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NUMERICAL SOLUTION OF A TIME-DEPENDENT SIGNORINI CONTACT PROBLEM

The purpose of this work is to study the dynamic frictionless contact problem between an elastic body and a rigid foundation. In order to model the contact we consider Signorini conditions. A numerical algorithm is proposed to approximate the solution; the algorithm involves a contact multiplier, which is a fixed point of a nonlinear equation solved by using a generalized Newton method. We use one of the Newmark methods for time discretization and a finite element method for space discretization. The convergence of the method is numerically studied, and a simple test problem is used to validate the methodology.

1.

Introduction. Contact problems involving deformable bodies are present in many industrial processes, as well as in many aspects of everyday life. For this reason, in recent years they have been widely studied considering various constitutive laws and boundary conditions. Only some examples are the work of Kikuchi and Oden [START_REF] Kikuchi | Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[END_REF], as well as Chau et al. [START_REF] Chau | Dynamic frictionless contact problems with normal compliance[END_REF], Laursen and Chawla [START_REF] Laursen | Design of energy conserving algorithms for frictionless dynamic contact problems[END_REF], Bécache et al. [START_REF] Bécache | A new family of mixed finite elements for the linear elastodynamic problem[END_REF] or Khenous et al. [START_REF] Khenous | Comparison of two approaches for the discretization of elastodynamic contact problems[END_REF] and the references therein. This paper studies a particular case: a dynamic frictionless contact problem between a linearly elastic deformable body and a rigid foundation. The contact is modelled by using Signorini conditions. The problem is analyzed theoretically and numerically. An existence result is presented and a numerical algorithm is proposed to obtain approximate solutions. The paper is organized as follows. In Section 2 we describe the problem, the contact conditions considered, and the mathematical formulation related to it. In Section 3 we present the functional framework considered and we establish an existence result. Section 4 is devoted to the numerical solution of the two-dimensional problem: its variational formulation as an inequality; its discretization in space by a finite element method; the derivation of a formulation as an equality, by means of the inclusion of a contact multiplier; and the time discretization. Also in this section, an algorithm in time and space is proposed to compute an approximate solution of the problem. Finally, in Section 5 the algorithm is tested on a simple problem, and numerical evidence of the convergence of the algorithm is presented. The body is assumed to be subjected to volume forces of density f 0 . The boundary of the body is partitioned into three mutually disjoint parts: Γ C , Γ N and Γ D , the latter with positive measure, mes(Γ D ) > 0. The body is under traction forces of density f 1 on Γ N , the displacements of the solid are prescribed on Γ D , and Γ C is the potential contact surface where we consider Signorini contact conditions. We denote by n the unitary outward normal vector. Then, the contact problem can be posed as follows:

Problem (P): Find (u, σ) satisfying: ρü -divσ(u) = f 0 in Ω × (0, T ), ( 1 
)
σn = f 1 on Γ N × (0, T ), (2) 
u = 0 on Γ D × (0, T ), ( 3 
)
σ t = 0; σ n ≤ 0 on Γ C × (0, T ), ( 4 
)
u n ≤ 0; σ n u n = 0 on Γ C × (0, T ), (5) 
u(x, 0) = u 0 ; u(x, 0) = u 1 in Ω, (6) 
where

f 1 ∈ W 2,∞ (0, T ; [L 2 (Γ N )] n ∩ [H -1 2 (Γ)] n ), f 0 ∈ W 2,∞ (0, T ; [L 2 (Ω)] n
) and σ(u) = Λ -1 ε(u), Λ being the elasticity tensor assumed to be time independent, symmetric and coercive. The usual notations have been used for the displacements, u, the strain tensor, ε(u), and the stress tensor, σ; the first and second time derivative are noted by u and ü respectively. The initial conditions u 0 and u 1 are assumed to belong to [H 1 (Ω)] n and satisfying

divΛ -1 ε(u 0 ) ∈ [L 2 (Ω)] n .
3. Functional framework and existence of a solution. Let V be the space defined by

V = {v ∈ [H 1 (Ω)] n ; v = 0 on Γ D }, and
V ad = {v ∈ V ; v n ≤ 0 on Γ C }, the closed and convex subset of admissible displacements. We consider the space of the stress fields

X = {τ = (τ αβ ) ∈ [L 2 (Ω)] n 2 ; τ αβ = τ βα }, ( 7 
)
which endowed with the norm

τ X = Ω τ : τ dx 1/2 , ( 8 
)
is a Hilbert space, τ : τ being the natural scalar product in X.

Let E be the subspace of X defined by

E = {τ ∈ X; div(τ ) ∈ [L 2 (Ω)] n }, (9) 
which is also a Hilbert space with the norm

τ E = τ X + div(τ ) [L 2 (Ω)] n . ( 10 
)
Given any function f ∈ [L 2 (Γ N )] n , let E ad (f ) be the set of admissible stresses

E ad (f ) = {τ ∈ E; τ t = 0 and τ n ≤ 0 on Γ C ; τ n = f on Γ N }.
Theorem 1 (Existence of a solution). Under the previous hypotheses for f 0 and f 1 , there exists a solution (u, σ(u)) of Problem (P) verifying:

• u ∈ L ∞ (0, T ; V ad ), u ∈ L ∞ (0, T ; [L 2 (Ω)] 2 ), and ü ∈ D (0, T ; [L 2 (Ω)] 2 ).
• The stress tensor σ(u) belongs to D (0, T ;

E ad (f 1 )) ∩ L ∞ (0, T ; [L 2 (Ω)] 4 ).
A sketch of the proof for this result is given in [START_REF] Cao | Existence of solutions for a dynamic Signorini's contact problem[END_REF].

4. Numerical solution of the problem. In the Section, we focus on the numerical solution of the problem in a two-dimensional domain. An algorithm for the solution of the discrete problem, the basic ideas of which come from the existence proof, is proposed.

4.1. Variational formulation. Following standard variational techniques we get a formulation of Problem (P) as a variational inequality given by:

Problem (VP): Find u : [0, T ] → V ad and σ : [0, T ] → E verifying a.e. t ∈ (0, T ), Ω ρü • (v -u)dx + Ω σ(u) : ε(v -u)dx ≥ F (v -u), ∀v ∈ V ad , ( 11 
)
and the initial conditions [START_REF] Chau | Dynamic frictionless contact problems with normal compliance[END_REF]. The stress tensor is related to the deformation tensor by the constitutive law σ(u) = Λ -1 ε(u), and

F (v -u) = Ω f 0 • (v -u)dx + Γ N f 1 • (v -u)dγ. ( 12 
)
4.2. Space discretization and treatment of the contact conditions. Let T h be a triangular mesh of the two-dimensional domain compatible with the boundary partition. Given one edge e on the mesh induced by T h on the boundary, we denote by n e the unit outward normal to Ω at the middle point of e.

Let S h = {e i , 1 ≤ i ≤ m h } denote the edges on Γ C .
We consider the discrete space

V h = {v h ∈ [C 0 ( Ω)] 2 ; v h|K ∈ [P 1 (K)] 2 , ∀K ∈ T h ; v h = 0 on Γ D }, ( 13 
)
where P 1 (K) denotes the space of piecewise linear functions defined on the element K, and the subset of admissible discrete displacements

V ad h = {v h ∈ V h ; v h|e i • n e i ≤ 0, 1 ≤ i ≤ m h },
where v h|e i represents the value of v h at the middle point of e i . The discrete space considered for the stresses is given by:

E h = {σ h ; σ h|K ∈ [P 0 (K)] 4 , (σ h ) αβ = (σ h ) βα ∀K ∈ T h }, ( 14 
)
P 0 (K) being the space of constant functions on K.

The variational formulation (11) can now be discretized as:

Problem (VHP): Find u h : [0, T ] → V ad h and σ h : [0, T ] → E verifying a.e. t ∈ (0, T ), Ω ρü h • (v h -u h )dx + Ω σ h (u h ) : ε h (v h -u h )dx ≥ F h (v h -u h ), ∀v h ∈ V ad h , (15) F h being defined by F h (v h -u h ) = Ω f 0h • (v h -u h )dx + Γ N f 1h • (v h -u h )dγ, ( 16 
)
where f 0h and f 1h are the piecewise linear functions approximating f 0 and f 1 respectively. The discrete constitutive law is expressed as

σ h (u h ) = Λ -1 ε h (u h ) = λtr ε h (u h ) + 2μ ε h (u h ), (17) 
where ε h (u h ) is a function constant per element calculated as the linearized strain tensor associated with u h|K , and λ and μ are the Lamé parameters of the material.

Treatment of the contact conditions.

In this subsection, we obtain a formulation of the problem as a variational equality involving a contact multiplier p h , which is a fixed point of a nonlinear equation. To approximate this multiplier, we consider the spaces:

P h = {q h ∈ L ∞ (Γ C ); q h|e i ∈ P 0 (e i ), 1 ≤ i ≤ m h },
and

Q h = {q h ∈ P h ; q h|e i ≤ 0, 1 ≤ i ≤ m h }.
We also define the operator B : V h -→ P h given by:

B(v h ) = p h with p h|e i = v h|e i • n e i , 1 ≤ i ≤ m h .
Then, following the papers of Bermúdez & Moreno [START_REF] Bermúdez | Duality methods for solving variational inequalities[END_REF] and Barral & Quintela [START_REF] Barral | A numerical method for simulation of thermal stresses during casting of aluminium slabs[END_REF], where maximal monotone operator techniques and subdifferential operators theory are used, we derive the following equivalent formulation of Problem (VHP):

Problem (DVP): Find u h : [0, T ] → V ad h and σ h : [0, T ] → E h verifying a.e. t ∈ (0, T ), for all v h ∈ V h , Ω ρü h • v h dx + Ω σ h : ε h (v h )dx = F h (v h ) - Γ C p h B(v h )dγ, (18) 
p h = G λ c (B(u h ) + λ c p h ) , (19) 
together with the discrete initial conditions u 0h , u 1h and constitutive law (17). In (19), λ c is an arbitrary positive real parameter and G λ c (s) is defined by

G λ c (s) = 1 λ c s -Π Q h (s) , (20) 
Π Q h being the orthogonal projection operator over Q h . Note that

G λ c (s) = 0 if s ≤ 0, s λ c if s ≥ 0. (21) 
Then,

p h = 0 i f B(u h ) + λ c p h ≤ 0, 1 λ c B(u h ) + p h if B(u h ) + λ c p h ≥ 0. (22) 
4.4. Algorithm in space. To solve Problem (DVP) we propose an iterative algorithm based on a generalized Newton method. Given t ∈ [0, T ], and the initial values (u h0 , σ h0 , p h0 ), we compute successive approximations (u hk , σ hk , p hk ), k ≥ 1 of the dynamic solution (u h , σ h , p h ) at time t. To compute this approximation of the solution at iteration k, it is necessary to distinguish the effective contact region and its complement on Γ C . This is given by the following edge sets on the boundary:

Γ + C,k = {e i ∈ S h ; B(u hk ) + λ c p hk |e i > 0}, Γ - C,k = {e i ∈ S h ; B(u hk ) + λ c p hk |e i ≤ 0}. Now, from (22) we deduce that • B(u hk ) is approximated by zero if there exits contact, i.e., if e i ∈ Γ + C,k-1 . • p hk is approximated by zero on Γ - C,k-1 . 4.4.1.
Steps of the algorithm.

• Step 1: Given (u hk-1 , σ hk-1 , p hk-1 ), we compute (u hk , σ hk ) satisfying:

Ω ρü hk • v h dx + Ω σ hk : ε h (v h )dx= F h (v h ) (23) B(u kh )= 0 on Γ + C,k-1 , ( 24 
)
for all v h in V h , such that B(v h ) = 0 on Γ + C,k-1 . In practice, the second equation is introduced in the first one as a penalization term, so (u hk , σ hk ) will be the solution of

Ω ρü hk • v h dx + Ω σ hk : ε h (v h )dx + 1 Γ + C,k-1 B(u hk )B(v h )dγ = F h (v h ), ( 25 
)
for all v h in V h , being a small parameter.

• Step 2: Now, once computed (u hk , σ hk ) and since p hk = 0 on Γ - C,k-1 , from ( 19) and (25)we get that

p hk = 1 B(u hk ) on Γ + C,k-1 ,
and the sets Γ Then, we discretize equation (25) by using an implicit method of the Newmark family (see [START_REF] Hughes | The Finite Element Method[END_REF]), which consists of the following equations:

M ün+1 hk + (K + P n+1 k )u n+1 hk = F n+1 h , ( 26 
)
where M represents the mass matrix, K is the stiffness matrix, P is the penalization matrix coming from the integral on Γ + C,k-1 in equation ( 25) and F is the force vector. The relations between displacements, velocities and accelerations are given by:

u n+1 h = u n h + Δt un h + Δt 2 2 [(1 -2β)ü n h + 2β ün+1 h ], (27) 
un+1 h = un h + Δt[(1 -γ)ü n h + γ ün+1 h ]. ( 28 
)
The parameters β and γ take the values β = 1/4, and γ = 1/2 for which the method is unconditionally stable. From here on we omit the subscript k to simplify the notation. There are several possible implementations for Newmark methods. We consider the a-form which computes the acceleration at time t n+1 from the data of the previous steps. This form of implementation consists of the following three steps:

• Defining predictors: having determined the displacement, velocity and acceleration fields at time n, we define

ũn+1 h = u n h + Δt un h + Δt 2 2 (1 -2β)ü n h , ( 29 
) ũn+1 h = un h + (1 -γ)Δtü n h , ( 30 
)
which will be used to compute the acceleration at time n + 1. • Computing accelerations: rewriting (26) in terms of ũn+1 h defined by (29), we get an equation only in terms of ün+1 h and the predictors, so we solve

(M + βΔt 2 (K + P n+1 ))ü n+1 h = F n+1 h -(K + P n+1 )ũ n+1 h . ( 31 
)
• Computing velocities and displacements: from ( 27), ( 28), ( 29) and (30) we deduce that the displacement and velocity fields at time n + 1 are given by

u n+1 h = ũn+1 h + βΔt 2 ün+1 h , un+1 h = ũn+1 h + γΔtü n+1 h .
5. Numerical Results. In order to test the accuracy of the algorithm, we consider a simple test problem with a known solution and compute its numerical solution using the method described in the previous section.

We consider the two-dimensional domain Ω = [0, 0.5] × [0, 0.5] m 2 and the time interval [0, 2.e-06] s.

The material properties are the following:

• Young Modulus E = 7.41e+10 N/m 2 . • Poisson's coefficient: ν = 0.3302. • Density ρ = 2.7e+03 Kg/m 3 .
The contact boundary Γ C is considered to be the straight line [x 2 ≡ 0], Γ N = [x 2 ≡ 0.5] is the upper boundary, and

Γ D = Γ \ (Γ C ∪ Γ N )
. The problem to be solved is

ρü -divσ(u) = f 0 , in Ω × [0, 2.e-06], (32) 
σn = f 1 , on Γ N , ( 33 
) u = û, on Γ D , ( 34 
)
σ t = h, σ n ≤ 0, on Γ C , ( 35 
)
u n ≤ s(x 1 ), σ n (u n -s(x 1 )) = 0, on Γ C , ( 36 
) u(x, 0) = u 0 (x), u(x, 0) = u 1 (x), in Ω, (37) 
where s(x 1 ) is the initial gap between the deformable body and the rigid foundation given by

s(x 1 ) = ⎧ ⎨ ⎩ (0.3 -x 1 ) 3 if 0 ≤ x 1 ≤ 0.3, 0 i f 0 .3 ≤ x 1 ≤ 0.4, (x 1 -0.4) 3 if 0.4 ≤ x 1 ≤ 0.5.
Let {e 1 , e 2 } be the canonical basis for R 2 . Then, the volume and traction forces are given by As can be seen in Tables 1234, as the size of the mesh, h, decreases so does the relative error in the displacements, velocities, accelerations and stresses respectively. This convergence can also be perceived in Figure 3, where the graphic shows the t = 4.e-07 t = 8.e-07 t = 1.2e-07 t = 1.6e-07 t = 2.e-06 h = 0.0732 5.4410e-05 5.4443e-04 1.0896e-03 2.1819e-03 5.4752e-03 h = 0.0366 3.7908e-05 3.7955e-04 7.6015e-04 1.5244e-03 3.8410e-03 h = 0.0183 2.0618e-05 2.0647e-04 4.1355e-04 8.2928e-04 2.0844e-03 h = 0.0046 4.7353e-06 4.7385e-05 9.4748e-05 1.8881e-04 4.5545e-04 h = 0.0011 1.1837e-06 1.1753e-05 2.2956e-05 4.1675e-05 8.0119e-05 Table 2. Evolution of relative error in the velocities. convergence rate of the algorithm with respect to the mesh size. All these simulations have been made considering Δt = 2.e -08 and κ = 1.e + 3. The above algorithm behavior is reproduced when the acceleration increases, that is, for bigger values of κ 2 , as can be seen in Table 5, for κ = 1.e + 5. Similarly, in Table 6 we show that as the time step is reduced, so is the relative error in the displacements.

f 0 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 6A le 2 if 0 ≤ x 1 ≤ x 1 + l, -(λ + μ) l3 l 2 (3 l -4l)e 1 + 6x 2 A l2 l( l2 -4 ll + 2l 2 )e 2 if x 1 + l ≤ x 1 ≤ x 1 -l, 6Ale 2 if x 1 -l ≤ x 1 ≤ 0.5
Finally, Figure 4 illustrates the influence of the parameter κ on the errors for several Δt. The algorithm has been implemented in a software package named CRACKEW2D elaborated in MATLAB code and executed on a Pentium(R) 4, 3.00 GHz. Using a mesh of 32 elements (h = 0.0366) and a time step of 1.e-08 the CPU time needed was 0.4062 seconds and using a mesh of 512 elements (h = 0.0092) and the same time step, the CPU time needed was 1.2031 seconds.
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 5 Time discretization. To compute a numerical solution of the problem we discretize the equations in time. We consider a regular partition of the time interval [0, T ] in I subintervals such that t 0 = 0, t i+1 = t i + Δt, Δt = T I , i = 0, ..., I -1.

Figure 1 .

 1 Figure 1. Stresses of the computed solution plotted on the deformed mesh at initial and final instant.

t = 4 Table 4 .Table 5 .

 445 .e-07 t = 8.e-07 t = 1.2e-07 t = 1.6e-07 t = 2.e-06 h = 0.0732 4.0802e-01 4.0777e-01 4.0748e-01 4.0688e-01 4.0490e-01 h = 0.0366 2.8429e-01 2.8449e-01 2.8470e-01 2.8508e-01 2.8593e-01 h = 0.0183 1.5463e-01 1.5478e-01 1.5490e-01 1.5500e-01 1.5412e-01 h = 0.0046 3.5512e-02 3.5478e-02 3.5335e-02 3.4718e-02 3.0496e-02 h = 0.0011 8.8759e-03 8.6621e-03 8.0236e-03 7.0398e-03 5.0352e-03 Table3. Evolution of relative error in the accelerations. t = 4.e-07 t = 8.e-07 t = 1.2e-07 t = 1.6e-07 t = 2.e-06 h = 0.0732 5.4699e-01 5.4721e-01 5.4745e-01 5.4793e-01 5.4938e-01 h = 0.0366 3.1676e-01 3.1693e-01 3.1711e-01 3.1748e-01 3.1860e-01 h = 0.0183 1.6807e-01 1.6817e-01 1.6827e-01 1.6849e-01 1.6913e-01 h = 0.0046 4.3723e-02 4.3749e-02 4.3777e-02 4.3836e-02 4.4013e-02 h = 0.0011 1.1034e-02 1.1040e-02 1.1048e-02 1.1063e-02 1.1109e-02 Evolution of relative error in the stresses with κ = 1.e + 3. t = 2.e-08 t = 2.e-07 t = 4.e-07 t = 1.2e-06 t = 2.e-06 h = 0.0732 5.4938e-01 5.7166e-01 5.9735e-01 5.6776e-01 4.7492e-01 h = 0.0366 3.1860e-01 3.3628-01 3.5826e-01 3.7799e-01 3.0112e-01 h = 0.0183 1.6912e-01 1.7935e-01 1.9225e-01 2.1811e-01 1.6490e-01 h = 0.0046 4.4009e-02 4.6800e-02 5.0348e-02 5.9031e-02 4.3563e-02 h = 0.0011 1.1107e-02 1.1818e-02 1.2724e-02 1.5014e-02 1.1026e-02 Evolution of relative error in the stresses with κ = 1.e + 5.

Figure 3 .Table 6 .

 36 Figure 3. Convergence rate in the displacements, velocities, accelerations and stresses at the first time step with κ = 1.e + 3, Δt = 2.e -08.
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 4 Figure 4. Influence of Δt for different values of κ.
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 1 Evolution of relative error in the displacements.
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	t = 4.e-07 t = 8.e-07 t = 1.2e-07 t = 1.6e-07 t = 2.e-06
	h = 0.0732 5.4414e-09 5.4491e-07 2.1830e-06 8.7591e-06 5.5252e-05
	h = 0.0366 3.7910e-09 3.7980e-07 1.5223e-06 6.1139e-06 3.8674e-05
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	h = 0.0011 1.1838e-10 1.1810e-08 4.6747e-08 1.7872e-07 9.3406e-07
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and

l3 l 2 (3 l -4l)e 1 + (λ + 2μ) l4 l 3 e 2 if x 1 + l ≤ x 1 ≤ x 1l x 2 = 0.5, -3μ l2 e 1 if x 1l ≤ x 1 ≤ 0.5, x 2 = 0.5, for all t ∈ [0, 2.e-6], μ and λ being the Lamé parameters of the material related to the Young modulus and Poisson's coefficient by

To simplify the notation, we have denoted A = (κ 2 ρμ), l = 0.3κtx 1 and l = x 1 + κt -0.4 and κ is a real constant.

The friction force considered is

and the initial conditions are given by

With these data, the solution of problem (32)-(37) for û(0, x 2 , t) = (0.3κt) 3 e 2 , x 2 ∈ [0, 0.5], t ∈ [0, 2.e-06], û(0.5, x 2 , t) = (κt -0.4) 3 e 2 , x 2 ∈ [0, 0.5], t ∈ [0, 2.e-06], is

The computed solution for κ = 1.e + 5 is presented in Figure 1 at initial and final instants respectively.

Numerical Convergence.

In this section we demonstrate the convergence of the proposed algorithm for the above test problem. Firstly, in order to show the accuracy of the contact algorithm, we present in Figure 2 In the following, we present several tables showing the evolution of the relative error for each mechanical variable as the size of the mesh is reduced and as the size of the time step decreases.