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A NEW FORMULA FOR ζ(2n+ 1) AND (AND HOW NOT TO PROVE THAT ζ(5) IS

IRRATIONAL)

THOMAS SAUVAGET

Abstract. Using a new polylogarithmic identity, we express the values of ζ at odd integers 2n+1 as integrals

over unit n−dimensional hypercubes of simple functions involving products of logarithms. We also prove an

useful property of those functions as some of their variables are raised to a power. Finally, we discuss how
one attempt to adapt Beukers’s integral-based proof of the irrationality of ζ(2) and ζ(3) to the case of ζ(5)

fails.

1. Introduction

Are all values of Riemann’s ζ function irrational numbers when the argument is a positive integer ? This
question goes back to the XVIIIth century when Euler published in 1755, n being a positive integer, that

ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n)! (where B2n ∈ Q is an even Bernoulli number) and Lambert proved in 1761 that π

is irrational [11].

On the other hand, only in 1978 did Apéry [3] famously proved that ζ(3) is irrational. This was later
reproved in a variety of ways by several authors, in particular Beukers [6] who devised a simple approach
involving certain intergrals over [0, 1]3 (which will be recalled in section 3). The reader should consult Fichler’s
very informative Bourbaki Seminar [10] for more details and references. In the early 2000s, an important
work of Rivoal [15] and Ball and Rivoal [4] determined that an infinity of values of ζ at odd integers are
irrational, and the work of Zuidilin [18] proved that at least one among ζ(5), ζ(7), ζ(9) and ζ(11) is irrational.
Despite these advances, to this day no value of ζ(2n+ 1) with 2n+ 1 > 3 is known to be irrational.

One dimensional integral formulas for ζ(2n + 1) have been known for a long time, for instance the 1965
monograph of Abramowitz and Stegun [1] gives:

ζ(2n+ 1) = (−1)n+1 (2π)2n+1

2(2n+ 1)!

∫ 1

0

B2n+1(x) cot(πx)dx

While it bears a striking structural analogy with Euler’s formula for ζ(2n), it is not obvious how one might
try to prove or disprove that these numbers are irrational.

On the other hand, multidimensional integral formulas for ζ(2n + 1) are more recent: as mentionned by
Baumard in his PhD Thesis [5], quoting Zagier [17], it is Kontsevich in the early 1990s who found such a
type of formula for Multiple Zeta Values, which in the case of simple zeta boils down, for any odd or even k,
to:

ζ(k) =

∫ 1

0

dx1
x1

∫ x1

0

dx2
x2
· · ·
∫ xk−2

0

dxk−1
xk−1

∫ xk−1

0

dxk
1− xk

This is easily proved by expanding the integrand in geometric series and integrating. As remarked by
Silagadze [16], this can be rewritten more simply as a multidimensional integral over a unit hypercube:

ζ(k) =

∫
· · ·
∫

[0;1]k

dx1 · · · dxk
1− x1 · · ·xk

The author would like to thank the numerous contributors to useful freely available online knowledge resources, in particular
the arXiv, Wikipedia, the SagemathCloud, WolframAlpha, and Stack Exchange sites.
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This is much closer to the type of integrals that Beukers used, yet it is not clear how it might be adapted
directly to prove that zeta is irrational at odd integers.

One should mention that Brown [7] has in the past few years outlined a geometric approach to proving
the irrationality of all ζ(2n+ 1), which involves a generalization of Beukers method, see also the recent work
of Dupont [9]. This is an active subject of current research, indeed a Hot Topics Workshop on this circle of
ideas is due to be organized at MSRI in 2017.

In this work, we go along another path and prove new polylogarithmic identities which then allow to
write each ζ(2n + 1) as an alternating sign (−1)n+1 times a multiple integral over a n−dimensional unit
hypercube of certain functions involving logarithms (rather unsigned integrals over a (2n + 1)−dimensional
unit hypercube as in the previously mentionned formulas). These functions are shown to have an interesting
property: raising some of the variables to a power leads to a fractional multiple of ζ(2n+ 1) that belongs to
the interval ]0, ζ(2n+ 1)[. We also investigate a related family of integrals for n = 2 for which we formulate
some conjectures on their closed-form expression. These results and conjectures are the main aim of this
work. Additionaly we show how, assuming this on the one hand, and making some technical modifications
to the framework that Beukers had devised to prove the irrationality of ζ(2) and ζ(3) on the other hand, one
still cannot obtain even a conditional proof of the irrationality of ζ(5) in that setting.

It is rather curious that these precise identities and integrals seem not to have been considered before,
despite their simplicity. A search through the litterature did not return them (we have used the treatise of
Lewin [13] as well as the relevant page on functions.wolfram.com[14]) : identities involving polylogarithms of
different degrees are rather scarce, all the more so when all variables must be integers, and representations of
ζ(s) as multiple integrals over bounded domains, including some that have been worked out very recently by
Alzer and Sondow [2], only go as far as a double integrals. The idea to consider the formulas presented below
came to the author in a fortunate way after studying and trying to generalize an integral representation of

ζ(3) = 1
2

∫ 1

0
log(x)log(1−x)

x(1−x) dx established by Janous [12] (and mentionned by Alzer and Sondow, where the

author first learned about it), while the idea of trying to prove the irrationality of ζ(5) was a reaction to
a footnote in a section of the fine undergraduate book of Colmez [8] devoted to Nesterenko’s proof of the
irrationality of ζ(3).

2. Values of ζ at odd integers as multidimentional integrals
on unit hypercubes

Recall that the polylogarithm function of order s ∈ R is defined for z ∈ {z ∈ C, |z| < 1} by Lis(z) :=∑+∞
k=1

zk

ks (and is extented by analytic continuation to the whole complex plane). In particular it satisfies the
following well-known properties:

Lemma 2.1. For any positive integer n we have Lin(1) = ζ(n).

Lemma 2.2. For any integer n > 2 and real number x ∈]0,+∞[ we have ∂Lin
∂x (x) = Lin−1(x)

x . Moreover,
Li1(x) = −log(1− x).

The aim of this section is to establish the following results (which, to the best of our knowledge, are new).

Theorem 2.3. Let n be a positive integer, and for any integer 1 ≤ k ≤ n define Dk,n to be the set of all
ordered k-uplets j1 < · · · < jk of distinct integers taken in {1, . . . , n}. So #Dk,n =

(
n
k

)
.

Define for any (x1, . . . , xn) ∈]0, 1[n (the open unit hypercube of dimension n) the function Mn as

Mn(x1, . . . , xn) :=

n∑
i=1

(−1)i

 ∑
J∈Dn−i,n

∏
j∈J

log(xj)

Lin+i(

n∏
u=1

xu) + (−1)n+1Li2n+1(

n∏
u=1

xu)

Then we have
∂n

∂x1∂x2 · · · ∂xn
Mn(x1, . . . , xn) =

(
n∏
i=1

log(xi)

xi

)
log

(
1−

n∏
i=1

xi

)
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Corollary 2.4. Let n be a positive integer. Then the value of Riemann’s ζ function at odd integers is :

ζ(2n+ 1) = (−1)n+1

∫
· · ·
∫

[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

(
1−

n∏
i=1

xi

)
dx1 · · · dxn

Proof. For any positive integer n, the function Mn is at least Cn away from 1. As for the corresponding
(generalized) multiple integral, its integrand is C∞ away from 0 and 1, and the following will show the
integral exists.

The corollary follows immediately from lemma 2.1 and the property log(1) = 0. As for theorem 2.3, it is
a tedious undergraduate exercise in differentiation to which we now turn.

For sake of clarity let us first work out an example for a small value of n, say n = 4, to show the type of
cancellations that occur. For that case we have :

M4(x1, x2, x3, x4) := −log(x1)log(x2)log(x3)log(x4)Li5(x1x2x3x4)

+

(
log(x1)log(x2)log(x3)+log(x1)log(x2)log(x4)+log(x1)log(x3)log(x4)+log(x2)log(x3)log(x4)

)
Li6(x1x2x3x4)

−
(

log(x1)log(x2)+log(x1)log(x3)+log(x1)log(x4)+log(x2)log(x3)+log(x2)log(x4)+log(x3)log(x4)

)
Li7(x1x2x3x4)

+

(
log(x1) + log(x2) + log(x3) + log(x4)

)
Li8(x1x2x3x4)− Li9(x1x2x3x4)

So we find that :

∂M4

∂x1
(x1, x2, x3, x4) = −

(
log(x2)log(x3)log(x4)

x1
Li5(x1x2x3x4)︸ ︷︷ ︸

term A

+log(x1)log(x2)log(x3)log(x4)
Li4(x1x2x3x4)

x1x2x3x4
×x2x3x4

)

+

((
log(x2)log(x3)

x1
+

log(x2)log(x4)

x1
+

log(x3)log(x4)

x1

)
Li6(x1x2x3x4)︸ ︷︷ ︸

term B

+

(
log(x1)log(x2)log(x3)+log(x1)log(x2)log(x4)+log(x1)log(x3)log(x4)+log(x2)log(x3)log(x4)︸ ︷︷ ︸

cancels term A

)
Li5(x1x2x3x4)

x1x2x3x4
×x2x3x4

)

−

((
log(x2)

x1
+

log(x3)

x1
+

log(x4)

x1

)
Li7(x1x2x3x4)︸ ︷︷ ︸

term C

+

(
log(x1)log(x2)+log(x1)log(x3)+log(x1)log(x4)+log(x2)log(x3) + log(x2)log(x4) + log(x3)log(x4)︸ ︷︷ ︸

cancels term B

)
Li6(x1x2x3x4)

x1x2x3x4
×x2x3x4

)

+

(
1

x1
Li8(x1x2x3x4)︸ ︷︷ ︸

term D

+

(
log(x1)+log(x2) + log(x3) + log(x4)︸ ︷︷ ︸

cancels term C

)
Li7(x1x2x3x4)

x1x2x3x4
×x2x3x4

)
−Li8(x1x2x3x4)

x1x2x3x4
× x2x3x4︸ ︷︷ ︸

cancels term D

= −log(x1)log(x2)log(x3)log(x4)
Li4(x1x2x3x4)

x1

+

(
log(x1)log(x2)log(x3) + log(x1)log(x2)log(x4) + log(x1)log(x3)log(x4)

)
Li5(x1x2x3x4)

x1

−
(

log(x1)log(x2) + log(x1)log(x3) + log(x1)log(x4)

)
Li6(x1x2x3x4)

x1
+ log(x1)

Li7(x1x2x3x4)

x1
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Taking now the derivative of this with respect to x2 we find :

∂2M4

∂x2∂x1
(x1, x2, x3, x4) = −

(
log(x1)log(x3)log(x4)

x2

Li4(x1x2x3x4)

x1︸ ︷︷ ︸
term E

+log(x1)log(x2)log(x3)log(x4)
Li3(x1x2x3x4)

x1x2

)

+

((
log(x1)log(x3)

x2
+

log(x1)log(x4)

x2

)
Li5(x1x2x3x4)

x1︸ ︷︷ ︸
term F

+

(
log(x1)log(x2)log(x3) + log(x1)log(x2)log(x4) + log(x1)log(x3)log(x4)︸ ︷︷ ︸

cancels term E

)
Li4(x1x2x3x4)

x1x2

)

−

((
log(x1)

x2

Li6(x1x2x3x4)

x1︸ ︷︷ ︸
term G

+

(
log(x1)log(x2)+log(x1)log(x3) + log(x1)log(x4)︸ ︷︷ ︸

cancels term F

)
Li5(x1x2x3x4)

x1x2

)
+log(x1)

Li6(x1x2x3x4)

x1x2︸ ︷︷ ︸
cancels term G

= −log(x1)log(x2)log(x3)log(x4)
Li3(x1x2x3x4)

x1x2
+

(
log(x1)log(x2)log(x3)+log(x1)log(x2)log(x4)

)
Li4(x1x2x3x4)

x1x2

−log(x1)log(x2)
Li5(x1x2x3x4)

x1x2
Differentiation of that result with respect to x3 leads to :

∂3M4

∂x3∂x2∂x1
(x1, x2, x3, x4) = −

(
log(x1)log(x2)log(x4)

x3

Li3(x1x2x3x4)

x1x2︸ ︷︷ ︸
term H

+log(x1)log(x2)log(x3)log(x4)
Li2(x1x2x3x4)

x1x2x3

)
((

log(x1)log(x2)

x3

)
Li4(x1x2x3x4)

x1x2︸ ︷︷ ︸
term I

+

(
log(x1)log(x2)log(x3) + log(x1)log(x2)log(x4)︸ ︷︷ ︸

cancels term H

)
Li3(x1x2x3x4)

x1x2x3

)

− log(x1)log(x2)
Li4(x1x2x3x4)

x1x2x3︸ ︷︷ ︸
cancels term I

= −log(x1)log(x2)log(x3)log(x4)
Li2(x1x2x3x4)

x1x2x3
+ log(x1)log(x2)log(x3)

Li3(x1x2x3x4)

x1x2x3
And finally differentiating this previous result with respect to x4 we find :

∂4M4

∂x4∂x3∂x2∂x1
(x1, x2, x3, x4) = −

(
log(x1)log(x2)log(x2)

x4

Li2(x1x2x3x4)

x1x2x3︸ ︷︷ ︸
term J

+log(x1)log(x2)log(x3)log(x4)
Li1(x1x2x3x4)

x1x2x3x4

)

+ log(x1)log(x2)log(x3)
Li2(x1x2x3x4)

x1x2x3x4︸ ︷︷ ︸
cancels term J

= −
4∏
i=1

log(xi)

xi
Li1(

4∏
i=1

xi)

and by using the second statement of lemma 2.2 this concludes the proof of the n = 4 case.

Notice in the previous computations the telescopic structure of the cancellations. The general case proceeds
in a similar fashion to that of n = 4, except it is a bit cumbersome to now make the cancellations explicit.
Namely, differentiating Mn with respect to x1 one finds :
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∂Mn

∂x1
(x1, . . . , xn) =

n∑
i=1

(−1)i

(( ∑
J∈D∗(1)

n−i,n

1

x1

∏
j∈J

log(xj)

)
Lin+i(

n∏
k=1

xk)+

( ∑
J∈Dn−i,n

∏
j∈J

log(xj)

)
Lin+i−1(

∏n
k=1 xk)

x1

)
+(−1)n+1 Li2n(

∏n
k=1 xk)

x1

where D
∗(1)
n−i,n denotes elements of the set Dn−i,n where 1 is not in the (n− i)-uplet, so this is also exactly the

set of ordered (n− i− 1)-uplets of distinct elements taken in the set {2, . . . , n}, and so we have the inclusion

D
∗(1)
n−i,n ⊂ Dn−i−1,n. Hence the telescopic cancellations witnessed in the case n = 4 occur between terms of

two consecutive values of i. The remaining differentiations with respect to the other variables ultimately lead

to the desired expression. Thus we have an explicit antiderivative of
(∏n

i=1
log(xi)
xi

)
log (1−

∏n
i=1 xi) and it

is clear from its expression that the generalized integral exists. This finishes the proof. �

The second pair of results is an extension of the previous one:

Theorem 2.5. Let n and r be positive integers, and for any integer 1 ≤ k ≤ n define Dk,n to be the set of
all ordered k-uplets j1 < · · · < jk of distinct integers taken in {1, . . . , n}. So #Dk,n =

(
n
k

)
.

Define for any (x1, . . . , xn) ∈]0, 1[n (the open unit hypercube of dimension n) the function Nn,r as

Nn,r(x1, . . . , xn) :=

n∑
i=1

(−1)irn+1−i

 ∑
J∈Dn−i,n

∏
j∈J

log(xj)

Lin+i(

(
n∏
u=1

xu

)r
) + (−1)n+1Li2n+1(

(
n∏
u=1

xu

)r
)

Then we have

∂n

∂x1∂x2 · · · ∂xn
Nn,r(x1, . . . , xn) = r2n

(
n∏
i=1

log(xi)

xi

)
log

(
1−

(
n∏
i=1

xi

)r)
Corollary 2.6. Let n and r be positive integers. Then we have:

ζ(2n+ 1)

r2n
= (−1)n+1

∫
· · ·
∫

[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

(
1−

(
n∏
i=1

xi

)r)
dx1 · · · dxn

Proof. It is a simple variant of the one for the first pair of results. We show simply the case n = 2, r > 1 to
illustrate the new cancelations.

By definition we have N2,r(x, y) = −r2log(x)log(y)Li3((xy)r) + r (log(x) + log(y)) Li4((xy)r)−Li5((xy)r).

So we get:

∂N2,r

∂x
(x, y) = −r

2

x
log(y)Li3((xy)r)︸ ︷︷ ︸

term A

−r2log(x)log(y)
Li2((xy)r)

(xy)r
r(xy)r−1y

+
r

x
Li4((xy)r)︸ ︷︷ ︸
term B

+r

log(x) + log(y)︸ ︷︷ ︸
cancels term A

 Li3((xy)r)

(xy)r
r(xy)r−1y−Li4((xy)r)

x
r︸ ︷︷ ︸

cancels term B

= −r3log(x)log(y)
Li2((xy)r)

x
+ r2

log(x)

x
Li3((xy)r)

And differentiating this with respect to y we do get −r4 log(x)
x

log(y)
y log(1− (xy)r). �
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Remark 2.7. If in 2.6 we choose r such that there exists an integer q satisfying r = 7q then we have:

0 < (−1)n+1

∫
· · ·
∫

[0;1]n

(
n∏
i=1

log(xi)

xi

)
log

1−

(
n∏
i=1

xi

)7q
 dx1 · · · dxn =

ζ(2n+ 1)

(7q)2n
<

(
1

7

)nq
.

3. How not to prove the irrationality of ζ(5)

First let us recall the standard irrationality criteria of Dirichlet :

Lemma 3.1. (Dirichlet, 1848) α ∈ R\Q⇔ ∀ε > 0 ∃p ∈ N ∃q ∈ Q such that |pα− q| < ε.

In 1979, shortly after Apéry presented his proof of the irrationality of ζ(2) and ζ(3), Beukers [6] found
another proof using Dirichlet’s criteria applied to some particular integral representations of those two num-
bers. We quickly summarize the strategy as follows (the author also benefited from the extremely clear slides
of Brown [7]).

• step 1: we have
∫ 1

0

∫ 1

0
−log(xy)
1−xy dxdy = 2ζ(3) and for any integer r ≥ 1 we have

∫ 1

0

∫ 1

0
−log(xy)
1−xy (xy)rdxdy =

2
(
ζ(3)− 1

13 − · · · −
1
r3

)
≤ 2ζ(3)

• step 2: by denoting a Legendre-type polynomial Pk(x) := 1
k!

{
d
dx

}k
xk(1 − xk) ∈ Z[X] and using

the previous step we have Ik :=
∫ 1

0

∫ 1

0
−log(xy)
1−xy Pk(x)Pk(y)dxdy = Ak+Bkζ(3)

d3n
with Ak, Bk ∈ Z and

dk := lcm(1, . . . , k)

• step 3: by the Prime Number Theorem we have for any integer k ≥ 1 that dk < 3k

• step 4: we have
∫ 1

0
1

1−(1−xy)zdz = − log(xy)
1−xy

• step 5: by integration by parts one finds also that Ik =
∫ 1

0

∫ 1

0

∫ 1

0

(
x(1−x)y(1−y)z(1−z)

1−(1−xy)z

)k
dxdydz

1−(1−xy)z

• step 6: we can bound uniformly for 0 ≤ x, y, z ≤ 1 one part of the integrand x(1−x)y(1−y)z(1−z)
1−(1−xy)z ≤

(
√

2− 1)4 < 1
2 (this is the reason for introducing Pk rather than working with the integrand of step

1 where (xy)r can only be bounded by 1)

• step 7: by using most of the previous steps we find 0 <
∣∣∣Ak+Bkζ(3)

d3k

∣∣∣ ≤ 2ζ(3)(
√

2− 1)4k

• step 8: using now the information on the growth of dk, so of d3k too, we get 0 < |Ak +Bkζ(3)| ≤
(
4
5

)k
,

which concludes the proof by Dirichlet’s criteria.

Unfortunately in the ensuing years and decades no tweak to that strategy could be made to work for
values of ζ at other odd integers. In what follows we shall use our results from the previous section as well
as some conjectures on a closed-form expression for another family of integrals, to show that inserting that
with straighforward modifications into Beukers’s strategy does not lead to a proof that ζ(5) is irrational.

Indeed, we now make the following observations:

Conjecture 3.2. Let n ≥ 2 and k ≥ 1 be integers. Then:
(i) there exists two sequences of positive integers (ak)k∈N∗ and (bk)k∈N∗ such that for all k ≥ 3 we have

0 < ak < bk < ((2k + 1)!)11 and gcd(ak, bk) = 1 and∫
· · ·
∫

[0;1]2

log(x)log(y)log(1− (xy)1)

xy
log(x)log(y)(xy)2k+1dxdy =

4π6

33 · 5 · 7 · (2k + 1)
+

4π4

32 · 5 · (2k + 1)3
+

2π2

3 · (2k + 1)5
+

4ζ(5)

(2k + 1)2
+

4ζ(3)

(2k + 1)4
− ak
bk
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(ii) there exists two sequences of integers (ck)k∈N∗ and (dk)k∈N∗ such that for all k ≥ 5 we have 0 < ck <
dk < ((2k + 1)!)11 and gcd(ck, dk) = 1 and∫

· · ·
∫

[0;1]2

log(x)log(y)log(1− (xy)2)

xy
log(x)log(y)(xy)2k+1dxdy =

π6

23 · 3 · 5 · (2k + 1)
+

π4

22 · 3 · (2k + 1)3
+

π2

(2k + 1)5
+

8log(2)

(2k + 1)6
+

31ζ(5)

4(2k + 1)2
+

7ζ(3)

(2k + 1)4
− ck
dk

(iii) more generally for each integer r ≥ 3 there exists two sequences of integers (u
(r)
k )k∈N∗ and (v

(r)
k )k∈N∗

such that for all k ≥ 2r + 1 we have 0 < u
(r)
k < v

(r)
k < ((2k + 1)!)11 and gcd(u

(r)
k , v

(r)
k ) = 1 and:∫

· · ·
∫

[0;1]2

log(x)log(y)log(1− (xy)r)

xy
log(x)log(y)(xy)2k+1dxdy =

α(r)π6

β(r) · (2k + 1)
+

γ(r)π4

δ(r)(2k + 1)3
+

η(r)π2

κ(r)(2k + 1)5
+

λ(r)log(r)

µ(r)(2k + 1)6
+

ν(r)ζ(5)

ρ(r)(2k + 1)2
+

τ (r)ζ(3)

ω(r)(2k + 1)4
−
u
(r)
k

v
(r)
k

where the positive integers α(r), β(r), γ(r), δ(r), η(r), κ(r), λ(r), µ(r), ν(r), ρ(r), τ (r) and ω(r) depend only
on r.

Remark 3.3. For cases (i) and (ii) this is based on observations for k up to 7, and (iii) is purely based on
observation of features of the previous two. Unfortunately, it is beyond the mathematical ability of the author
to establish any of them.

Our estimates for the bounds on bk and dk (and thus also v
(r)
k ) are very conservative and based on the

following observations:

k bk dk

1 2436 = 3!× 2335 35 = 3!× 34

2

2 2103657 = 5!× 273556 3657 = 5!× 3556

23

3 210365677 = 7!× 26345576 365677 = 7!× 345576

24

4 2163135676 = 9!× 29395575 3115676 = 9!× 375575

27

5 2163125576117 = 11!× 28385375116 3125676117 = 11!× 385475116

28

6 2163125476116137 = 13!× 26375275115136 3125676116137 = 13!× 375475115136

210

7 2173125577116136 = 15!× 26365275115135

Now, define for positive integers q the numbers:

Jq :=

∫
· · ·
∫

[0;1]2

log(x)log(y)log(1− (xy)7
q

)

xy
log(x)log(y)(xy)2·7

q+1dxdy

−
(

α(7q)π6

β(7q) · (2 · 7q + 1)
+

γ(7
q)π4

δ(7q)(2 · 7q + 1)3
+

η(7
q)π2

κ(7q)(2 · 7q + 1)5
+

λ(7
q)log(7q)

µ(7q)(2 · 7q + 1)6
+

τ (7
q)ζ(3)

ω(7q)(2 · 7q + 1)4

)

From our evidence-based conjectures we have that Jq = ν(7q)ζ(5)
ρ(7

q)(2·7q+1)2
− u

(7q)
k

v
(7q)
k

. So, using the triangle

inequality on the definition of Jq, there also exists some real number T7q > 0 such that one can bound as
follows:
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Jq ≤ Sup{|log(x)log(y)(xy)2·7
q+1| where 0 ≤ x, y ≤ 1}︸ ︷︷ ︸

< 1
e<1

×

∣∣∣∣∣∣∣
∫
· · ·
∫

[0;1]2

log(x)log(y)log(1− (xy)7
q

)

xy
dxdy

∣∣∣∣∣∣∣+
T7q

2 · 7q

<
ζ(5)

(7q)4
+

T7q

2 · 7q
=

1

7q

(
ζ(5)

(7q)3
+
T7q

2

)
<

1

7q
(1 + T7q )

So recapitulating we have shown so far that:

0 <

∣∣∣∣∣v(7
q)

k ν(7
q)ζ(5)− ρ(7q)(2 · 7q + 1)2u

(7q)
k

ρ(7q)(2 · 7q + 1)2v
(7q)
k

∣∣∣∣∣ < 1

7q
(1 + T7q )

To conclude on the irrationality of ζ(5) one would thus need that for any given ε ∈]0, 1[ there exists some
q such that:

ρ(7
q)(2 · 7q + 1)2v

(7q)
k

7q
(1 + T7q ) < ε

which is patently not the case (whatever the precise growth rate of T7q may be).

Remark 3.4. There might still be a way to use those results and conjectures differently so as to obtain the
irrationality of ζ(5), but the author was not able to find it.
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