considering Moreau’s midpoint rule, we distinguish between the local integration error er,
of smooth time steps and of switching intervals. For smooth time steps, standard results from
numerical integration theory can be used [47-50]. It can be shown that the local integration error
in the displacements ey, and in the velocities er, is of order 3 and 2, respectively,

leLy| < KpyAf? (37)
leLy| < KLy, Ar? (38)

see [28]. Thus, the global error eg accumulated in smooth parts of the motion is of order 2 for
the displacements and of order 1 for the velocities. The overall global integration error order for
the smooth parts is therefore equal to 1. Considering switching intervals, the determination of
the integration order is not trivial and not satisfactorily solved up to now. Especially it has to be
discussed to which extent the definition of the integration order, which is based on Taylor series
expansions, makes sense for the non-smooth case. Also the treatment of accumulative switching
points is a challenging problem. In this paper we assume that the local integration order of switching
intervals is at least 1, which is a reasonable assumption [28]. Such a local error order would be
disastrous considering smooth time steps, because the global error order would become 0 meaning
that the global error would not decrease for decreasing step size. In contrast to smooth time steps,
the number of switching intervals in a time span does not depend on the chosen step size as soon
as a certain refinement has been reached, whereas we exclude the case of accumulative switching
points. As a consequence, we assume that the local integration error in the switching interval adds
to the global integration error with order 1, but not with order 0 as smooth time steps would
do. In the case of dissipative accumulative switching points, the corresponding relative contact
velocities are very small just right before the accumulation point. Thus, they should not affect
the integration error very much. To conclude, the local errors of all time steps add to the global
integration error with at least order 1, and Moreau’s midpoint method yields therefore an order 1
integration scheme. Consider in this context also the work of Janin and Lamarque [51], in which
the computation of the integration error is given for the case of a finite number of impacts.

7. EXTRAPOLATION METHODS FOR SMOOTH SYSTEMS

In this section we give a brief introduction to the topic of smooth extrapolation methods. Detailed
information about these integration schemes can be found in [47, 50, 52, 53]. We will use these
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extrapolation methods in Section 8 to improve the integration order of the time-stepping integration
during smooth parts of the motion.

Consider an arbitrary base integration scheme of order p. Extrapolation methods allow one
to construct an order (p+k —1) approximation using k approximations calculated with the base
integration scheme. It can be shown that for smooth functions there exists an asymptotic expansion
of the global error eg A, (?) [47,50],

eG.A () =cp(OALP +- - dcpip a2 (OALPTF2 L (AP (39)

Let Ar be the step size of one time step, At =1, —t,. Using the base integration scheme in
connection with different step sizes At/n;, different order p approximations 7; 1 for y(t,+1) can
be computed. The index i in 7; ; indicates the identifier of the approximation, the index j denotes
how many approximations 7; | are used to obtain the approximation 7; ;. If the base integration
scheme is of order 1, then the index j indicates the integration order. The scalar n; denotes the
number of substeps that were taken to obtain the ith first-order approximation 7; 1. For example,
we calculate 77 1 by performing one substep At, 7> 1 by performing two substeps Af/2 and T3 1 by
performing four substeps Az/4, i.e. n3 =4, with our base integration scheme. Using the definition
of the global error we express

Tig=y—epn=y—OAPT?) —c, (At —cpy1 (Ar)PT

At\ P A\ P!
2
EJ:y_%MFW_0@ﬂ+)_%(E> _%H<§) (40)
At\ P A\ P!
T51=y—enm=y—0At" ) —c, (Z) —Cp+l (Z)

By introducing an order p+2 approximation w=y—(O(At’*?) we can solve the above system
(40) for the unknowns w, c, and cp,41. Using the three approximations 771, 72,1 and 731 of
order p we manage to compute an order p+2 approximation w of y. To advance the application
of the method we interpret the left-hand sides of Equations (40) as polynomials P(Ar), P(Az/2)
and P(At/4), where

P(At)=w—cpAtP —cpi 1 AtPT! (41)

Solving system (40) is then equal to placing the polynomial P (At) through the points (77 1, At),
(T2,1,At/2) and (73,1, At/4). Note that the approximation w is equal to the value of the interpo-
lation polynomial P(At) at At =0; hence, we restrict ourselves to calculate only this value. The
interpolation and the following extrapolation to the value w= P (0) is done by the Aitken—Neville
algorithm [49]. Using this algorithm we can calculate the value P (0) of an interpolating polynomial
directly from the node data (7; 1, At/n;). Because the algorithm is based on a recursive formula,
we can add nodes to the interpolation polynomial and obtain the new value for P(0) without
losing the calculation effort already done. This nice property allows us to change easily the order
of an extrapolation method. For example, we calculate two-order p approximations 77 ; and 73 1.
Then we compute the value P (0) of the interpolation polynomial defined by 77 1 and 7> ; with the
Aitken—Neville algorithm in order to obtain the order p+1 approximation 7> > of y. We compare
this new approximation 77 > with the old approximation 77 ;| to decide whether a further increase
in the order is necessary or not. If we decide to increase the order, then we calculate a third-order
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p approximation 73 1 and obtain the new value P(0) =T33 of the interpolation polynomial defined
by 71,1, T»,1 and T3 1 without losing the calculation effort already done.
The values T; ; are calculated according to Aitken—Neville using the formula

T i —Ti—1,j

Tijr1=T1;;+ nm =1 (42)
and are stored in an extrapolation tableau of the form
T1
Iy T2
(43)

51 T3, T33

To build up the extrapolation tableau (43), we first calculate the approximations 77 1 and 7> 1 in
order to get 77 . The approximations 771 and 73 ; give T3, which results together with 73 >
in the value 73 3, and so on. The extrapolation tableau is successively built up until the required
accuracy is reached.

Example

This small example illustrates the use of the extrapolation method. We aim at the numerical solution
of the differential equation y'(x)= 3x? with v(0) =0, the exact solution of which is y(x) =x3. As
a base scheme we take the explicit Euler rule, y; 11 =y; +y'(x;)Ax, which becomes in our case
Vi+1=DYi —|—3xl.2Ax. In order to obtain y(1), we perform one time step with Ax =1, two time steps

with Ax = % and four time steps with Ax = zlt' The extrapolation tableau yields

T1’1:O
30
3 3 8 3
=3, T2,2=g+2—=z
11 (44)
21 _ 3 15_3
21 21 32 8 15 15 16 4
2 1

We recognize that the third-order approximation 73 3 =1 gives the exact result y(1)=1.

8. EXTRAPOLATION METHODS FOR NON-SMOOTH SYSTEMS

As mentioned in Section 1, the time evolution of non-smooth systems can be divided into smooth
parts and switching points, or, in terms of the time-stepping algorithm, in smooth time steps
and switching intervals. In this section, we show how extrapolation methods can be applied to
smooth time steps. First, we remark that it does not make sense to apply extrapolation or any other
higher-order integration schemes to a switching interval, because its non-smoothness contradicts
the asymptotic expansion of the integration error. Switching intervals have to be run with a minimal
step size Afmin, see Section 5, while smooth time steps can be treated with an increased step
size and higher-order integration schemes, which is the aim of this section. Extrapolation methods
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allow either a variable order or a variable step size. In our case we use the variable step size to
resolve switching points and the variable order to obtain a good accuracy in the smooth parts of
the motion.

We use the time-stepping method of Moreau as the base integration scheme, which is assumed
to be of order 1, see also Section 6. In smooth parts, different approximations 7; 1 for the main
time step m are gained by dividing this main step in different substeps, which are processed by
the time-stepping method. Based on these approximations 7; 1, higher-order approximations can
be computed using extrapolation. All integration steps within a main time step m must have the
discrete state 6™ ! of the predecessor time interval m — 1. If the state 6 changes, then a switching
point is present, and extrapolation cannot be applied. The step size of such switching intervals is
refined according to Section 3.

When we started to use extrapolation in combination with Moreau’s time-stepping scheme,
we encountered serious oscillation problems that caused extrapolation to fail. We observed short
spontaneous openings of unilateral contacts, which have no physical reasons. The reason for
this numerical problem is discussed in Section 8.1. In Section 8.2 we discuss modifications to
circumvent the problem.

8.1. Failure of extrapolation

Problems with extrapolation can occur for the case of enduring unilateral contact, for which the
associated set-valued law is in the ‘constraint’ mode, i.e.

YEi = —&VBi (45)

Note that this equation must hold for both impact and enduring contacts. If we have a switching
interval m with the ‘constraint’” mode, then the time step is looked upon as non-smooth and
processed with a minimal step size Afyiy. This corresponds to our idea of an impact. If we have
a smooth time step with the ‘constraint’ mode, i.e. the time step’s predecessor and successor time
step are also in the ‘constraint’ mode, then we would speak of enduring contact. Consider, for
example, a ball falling on a table with restitution coefficient 0 <& < 1. When the ball is not in
contact with the table, then the contact force is zero and we assume the ‘impressed’ mode. If the
ball touches the table, then the contact changes to the ‘constraint’” mode and the velocity of the
ball is inverted according to Equation (45). The contact will open again, the contact force will
be zero and we will have ‘impressed’ mode until the ball touches the table again with a smaller
velocity. After some elapsed time, the contact will remain in the ‘constraint” mode at a certain step.
The relative contact velocity at the end of this time step will be so small that the next time step
will also be in the ‘constraint mode. The system does not change anymore, we speak of enduring
contact and we might increase the step size.

It is very important to realize that Equation (45) is independent of the step size Ar. Let tg
and tp be two points in time with tg —tg =At. Applying Equation (45) on this time step yields
Yei =—¢Yp;- However, if we decide to split this time step into two successive time steps with step
size At/2, we obtain yg; = (—e)%y gi» which i1s a completely different result with even a different
sign! Strictly speaking, Equation (45) is a mapping, but not a valid consistent integration scheme
for enduring contact. The reason why the time-stepping scheme also works for enduring contact
is that the relative contact velocities in the case of enduring contact are very small, and therefore
the error does not affect the integration very much. The mapping is also a contraction due to <1,
and the very small relative contact velocity will therefore remain very small. It is assumed that
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YE; ~ (—e)%y pi ~—¢Yp; ~0. When using the time-stepping scheme as the base integrator for an
extrapolation method, this argumentation does not hold anymore in general. One has to keep in
mind that the values 7; | define the nodes for the interpolating polynomial P(At¢) and also that
very small values might affect the extrapolation to P(0) dramatically. Let Equation (45) be our
base integration scheme for an enduring contact. We use i substeps Az/i to obtain 7; 1, i.e. one
substep to obtain 77 1, two substeps Az/2 to obtain 75 ; and so on. We choose, for example, the
restitution coefficient ¢=0.7. Calculating different first-order approximations for 7; | yields

T
Ll —ont=-07

VBi

T

21 (—0.7)2=0.49

;B’ (46)
2l (—0.7)2=-0343

VBi

T.

4 (C0.7)*=0.2401

VBi

We recognize that all the approximations are still contractive, that is, a very small relative contact
velocity v ~0 will remain small. Making an extrapolation with the base approximations (46) yields

T
L g7

VBi

T T

21 049, 222_168

;Bl yBlT . (47)
S 0343, 222009, 22 —_38535

VBi VBi VBi

Ty

—— =0.2401, a2 =1.9894, a3 =5.9878, T4 =9.2682
VBi VBi VBi VBi

The contractivity is not fulfilled, and the relative contact velocity and thus the energy grows dramat-
ically. In Figure 5(a) the values T; ; /vp; are depicted as a function of the restitution coefficient &.
Note that if the absolute value of T; ; /v p; 1s larger than 1, the velocity and thus the energy increases.
The second-order approximation 77, increases the energy for restitution coefficient larger than
one half, ¢ >0.5. The third- and fourth-order approximations show an even worse behaviour. Note
that the Aiken—Neville instruction (42) is of the form

1
Ti,j+1=7},j+&(Ti,j—Ti—1,j), o>0 (48)

If the signs of 7; ; and 7;_; ; are unequal, then the absolute value |7; ;41| will always be larger
than the absolute value of |T; ;.

8.2. Modification to prevent failure of extrapolation

In Section 8.1 we encountered the problem that extrapolation increases the energy dramatically in
the case of enduring contact. This increase is due to the changing signs of the approximations 7; 1,
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Figure 5. (a) The values T;; that were obtained with ny =1, np =2, n3=3 and ny=4. (b) The number
of substeps were chosen as ny =1, np=3, n3=5 and ng=7. The resulting approximations 7; ; /yp are
shown as a function of the restitution coefficient &.

which are used for the extrapolation process. If we only use an uneven number n; =(i —1)-2+1
of substeps to obtain 7; 1, then the sign of all approximations 7; ; will be the same. Increasing
the order will decrease the velocity and the energy. This can be verified by investigating the
Aiken—Neville instruction in the general form (48). If the signs of 7; ; and T;_ ; are equal, then
the absolute value |7; ;41| will always be smaller than the absolute value of |7; ;|. In Figure 5(b)
the values T; ; /yp are depicted as a function of the restitution coefficient ¢, where n; =1, ny =3,
n3=>35 and ng =7 substeps were used. We recognize that the absolute value of T; ;/yp 1s always
smaller than 1.

Another approach to solve the problem is to use a restitution coefficient ¢=0 for an enduring
unilateral contact. In the case of partially elastic impacts, the restitution coefficient ¢ then has to
be set back to its original value. The approach therefore requires a distinction between enduring
unilateral contact and impact, which is not as trivial as it seems. Note that the step size adjustment
uses At >> Aty for smooth time steps (enduring contact) and At = At;, for switching intervals
(impacts). Using a modified restitution coefficient emodzsAt/ Atmin would guarantee a small or
even vanishing &n0q in the smooth case (enduring contact) and enoq =¢ in the switching intervals
(impacts). Changing the restitution coefficient during a simulation might be hazardous. Therefore,
the authors encourage to use a restriction to an uneven number of substeps, as discussed in the
beginning of this section.

The extrapolation for non-smooth systems described above can now be applied to the time-
stepping algorithm. We take as the base integration scheme Moreau’s midpoint rule and apply the
extrapolation on both the velocities u and the displacements q.

9. OVERALL ALGORITHM

In this section we present an overall algorithm that incorporates step size adjustment and extrapo-
lation. The algorithm consists of three modules: the step size adjustment module, the extrapolation
module and the time-stepping module. The step size adjustment module controls the simulation
and strings together the different time steps. It calls the extrapolation module, which performs one
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Table I. Overview of the time-stepping module.

Performs one time step At according to Moreau

Pre qB, up, tg, At, guess P
Post qg, ug, tg, P, 6

time step. For smooth time steps extrapolation is used to obtain a higher integration order. In order
to obtain the approximations 7; 1, the extrapolation module calls the time-stepping module, which
performs one time step according to Moreau. We will discuss the three modules in the following,
starting with the basic time-stepping module.

9.1. Time-stepping module

This module is a one-step time-stepping solver, which takes the generalized coordinates qp, the
generalized velocities up, the time 7p and the step size Az as input arguments. An initial guess for
the discrete percussions P should also be provided. The time-stepping module performs one time
step with step size Ar. The behaviour of the prox ;, functions at the very end of the iteration is
observed and returned in the vector ¢, which describes the discrete state of the different set-valued
laws. The value 1 is assigned to a set-valued law, which is in the ‘impressed’” mode (projection), and
the value O is for a set-valued law, which is in the ‘constraint’ mode (no projection). Furthermore,
the generalized coordinates (g, the generalized velocities ug and the time g at the end of the
time step are returned. In addition, the discrete percussion P is provided. A short overview of the
module 1s given in Table I.

9.2. Extrapolation module

This module consists of an extrapolation routine with some additional features. It performs one
main time step and uses, if possible, extrapolation to increase the integration order. The module
takes the generalized coordinates qp, the generalized velocities up, the time 7, the step size At
and the minimal step size Azyip as input arguments. An initial guess for the discrete percussions
P should also be provided. In addition, an accepted discrete state 6, should be passed as an
input argument. This vector 6,.. defines the discrete state on which the extrapolation should be
based. The extrapolation module splits the main time step into an uneven number of substeps
At/2-(i—1)+1), i=1,2,.... These substeps are passed to the time-stepping module to
obtain the different order 1 approximations 7; ;. Based on the order 1 approximations 7; i, the
extrapolation module calculates higher-order approximations 7;; by building up an extrapola-
tion tableau as described in Section 7. The extrapolation is stopped when the error criterion
\T;; — Ti—1,i—1]|<atol +rtol ||7; ;|| is satisfied, when a maximal user-defined integration order
nmax 1S reached or when a further order increase requests smaller time steps than Afyi,. When
calling the time-stepping module for computing the approximations 7; 1, the extrapolation module
has always to check whether the returned discrete state 6 is identical to the accepted discrete state
6.cc. If this is not the case, then a switching point is detected and the extrapolation aborts. The
extrapolation module exits with one of the following flags.

Successful smooth extrapolation. All substeps were performed on the accepted discrete state
G.cc, and the required integration accuracy was achieved without using substeps with step size

19



smaller than Afyi, and without exceeding the maximal user-defined order ny,x. In this case the
extrapolation was successful and the generalized coordinates qg, the generalized velocities ug
and the time 7g at the end of the time step are returned. Note that the discrete percussion P of the
time step is not subjected to extrapolation and only an approximate value based on a first-order
approximation is returned. In addition, the used discrete state is returned, which is identical to the
accepted discrete state Gacc.

Smooth extrapolation, required accuracy not achieved. All substeps were performed on the
accepted discrete state 6,.c, but the required integration accuracy was not achieved because a
substep with step size smaller than Az, would have been necessary to increase the order, or
because the maximal user-defined order np,x was reached. The same data as in the case of
‘successful smooth extrapolation’ are returned together with the flag that the required accuracy
was not achieved.

Detected switching point. A substep with a discrete state 6 different from the accepted discrete
state 6,cc is identified. The step size At¢ of the main time step is larger than Afy;,. A switching
point is assumed and the extrapolation is aborted.

Resolved switching point. A substep with a discrete state ¢ different from the accepted discrete
state 6, is identified. The step size At of the main time step is equal to Atyi,, which means that
there was only one substep with step size Atpin. The switching point is resolved. The generalized
coordinates qg, the generalized velocities ug and the time ¢r at the end of the time step are
returned together with the discrete percussion P. The used discrete state is returned as a new
accepted discrete state 6.

A short overview of the module is given in Table II, and a flow chart is depicted in Figure 6.

9.3. Step size adjustment module

The third module is responsible for the step size adjustment. It interprets the results of the
extrapolation module in order to steer the step size of the main time steps. The module strings all
the main time steps together and is responsible for the output of the simulation data. The basic
task of the module is to decrease the step size if a switching point is detected and to increase the
step size in smooth parts of the time evolution of the system. The minimal and maximal step sizes
are Atpmin and Atpax, respectively. Switching points are located as described in Section 5. A short
overview of the adjustment module is given in Table III.

Table II. Overview of the extrapolation module.

Performs one time step using an extrapolation method.
Calls the time-stepping module.

Pre qgB, ug, g, At, Aty guess P, 64cc, Nmax
Post  Successful smooth extrapolation qEg, ug, tg, P, unchanged 6acc
Smooth extrapolation, required accuracy not achieved  qg, ug, tg, P, unchanged 6acc

Detected switching point Abort
Resolved switching point qg, ug, tg, P, new 6y¢c
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Figure 6. Flow chart of the extrapolation algorithm.

Table III. Overview of the time step adjustment module.

Performs the simulation, controls the step size length,
calls the extrapolation module.

Pre Initial conditions q(zy), u(zy), fo, time step sizes Afmin, Afmax
Post  q(?), u(z), t, P(¢), switching points
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When decreasing and increasing the step size, one has to keep in mind that the extrapolation
procedure needs at least a step size At =3-Atpin. Otherwise, the step size of the three substeps
needed to obtain 7,1 would be smaller than Afyiy. A step size At with Atpin < At <3- Aty is set
equal to Aty if the step size is subjected to diminishment. Otherwise the step size is set equal to
3 Atmin-

Special attention has to be paid to ensure that step sizes are not increased while searching for
a switching point. It has also to be pointed out that a change in the discrete state ¢ may not
necessarily lead to a detection of a switching point, because time steps with smaller step size might
lead to another solution without a switching point. These problems are solved by introducing a time
tholne, Which corresponds to the end time of the time step that changed its contact configuration.
Because the switching point is assumed to be before this time instant, the step size should not be
increased until f01nc 1S passed.

The module stores the data of three time steps, the so-called accepted time step, the previous
time step and the actual time step. The accepted time step is a time step that cannot be rejected
anymore. A time step becomes accepted if its successor time step has the same discrete state 6, or
if the time step has a minimal step size Afyi,. The previous time step is a time step that has been
successfully processed by the extrapolation module, but which cannot yet be accepted because the
step size Ar is larger than Atpni, and because its successor time step has not yet been calculated.
Note that the previous time step still might be rejected due to an undetected switching point at
the end of the step, as already discussed in Section 5. The actual time step is a time step that is
subjected to calculation.

A flow chart of the step size adjustment algorithm is depicted in Figure 7. A calculation step
i takes an accepted, a previous and an actual time step i as the input, whereas the actual time
step 1s subjected to calculation. The actual time step is processed by the extrapolation module
and, according to the flags of the extrapolation module, a new accepted and a new previous time
step i +1 is defined. Furthermore, the initial data for a new actual time step i +1 are provided.
These time steps serve as the input argument for the next calculation step i + 1. In order to start
the integration, the first actual time step of the simulation is run with the minimal step size and
therefore becomes an accepted time step.

As mentioned before, the new accepted and previous time step i +1 as well as the initial data
for the actual time step i + 1 are chosen according to the flags of the extrapolation of the actual
time step i. In what follows we will discuss the different possibilities.

Successful smooth extrapolation. Neither a switching point nor a critical smooth time step was
detected, and the integration is continued. The actual time step i becomes the previous time step
i 4+ 1, and the previous time step i becomes the accepted time step i 4 1. The initial data for the actual
time step i + 1 follow from the end data of the actual time step i. The accepted time step i is sent to

the output. The step size is increased if t%c’ti 41 <tnolnc- See Table IV for more detailed information.

Smooth extrapolation, required accuracy not reached. In this case one can either accept the
results and proceed like in the case of ‘successful smooth integration’, or one can reject the actual
time step i and recalculate it with a diminished step size. The latter is done in the examples
presented in Section 10. An actual time step with step size Ay, cannot be rejected. The accepted
and previous time steps remain unaffected.

Detected switching point. A switching point has been detected by the extrapolation method. The

time fhoInc 1S set equal to the end time t%"ti of the actual time step i. The integration drops back to the
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actual time step {q,, uo, to, guess f’, Atin 8“, 1=20

v

accepted time step {qp, up, tg, P, At, &}oc
previous time step {qg,ug,tp, P, At,6}7""

actual time step subject to calculation {qp,up,ts, guess 15, At}oct

Y

Process actual time step with extrapolation module, — {qg, ug,tg, f’, At, g }oct

Y

Evaluate according to the different flags of the extrapolation module:
-successful smooth extrapolation

-smooth extrapolation, required accuracy not achieved

-switching point detected

-switching point resolved

define

-new accepted time step {qg,ug,tg, P, At, & 9

prev

-new previous time step {qg,ug,tg, P, At, il

-new actual time step subject to calculation {qg,ug, tg, guess P, AL}

Y

t=1+1

Figure 7. Flow chart of the step size adjustment algorithm.

Table IV. Successful smooth extrapolation.

Successful smooth extrapolation of actual time step i — {qg,ug, tE,lA’, At,&}f‘Ct

Previous i +1=actual i {qg.ug,1g, P, A, G}f_ri_el ={qg.ug, g, P, At (Ar}i?lCt
Accepted i + 1 =previous i {qE,uE,tE,IA’, At,6 ?Srcl :{qE,uE,tE,IA’, At,&}?re
Initial data for actual i+ 1 {qp,ug, tB};‘i‘j_tl ={qg,ug, tE};‘f‘Ct
. . t t
Step size increase t%‘f‘l? 41> tholne — Atl?‘_‘f_ | =max(2- At 3. Atyyin)
acc act __ act
18741 Snolnc = AIH_ =At;

accepted time step i, i.e. the actual and the previous time steps i are rejected. The previous time step
i + 1 is set equal to the accepted time step i. The initial data for the actual time step i 4 1 follow from
the end data of the accepted time step i. The step size is diminished. See Table V for more detailed

information.

Resolved switching point. A switching point has been resolved by the extrapolation method. The
actual time step i becomes both the accepted and previous time steps i + 1, and provides the new
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Table V. Switching point detected.

Switching point detected, reject actual and previous time steps i

Previous i + 1 =accepted i {qE,uE,tE,f’, At,&}?_r'_el :{qE,uE,tE,f’, At,&}?cc
Accepted i + 1 =accepted i {qE,uE,tE,f’, At,&}?icl ={qE,uE,tE,13, At,&}?oc
Initial data for actual i +1 {qB,uB,tB}?j_tl ={qg,ug, tg}ic

N . act _ 1 A.act act . ) act __ )
Diminish step size APE = AT A ALY <3 Atin = AT = At

Table VI. Resolved switching point.

Switching point resolved — {qg,ug, g, P, Ar, &}?Ct

Previous i + 1 =actual i {qg.ug, 1, P, At,&}?fl ={qg.ug,ig,P, At,fr}?ct
Accepted i +1=actual i {qg.ug, g, P, At, &}?_Cfl ={qg,ug, g, P, A, 6'};?1Ct
Initial data for actual i+ 1 {qB,uB,tB}?j_tl ={qE,uE,tE}?LCt

Step size increase Atf‘it :max(2-Atlf“Ct, 3 Atmin)

.
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— Smooth extrapolation
-_ Smooth extrapolation

« Detected switching point
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Figure 8. Switching point search by a regula falsi method. The accepted, previous and actual time steps

are plotted as a black bar, a dashed grey bar and as a thin grey bar, respectively. The exact position

of the switching point is denoted by f5. Black triangles indicate that the actual time step i was not

successful, because its discrete state ¢ differs from the accepted time step i. The right column lists

the extrapolation results of the actual time step i. Note that the previous and accepted time steps may
coincide in some situations (black/grey dotted bars).
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accepted discrete state 6, as well as the initial data for the actual time step i+ 1. The time
nolnc 18 set equal to the end time t%Ctl. of the actual time step i to enable an increase in the step
size. The data of the accepted time step i are sent to the output. See Table VI for more detailed

information.

Example
Figure 8 shows a typical switching point search procedure.

10. EXAMPLES

In this section we present some examples of non-smooth systems whose time evolution has been
obtained by using the algorithm described above. We first show three simple examples, i.e. a
point mass falling on a table, a point mass sliding on a table and a single DOF impact oscillator.
Furthermore, we will discuss the woodpecker toy, which is a well-known benchmark problem in
non-smooth mechanics.

10.1. Point mass falling on a table

In this first example we examine a point mass falling on a table. When the point mass hits the
table, an impact occurs and the point mass is reflected. We choose the restitution coefficient e=0.7,
which causes the point mass to jump less high after each impact. The time lapse between the
impacts becomes smaller and smaller and ends up in an accumulation point, i.e. infinitely many
impacts in a finite time. After the accumulation point, the point mass will remain on the table.
The point mass is dropped from an initial height zo=0.07 m. The mass is chosen as m =1kg. The
minimal and maximal step sizes are Afmin=10">s and Afma=0.05s, respectively. To underline
the significance of an uneven number of extrapolation substeps, we first run the simulation with
{1,2,3,4,...} substeps. In Figure 9(a) we see the time evolution of the step size Ar. We recognize
that the step size decreases to the minimal step size in the case of impacts. After having passed
the accumulation point, the step size does not increase anymore due to small velocity oscillations
induced by the extrapolation; see Figure 9(b). When using only an uneven number of extrapolation
substeps, this problem does not occur anymore. In Figure 10 the time evolution of the step size At
and of the integration order as well as the time evolution of the height z and of its derivative 7 are
shown. We recognize that the step size increases after the simulation has passed the accumulation
point. In the smooth part of the motion, the integration order is 2, which yields the exact result
for the parabolic path of z(#).

10.2. Point mass sliding on a table

We consider a point mass that slides on a table; see Figure 11(a). The mass and the maximal
friction force are m =1kg and a =umg =2N, respectively. The tangential restitution coefficient
¢ 1s set to zero. The point mass has an initial velocity ug= (2.0, —0.2)Tm/s, and an external
force F=(—2.5,—0.25)"N acts on the point mass during the first 3s. A plot of the path in
the xy-plane is depicted in Figure 11(b). Furthermore, the time evolutions of the integration
order, the step size At, the friction force A and the absolute velocity of the point mass are
depicted in Figures 11(c)—(f). Owing to the external force F the point mass will change its sliding
direction almost to the opposite direction. The absolute velocity decreases, and a small step size
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Figure 9. Simulation results of a point mass falling on a table. Computations have been done without the
restriction of using only an uneven number of extrapolation substeps: (a) the time evolution of the step
size At and (b) high-velocity oscillations that prevent the step size from being increased.
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Figure 10. Simulation results of a point mass falling on a table. (a)—(d) The time evolution of the step
size At, the integration order, the height z and its derivative z.

together with a high integration order is used in this part of the simulation. We recognize that the
sliding force in the x-direction changes its direction, and that the sliding force in the y-direction
has a peak at the turning point. The absolute value of the sliding force remains 2 N. After the
point mass has turned its direction, it is accelerated in the direction of the external force. The
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Figure 11. Point mass sliding on a table. (b) The path in the xy-plane. (c)—(f) The time evolutions

of the integration order, the step size At, the friction force A and the absolute velocity of the point

mass. At time instants 74, fp and tc the point mass turns around, the force is switched off and a
slip-stick transition occurs, respectively.

displacements are described by a parabolic polynomial; thus, an integration order of 2 is sufficient.
After 3 s the external force vanishes, and the friction force decelerates the point mass until it
sticks.

10.3. Single DOF impact oscillator

We discuss a single DOF impact oscillator, which consists of a mass, a spring and a unilateral
contact that disturbs the oscillation of the mass. The mass is m=0.1kg, the spring stiffness
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i1s c=20N/m and the unilateral contact’s restitution coefficient is ¢=0.6. The position of the point
mass is addressed by the coordinate x, and the velocity by its derivative x. The spring is unstressed
for x =—0.15m. The initial conditions are x =—0.5m and x =0.2m/s. Figure 12(b) depicts the
time evolution of the contact impulse A. Figures 12(c) and (d) show the position x and the velocity
x of the mass.

In contrast to the other examples, the time evolution of this example has been obtained by using
a time step adjustment module, which uses a fixed integration order in the smooth time intervals,
1.e. the integration order is not determined by an error estimation 7, , —7,,—1 ,—1 but is given by
the user. We aim at investigating the relationship between the global error eg, the integration order
p and the maximal steps size Afyax, see Figure 12(e). Note that if the global error eg is smaller
than KGAth.x, then a double-logarithmic plot of the global error eg versus the maximal step size
Atmax should be more or less a straight line with slope s = p. The global error eg is the sum of the
local errors er,; of the smooth time steps and the local errors ey, of the switching intervals. Let
the propagation of the local integration error during the simulation be characterized by a scalar P,
which depends on the total integration time. The smooth time steps are processed with a maximal

step size Atmax and an integration order p, thus the local error ep | is smaller than KLlAtIﬁ;;l. The
switching intervals are processed with a minimal step size Az, and a local integration error of
order 1, thus the local error ey, is smaller than Ky jAfni,. Consider a time-stepping integration
with n smooth time steps and m switching intervals. The total time span of all smooth time steps is
denoted by Af; =nAtnax, the total time span of all switching intervals by At, =m Atyi, and the total
time span of the whole integration by Af3 = At + Af,. Note that the m switching intervals resolve
the m switching incidents and that therefore the number of switching intervals does not depend
on the minimal step size Afyin. On the other hand, the number of smooth time steps increases if
the maximal step size Aty is reduced. The global integration error eg can be estimated as

Atz —m Aty
eG = P<n€L1 +m €L2)<P ( & A M0 g AR +mKL2Atmin)
max
= P ((At3 —mAtin) K11 Atax +m K12 Atin) (49)

Choosing Afmin to be equal to Atb,« and assuming that Atz —mAtmin ~ At yield the estimation
eGéKGAhflax (50)

which shows that the global error is of order p with respect to Afyax. The suggested choice of
Atmin = Ath.x is problematic in view of rounding errors. If the minimal step size Aty is too small,
1.e. around the working precision of the processor, rounding errors destroy the integration order of
the method. On the other hand, a maximal step size Afpyax, Which is too large, may cause problems
in the detection of closed unilateral contacts.

In the authors’ opinion it is questionable to speak of an overall integration order p in the classical
sense, because we still use integration steps with a local integration order of 1 for switching points.
Only the piecewise smooth parts of the motion are approximated by an order p scheme. However,
the minimal step size, which resolves switching points, can be chosen small enough to ensure that
the local integration error of these steps does not destroy the accuracy gained in the smooth steps.
If we use the maximal step size Afpyax to estimate the local integration errors of switching intervals,
then we obtain a pseudo-higher-order estimation with respect to Afyax. To conclude, we achieve
an overall integration order of p with respect to Afpax by restricting the local error of switching
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Figure 12. Single DOF impact oscillator. (b) The contact impulses A. (c¢) and (d) The position x and the
velocity x of the mass. (e) The global error eg =|x —Xexact| 1S depicted as a function of the maximal
step size Armax for different calculations with integration order p. The results are approximately straight
lines with slope s=p. (f) A double-logarithmic plot of the global error versus the cpu time, which is
in our case linearly dependent on the number of performed successful and unsuccessful PJOR/PSOR
iteration steps. When using a high integration order, the error can significantly be reduced with only a
small additional effort. On the other hand, low-order integration is fast but does not allow for a significant
reduction in the integration error.

intervals by a minimal step size Atmin = Ath .« and by restricting the local error of smooth time
steps by a higher integration order p in the classical sense.

Figure 12(f) shows a double-logarithmic plot of the global error versus the cpu time, which in
our case linearly depends on the number of performed successful and unsuccessful PJOR/PSOR
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iteration steps. When using a high integration order, the error can significantly be reduced with
only a small additional effort. On the other hand, low-order integration is fast but does not allow

for a significant reduction in the integration error.
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Figure 13. Woodpecker toy together with the results of the simulation. The time evolutions of ¢,;, and
¢ are complemented by a diagram, which shows the discrete state 6 of the six different set-valued laws.
Black parts correspond to the ‘constraint’ mode; grey parts correspond to the ‘impressed’” mode.
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10.4. The woodpecker toy

The woodpecker toy consists of a pole, a sleeve with a hole that is slightly larger than the diameter
of the pole, a spring and the woodpecker body. In operation, the woodpecker moves down the
pole performing some kind of pitching motion, which is controlled by the sleeve [19]. The system
is modelled by six set-valued laws, which describe the unilateral contact and friction element
between beak and pole, the unilateral contact and friction element between the lower end of the
sleeve and the pole and the unilateral contact and friction element between the upper end of the
sleeve and the pole. The mechanical model as well as the initial conditions for the simulation
can be found in [19]. The minimal and the maximal step sizes are chosen as Afyin = 10~7s and
Atmax =5 x 1073 s, respectively. The maximal integration order is 6. In Figure 13(a) we see the
model of the woodpecker [29]. In Figures 13(b)—(f), the phase diagram ¢g versus ¢g is provided
together with the time evolution of ¢,;, ¢, At and of the used integration order. Switching points
are depicted as small black dots. Note that the integration order and the step size decrease to 1
and Atpin, respectively, if a switching point is present. Smooth parts of the motion are run with a
larger step size and a higher integration order. Around the time instant  =0.1 s high oscillations
are present and the step size does not reach Afy,x because otherwise the integration order would be
larger than the maximal user-defined order. The time evolutions of ¢,, and ¢ are complemented
by a diagram, which shows the discrete state 6 of the six different set-valued laws. Black parts
correspond to the ‘constraint’ mode, grey parts correspond to the ‘impressed” mode. The different
switching incidents are shown in Table VII. In analogy to the example of the single DOF impact
oscillator in Section 10.3, the time evolution of the woodpecker has also been computed with a step
size adjustment module, which uses a fixed integration order. In contrast to the single DOF impact
oscillator, the same minimal step size Afpin= 10~ 1'% has been chosen for all computations, as
otherwise the maximal step size Afyax Would have become too large. The different approximations
have been compared with a reference solution that has been computed using an absolute error
tolerance of atol, =107'"m/s. The minimal and maximal step sizes of the reference solution
are Afmin=10"1s and Aty =9x 10*s, respectively. Figure 14 shows the double-logarithmic
plot of the maximal time step Afmax versus the global integration error eg of the coordinate ¢g.
We recognize that the double-logarithmic plot consists of more or less straight lines with slope

Table VII. The different switching incidents of the woodpecker toy.

Contact From To
Friction contact 2 Slip Stick
Friction contact 2 Stick Slip
Unilateral contact 2 Closed Open
Unilateral contact 3 Open Closed
Unilateral contact 3 Closed Open
Unilateral contact 1 Open Closed
Unilateral contact 1 Closed Open
Unilateral contact 3 Open Closed
Unilateral contact 3 Closed Open
Unilateral contact 2 Open Closed
Unilateral contact 2 Closed Open
Unilateral contact 2 Open Closed

The corresponding switching points are shown in Figure 13.

31



CnCnCﬁbcllla%Cla
— DN Wk Tty

loglO(At

max )

Figure 14. Double-logarithmic plot of the maximal step size Afmax versus the global
integration error e of the coordinate ¢g.

s = p even if the minimal step size is not equal to Atmin = Atba.. A possible explanation might be
that the few local errors of the switching intervals can be neglected compared with the accumulation
of the many local errors during the smooth part of the motion. In addition, the approximations are
compared with a reference solution, which uses the same minimal step size Afyjn = 10~10g.

11. CONCLUSIONS

In this paper we discussed how the concepts of step size adjustment and extrapolation can be
used to improve the time-stepping method of Moreau. The presented algorithm provides switching
point search and higher integration order in the smooth parts of the motion, but because the
base scheme is still the time-stepping scheme, it is also suited for systems with more than a few
contacts. An overall integration order of p with respect to the maximal step size Afpax can be
gained if the minimal step size Afpi, is chosen so small that the corresponding order 1 steps do
not destroy the accuracy gained by the higher-order integration of the smooth time steps. There
are two main ideas behind the presented algorithm. The first idea is to use extrapolation based
on a time-stepping scheme. This allows us to use the same base integrator for all time steps. Of
course, it would also be possible to implement an arbitrary higher-order integration scheme for the
smooth parts of the motion, for example, a Runge—Kutta scheme, but in this case we still would
have to apply the time-stepping scheme to manage time steps in which switching points occur.
We have chosen extrapolation because at every time step we have as base a time-stepping scheme,
1.e. if extrapolation or switching point detection would fail for some reasons, then we would still
have a stable and robust integrator that processes the time step. The switching point detection can
be combined straightforwardly with the extrapolation process, i.e. when doing the extrapolation
substeps, one can monitor whether the mathematical structure on which extrapolation is based
changes or not. When using the time-stepping scheme as the base scheme for the extrapolation,
only an uneven number of extrapolation substeps has to be applied, as otherwise energy would
increase in the case of enduring contact. The second idea is to observe the projection behaviour of
the projective equations, which yields a very simple procedure for detecting switching points. Of
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course, there exist other ways to detect switching points. For example, one could check whether
the normal contact force of a unilateral contact becomes zero, or if the friction force belonging
to a frictional contact becomes equal to the maximal friction force. There are two drawbacks
when doing this. Firstly, each kind of set-valued law would require an own detection procedure,
which would make the implementation cumbersome. Secondly, due to numerical inaccuracies, it
would be, for example, difficult to tell whether a unilateral contact force is zero or not. Observing
the projection behaviour of the projective equations provides a binary decision tool, which is
independent of the kind of set-valued law, elegant in implementation and very robust in addition.
Note that the integrator cares only about the changes in the mathematical structure. From our
point of view, it is more natural to detect directly these structural changes than to monitor some
related physical criteria. The presented algorithm is well suited for non-smooth systems with a
small number of set-valued laws. By choosing a very small minimal step size, the algorithm tends
toward the accuracy of an event-driven algorithm. Nevertheless, systems with many set-valued
laws can also be treated by the same algorithm, because the base integration scheme is still a
time-stepping method.
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