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SUMMARY

We suggest a fictitious domain method, based on the Nitsche XFEM method of (Comput. Meth. Appl.
Mech. Engrg 2002; 191:5537–5552), that employs a band of elements adjacent to the boundary. In contrast,
the classical fictitious domain method uses Lagrange multipliers on a line (surface) where the boundary
condition is to be enforced. The idea can be seen as an extension of the Chimera method of (ESAIM:
Math. Model Numer. Anal. 2003; 37:495–514), but with a hierarchical representation of the discontinuous
solution field. The hierarchical formulation is better suited for moving fictitious boundaries since the
stiffness matrix of the underlying structured mesh can be retained during the computations.

Our technique allows for optimal convergence properties irrespective of the order of the underlying finite 
element method.
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1. INTRODUCTION

Fictitious domain methods were introduced in order to be able to use Cartesian meshes also for
solving problems on domains with complex boundaries. The idea is to enforce Dirichlet boundary
conditions on a given curve (surface) that is discretized independently of the mesh, cf. Glowinski
et al. [1]. On this curve, the boundary condition is enforced, typically by the use of Lagrange
multipliers. The system of equations can then be set up on a Cartesian mesh and the degrees of
freedom falling outside of the boundary are discarded. The problem with this approach is that
the derivatives of the finite element solution normal to the curve cannot accommodate the jump
necessary to achieve optimal order convergence, cf. [2]. Another problem is how to choose the
discretization of the curve relative to the elements it crosses in order for the problem to be well
posed. Guidelines for this are given in [2] but they are by necessity rather vague.

In this paper we introduce an alternative method based on the use of Nitsche’s method in the
vein of Hansbo et al. [3] (building on [4, 5]), where overlapping meshes were considered. We shall
also employ overlapping meshes in the form of (Figure 1)

1. the (structured) mesh on which the problem is set up and
2. a narrow band of elements that overlays the first mesh.



Figure 1. Underlying and overlying meshes.

This allows for the direct use of the method proposed in [3], where the elements on the underlying
mesh were cut by the overlying and the solution pasted together by the use of Nitsche’s method [6].
The outer boundary of the band can then be used as the Dirichlet boundary. We remark at this point
that another strength of the approach in [3] is that any boundary condition can be applied at the
outer boundary of the band. This is not so straightforward in a classical fictitious domain method.

However, in [3] this was achieved by modifying the elements of the underlying mesh, which does
not allow for the system matrix on the underlying mesh to remain unchanged. If the boundary was
to move continuously, the entries in the system matrix would also have to be changed continuously.
It is desirable to have a fixed matrix for the underlying problem and to see the imposition of the
boundary condition as a set of additional degrees of freedom (as in the original fictitious domain
approach where the additional degrees of freedom are the Lagrange multipliers).

As has been noted by Areias and Belytschko [7], the method of [3] can be interpreted as an
extended finite element method (XFEM) method (which instead adds degrees of freedom in a
hierarchical fashion) by a reordering of the degrees of freedom. In this paper, we seize on the
hierarchical concept to construct a fictitious domain method which is formally identical to that of
[3] (thus benefitting from the optimal order error analysis therein) while still keeping the underlying
system matrix unchanged by the location of the boundary.

Our method shares some characteristics with the fat boundary method proposed by Maury [8],
which also makes use of an auxiliary band-like domain. However, in [8], the original Poisson
problem is recast on the continuous level and requires a fixed point iteration scheme to solve,
like in classical domain decomposition methods. In contrast, our method is defined on the discrete
level and can be solved monolithically.

2. MODEL PROBLEM AND FINITE ELEMENT SPACES

2.1. The continuous problem

As a model problem, we consider the Poisson equation

−�u = f in �, u =0 on ��, (1)

where � is a domain in R2 with polygonal boundary �� and f is a given forcing term. We embed
� in a larger rectangular domain �̂ so that � is completely contained in the interior on �̂. Finally,
we introduce a third domain �1 consisting of a band (the width of which may be mesh dependent)
whose outer boundary coincides with �� and whose inner boundary forms a line, denoted �, in the



Figure 2. Boundary and domain definitions.

interior of �. The remainder of � is denoted by �2 :=�\�1, cf. Figure 2). Clearly, the extension
to three dimensions is straightforward.

We now rephrase the problem (1) as an interface problem. For u in �1 ∪�2 we define the jump
of u on � by [u] :=u1|�−u2|�, where ui =u|�i is the restriction of u to �i . Conversely, for ui
defined in �i we identify the pair {u1,u2} with the function u which equals ui on �i . Then we
may formulate (1) as:

−�u = f in �1 ∪�2,

u = 0 on ��,

[u] = 0 on �,

[�nu] = 0 on �.

(2)

Here n is the outward pointing unit normal to �1 and �nv=n·∇v.
For a bounded open connected domain D we shall use standard Sobolev spaces Hr (D) with

norm ||·||r,D . The inner products in H0(D)= L2(D) are denoted as (·, ·)D .

2.2. Finite element spaces

Denote by T h
1 the triangulation of �1 and by T h

2 the triangulation of �̂. We shall make a discretiza-

tion on the whole of �̂ even though the solution has no physical significance outside ��. This
is in line with classical fictitious domain methods and means that the stiffness matrix assembled
from T h

2 remains fixed even if the domain should change, as it must do in many applications.
We will use the following notation for mesh-related quantities. Let hK be the diameter of an

element K ∈T h
i and h =maxK∈T h

i ,i=1,2 hK . To distinguish elements from the two meshes, we will

sometimes use indexed element notation Ki ∈T h
i for clarity. Furthermore, we introduce Gh as the

set of elements in T h
2 intersected by �,

Gh ={K ∈T h
2 : K ∩� �⊂∅},

and the corresponding mesh-dependent domain

�Gh =⋃
Gh

K .

We shall also need the mesh-dependent boundary ��Gh , which consists of the edges on elements
in Gh that form the boundary of �Gh . This boundary is also split in the part exterior to �, ��ext

Gh

and interior to �, ��int
Gh

.



The nodes on � of the elements in T h
1 , together with the points of intersection between elements

in T h
2 and �, define a partition of �, �=⋃

j∈Jh
� j . Note that each part � j belongs to two elements,

one from each mesh. We denote these elements by K j
1 and K j

2 , respectively. A local meshsize on
� is defined by:

h(x)=h
K j

1
, x ∈� j . (3)

For any element K ∈T h
i , let PK = K ∩�i denote the part of K in �i .

We make the following assumptions regarding the meshes:

A1: The triangulations are non-degenerate, i.e.

hK /�K �C ∀K ∈T h
i , i =1,2,

where hK is the diameter of K and �K is the diameter of the largest ball contained in K .
A2: The meshes have locally compatible meshsize over �. More precisely, let K j

1 ∈T h
1 and

K j
2 ∈T h

2 be the elements which contain a specific part � j of �. We assume that

ch
K j

1
�h

K j
2
�Ch

K j
1

∀ j ∈ Jh .

Here and below, C and c denote generic constants.
We shall seek a discrete solution U=(U1,U2,U3,U4) in the space V h=V h

1 ×V h
2 ×V h

3 ×V h
4 , where

V h
1 = {�∈ H1(�1) :�|K is a polynomial of degree p ∀K ∈T h

1 ,�|�� =0},
V h

2 = {�∈ H1(�̂) :�|K is a polynomial of degree p ∀K ∈T h
2 ,�|��̂ =0},

V h
3 = {�∈ H1(�Gh ) : �|K is a polynomial of degree p ∀K ∈Gh, �|��int

Gh
=0},

V h
4 = {�∈ H1(�Gh ) : �|K is a polynomial of degree p ∀K ∈Gh,�|��ext

Gh
=0}.

Note that functions in V h are, in general, discontinuous across �; the discontinuity is represented
by the hierarchical space V h

3 ×V h
4 . In Figure 3 we illustrate the concept: a discontinuous function

on a one-dimensional element occupying the domain (0,1) (solid line) can be written as the sum
of a continuous function (dashed line) from V 1

h and piecewise continuous functions which are zero
in the nodes of the element (dash-dotted line) from V h

3 and V h
4 .
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Figure 3. A discontinuous trial function and its split into a continuous and a discontinuous part.



2.3. The finite element method (FEM)

The method is defined by the variational problem: find U ∈V h such that

ah(U,�)= l(�) ∀�∈V h, (4)

where, if we denote �int
Gh

:=�Gh ∩�2 and �ext
Gh

:=�Gh \�int
Gh

,

ah(U,�) = (∇U1,∇�1)�1 +(∇U2,∇�2)�̂+(∇U2,∇�3)�int
Gh

+(∇U2,∇�4)�ext
Gh

+(∇U3,∇�3)�int
Gh

+(∇U4,∇�4)�ext
Gh

+(∇U3,∇�2)�int
Gh

+(∇U4,∇�2)�ext
Gh

−(�nU1, [�])�−([U ],�n�1)�+(�h−1[U ], [�])�,

l(�) = ( f,�1)�1 +( f,�2)�̂+( f,�3)�int
Gh

+( f,�4)�ext
Gh

,

with f extended, e.g. by zero outside �, and where h is the local meshsize (3). Here, the jump
[U ] is interpreted as U1 −(U2 +U3). The continuity conditions of u and �nu at � are satisfied
weakly by means of a variant of Nitsche’s method [6] for consistent weak enforcement of Dirichlet
boundary conditions. To ensure stability, the parameter � has to be taken sufficiently large, cf. [3].

In order to show consistency, we first have to define in what sense the method is consistent since
the bilinear form ah(·, ·) is defined also outside of �. Thus, we introduce a second bilinear form

ah
∗ (U,�)= (∇U,∇�)�1∪�2 −(�nU1, [�])�−([U ],�n�1)�+(�h−1[U ], [�])�,

and right-hand side

l∗(�)= ( f,�)�1∪�2 .

It is straightforward to show that the method analyzed in [3] would then read: find U∗ ∈V h

such that

ah
∗ (U∗,�)= l∗(�) ∀�∈V h, (5)

where U∗|�1 =U1, U∗|�2 =U2 +U3, �|�1 =�1 and �|�2 =�2 +�3, since we may ignore the
solution outside � we set �2|�̂\(�2∪�Gh

=0. Note that the integrals here are taken over only the

domain �, unlike the proposed method. However, since the solution is completely decoupled by
the cut, it does not matter what we do outside of the domain (e.g. how we extend f and how the
boundary conditions on ��̂ are specified). Explaining the method of Areias and Belytschko [7]
without the use of function spaces could be done as follows: only the standard FEM is used on the
mesh T h

1 on the band, and on the part of the mesh T h
2 on �̂ which is inside �. Cut the elements

of T h
2 intersecting � and discard all elements completely outside �. The solution on these two

meshes is then joined by Nitsche’s method.
In the next section we prove that indeed U∗ =U |� and hence the analysis of [3] carries over to

our formulation.

3. A PRIORI ERROR ESTIMATES

Consider the following mesh-dependent norms:

‖v‖2
1/2,h,� :=‖h(x)−1/2v‖2

0,� = ∑
j∈Jh

h−1
K j

1

‖v‖2
0,� j ,

‖v‖2
−1/2,h,� :=‖h(x)1/2v‖2

0,� = ∑
j∈Jh

h
K j

1
‖v‖2

0,� j ,



and

‖|v‖|2 :=‖∇v‖2
0,�1∪�2

+‖�nv1‖2
−1/2,h,�+‖[v]‖2

1/2,h,�.

Proposition 3.1
Let U denote the solution of (4) and U∗ the solution of (5). Then U |� =U∗.

Proof
The proof proceeds in three steps

1. Show the existence of a subspace Ṽh ⊂Vh such that

ah(U, �̃)=ah
∗ (U, �̃) and l(�̃)= l∗(�̃) ∀�̃∈ Ṽh .

2. Show that ∃�U ∈ Ṽh such that �U |� =U and that ∃�U∗ ∈ Ṽh such that �U∗ |� =U∗.
3. Apply coercivity and Galerkin orthogonality to the discrete error using the results of [3].

First, let

Ṽh :={�̃∈Vh : �̃2|�̂\(�2∪�ext
Gh

) =0 and �̃4|�ext
Gh

=−�̃2|�ext
Gh

}.

Since the integrals on � are the same in ah(·, ·) and ah∗ (·, ·) we only need to prove the equivalence
of the volume integrals. By using the decomposition �̂= �̂\(�2 ∪�ext

Gh
)⊕(�2 \�int

Gh
)⊕�int

Gh
⊕�ext

Gh
,

we may write for all �∈Vh

ah(U,�) = (∇U1,∇�1)�1 +(∇U2,∇�2)�̂\(�2∪�ext
Gh

) +(∇U2,∇�2)�2\�int
Gh

+(∇(U2 +U4),∇(�2 +�4))�ext
Gh

+(∇(U2 +U3),∇(�2 +�3))�int
Gh

+ B�(U,�), (6)

where B�(U,�) denotes the integrals over �. It then follows that for all �̃∈ Ṽh

ah(U, �̃) = (∇U1,∇�̃1)�1 +(∇U2,∇�̃2)�2\�int
Gh

+(∇(U2 +U3),∇(�̃2 +�̃3))�int
Gh

+ B�(U, �̃)

= (∇U1,∇�̃1)�1 +(∇(U2 +U3),∇(�̃2 +�̃3))�2 + B�(U, �̃)=ah
∗ (U, �̃). (7)

The equality l(�̃)= l∗(�̃) is shown in a similar fashion.
Second, observe that Ṽh only imposes constraints on components of the function outside �,

since the constraint on �2 in �int
Gh

is compensated for by the freedom of �3. Hence, the existence
of the sought �U and �U∗ .

Finally we recall the following coercivity result from [3], for some c>0 and for all v∈Vh there
holds

c‖|v‖|2�ah
∗ (v,v). (8)

In particular this holds for v=U −U∗ and hence, since �U −�U∗ ∈ Ṽh

c‖|U −U∗‖|2 � ah
∗ (U −U∗,U −U∗)=ah

∗ (U −U∗,�U −�U∗)

= ah(U,�U −�U∗)−ah
∗ (U∗,�U −�U∗)= l(�U −�U∗)−l∗(�U −�U∗)=0.

�
We have the following consistency relation.

Proposition 3.2
The discrete problem (4) is consistent in the sense that, for u solving (2) there holds

ah
∗ (u,�)= l∗(�) ∀�∈V h,



or, equivalently,

ah
∗ (u−U,�)=0 ∀�∈V h . (9)

The proof is given in [3].
We can now directly take advantage of the theory developed in [3] which shows that we have

optimal error estimates for any polynomial degree of the underlying FEM:

Theorem 3.3
For U solving (4) and u solving (2), the following a priori error estimates hold

‖|u−U‖|�Ch p|u|p+1,�, (10)

and

‖u−U‖0,��Ch p+1|u|p+1,�. (11)

We refer to [3] for the proof. Here we shall only point out one of the crucial points in the analysis.
Accuracy of the method is expressed by the orthogonality relation (9), but to show convergence
we also need stability of the discrete problem as expressed by (8). In order to show that our system
matrix is positive definite, we rely on the following inverse inequality, see, e.g. Warburton and
Hesthaven [9].

Lemma 3.4
For �∈V h , the following inverse inequality holds:

‖�n�1‖−1/2,h,��CI p‖∇�‖0,�1 .

The size of the constant CI can be found by solving a small local eigenvalue problem; explicit
bounds are discussed in [9]. The constant CI determines the size of �, we are obliged to take
�>C2

I p2 in order to ensure coercivity. Here is the point of the band: if we just cut the mesh
with �� and apply Nitsche’s method on the cut elements, sliver elements would be generated that
would require extremely large CI in Lemma 3.4, leading to severe ill conditioning of the discrete
system. We illustrate the problem in the case p=1. Thus, consider using only V h

1 and cutting the
mesh with ��. Then CI can be found, for a given element K as the largest eigenvalue �max in the
eigenproblem of finding U ∈V h

1 and �∈R such that

(h1/2
K �nU,�nv)K∩�� =�(∇U,∇v)K∩� ∀v∈V h

1 .

For p=1, ∇v is constant on each element and thus we have

‖�nv‖2
L2(K∩��) =meas(K ∩��)|�nv|2, (12)

where meas(·) denotes the length, area, or volume of the object in question, and

‖∇v‖2
L2(K∩�)�‖�nv‖2

L2(K∩�) =meas(K ∩�)|�nv|2 (13)

and it follows that

‖h1/2
K �nv‖2

L2(K∩��)�
hK meas(K ∩��)

meas(K ∩�)
‖∇v‖2

L2(K∩�), (14)

and thus we must choose

�>C2
I �

hK meas(K ∩��)

meas(K ∩�)
.



 KK∩Ω

∂Ω

Figure 4. An element cut by the boundary.

The situation is illustrated in Figure 4 where �� is represented by the dashed line. We note that
as �� moves to the left in Figure 4, the area meas(K ∩�) will approach zero, whereas the length
meas(K ∩��) remains bounded from below, which means that � must grow without bound. This
situation is remedied by inserting the band of elements between the cut and the boundary.

In Burman and Hansbo [10], where no band was used, this conditioning problem was instead
eliminated by the use of additional stabilizing terms, limiting the analysis to linear polynomials. In
the present formulation, we avoid the use of additional terms since the mesh on the band �1 is always
shape regular. We also remark in this context that the use of higher-order polynomials does not
require a curved interface since the interface is artificial. Thus, the interface can always be assumed
to be piecewise affine and no further complexity is introduced by higher-order approximations, cf.
also [3].

4. IMPLEMENTATION ASPECTS

The difference between the suggested approach and that of [3] is in the new hierarchical formulation.
Conceptually, this means that in the method of [3], there are only two finite element spaces: the
one on the band and the one inside the band consisting of elements up to the interface �. This
gives two sets of unknowns, u1 and u2 say, and the system of equations becomes[

S1 B

BT S2

][
u1

u2

]
=

[
f1

f2

]

where S1 is the stiffness matrix from the discretization on the band, S2 from the cut mesh, B
represents the coupling terms, and f1, f2 represents load terms. The degrees of freedom in u2
outside the cut can then be discarded already at the outset. One problem with this approach is
that all matrices B, S1, and S2 change if we want to move the interface. This could be in a
time-dependent problem, or if we want to use the scheme for the purpose of shape optimization.
In the present approach we instead obtain the system⎡

⎢⎢⎢⎢⎢⎣

S1 B12 B13 B14

BT
12 S2 B23 B24

BT
13 BT

23 S3 B34

BT
14 BT

24 BT
34 S4

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎥⎦



where S2 now denotes the stiffness matrix on the underlying mesh which does not change. Since
this matrix is by far the largest of the involved matrices, this means that we only have to recom-
pute small matrices (corresponding in a sense to the multiplier matrices of the original fictitious
domain method).

In our implementation, two different approximations of the interface have been used: the first
defining the approximation of � given by the piecewise affine (internal) boundary of T h

1 , the second
defined by the approximation of the intersection of � with the elements on T h

2 (which defines a
different affine approximation of �). The first has been used as a master surface for the integration
of jump and consistency terms and should also, for exactness, be used for the computation of the
bilinear form ah(·, ·). We have however, for simplicity, used the second affine approximation of the
interface for computing ah(·, ·) which removes some technical difficulties in the implementation
but introduces a conformity error. This error does not, however, affect the convergence rates in our
example below. For higher-order methods, the intersection of the meshes must be handled more
carefully, although, as noted above, the interface can remain piecewise affine since it is given by
the user-defined internal boundary of T h

1 .

0

log (h)

lo
g 

(e
rr

or
)

L2 error

H1 error

Figure 5. Convergence in broken H1 and L2 norms.

Figure 6. Elevation of the computed solution on �.



Figure 7. Elevation of the solution on �̂.

5. NUMERICAL EXAMPLE

We consider a problem posed on a disc of radius r0 =0.95. With r the length of the radius vector,
we use f =r to obtain the exact solution u =u = (r3

0 −r3)/9. The stabilization parameter was set
to �=10. In Figure 5 we show the obtained convergence rates in L2(�)- and H1(�)-norms, which
are optimal. An elevation of the solution is given in Figure 6, and an elevation of the solution on
the whole of �̂ is shown in Figure 7. Note that we have extended f =r to hold on the whole of
�̂ and imposed zero boundary conditions on ��̂. This is of no consequence since the solution is
decoupled at �.

6. CONCLUDING REMARKS

In this contribution we have shown that the NXFEM method is well suited for fictitious domain-
type simulations. It has optimal convergence for arbitrary polynomial order and does not require
Lagrange multipliers to enforce Dirichlet boundary conditions. Indeed, since the boundary condi-
tions are prescribed on a regular mesh, we can handle all types of boundary conditions in the
usual way.

Applications for the proposed method include shape optimization, where the boundary of the
domain has to be moved in order to calculate sensitivities, and for computations involving objects
moving across a background mesh in general.
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