Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2016

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

Résumé

Let $G$ be a graph and $\mathcal{S}$ be a subset of $Z$. A vertex-coloring $\mathcal{S}$-edge-weighting of $G$ is an assignment of weights by the elements of $\mathcal{S}$ to each edge of $G$ so that adjacent vertices have different sums of incident edges weights. It was proved that every 3-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} = \{1,2 \}$ (H. Lu, Q. Yu and C. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin., 32 (2011), 22-27). In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring $\mathcal{S}$-edge-weighting for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$. These bounds we obtain are tight, since there exists a family of infinite bipartite graphs which are 2-connected and do not admit vertex-coloring $\mathcal{S}$-edge-weightings for $\mathcal{S} \in \{ \{ 0,1 \} , \{1,2 \} \}$.
Fichier principal
Vignette du fichier
2775-9845-1-PB.pdf (217.3 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01352856 , version 1 (16-08-2016)

Identifiants

Citer

Hongliang Lu. Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights. Discrete Mathematics and Theoretical Computer Science, 2016, Vol. 17 no. 3 (3), pp.1-12. ⟨10.46298/dmtcs.2162⟩. ⟨hal-01352856⟩

Collections

TDS-MACS
57 Consultations
1000 Téléchargements

Altmetric

Partager

More