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Sharpening methods for finite volume schemes

B. Després∗, S. Kokh†and F. Lagoutière‡

August 8, 2016

Abstract

We review sharpening methods for finite volume schemes, with an em-
phasis on the basic structure of sharpening methods. It covers high order
methods and non linear techniques for linear advection, Glimm’s method,
anti-diffusion techniques, the interaction of these techniques with the PDE
structures. Additional approaches like level sets, interface reconstruction
and Vofire are also discussed. We also present the algorithmic structure
of the downwind method for a simple two components problem.

keywords Sharpening methods, Finite Volume schemes, anti-diffusion, in-
terface tracking.

1 Introduction

The present paper deals with sharpening methods for finite volume schemes
(FV) understood as discretization strategies for the enhancement of sharp pro-
files in numerical simulations. We restrict the scope to finite volume schemes
since they are the numerical method of choice for compressible computation
fluid dynamics where the exact or approximate solutions may exhibit strong
gradients that account for shocks or contact discontinuities.

We will more specifically focus on the calculations of interfaces associated
with linearly degenerate fields (contact discontinuities), material contact discon-
tinuities or free boundaries that are tracked across the computational domain.
Although we shall consider numerical methods that are compliant with shock
capturing, we shall not discuss the approximations of shocks in this paper.

Interface tracking has motivated a considerable amount of contributions
since the early days of scientific computing and numerical analysis. There-
fore reviewing exhaustively all the methods that have been published to date
seems quite unrealistic and we apologize in advance to the community for all
the works that will not be mentioned in the sequel. We propose to sketch a
map of these methods by relying on mathematical and algorithmic arguments
that can be used to analyze the efficiency. We hope that this effort may also
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help classifying the methods that will not be discussed in this document and
help understanding the sharpening mechanisms at play within the numerical
schemes that are available in the literature.

The paper is organized as follows. Most of the common material (that is
high order and nonlinear techniques, the Glimm’s scheme, the notion of anti-
diffusion, level-sets, multidimensional issues) is presented for linear equations
in section 2. The introduction of sharpening methods in nonlinear systems is
evoked in section 3. References are provided inside the text.

2 Sharpening methods for linear equations

Sharpening methods for linear equations use two important generic ideas: the
first one is to use high order schemes, and it may seem paradoxical at first
sight; the second idea is based on compression with nonlinear techniques; other
strategies rely on the Glimm’s scheme, on PDEs to represent the interface, or
reconstruct locally as in the volume of fluid (VOF) method. Most of the ideas
can be presented on the advection equation with velocity u ∈ R, which serves
as a model problem. It writes

∂tc(t, x) + u∂xc(t, x) = 0, x ∈ R, t > 0,

together with a Cauchy datum c(0, x) = cini(x).

2.1 High order methods

References to high order discretization of nonlinear equations are [Tor97, RTT08,
TT07, TT05]. The fact that high order methods have the ability to sharpen
discontinuities is kind of a paradox. Indeed, local Taylor expansions show bad
convergence behavior for profiles involving discontinuities or strong gradients.

We give hereafter a simple explanation of the corresponding sharpening
based on the theory of linear Strang’s stencils. Let ∆t > 0 and ∆x be re-
spectively the time and space steps. We consider a series of instants tn = n∆t
and the classical discretization of the real line into intervals [xj−1/2, xj+1/2],
whereby xj = j∆x and xj+1/2 = (j + 1/2)∆x. We note cnj an approximation of
c at instant tn within the cell [xj−1/2, xj+1/2] and set cn = (cnj ). The initial nu-

merical datum can be taken as c0j = cini(xj) (this is especially done when dealing

with smooth solutions and high order methods) or c0j =
∫ xj+1/2

xj−1/2
cini(x) dx/∆x

(usually when dealing with non-smooth data). The analysis is here limited to
explicit and compact schemes with a stencil of p+ 1 contiguous cells. In a sim-
plified finite difference form on a Cartesian grid, the family of linear schemes
may read

cn+1
j =

k∑
r=k−p

αrc
n
j+r, αr = αr(ν). (1)

The coefficients αr are functions of the Courant-Friedrichs-Lewy (CFL) number
ν = u∆t/∆x. It is possible to write a scheme with order p in time and space
using (1). Once p has been chosen, k determines the shift of the scheme. Basic
examples are the well-known upwind scheme cn+1

j = (1 − ν)cnj + νcnj−1, when
(p, k) = (1, 0), α−1 = ν and α0 = 1 − ν, the Lax-Wendroff scheme [LW60]
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cn+1
j = HLW(cn)j = (1−ν2)cnj + ν+ν2

2 cnj−1+ ν2−ν
2 cnj+1, with (p, k) = (2, 1), α−1 =

(ν2 + ν)/2, α0 = 1 − ν2 and α1 = (ν2 + ν)/2, and the Beam-Warming scheme

[WB76]: cn+1
j = HBW(cn)j =

(
1− 3

2ν + 1
2ν

2
)
cnj + (2ν − ν2)cnj−1 + ν2−ν

2 cnj−2,

with (p, k) = (2, 0), α−2 = (ν2−ν)/2, α−1 = 2ν− ν2 and α0 = 1−3ν/2 + ν2/2.
Under the hypothesis that

∑
r αr = 1, which is a natural assumption that

ensures the conservativity of the algorithm, these schemes may be rewritten
also as finite volume methods in their classical form

cn+1
j − cnj

∆t
+ u

cn
j+ 1

2

− cn
j− 1

2

∆x
= 0. (2)

The conversion between the two forms is let to the reader because it does not
have impact on the following discussion. A third order in time and space O3
scheme (p, k) = (3, 1) is defined by a convex combination [Des08] of the Lax-
Wendroff scheme and the Beam-Warming scheme: cn+1

j = (1 − α)HLW(cn)j +

αHBW(cn)j with α = 1+ν
3 . The seminal works of Iserles and Strang [Str68, IS83]

show that the order in time and space, p, can be arbitrary large. Nevertheless,
the only pairs (p, k) for which there exists schemes such that the l2 norm is non-
increasing at any iterate for all ν ≤ 1 are p = 2k + 1, p = 2k and p = 2k + 2.
In the following, we call IS-schemes such schemes.
The stability in L1 of IS-schemes has been given in [Des09]: Assume moreover
the order is odd, that is p = 2k + 1. Then the scheme is stable in all Lq: there
exists a constant Dp > 0 such that ||cn||Lq ≤ Dp||c0||Lq ∀n, ∀ν ∈]0, 1], ∀c0 and
∀q ∈ [1,∞].
Equipped with these fundamental results, a convergence result that provides a
sharp convergence estimate for an initial datum with bounded variation (BV
datum) can be stated [Des08]. The proof is done by regularization of the BV
profile and use of the L1 stability. In this result, cn is to be understood as the
constant by cell function that takes the value cnj in the cell number j, namely
[(j − 1/2)∆x, (j + 1/2)∆x).

Theorem 1. Assume cini ∈ L∞ ∩ BV (in space dimension 1, this is just the
BV space). Consider an IS-scheme, with p = 2k+ 1 odd. Assume ν ≤ 1. Then

||cn − c(n∆t)||L1 ≤ Cp|cini|BV
(
∆xaT b + ∆x

)
(3)

with a = p
p+1 and b = 1

p+1 .

Here, as the estimate is for non-smooth data and thus is of order less than 1,
the initial numerical datum can be chosen both as point values or mean values.

Using very high order schemes means choosing p very large. In this case
p
p+1 is very close to 1. This is optimal because an error of order 1 is what we
get by a 1 cell translation of the Heavyside function. In a nutshell: very high
odd order advection schemes have nearly optimal order of convergence in L1

even for discontinuous initial data. It means that the very high order feature of
such schemes is able to sharpen discrete profiles with strong gradients. Perhaps
even more important for applications is the very small dependence with respect
to the time T since 1

p+1 is close to zero for large p. This means that the
difference between the true solution and the numerical solution does not evolve
significantly in time. That is the sharpening effect is time independent. This
theoretical behavior is the solution of the apparent paradox explained at the
beginning of the section.
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Nevertheless the drawbacks of these high orders (linear) FV methods is that
they do not satisfy the maximum principle, according to a well-known theorem
by Godunov.

2.2 Compression within a BV setting

It is known since [Har84, YWH84] and [lR77] that the bounded variation (BV)
setting is a convenient framework of the construction of numerical nonlinear
FV schemes with good sharpening properties. For one-dimensional problems
the BV setting is strongly related to the preservation of the maximum principle
[Roe85, Swe84, Swe85]. In some cases the sharpening effect is so pronounced
that it is called squaring.

The general situation can be explained a follows. Consider the FV formula-
tion

cn+1
j − cnj

∆t
+ u

cn
j+ 1

2

− cn
j− 1

2

∆x
= 0, u > 0. (4)

Scheme (4) can be recast into

cn+1
j = cnj − ν

(
cnj+ 1

2
− cnj− 1

2

)
, ν = u

∆t

∆x
. (5)

The numerical fluxes cn
j+ 1

2

are yet to be defined at this point of the construction.

The design principle is to impose the maximum principle under the form

min(cnj , c
n
j−1) ≡ mn

j−1/2 ≤ c
n+1
j ≤Mn

j−1/2 ≡ max(cnj , c
n
j−1), (6)

which is legitimate for advection to the right. If the advection is to the left
(u < 0) one takes min(cnj , c

n
j+1) ≡ mn

j+1/2 ≤ cn+1
j ≤ Mn

j+1/2 ≡ max(cnj , c
n
j+1).

We consider the classical formula (see [Swe84])

cnj+ 1
2

= cnj +
1

2
(1− ν)(cnj+1 − cnj )ϕnj+ 1

2
, ∀j. (7)

where the correction factor ϕn
j+ 1

2

is a limiter or slope limiter. It is usually

defined as a function of the local slope ratio

ϕnj+ 1
2

= ϕ(rnj+ 1
2
), rnj+ 1

2
=
cnj − cnj−1

cnj+1 − cnj
.

There are natural additional constraints for the definition of the slope limiter.
A first one writes ϕ(1) = 1: it gives back the Lax-Wendroff flux in case r = 1,
and, generally, the second order when the datum is smooth. A second constraint
can be ϕ(r) = 0 for any r ≤ 0: this is a way to enforce a local preservation
of the maximum principle, this is explained in the classical textbook [Tor97].
Another idea could be to add ϕ(r) = rϕ

(
1
r

)
[Tor97]. There are variants where

these conditions are relaxed, see for example [DM96, SST15].
Most of the formulas published in the literature make use of the minmod

function. Its value is given as follows: if ab ≤ 0 then minmod(a,b) = 0;
if a > 0 and b > 0, then minmod(a,b) = min(a,b); if a < 0 and b < 0,
then minmod(a,b) = max(a,b). Then the multidimensional function minmod :
Rp → R is defined recursively for p ≥ 2 independently of the ordering by

minmod(a) = minmod(minmod(b), c)) for a = (b, c) ∈ Rp, b ∈ Rp−1, c ∈ R.
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A first classical result is that if the slope limiter satisfies

0 ≤ ϕ(r) ≤ 2minmod (1, r) (8)

then the scheme (4) with the flux (7) satisfies the maximum principle. Even
if this is a very classical result, we provide a proof since it will explain how to
modify (8) for deriving schemes with even stronger sharpening effect. One has

cn+1
j = cnj − ν

(
cnj +

1

2
(1− ν)(cnj+1 − cnj )ϕnj+ 1

2

−cnj−1 −
1

2
(1− ν)(cnj − cnj−1)ϕnj− 1

2

)

= cnj − ν

(
1 +

1

2
(1− ν)

(
ϕn
j+ 1

2

rn
j+ 1

2

− ϕnj− 1
2

))
(cnj − cnj−1),

that is cn+1
j = (1 − Lnj )cnj + Lnj c

n
j−1, Lnj = ν + ν(1−ν)

2

(
ϕn

j+1
2

rn
j+1

2

− ϕn
j− 1

2

)
. The

maximum principle is satisfied provided 0 ≤ Lnj ≤ 1, that is

0 ≤ ν +
ν(1− ν)

2

(
ϕn
j+ 1

2

rn
j+ 1

2

− ϕnj− 1
2

)
≤ 1.

Assume (8) holds. Then 0 ≤ ϕn
j− 1

2

≤ 2 and 1 − 1−ν
2 ϕn

j− 1
2

≥ 1 − (1 − ν) ≥ 0,

thus 0 ≤ Cnj . One notices that (8) also yields 0 ≤ ϕn
j+ 1

2

≤ 2rn
j+ 1

2

. Therefore

1 + 1−ν
2

ϕn

j+1
2

rn
j+1

2

≤ 1 + (1− ν) = 2− ν. Finally

ν +
ν(1− ν)

2

ϕn
j+ 1

2

rn
j+ 1

2

≤ 2ν − ν2 ≤ 1, ∀ν ∈ [0, 1],

which ends the proof.
A huge number of formulas has been proposed in the literature. We just

review the most usual ones. The Minmod flux writes

ϕ(r) = minmod(1, r). (9)

The Superbee flux writes

ϕ(r) = max(0,min(1, 2r),min(2, r)). (10)

Remark 2 (Squaring/sharpening behavior of Superbee). The notion of sharp-
ening is not present at this stage of the discussion. It is introduced by noticing
that the SuperBee limiter is squaring. This has been reported in the literature in
[Tor97] and many other texts. Squaring means that if an initial smooth profile
is chosen, for example in the form of a Gaussian, then the numerical solution
has the tendency to converge to a mass preserving square profile for t → ∞.
This behavior necessarily increases the L2 norm of the profile.

5



Squaring is usually considered as a consequence of the strong nonlinearity
of SuperBee. Even if it is a well documented behavior, we know of no definitive
proof. But on the contrary, it is easy to understand that the minmod limiter
cannot sharpen. To this end we consider the semi-discrete (that is continuous
in time) version of the scheme

d

dt
cj(t) + u

cj+ 1
2
(t)− cj− 1

2
(t)

∆x
= 0, j ∈ Z. (11)

Since ∆t vanishes, the flux (7) is simplified taking ν = 0.

Lemma 3. The semi-discrete scheme (11) with the flux cj+ 1
2

= cj + 1
2 (cj+1 −

cj)ϕj+ 1
2

and the Minmod limiter (9) satisfies the a priori estimate

d

dt

∑
j∈Z
|cj(t)|2

 ≤ 0. (12)

So, as a corollary of remark 2, this scheme cannot sharpen.

The same property holds for similar schemes with a limiter 0 ≤ ϕ(r) ≤ 1 for
all r. The proof proceeds as follows. One has

∆x

2

d

dt

∑
j∈Z
|cj |2

 = ∆x
∑
j

cj
d

dt
cj = −u

∑
j

cj

(
cj+ 1

2
− cj− 1

2

)

= −u
∑
j

cj (cj − cj−1)− u
∑
j

cj

(
cj+ 1

2
− cj

)
+ u

∑
j

cj

(
cj− 1

2
− cj−1

)
.

It is easy to check the identities

∑
j cj (cj − cj−1) = 1

2

∑
j |cj − cj−1|2,∑

j cj

(
cj+ 1

2
− cj

)
= 1

2

∑
j cj(cj+1 − cj)ϕj+ 1

2
,

= 1
2

∑
j cj−1(cj − cj−1)ϕj− 1

2
,∑

j cj

(
cj− 1

2
− cj−1

)
= 1

2

∑
j cj(cj − cj−1)ϕj− 1

2
.

Therefore by summation and rearrangements

∆x

2

d

dt

∑
j∈Z
|cj |2

 = −u
2

∑
j

|cj − cj−1|2
(

1− ϕj− 1
2

)
≤ 0,

which shows that the L2 norm decreases. It makes squaring impossible. The
proof is ended. It can be generalized to the fully discrete scheme with the same
conclusion. A corollary is as follows.

Lemma 4 (Necessary condition for sharpening). A slope limiter that sharpens
is necessarily such that ϕ(r) > 1 for some r ∈ R. This condition is satisfied by
the SuperBee formula (10), for which limr→∞ ϕ(r) = 2.
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2.3 Inequality and anti-diffusion

This sharpening strategy is more radical. It is naturally introduced in the
context of BV schemes [DL01a], see also [Tor97], and has been adapted to ENO
techniques [Shu09] in [XS06, XS05]. We refer to [SX14, CPT12, CM11, KL10,
Shu09, JL07, XS06, XS05, BFK14, GLT13] for the use of such methods for
different problems.

We shall note mj+1/2 = min(cnj , c
n
j+1), Mj+1/2 = max(cnj , c

n
j+1)

λj+1/2 =
∆x

u∆t
(cnj −Mj−1/2)+Mn

j−1/2 and Λj+1/2 =
∆x

u∆t
(cnj −mj−1/2)+mn

j−1/2.

(13)
We observe that λj+1/2 ≤ Λj+1/2 if the CFL condition u∆t ≤ ∆x is satisfied.
A basic property writes as follows.

Lemma 5. Under CFL, the upwind flux choice cnj+1/2 = cnj belongs to the inter-

val [λj+1/2,Λj+1/2] ∩ [mj+1/2,Mj+1/2], which ultimately ensures the maximum
principle [DL01a, XS06, XS05].

In this context, one introduces compression, or sharpening, or anti-diffusion,
by using the most extreme formulated choice. Let ωj+1/2 and Ωj+1/2 such that
[ωj+1/2,Ωj+1/2] = [λj+1/2,Λj+1/2] ∩ [mj+1/2,Mj+1/2]. One obtains

cnj+1/2 =


Ωj+1/2, if Ωj+1/2 ≤ cni+1,

cnj+1, if ωj+1/2 ≤ cni+1 ≤ Ωj+1/2,

ωj+1/2, if cni+1 ≤ ωj+1/2.

An equivalent definition (still for the case u > 0) is given in the following lemma.

Lemma 6. The limited downwind flux defined above is equivalent to the so-
called UltraBee flux limiter flux (see [Tor97]) defined as

cn+1
j = cnj − ν(cnj − cnj−1)− ν(1− ν)

2
(ϕnj+1/2(cnj+1 − cnj )− ϕnj−1/2(cnj − cnj−1))

with ϕnj+1/2 = ϕ(rnj+1/2, ν) and ϕ(r, ν) = minmod( 2r
ν ,

2
1−ν ).

The limiter is now function of the slope r and of the Courant number ν. The
scheme is called limited downwind in the following.

Lemma 7. This limited downwind scheme is exact for step initial conditions
[DL01a].

Confirmation is by starting from an initial data which is not a step function,
but a (discretized) smooth function. One observes (under a surprising technical
condition CFL6= 1/2) that the smooth profile is replaced a step function close by
a step function with an approximation error is O(∆x). After that first stage the
step function is perfectly transported. So in some sense the UltraBee limiter is a
perfect sharpener. The sharpening effect is so pronounced that it may resemble
an instability, but it is not.

This technique was incorporated in FV algorithms for the simulation of two-
component fluid flows, for the mass fraction, volume fraction, or color function
of components, in, e.g., [DL07], [KL10], and extended to multi-component in
[JL07] and [BFK14].
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This was also modified to apply to non-linear discontinuities such as classical
shocks, in [AC16], and non-classical shocks in the scalar context, [BCLL08], and
in the context of systems in [Agu16].

2.4 Glimm’s method

At this stage of the discussion the problem is the following: either one accepts
to violate the maximum principle although this can be very critical, for example
when the transported unknown is the mass or volume fraction of a fluid in a
multi-component flow, or one has to use linear first order or a non-linear scheme
(see Section 2.2). Yet there exists an alternative, that was first proposed by
Glimm, in [Gli65] for theoretical analysis purposes. This method avoids the
numerical diffusion of first order stable schemes because it does not involve any
”projection” on the mesh, and it does not create new values of the solution a
each time step in the case of linear transport.

To describe it briefly, let us consider once again the upwind scheme written
as cn+1

j = (1−ν)cnj +νcnj−1 with ν the CFL number. The smearing of the profiles
comes from the (strictly) convex combination that appears in the formula. This
scheme can be interpreted as a two-step scheme: exact transport of the profile for
a time ∆t, and then projection on the mesh (the upwind scheme is the Godunov
scheme). Glimm proposes to avoid the projection by taking one of the two values
that are present in cell j after one time step: cnj−1 or cnj . The choice is performed
randomly: cnj−1 is chosen with probability ν, and cnj is chosen with probability
1 − ν. This interpretation is correct since 0 < 1 ≤ ν (resp. 0 ≤ 1 − ν < 1)
under CFL. In the more general context of nonlinear problems, the algorithm
is based on the resolution of the Riemann problems at each interface and on
the choice of a random variable δn(different from one time step to the other),
chosen according to the uniform law between 0 and ∆x. Then the updated
value of the unknown in the cell j is defined by taking the value of the solution
of the Riemann problem at time ∆t at position (j − 1/2)∆x + δn. This was
shown by Glimm to converge, with probability 1, and it is clear that it does
not smear profiles, at least when the profile is a step and in the linear context.
Let us note that this random procedure has the drawback that the scheme
is non-conservative, however this does not prevent the scheme to converge to
the entropy solution for nonlinear problems. Note also that the randomness
is not mandatory: the only property that is required for (δn)n is that it is an
equidistributed (with low discrepancy) sequence. The Van der Corput sequence,
which is such a deterministic sequence, is shown to give qualitatively very good
(better than a random sequence) results in [Col82].

One can notice that, for the linear transport equation (1), the upwind scheme
is the expectation of Glimm’s scheme. This observation was used to prove error
estimates for the upwind scheme on general meshes, using central-limit type
estimates, in [DL11].

In space dimension 1 and in the context of linearly degenerate fields (which
correspond to material discontinuities) an FV algorithm based on a Lagrange-
remap (formulated as Lagrange-transport) strategy with a random sampling
technique for the transport part, for the simulation of two-component com-
pressible fluid flows is derived in [CC12], with very good efficiency. See also
[Cha07, CG08, BHJ+13].

In the more particular context of non-linear material discontinuities that are
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present in some viscous-dispersive limits of systems with fields that are neither
genuinely non-linear nor linearly degenerate, with so-called non-classical shocks
(see [LeF02]), the random choice method was shown in [CL03] to give very good
(and convergent) results, which is very difficult in this context.

The tentation to use such a scheme in higher dimension is great, but it is
known since Chorin ([Cho76]) that it is not satisfactory for genuinely nonlinear
conservation laws. Colella proposed in [Col82] a modification of the random
choice algorithm, that involves the Godunov method and that seem to be con-
vergent. Unfortunately this modification of Glimm’s algorithm does not allow
to preserve sharp fronts. Nevertheless, for linear or linearly degenerate fields,
this random choice procedure shows great efficiency, at least on Cartesian grids.
This has been investigated and analyzed, for example in [HJ14] and [HJ13].

2.5 PDE models and sharpening methods

Level sets methods are discussed in [OF03, OS88, Set96]. This is a very popular
set of numerical methods for interface modeling that has been applied to many
problems. In the present context, the idea is to rely on a partial differential
equation to transport a color function (our definition of a color function f is that
it takes value in [0, 1], so that: if a point x is such that f(x) = 0 has color equal to
0; if f(x) = 1 then x has a color equal to 1; and finally 0 < f(x) < 1 corresponds
to intermediate colors). No colors below 0 and above 1 are considered in this
presentation, but it is not mandatory. A typical elementary question with the
level set approach is about the influence of the numerical parameters on the
level set. In certain cases the answer is that the method can be insensitive to
this parameters.

To understand this property we consider the simplest color function at initial
time cini(x) = H(x), that is cini(x) = 0 for x < 0 and c0(x) = 1 for x > 1.
Instead of manipulating the upwind first order scheme, we use its modified
equation (that is to say, the PDE it is consistent with at the second order in
time and space). We thus consider the function cµ solution of the advection
equation with viscosity

∂tcµ + u∂xcµ = µ∂xxcµ, µ =
∆x

2
(1− ν),

where 0 ≤ ν ≤ 1 is the CFL number. The modified equation is a second order
approximation of the upwind scheme. The interface is recovered at any time t
by as the 1/2 level set Γµ(t) = x such that cµ(x, t) = 1/2. It is easy to prove
that x exists and is unique for t > 0 and 0 ≤ ν < 1: this is a consequence of
well known integral representation formula detailed below. One has more.

Lemma 8. For all t > 0 and 0 ≤ ν < 1, the 1/2 level set is exact: that is
Γµ(t) = ut.

One has with the fundamental solution of the heat equation

cµ(x, t) =
1√

4πµt

∫
R

exp
(
−(x− y − ut)2/(4µt)

)
H(y)dy.

So

cµ(ut, t) =
1√

4πµt

∫ ∞
0

exp
(
−y2/(4µt)

)
dy =

1√
2π

∫ ∞
0

exp
(
−y2/2

)
dy =

1

2
.
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Even if this argument is very elementary, it explains that level set methods
have the ability to predict the interface with great accuracy, even if the under-
lying scheme for the transport of the color function is low order. In the context
of this review paper, it is perfect sharpening.

2.6 Nature of the grid/mesh

The discussion so far was restricted to one dimensional grids. The extension of
the previous FV algorithms to general multidimensional grids poses two funda-
mental difficulties.

A first one is that sharpening techniques are highly nonlinear methods. A
good sharpening technique is in practice equipped with a method which controls
the oscillations due to strong nonlinear interactions. In dimension d = 1, this
principle is mostly based on the BV setting. The issue is that this bound on the
total variation is lost in dimension D = 2 and greater. This has been proved
in a famous article [GL85] on a Cartesian grid. This unfortunate situation has
the consequence that the preservation of the maximum principle does not yield
a control of some special oscillations which develop mostly tangentially to the
isolines of the exact profiles: an important reference in this direction is the series
[TK05, KM05b, KM05a]. See also [DLLM10].

A confirmation of this behavior is the 2D algorithm in [DL01a]. It is shown
that the extension of the Ultra-Bee scheme with directional splitting is exact
for squares. But unfortunately this algorithm is not equipped with a control
of 2D variations. It can be interpreted as a distant consequence of the [GL85]
theorem. In consequence this algorithm is useless for calculations of profiles with
values which are not exactly 0 and or 1. Even if the initial data is an indicatrix
function, its boundary is not necessarily a 2D step function: in this situation
one observes oscillations at the boundary between 0 and 1: these oscillations
are perfectly bounded in L∞ norm because directional splitting preserves the
maximum principle; but they are not bounded in the BV semi-norm because
the BV semi-norm is a global quantity destroyed by directional splitting. An
attempt is been made in [DL01b] to overcome this failure, but the numerical
results are deceptive (not published), probably due to the curse explained by
the [GL85] theorem.

2.7 Interface reconstruction and VOF

The simple line interface calculation (SLIC) [NW76] is an extremely popular
method that presents a nearly all purpose methodology for FV interface sharp-
ening. The design principle of SLIC is to reconstruct parallel and/or anti parallel
perfect interfaces in Cartesian cells from the knowledge of volume fractions. In
dimension 1, for a step initial conidtion, it is equivalent to the limited downwind
scheme (that can be seen as a reconstruction algorithm, where the reconstructed
solution is a step function in every cell). Even if it is an extremely simple
method, the results are quite good when comparing with the implementation
cost and run time. This is probably the reason why it is still a reference. With
respect to SLIC, the volume of fluid (VOF) [HN81] has the huge advantage to
reconstruct interface with any direction. Even without discussing the simplicity
of the method, it is clear that this information is a kind of first order interface
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reconstruction while SLIC can be considered as a zeroth order interface recon-
struction. Another feature of VOF is that the normal direction of the interface
is computed from the discrete gradient of some volume fractions. It is possible
to optimize the performance of VOF by changing the parameters of the discrete
gradient operator and of the method used to evolve the volume fractions.

It must be noted that SLIC is not PDE based and VOF is only partially
PDE based. In consequence it is not really possible to perform a convergence
analysis of the algorithms, but only on parts of them. The Youngs algorithm
[You84] has a similar nature.

2.8 Vofire

We give some details of the Vofire method, which is a multidimensional non-
linear FV scheme. The geometrical idea relies on the following observation: in
dimension greater than 2, the numerical diffusion can be decomposed into two
different diffusions: the longitudinal diffusion, along the velocity field, which
is typically one-dimensional, and the transverse diffusion, which is really due
to the fact that the mesh is multi-dimensional. This distinction between the
two phenomena could appear arbitrary, but is in accordance with basic numer-
ical tests. Consider for example an initial condition which is the characteristic
function of the square ]0.25, 0.75[×]0.25, 0.75[. This profile is advected with the
upwind scheme. The velocity direction u has a great influence on the result. It
is illustrated on figure 1.
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Figure 1: Upwind scheme. The initial condition is the characteristic function
of a square. Final time t = 1. Periodic boundary conditions. On the left:
the velocity u = (1, 0)T is aligned with the mesh; the result displays only
longitudinal diffusion. On the right: the velocity u = (1, 1)T is not aligned with
the mesh. The consequence is that there is both longitudinal and transverse
diffusion.

We here propose to restrict to triangular meshes, on which it is simpler
to expose the Vofire technique. Thus we consider the following type of mesh
structure:
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u
Tk

Tl

Tm

Tj

nj,k

lj,k

lj,m
nj,m

nj,l

lj,l

k, l,m ∈ N(j)

k, l ∈ N+(j)

m ∈ N−(j)

Figure 2: Mesh and notations (for the sake of brievity, these notations will not
be explained further in the text, as they are very classical).

The idea to ”fight” against these two diffusion phenomena is to use, as for
the limited downwind seen as a (discontinuous) reconstruction scheme, a recon-
struction procedure in every cell. This reconstruction will be here two-fold: it
will consist in a first reconstruction that will be transverse, and in a second one
that will be done along the velocity field. The velocity field u is constant for sim-
plicity, but this assumption can be removed. Note that the transverse diffusion
actually depends more on the shape of the cells than on the velocity, so that this
assumption of constant velocity is not so much restrictive here. For a given celle
Tj , N

−(j) denotes the set of cells that are adjacent to Tj and upwind: N−(j) =
{Tm such that Tj∩Tm is of non-zero one dimensional Lebesgue measure and u·
nj,m < 0}, and N+(j) denotes the set of downwind cells to Tj . As in dimen-
sion 1, the fundamental requirement of the scheme is that it satisfies an upwind
maximum principle:

min

(
cnj , min

k∈N−(j)
cnk

)
≤ cn+1

j ≤ max

(
cnj , max

k∈N−(j)
cnk

)
for any j.

The most important part of the procedure, regarding the multidimensional prop-
erties of the scheme, is the first one, that concerns the transverse reconstruction.
As we will see, after this reconstruction, the algorithm will be one-dimensional,
and one-dimensional techniques (such as the limited downwind scheme for in-
stance) will be applied.

Recall that, for expository purposes, the mesh is assumed to be made with
triangles, in dimension 2. The transverse reconstruction consists in breaking a
cell in two parts by a segment parallel to the velocity, and modifying the value
of the unknown in each of these two sub-cells. Each triangle Tj has at least one
downwind neighbor and at most two. If it has only one downwind neighbor, we
do not perform the transverse reconstruction (we do not cut the cell). This can
be explained by the fact that when there is only one downwind neighbor, the
”information” contained in the cell is not spread transversally by any scheme
(with small stencil). Let us thus assume that Tj has two downwind neighbors,
Tk and Tl. It has then one upwind neighbor, Tm. We consider the intersection
point of the two edges relative to the downwind neighbors and cut Tj along the
line passing on this intersection point and parallel to u. The two sub-cells are

12



denoted Tj,k and Tj,l: Tj,k has Tk as (unique) downwind neighbor, and Tj,l has
Tl as (unique) downwind neighbor. This partitioning is illustrated on figure 3.

Tk

Tl

Tm

Tj,k

Tj,l

u

Tj

nj

Figure 3: Transverse reconstruction.

The essential property of this cutting is that now every subcell has exactly
one downwind and one upwind neighbor, as will be used below: this is due
to the fact that the new normal vector nj (see Figure 3) is orthogonal to the
velocity, so that there will be no flux through the new interface. We use symbols
sj,k and sj,l to denote the areas of sub-cells Tj,k and Tj,l respectively. Clearly
sj,k + sj,l = sj and sj,k > 0 and sj,l > 0. The aim is to define a reconstructed
value cRj,k in Tj,k and a reconstructed value cRj,l in Tj,l. We impose

sj,kc
R
j,k + sj,lc

R
j,l = sjc

n
j (14)

to guarantee the local conservativity. Let us write{
cRj,k = cnj + λj,k

(
cnk − cnj

)
, 0 ≤ λj,k ≤ 1,

cRj,l = cnj + λj,l
(
cnl − cnj

)
, 0 ≤ λj,l ≤ 1,

(15)

which means that cRj,k and cRj,l must satisfy a condition of local consistency. We
introduce the idea of anti-dissipative schemes which will serve to find a unique
value of λj,k and λj,l.

Remark 9. Our objective is to choose λj,k and λj,l in order to obtain an anti-
dissipative scheme, with a very low level of numerical diffusion. This is the
reason why we seek the largest possible λj,k and λj,l in the interval [0, 1]. This is
the same principle as in section 2.3. But of course we cannot take λj,k = λj,l = 1
directly because we ask the reconstruction to be conservative: see Equation (14).

So our goal is to have the largest λj,k and λj,l in the interval [0, 1], but still
satisfying the maximum principle. Equation (14) can be rewritten as sj,kc

R
j,k +

sj,lc
R
j,l − sjcnj = sj,k

(
cRj,k − cnj

)
+ sj,l

(
cRj,l − cnj

)
= 0, that is[

sj,k
(
cnk − cnj

)]
λj,k +

[
sj,l
(
cnl − cnj

)]
λj,l = 0.
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As we will see, either the data cnj is a local transverse maximum or minimum and
then (14) implies λj,l = λj,k = 0 (it means there is actually no reconstruction),
or the data is transversally monotone, and then at least λj,l = 1 or λj,k = 1.
The solution is computed as follows.

1) If sj,k
(
cnk − cnj

)
sj,l
(
cnl − cnj

)
≥ 0, cnj is a local extremum in the transverse

direction. Then we do not reconstruct, which means λj,k = λj,l = 0 and

cRj,l = cRj,k = cnj . (16)

2) If −
sj,k

(
cnk − cnj

)
sj,l
(
cnl − cnj

) > 1, the solution is obtained by taking λj,l = 1,

cRj,l = cnl , cRj,k = cnj −
sj,l
sj,k

(
cnl − cnj

)
= (sjc

n
j − sj,lcnl )/sj,k. (17)

3) If −
sj,k

(
cnk − cnj

)
sj,l
(
cnl − cnj

) < 1, the solution is obtained by taking λj,k = 1,

cRj,k = cnk , cRj,l = cnj −
sj,k
sj,l

(
cnk − cnj

)
= (sjc

n
j − sj,kcnk )/sj,l. (18)

As the situation is now one-dimensional for each subcell Tjk and Tjl, one
can analyze the scheme where the first stage is this reconstruction followed by
a second stage which is the upwind scheme. It is obvious that this scheme will
provide the maximum principle, as the reconstruction does. What is not so
obvious is that the CFL stability condition for the upwind scheme on this new
(and finer) mesh is the same as for the initial mesh. A simple proof is as follows.
Proof. The reconstructed quantities (15) respect the maximum principle. By
construction the scheme is equal to a two-steps algorithm: first step, use the
upwind scheme for a mesh which is locally cut in smaller cells, as it is described
in figure 3, and with cell quantities equal to the reconstructed quantities; second
step, project onto the original coarse mesh. Therefore it is sufficient to check
that the CFL condition is the same for the original mesh (4 cells in figure 3)
and for the new mesh (5 cells in figure 3).

Since u is constant, then
∑
k∈N+(j) lj,k(uTnj,k) = −

∑
k∈N−(j) lj,k(uTnj,k).

The standard CFL condition for the upwind scheme for the cell Tj thus has the
form ∆t

sj

∑
k∈N+(j) lj,k(uTnj,k) ≤ 1, that is

∆t

sj

(
lj,k(uTnj,k) + lj,l(u

Tnj,l)
)
≤ 1. (19)

The CFL condition for the sub-cells Tj,k and Tj,l are respectively

∆t

sj,k
lj,k(uTnj,k) ≤ 1 and

∆t

sj,l
lj,l(u

Tnj,l) ≤ 1. (20)

Let lj = length
(
Tj,k ∩ Tj,l

)
be the length of the segment separating Tj,k and Tj,l.

One has sj,k =
lj

2|u| lj,k(uTnj,k) and sj,l =
lj

2|u| lj,l(u
Tnj,l) and sj = sj,k + sj,l =

lj
2|u|

(
lj,k(uTnj,k) + lj,l(u

Tnj,l)
)
. The two inequalities of (20) and inequality

(19) thus rewrite |u| 2∆t
lj
≤ 1. So they are equivalent and the proof is ended.

Some modifications and improvements of the Vofire technique have been
proposed in [BTVG10, MTF10] for example.
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3 Coupling with hyperbolic nonlinear equations

An issue is to use the previous techniques in complex computational fluid dy-
namics FV codes with a respect of the key properties necessary for a correct
simulation. Of course the notion of a correct simulation and the identification
of the key ingredients of a correct coupling are far to be evident. We restrict the
discussion to hyperbolic models for compressible fluids for which conservative
issues are critical. Indeed the nonlinearity of the equations induce discontinu-
ous solutions such as shocks and contact discontinuities: it is well accepted that
the violation of the conservation is only at the cost of a strong deviation with
respect to the solution of the Riemann problem (see [HL94] for a justification).
These questions are fiercely debated when dealing with multi-fluid models.

There are common guidelines for incorporating sharpening techniques into
discretization strategies of complex models. Usually one singles out transport
effects in the system and update a set of key fluid parameters thanks to a nu-
merical scheme that transports discontinuities as sharply as possible. A delicate
matter is generally to preserve good stability and consistency properties of the
overall numerical scheme.

3.1 An example of discretization for compressible flows
with two components separated by a sharp interface

For the sake of illustrating these ideas, we consider, in space dimension 1, a
simple model of compressible flows that involves two perfect gases that was
studied in [Abg88, LF89]. The specific heat at constant volume and ratio of
specific heat of the fluid k = 1, 2 are respectively cvk > 0 and γk > 1. The
density of the two-phase medium is noted ρ and Y1 = Y (resp. Y2 = 1 − Y ) is
the mass fraction of the fluid k = 1 (resp. k = 2). We suppose that there is a
thermal equilibrium between the gases and that the pressure P verifies Dalton’s
law, then we have

P =

∑
k=1,2 Yk(γk − 1)cvk∑

k=1,2 Ykcvk
ρe, (21)

where e is the specific internal energy of the medium. One supposes that the
components have the same velocity u and that no mass transfer occurs between
the species. If one notes ρW = [ρY, ρu, ρ(e + u2/2)]T , T(W) = [0, 0, P, Pu]T

then the flow is governed by

∂tρ+ ∂x(ρu) = 0, ∂t(ρW) + ∂x(ρWu+ T) = 0. (22)

System (22) is hyperbolic provided that γk > 1 and it is equipped with jump
relations that enable the definition of weak solutions that verifies the transport
equation

∂tY + u∂xY = 0. (23)

Although this model is equipped with a mixture model (based on oversimplified
assumptions), if one chooses an initial condition such that Y (x, t = 0) ∈ {0, 1},
then no physical mixing should occur in the domain as (23) guarantees that
Y (x, t) ∈ {0, 1} for t > 0. In this sense, (22) can be used as a model for a flows
involving two compressible fluids separated by a sharp interface.

The decoupling between transport and other phenomenon can be achieved
thanks to a Lagrange-Remap method. Let us note ξ the Lagrangian space
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coordinate defined by dξ(t;x0)/dt = u(ξ(t;x0), t) with ξ(t = 0;x0) = x0. If
(x, t) 7→ b is any fluid parameter, we note (ξ, t) 7→ bLag the Lagrangian field
associated with b by bLag(ξ(t;x), t) = b(x, t). System (22) can be expressed in
the so-called Lagrangian reference frame as follows

ρLag(ξ, 0)∂t(1/ρ
Lag)− ∂ξuLag = 0, ρLag(ξ, 0)∂tW

Lag + ∂ξT
Lag = 0. (24)

Given a set of discrete values (ρ, ρW)nj that represent an approximation of the
fluid state at instant t = tn within the cell i, the Lagrange-Remap method is
a two-step algorithm [GR96, Des10]: first, we update the discrete unknowns

to a value (ρ, ρW)Lag
j by approximating the solution of (24) over [tn, tn + ∆t].

Let us remark that the evolution equation for Y expressed in (24) boils down

to ∂tY = 0, therefore it is reasonable to expect that Y Lag
i = Y ni . The second

step updates the fluid parameter to their values (ρ, ρW)n+1
j by remapping the

Lagrange values (ρ, ρW)Lag
j onto the Eulerian mesh. It can read as follows

ρn+1
j − ρnj +

∆t

∆x
(ρLag
j+1/2u

n
j+1/2 − ρ

Lag
j−1/2u

n
j−1/2) = 0, (25a)

(ρW)n+1
j − ρnjW

Lag
j +

∆t

∆x
((ρW)Lag

j+1/2u
n
j+1/2 − (ρW)Lag

j−1/2u
n
j−1/2) = 0. (25b)

The values unj−1/2 are approximations of the material velocity of the fluid at
the cell interface x = xj+1/2 that can be estimated with the discretization
of (24). One can therefore consider that unj−1/2 is known when performing

(25). The only missing ingredient for achieving the remap procedure is thus

the definition of the variable flux (ρ, ρW)Lag
j+1/2 = [ρ, ρY, ρu, ρ(e + u2/2)]Lag

j+1/2.

For this problem it is clear that the anti-diffusive mechanism should concern
the variable Y whose discontinuity carries the location of material interface
between the fluids. Suppose given a definition for the fluxes bLag

j+1/2 that is

consistent for b ∈ {ρ, ρu, ρ(e + u2/2)} and that ρnj > 0 and ρLag
j+1/2 > 0. Let

us note mnj+1/2 = min(Y nj , Y
n
j+1), Mn

j+1/2 = max(Y nj , Y
n
j+1). Following the

ideas introduced in section 2.3 in the case of pure transport problem, we aim at
defining a flux Y Lag

j+1/2 that fulfills two requirements.

(i) Y Lag
j+1/2 ∈ [mnj+1/2,M

n
j+1/2];

(ii) the choice of Y Lag
j+1/2 and (25b) should ensure a discrete maximum principle

for Y in the cell i (resp. i + 1) if unj+1/2 > 0 and unj−1/2 > 0 (resp.

unj+1/2 < 0 and unj+3/2 < 0).

For the sake of simplicity, we suppose that ρLag
j+1/2 is defined by the upwind flux,

i.e. ρLag
j+1/2u

n
j+1/2 = ρLag

j (unj+1/2)+ + ρLag
j+1(unj+1/2)−, then we can define the real

interval [dj+1/2, Dj+1/2] as follows.

• If unj+1/2 > 0 and unj+1/2 > 0 (resp. unj+1/2 < 0), we set

dj+1/2 = Y nj + (Mj−1/2 − Y nj )

[
1− ∆x

unj+1/2∆t

]
(resp. dj+1/2 = Y nj ),

Dj+1/2 = Y nj + (mj−1/2 − Y nj )

[
1− ∆x

unj+1/2∆t

]
(resp. Dj+1/2 = Y nj ).
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• If unj+1/2 < 0 and unj+3/2 < 0 (resp. unj+3/2 > 0), we set

dj+1/2 = Y nj+1 + (Mj+3/2 − Y nj+1)

[
1 +

∆x

unj+1/2∆t

]
(resp. dj+1/2 = Y nj+1 ),

Dj+1/2 = Y nj+1 + (mj+3/2 − Y nj+1)

[
1− ∆x

unj+1/2∆t

]
(resp. Dj+1/2 = Y nj+1 ).

Let us note [ωj+1/2,Ωj+1/2] = [mnj+1/2,M
n
j+1/2] ∩ [dj+1/2, Dj+1/2]. Under the

CFL condition
|unj+1/2|∆t/∆x < 1, (26)

one can check that [ωj+1/2,Ωj+1/2] 6= ∅ as Y nj (resp. Y nj+1) belongs to [ωj+1/2,Ωj+1/2]

if unj+1/2 > 0 (resp. unj+1/2 < 0 ). Choosing Y Lag
j+1/2 ∈ [ωj+1/2,Ωj+1/2] ensures

that (i) and (ii) are verified under the condition (26). In order to enable a sharp
transport of Y , one just need to use the limited downwind choice within the
interval [ωj+1/2,Ωj+1/2], which boils down to set

Y Lag
j+1/2 = min(max(ωj+1/2, Y

Lag
down),Ωj+1/2), (27)

where Y Lag
down = Y Lag

j+1 (resp. Y Lag
down = Y Lag

j ) if unj+1/2 > 0 (resp. unj+1/2 < 0).

A numerical scheme based on a Finite Volume approximation of (24) and
(25) with the limited downwind choice (27) was studied in [Lag00] for the model
described in this section. It is worth mentioning that up to a careful discretiza-
tion choice for (24) the overall algorithm is conservative with respect to (ρ, ρW).
Let us also emphasize that the algorithm presented in this section is difficult to
use in practice: spurious pressure and velocity oscillations at the material inter-
face may occurs, which is a common issue for this type of problems [Abg96]. The
same method was applied to similar two-phase models with an alternate mix-
ture law in [Lag00, DL07] that guarantees that constant pressure and velocity
profiles are preserved.

3.2 Example of other evolution equation involving sharp
interfaces

It is not possible to give an exhaustive list of all possible sharpening techniques
implementation, we will try to give hereafter an overview of the works that have
been achieved the past years that is inevitably incomplete.

The approach of section 3.1 has been successfully extended to other sys-
tems like the five-equation model of [MSNA02, ACK02] in [KL10] and also for
compressibles flows involving an arbitrary number of components separated by
interfaces [JL07, BFK14]. Other techniques may be used to sharpen front in
systems with interface. For example, considering again system (22), one can dis-
cretize directly the transport equation (23) with the limited downwind scheme
of section 2.3 and use a classical Finite-Volume discretization for ρ, ρu and
ρ(e+u2/2), at the cost of deriving a non-conservative numerical scheme. Other
sharpening techniques can also be used for compressible two-phase flows with
interface similar to (22): the THINC method that was first developed for in-
compressible flows [XHK05] has been adapted in [SX14] to the five-equation
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model studied in [ACK02]. This method relies on controlling the spreading of
the material interface thanks to an hyperbolic tangent profile. As mentioned
in section 2.4, Glimm’s method has also been used for discretizing sharply the
evolution of an interface. Indeed, it is possible to sharply let evolve contact dis-
continuities in a system by providing a dedicated treatment based on a Glimm
type random choice method [Cha07, CG08]. In [BHJ+13] a random choice
method is within a Lagrange-Remap strategy to perform the Remap step while
preserving sharp profiles. The limited downwind strategy has been implemented
to describe interface that are not solely passively advected like problems of re-
acting gas flows[TBC14]. A VOF-type reconstruction that relies on a level set
description of the interface is proposed in [HKAH06] for the simulation of two-
component compressible flows.

3.3 Cut-cells and CFL condition

Taking as a principle that sharpening techniques have the ability to reconstruct
interfaces, it appears that an interface which moves dynamically in a Cartesian
mesh may cut cells into smaller cells. Of course it is most of the time only a geo-
metrical interpretation. However it has the unfortunate consequence that these
small cut cells may have a dramatic influence on the CFL conditions through a
complex nonlinear interaction of the parts of the global algorithm (note never-
theless that it is not the case with the Vofire algorithm). This feature is difficult
to analyze rigorously in the context of sharpening methods. In practice one
observes a posteriori the stability or the instability of the scheme/code. We
refer to the chapter [Ber84] in this volume for a comprehensive presentation of
the topic.
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