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Analysis and simulation of nonlinear and
nonlocal transport equations

Frédéric Lagoutière and Nicolas Vauchelet

Abstract This article is devoted to the analysis of some nonlinear conservative trans-

port equations, includig the so-called aggregation equation with pointy potential,

and numerical method devoted to its numerical simulation. Such a model describes

the collective motion of individuals submitted to an attractive potential and can be

written as a continuity transport equation with a velocity field computed through a

self-consistent interaction potential. In the strongly attractive setting, Lp solutions

may blow up in finite time, then a theory of existence of weak measure solutions has

been defined. In this approach, we show the existence of Filippov characteristics al-

lowing to define solutions of the aggregation initial value problem as a pushforward

measure. Then numerical analysis of an upwind type scheme is proposed allowing

to recover the dynamics of aggregates beyond the blowup time.

1 Introduction

This paper is devoted to existence and uniqueness, and numerical approximation of

measure valued solutions to the following nonlinear and nonlocal transport equation

in d space dimension,

∂tρ + div
(
(V ∗ρ)ρ

)
= 0, t > 0, x ∈ R

d , (1)

complemented with the initial condition ρ(0,x) = ρ ini. This equation governs the

dynamics of a density of individuals, ρ at time t > 0, position x ∈ R
d . The inter-
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action between individuals is modelled by a given function V : R+ ×R
d 7→ R

d .

One motivation is the so-called aggregation equation where V = ∇xW derives from

an interaction potential W whose gradient ∇xW (x− y) measures the relative force

exerted by a unit mass localized at a point y onto a unit mass located at a point x.

The aggregation equation appears in many applications in physics and population

dynamics. One may cite for instance applications in granular media [3], crowd mo-

tion [13], collective migration of cells by swarming [29, 30, 33], bacterial chemo-

taxis [18, 19, 25]. In many of these examples, the potential W is usually mildly

singular, i.e. W has a weak singularity at the origin. Due to this weak regularity,

finite time blowup of (weak Lp) solutions has been observed for such systems and

has gained the attention of several authors (see e.g. [28, 7, 5, 11]). Finite time con-

centration is sometimes considered as a very simple mathematical way to mimick

aggregation of individuals, as opposed to diffusion.

Since finite time blowup of regular solutions occurs, a natural framework to study

the existence of global in time solutions is to work in the space of probability mea-

sures. Two strategies have been proposed in the litterature. In [11], the aggregation

equation is seen as a gradient flow minimizing the interaction energy in a Wasser-

stein space. In [25, 26, 12], this system is considered as a conservative transport

equation with velocity field ∇xW ∗ ρ . Then a flow Z can be constructed allowing

to define the solution as a pushforward measure by the flow: ρ = Z#ρ ini. See also

[4] for a similar definition. To be able to define such a flow, some assumptions on

the potential are needed that allows for mild singularity of the potential. The usual

assumption consists in considering pointy potentials with singularity at the origin,

such as the Morse potential W (x) = e−|x|, or W (x) = −|x|. In this paper, we extend

this assumption to a more general class of potentials.

Here we list the assumptions that will be used in the paper.

• We assume that there exists a function λ such that

〈V (t,x)−V(t,y),x− y〉 ≤ λ (t)|x− y|2, λ ∈ L1
loc(R

+), (2)

where 〈·, ·〉 denotes the Euclidean inner product. We notice for the case of the

aggregation equation, i.e. when V (t,x) = ∇xW (x), this assumption is satisfied

provided the interaction potential W : Rd → R is λ -concave, i.e. x 7→ W (x)−
λ
2
|x|2 is concave for some constant λ ≥ 0.

• For the sake of simplicity of the presentation, we only consider bounded velocity

fields, then we assume that there exists a nonnegative constant v∞ such that for

a.e. t ∈R
+ and x ∈ R

d ,

|V (t,x)| ≤ v∞. (3)

• An interesting issue is raised when V is discontinuous, since, as already men-

tioned, it may imply blowup in finite time of weak Lp (p > 1) solutions. We may

assume that there exists a finite set of discontinuity points. More precisely, there

exists a finite set of points in R
d , denoted ξ1, . . . ,ξL, such that
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V (t,x) =
L

∑
ℓ=1

(
Vℓ(t,x− ξℓ)+Vℓ(t,x+ ξℓ)

)
+Vr(t,x), (4)

where for all ℓ= 1, . . . ,L, we assume

Vℓ ∈ L∞
loc(R

+,C(Rd \ {0}), Vℓ(t,x) =−Vℓ(t,−x)

and Vr ∈ L∞
loc(R

+,W 1,∞(Rd)).
(5)

We notice also that since Vr is Lipschitz-continuous in space, then it satisfies (2)

with a constant λ (t) = ‖DVr(t)‖∞ ∈ L∞
loc(R

+). Thus, Vs := V −Vr verifies also

(2), and Vs(t,x) = ∑L
ℓ=1

(
Vℓ(t,x− ξℓ)+Vℓ(t,x+ ξℓ)

)
is odd.

Thus, to summarize, with respect to the preceding established results in [11, 12],

we avoid three assumptions: we do not assume that V has only 1 singularity, we do

not assume that V is odd, and we do not assume that V is the gradient of a potential.

However, we still restrict to bounded velocity fields (see [4] for an approach in the

radially symmetric case with non bounded velocity fields).

Although extremely accurate numerical schemes have been developed to study

the blowup profile for smooth solutions, see e.g. [23, 24] for the aggregation equa-

tion, very few numerical schemes have been proposed to simulate the behaviour

of solutions beyond blowup time. The so-called sticky particle method was shown

to be convergent in [11] and used to obtain qualitative properties of the solutions

such as the finite time total collapse. However, this method is not that practical to

deal with the behavior of solutions after blowup in dimensions larger than one. In

one dimension, this task has been performed in [25]. Recently, in higher dimensions,

particle methods have been proposed and studied in [14, 9] but only the convergence

for smooth solutions, before the blowup time, has been proved.

Finite volume schemes have been also developped, and the present paper stands

in this frame. Note that the difficulty in this problem is twofold: first, the velocity is

not smooth (and only one-sided Lipschitz-continuous), and second, it is a nonlinear

problem.

In the linear case and when the given velocity field is only one-sided Lipschitz-

continuous:

• in [21], the convergence of dissipative schemes is proven in dimension 1 (weak

convergence in the sense of measures),

• in [16], the convergence of upwind-type or, more generally, some dissipative

schemes, at order 1/2 in Wasserstein distance, has been obtained (in any dimen-

sion).

In the fully nonlinear context, in [27], a finite volume scheme is proposed al-

lowing to simulate the behaviour of the solution to the one dimensional aggregation

equation (1) after blowup, and the authors prove its convergence. A finite volume

method for a large class of PDEs including in particular (1) has been also proposed

in [10] but no convergence result has been given. Finally, a finite volume scheme of

Rusanov (or Lax-Friedrichs) type for general measures as initial data has been pro-

posed and studied in [12]. Numerical simulations of solutions in dimension greater
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than one have been obtained, allowing to observe the behaviour after blowup. Its

weak convergence in the sense of measure is proven. We propose in this paper to

extend this result to the upwind scheme for a more general class of equations, that

is system (1) with an interaction function V satisfying assumptions (2)–(5) only.

This scheme is based on an idea developped in [25] and used later in [27, 12] which

consists in using a careful discretization of the macroscopic velocity such that its

product with the measure solution ρ is well-defined.

The outline of this paper is the following. In the next section, we recall briefly the

theory of existence of solutions to the conservative transport equation with discon-

tinous velocity field. In section 3, we establish the existence and uniqueness result.

Section 4 is devoted to the numerical discretization. We show in particular the con-

vergence of the numerical scheme towards the measure value solution. Finally, we

conclude this paper with some numerical illustration in section 5.

2 Transport equation with discontinuous velocity field

2.1 Notations

All along the paper, we will make use of the following notations. We denote

C0(R
d) the space of continuous functions in R

d that tend to 0 at infinity. We

denote Mb(R
d) the space of Borel measures whose total variation is finite. For

ρ ∈ Mb(R
d), we denote by |ρ |(Rd) its total variation. ¿From now on, Mb(R

d) is

always endowed with the weak topology σ(Mb(R
d),C0(R

d)). For T > 0, we note

SM :=C([0,T ];Mb(R
d)−σ(Mb(R

d),C0(R
d))). For ρ a measure in Mb(R

d) and

Z a measurable map, we denote by Z#ρ the pushforward measure of ρ by Z; it

satisfies, for any continuous function φ ,

∫

Rd
φ(x)Z#ρ(dx) =

∫

Rd
φ(Z(x))ρ(dx).

We denote by P(Rd) the subset of Mb(R
d) of probability measures. We define the

space of probability measures with finite second order moment by

P2(R
d) =

{
µ ∈ P(Rd),

∫

Rd
|x|2µ(dx)< ∞

}
.

Here and in the following, | · |2 stands for the Euclidean norm that derives from the

Euclidean inner product 〈·, ·〉. This space is endowed with the Wasserstein distance

dW defined by (see e.g. [1, 34, 35])

dW (µ ,ν) = inf
γ∈Γ (µ,ν)

{∫

Rd×Rd
|y− x|2 γ(dx,dy)

}1/2

(6)
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where Γ (µ ,ν) is the set of measures on R
d ×R

d with marginals µ and ν . ¿From a

minimization argument, we know that in the definition of dW the infimum is actually

a minimum (see [34, 32]). A map that realizes the minimum in the definition (6) of

dW is called an optimal plan, the set of which is denoted by Γ0(µ ,ν). Then for all

γ0 ∈ Γ0(µ ,ν), we have

dW (µ ,ν)2 =

∫

Rd×Rd
|y− x|2 γ0(dx,dy).

2.2 Weak measure solutions for conservative transport equation

We recall in this section some useful results on weak measure solutions to the con-

servative linear transport equation with given velocity field b,

∂tu+ div(bu) = 0; u(t = 0) = u0. (7)

We start by the following definition of characteristics [20]:

Definition 1. Let us assume that b = b(t,x)∈R
d is a vector field defined on [0,T ]×

R
d with T > 0. A Filippov characteristic X(t;s,x) that stems from x ∈ R

d at time s

is a continuous function X(·;s,x) ∈C([0,T ],Rd) such that ∂
∂ t

X(t;s,x) exists for a.e.

t ∈ [0,T ] and satisfies

∂

∂ t
X(t;s,x) ∈

{
Convess(b)(t, ·)

}
(X(t;s,x)), a.e. t ∈ [0,T ]; X(s;s,x) = x.

¿From now on, we will use the notation X(t,x) = X(t;0,x).

In this definition Convess(E) denotes the essential convex hull of a set E . We recall

its definition for the sake of completeness, see [20, 2] for more details. We denote by

Conv(E) the classical convex hull of E , i.e., the smallest closed convex set contain-

ing E . Given the vector field b(t, ·) : Rd −→ R
d , the essential convex hull at point x

is defined as

{Convess(b)(t, ·)}(x) =
⋂

r>0

⋂

N∈N0

Conv [b(t,B(x,r)\N)] ,

where N0 is the set of zero Lebesgue measure sets.

At this stage there is no smoothness assumption on b. Existence and uniqueness

of a flow is classically ensured if b is smooth. A possible way to go beyond this,

and use possibly discontinuous velocity fields, is to introduce the so-called one-

sided Lipschitz continuity, see (8) below. The following existence and uniqueness

result of Filippov characteristics ensures that the solution does not depend on the

representative of b that is chosen.

Theorem 1 ([20]). Let T > 0. Let us assume that the vector field b∈L1
loc(R;L∞(Rd))

satisfies the OSL condition, that is for a.e. x and y in R
d , a.e. t ∈ [0,T ],
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〈b(t,x)− b(t,y),x− y〉 ≤ α(t)‖x− y‖2, for α ∈ L1(0,T ). (8)

Then there exists a unique Filippov characteristic X associated to this vector field.

An important consequence of this result is the existence and uniqueness of weak

measure solutions for the conservative linear transport equation. This result has been

proved by Poupaud and Rascle [31, Theorem 3.3]:

Theorem 2 ([31]). Let T > 0. Let b ∈ L1([0,T ],L∞(Rd)) be a vector field satisfying

the OSL condition (8). Then for any u0 ∈Mb(R
d), there exists a unique measure so-

lution u in SM to the conservative transport equation (7) such that u(t) = X(t)#u0,

where X is the unique Filippov characteristic, i.e. for any φ ∈C0(R
d), we have

∫

Rd
φ(x)u(t,dx) =

∫

Rd
φ(X(t,x))u0(dx), for t ∈ [0,T ].

In one dimension, such solutions are equivalent to duality solutions defined by

Bouchut and James in [8]. A pioneering numerical investigation of this equation

in one dimension is provided in [21]. A numerical investigation of measure valued

solutions defined in Theorem 2 with a convergence order proof is proposed in [16].

Finally, we recall the following stability result for the Filippov characteristics

which has been established by Bianchini and Gloyer [6, Theorem 1.2]

Theorem 3 ([6]). Let T > 0. Assume that the sequence of vector fields bn converges

weakly to b in L1([0,T ],L1
loc(R

d)). Then the Filippov flow Xn generated by bn con-

verges locally in C([0,T ]×R
d) to the Filippov flow X generated by b.

3 Filippov characteristic flow for the aggregation equation

This section is devoted to the existence of a Filippov flow for the aggregation equa-

tion (1) as it has been stated in [12] in a lightly less large context.

Under assumption (4), we define for ρ ∈C([0,T ],P2(R
d)) the velocity field âρ

by

âρ(t,x) =
L

∑
ℓ=1

∫

Rd

(
V̂ℓ(t,x− y− ξℓ)+ V̂ℓ(t,x− y+ ξℓ)

)
ρ(t,dy)

+

∫

Rd
Vr(t,x− y)ρ(t,dy) , (9)

where V̂ℓ is defined for ℓ= 1, . . . ,L by

V̂ℓ(t,x) =

{
Vℓ(t,x), when x 6= 0;

0, otherwise.

¿From now on, we will use the notation
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V̂ (t,x) :=
L

∑
ℓ=1

(
V̂ℓ(t,x− ξℓ)+ V̂ℓ(t,x+ ξℓ)

)
+Vr(t,x). (10)

The following theorem states existence and uniqueness of a solution defined by

the Filippov characteristics. Its proof in the case where V (t,x) = ∇xW (x) with W ∈
C1(Rd \ {0}) and λ -convex has been obtained in [12, Theorem 2.5 and 2.9]. In the

present article we extend it to the case at hand.

Theorem 4. Let V satisfy assumptions (2)–(5) and let ρ ini be given in P2(R
d).

There exists a unique solution ρ ∈C([0,+∞),P2(R
d)) that satisfies in the sense of

distributions the aggregation equation

∂tρ + div(âρ ρ) = 0, ρ(0, ·) = ρ ini,

where âρ is defined by (9), and is the pushforward measure ρ := Z#ρ ini where Z is

the unique Filippov characteristic flow associated to the velocity field âρ .

3.1 Sketch of the proof of Theorem 4

The proof of the existence and uniqueness result in Theorem 4 follows the ideas

developped in [12]. For the sake of completeness, we recall the main steps of the

proof and detail below the main changes to extend it to the case at hand.

Step 1: definition of the macroscopic velocity.

A difficulty when we want to deal with measure valued solutions to transport equa-

tion is that the velocity field should be defined carefully to be able to give a sense

to the product in the divergence term in (1) when ρ is a measure. Here we use

the definition (9) for the velocity field. This definition is motivated by Lemma

2 which is stated and proved below. Indeed, from assumptions (4)-(5), we have

V (t,x) = ∑L
ℓ=1(Vℓ(t,x − ξℓ) +Vℓ(t,x + ξℓ)) +Vr(t,x), with Vℓ ∈ C1(Rd \ {0}) for

ℓ = 1, . . . ,L. Then, Lemma 2 implies that if we regularize V by a sequence Vn, for

instance by taking the convolution of each Vℓ with mollifiers, and if for all t ≥ 0,

ρn(t) is a sequence of probability measures in P2(R
d) such that ρn ⇀ ρ in the

sense of measures, then Vn ⋆ρn ⇀ âρρ in the sense of measures (see Lemma 2 in

Section 3.2).

Moreover, we have the following one-sided Lipschitz estimate:

Lemma 1. Let ρ ∈ L∞(0,T,Mb(R
d)) be nonnegative. Then under assumptions (2)–

(5), the function (t,x) 7→ âρ(t,x) defined in (9) satisfies the one-sided Lipschitz

(OSL) estimate

〈âρ(t,x)− âρ(t,y),x− y〉 ≤ λ (t)|ρ(t)|(Rd)‖x− y‖2. (11)

Proof. This result is an easy consequence of assumption (2) on V . Indeed, by defi-

nition (9), we have
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âρ(t,x)− âρ(t,y) =

∫

Rd

(
V̂ (t,x− z)− V̂(t,y− z)

)
ρ(dz),

where V̂ (t,x) = ∑L
ℓ=1(V̂ℓ(t,x− ξℓ)+ V̂ℓ(t,x+ ξℓ))+Vr(t,x) is defined in (10). The

conclusion follows directly from assumption (2) and the nonnegativity of ρ .

Step 2: approximation with Dirac masses.

We use the idea of atomization consisting in approximating the solution by a finite

sum of Dirac masses: let us consider that for some integer N > 0,

ρ ini,N =
N

∑
i=1

miδ (x− x0
i ), x0

i 6= x0
j for i 6= j,

N

∑
i=1

mi = 1,
N

∑
i=1

mi|x
0
i |

2 <+∞.

Then we look for a solution of the aggregation equation given by

ρN(t,x) =
N

∑
i=1

miδ (x− xi(t)).

By definition (9), âρN (t,x) =
N

∑
i=1

miV̂ (t,x − xi(t)), with V̂ defined in (10). ¿From

Lemma 1, âρN satisfies the OSL condition. Applying Theorem 1, it allows to define

uniquely a Filippov characteristic, denoted X̂N , associated to the velocity field âρN .

By construction, from Theorem 2, the Poupaud-Rascle pushforward measure ρPR :=
X̂N

#ρ ini,N is the unique measure valued solution to the conservative linear transport

equation

∂tρ
N
PR + div(âρN ρN

PR) = 0, ρN
PR(t = 0) = ρ ini,N .

Moreover, by definition of the pushforward measure,

âρN
PR

=

∫

Rd
V̂ (t,x− y)ρN

PR(t,dy) =

∫

Rd
V̂ (t,x− X̂N(t,y))ρ ini,N(dy)

=
N

∑
i=1

miV̂ (t,x− X̂N(t,x0
i )) = âρN (t,x).

Thus ρN
PR = ρN . It gives the existence result for initial data given by a finite sum of

Dirac masses.

Step 3: passing to the limit N →+∞.

Making use of stability results, we may pass to the limit N →+∞ in the above con-

struction. This step is the same as in [12]; for the sake of completeness, we recall the

ideas but omit details. We assume that ρ ini,N ⇀ ρ ini as N →+∞. Then, since the ve-

locity field âρN is uniformly bounded, thanks to (3), we may extract a subsequence

that converges in L∞ weak-⋆. Using the stability result of Theorem 3, we deduce

that X̂N → X̂ . As a consequence, we get the weak convergence ρN ⇀ ρ := X̂#ρ0.

Finally, we apply the stability result of Lemma 2 to conclude the proof of existence.
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Step 4: uniqueness.

Uniqueness is deduced from the contraction estimate in Wasserstein distance dW in

Proposition 1 below. Indeed, if we take ρ0 = ρ̃0 = ρ ini in the estimate of Proposition

1, then we deduce that ρ = ρ̃ .

3.2 The macroscopic velocity

In the first step above, we have defined a macroscopic velocity for which the product

in the divergence term in (1) has a sense. This definition relies on the following

stability result.

Lemma 2. Let V be a velocity field satisfying V ∈ L∞
loc(R

+,C(Rd \ {0})), (2), (3)

and V (−x) =−V (x). Let (Vn)n∈N∗ be a sequence of odd functions in C1(R+×R
d),

uniformly bounded by v∞ and such that for all t ∈ R
+,

sup
x∈Rd\B(0, 1

n )

∣∣Vn(t,x)−V(t,x)
∣∣≤ 1

n
, for all n ∈ N

∗. (12)

Let ρ(t) be a probability measure for all t ≥ 0. Let (ρn(t))n be a sequence of prob-

ability measures such that ρn ⇀ ρ weakly as measures as n → +∞, then for any

T > 0, for every φ ∈C0([0,T ]×R
d) and any ξ ∈ R

d , we have

lim
n→+∞

∫ T

0

∫∫

Rd×Rd
φ(t,x)Vn(t,x− y− ξ )ρn(t,dx)ρn(t,dy)dt

=

∫ T

0

∫∫

Rd×Rd
φ(t,x)V̂ (t,x− y− ξ )ρ(t,dx)ρ(t,dy)dt.

Proof. We first introduce some notations that simplify the computations:

µn(t) := ρn(t)⊗ρn(t, ·− ξ )−ρn(t, ·− ξ )⊗ρn(t),

µ(t) := ρ(t)⊗ρ(t, ·− ξ )−ρ(t, ·−ξ )⊗ρ(t),

Dn :=

{
(x,y) ∈ R

d ×R
d,x 6= y, |x− y|<

1

n

}
.

(13)

We recall that since ρn ⇀ ρ weakly as measures, we have that ρn(t)⊗ρn(t, ·−ξ )⇀
ρ(t)⊗ρ(t, ·− ξ ) and µn ⇀ µ weakly in the sense of measures.

Let us fixed t ∈ R
+ and let ε > 0. By definition of µ and Dn in (13) there exists

N ∈ N such that ∀n ≥ N,

|µ |(t,Dn)≤ ε. (14)

For such N, we observe that, for all n ≥ N, Dn ⊂ DN , and

|µn|(t,Dn)≤ |µn|(t,DN)≤ |µn − µ |(t,DN)+ |µ |(t,DN). (15)
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¿From the weak convergence µn ⇀ µ , we deduce that for n large enough, we have

|µn − µ |(t,DN) ≤ ε . Injecting in (15), and using also (14), we deduce that for N

large enough and ∀n ≥ N, we have

|µn|(t,Dn)≤ ε, and |µn − µ |(t,Dn)≤ ε. (16)

For φ ∈C0([0,T ]×R
d), we note

An(t) :=

∫∫

Rd×Rd
Vn(t,x− y− ξ )φ(t,x)ρn(t)⊗ρn(t)(dx,dy)

−

∫∫

Rd×Rd
V̂ (t,x− y− ξ )φ(t,x)ρ(t)⊗ρ(t)(dx,dy).

After a change of variable, we may write

An(t) =
∫∫

Rd×Rd
φ(t,x)

(
Vn(t,x− y)ρn(t,x)ρn(t,y− ξ )

− V̂(t,x− y)ρ(t,x)ρ(t,y− ξ )
)

dxdy

=
1

2

∫∫

Rd×Rd

[
Vn(t,x− y)

(
φ(t,x)ρn(t,x)ρn(t,y− ξ )

−φ(t,y)ρn(t,y)ρn(t,x− ξ )
)

− V̂(t,x− y)
(

φ(t,x)ρ(t,x)ρ(t,y− ξ )

−φ(t,y)ρ(t,y)ρ(t,x− ξ )
)]

dxdy,

where we have used the symmetry assumption Vn(−x) = −Vn(x) and V (−x) =
−V (x) for the last equality. We may rewrite

An(t) =
1

2

∫∫

Rd×Rd
(φ(t,x)−φ(t,y))

[(
Vn(t,x− y)− V̂(t,x− y)

)
ρn(t,x)ρn(t,y− ξ )

+ V̂(t,x− y)
(
ρn(t,x)ρn(t,y− ξ )−ρ(t,x)ρ(t,y− ξ )

)]
dxdy+

1

2

∫∫

Rd×Rd
φ(t,y)

(
(Vn(t,x− y)− V̂(t,x− y))µn + V̂ (t,x− y)(µn − µ)

)
dxdy

=In + IIn + IIIn+ IVn. (17)

We bound each term of the right and side separately.

Let us consider the first term

In :=
∫∫

Rd×Rd
(φ(t,x)−φ(t,y))

(
Vn(t,x− y)− V̂(t,x− y)

)
ρn(t,x)ρn(t,y− ξ )dxdy.

Using assumption (12) and the bound ‖Vn‖∞ ≤ v∞, the latter integral on R
d ×R

d \
Dn is bounded by a term of order 1

n
. We are left with the integral over Dn. Since

φ ∈ C0([0,T ]×R
d), there exists a compact K ⊂ R

d such that for all x ∈ R
d \K,
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|φ(x)| ≤ ε . On the compact K, φ is uniformly continuous, then there exists N ∈ N

such that for all n ≥ N and all x,y ∈ Dn ∩K, |φ(x)−φ(y)| ≤ ε . Then, we deduce

|In(t)| ≤
2

n
‖φ‖∞ + 2v∞ε. (18)

For the second term,

IIn :=
∫∫

Rd×Rd
(φ(t,x)−φ(t,y))V̂ (t,x− y)

(
ρn(t,x)ρn(t,y− ξ )−ρ(t,x)ρ(t,y− ξ )

)
dxdy.

We use the fact that the function (x,y) 7→ (φ(t,x)− φ(t,y))V̂ (t,x− y) is continous

and the weak convergence in the sense of measures of ρn to deduce that

lim
n→+∞

IIn(t) = 0. (19)

Considering now the third term,

IIIn :=

∫∫

Rd×Rd
φ(t,y)(Vn(t,x− y)− V̂(t,x− y))µn(t,x,y)dxdy.

We split the integral between the one on R
d ×R

d \Dn and the one on Dn. We get

|IIIn| ≤
2

n
‖φ‖∞ + 2v∞‖φ‖∞|µn|(Dn)≤

(2

n
+ 2v∞ε

)
‖φ‖∞, (20)

where we use (16) for the last inequality.

The fourth term reads

IVn :=

∫∫

Rd×Rd
φ(t,y)V̂ (t,x− y)(µn − µ)(t,x,y)dxdy

=

∫∫

Rd×Rd
φ(t,y)

(
V̂ (t,x− y)−VN(t,x− y)

)
(µn − µ)(t,x,y)dxdy

+
∫∫

Rd×Rd
φ(t,y)VN(t,x− y)(µn − µ)(t,x,y)dxdy,

where N ∈ N will be chosen large enough. The second term of the right hand side

converges to 0 as n goes to +∞ since µn ⇀ µ and (x,y) 7→ φ(t,y)VN(t,x− y) is

continuous. Then it is bounded by ε for n large enough. We bound the first term of

the right hand side as for the term IIIn, we obtain, for n large enough

|IVn| ≤
( 4

N
+ 2v∞ε

)
‖φ‖∞ + ε. (21)

Finally, injecting (18),(19),(20),(21) into (17), we deduce the a.e. convergence

An(t)→ 0 as n → +∞. Moreover, we have the uniform bound |An(t)| ≤ 2v∞‖φ‖∞.
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Applying the Lebesgue’s dominated convergence theorem, we deduce that
∫ T

0 An(t)dt

goes to 0 as n →+∞. It concludes the proof.

3.3 Contraction estimate

Proposition 1. Under assumptions (2),(3),(4),(5) on V , let ρ0 and ρ̃0 be given in

P2(R
d). Then, there exists a nonnegative constant C such that the corresponding

solutions ρ = Z#ρ0 and ρ̃ = Z̃#ρ̃0 verify

dW (ρ(t), ρ̃(t))≤ eC(t+
∫ t

0 λ (s)ds)dW (ρ0, ρ̃0).

Proof. Let us consider γ an optimal map with marginals ρ0 and ρ̃0 such that,

dW (ρ0, ρ̃0)2 =

∫∫

Rd×Rd
|x1 − x2|

2γ(dx1,dx2).

We compute, formally,

d

dt

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2)

= 2

∫∫

Rd×Rd
〈âρ(t,Z(t,x1))− âρ̃(t, Z̃(t,x2)),Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)

= 2

∫∫∫∫
〈V̂ (t,Z(t,x1)−Z(t,y1))− V̂(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2),

where V̂ is defined in (10). ¿From assumption (4), we decompose

d

dt

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2) = Is + Ir,

with, using the notation Vs = ∑L
ℓ=1

(
V̂ℓ(·− ξℓ)+ V̂ℓ(·+ ξℓ)

)
,

Is = 2

∫∫∫∫
〈Vs(t,Z(t,x1)−Z(t,y1))−Vs(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2) ;

Ir = 2

∫∫∫∫
〈Vr(t,Z(t,x1)−Z(t,y1))−Vr(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)− Z̃(t,x2)〉γ(dx1,dx2)γ(dy1,dy2).

We treat each term separately. Using the symmetry of Vs (exchanging the role of x

and y) we obtain
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Is =

∫∫∫∫
〈Vs(t,Z(t,x1)−Z(t,y1))−Vs(t, Z̃(t,x2)− Z̃(t,y2)),

Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)〉γ(dx1,dx2)γ(dy1,dy2)

≤ λ (t)
∫∫∫∫

|Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)|
2 γ(dx1,dx2)γ(dy1,dy2),

where we use assumption (2) satisfied by Vs. Expanding the right hand side, we

deduce straightforwardly

Is ≤ 4λ (t)

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2). (22)

For the term Ir, we deduce from the Lipschitz continuity of Vr that there exists a

nonnegative constant C such that

|Ir| ≤C

∫∫∫∫ ∣∣Z(t,x1)−Z(t,y1)− Z̃(t,x2)+ Z̃(t,y2)
∣∣

|Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)γ(dy1,dy2),

≤C

∫∫
|Z(t,x1)− Z̃(t,x2)|

2 γ(dx1,dx2)+

C

∫∫∫∫
|Z(t,y1)− Z̃(t,y2)||Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)γ(dy1,dy2),

≤C

∫∫
|Z(t,x1)− Z̃(t,x2)|

2 γ(dx1,dx2)+C

(∫∫
|Z(t,x1)− Z̃(t,x2)|γ(dx1,dx2)

)2

.

Using a Cauchy-Schwarz inequality, we deduce

|Ir| ≤ 2C

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2 γ(dx1,dx2). (23)

Combining (22) and (23), we deduce

d

dt

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2)

≤ (4λ (t)+ 2C)

∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2).

We conclude by a Gronwall argument and using the fact that

dW (ρ(t), ρ̃(t))2 ≤
∫∫

Rd×Rd
|Z(t,x1)− Z̃(t,x2)|

2γ(dx1,dx2).

The above formal computation can be made rigorous by using a regularization of

the potential and passing to the limit in the regularization (we refer the interested

reader to Proposition 3.4 in [12]).
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4 Numerical analysis

4.1 Definition of the scheme

Let us first introduce an upwind type numerical scheme for the discretization of the

aggregation equation. We denote by ∆ t the time step and consider a Cartesian grid

with step ∆xi in the ith direction, i = 1, . . . ,d, and ∆x = maxi ∆xi. We use standard

notations for vectors ei = (0, . . . ,1, . . . ,0), a = (a1, . . . ,ad). We define the multi-

indices

J = (J1, . . . ,Jd) ∈ Z
d , xJ = (J1∆x1, . . . ,Jd∆xd).

We denote by CJ = [(J1 −
1
2
)∆x1,(J1 +

1
2
)∆x1)× . . . [(Jd −

1
2
)∆xd ,(Jd +

1
2
)∆xd) the

elementary cell.

For a given nonnegative measure ρ ini ∈ P2(R
d), we define, for J ∈ Z

d ,

ρ0
J =

∫

CJ

ρ ini(dx)≥ 0. (24)

Since ρ ini is a probability measure, the total mass of the system is ∑J∈Zd ρ0
J = 1.

We denote by ρn
J an approximation of the value ρ(tn,xJ), for J ∈ Z

d . Assuming

that an approximating sequence (ρn
J )J∈Zd is known at time tn, then we compute the

approximation at time tn+1 by the following scheme,

ρn+1
J = ρn

J −
d

∑
i=1

∆ t

∆xi

(
(ai

n
J)

+ρn
J − (ai

n
J+ei

)−ρn
J+ei

− (ai
n
J−ei

)+ρn
J−ei

+(ai
n
J)

−ρn
J

)
.

(25)

The notation (a)+ = max{0,a} stands for the positive part of the real number a and

respectively (a)− = max{0,−a} for the negative part. The discrete macroscopic

velocity is computed thanks to the following discretization of equation (9),

ai
n
J = ∑

K∈Zd

ρn
K Vi

n
J,K , where Vi

n
J,K :=

∫ tn+1

tn
V̂i(s,xJ − xK)ds, (26)

where V̂i is the ith components of the velocity field V̂ defined in (10).

Example 1. In one dimension, the scheme (25) reads

ρn+1
i = ρn

i −
∆ t

∆x

(
(an

i )
+ρn

i − (an
i+1)

−ρn
i+1 − (an

i−1)
+ρn

i−1 +(an
i )

−ρn
i

)
.

This scheme has the following interpretation. Defining ρn
∆x = ∑i∈Z ρn

i δxi
, we con-

struct the approximation at time tn+1 with the two following steps:

• The delta mass ρn
i located at position xi, moves with velocity an

i to the position

xi +an
i ∆ t. Assuming a CFL condition v∞∆ t ≤ ∆x, the point xi +an

i ∆ t belongs to

the interval [xi,xi+1] if an
i ≥ 0, and to the interval [xi−1,xi] if an

i ≤ 0.
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• Then we make a linear interpolation of the mass ρn
i between xi and xi+1 if an

i ≥ 0

and between xi−1 and xi if an
i ≤ 0.

Finally, we emphasize that this scheme is not the standard finite volume upwind

scheme for which the numerical velocity is computed at the interface an
i+1/2

. This

is due to the particular structure of the equation for which the product âρρ should

be defined properly. If in the discretization we choose the velocity in a different

grid point that the density, it creates a shift in the definition of the product and the

numerical solution does not converge to the solution of Theorem 4. This point has

been already noted in [27, 22] where numerical simulations emphasized the wrong

behaviour of numerical solutions computed with the classical upwind scheme.

4.2 Convergence analysis

In the following theorem, we establish the convergence of scheme (25) towards the

unique solution of Theorem 4. More precisely the statement reads:

Theorem 5. Let ρ ini ∈P2(R
d). Let us assume that V satisfies assumptions (2)–(3)–

(4)–(5). Let T > 0 and ρ = Z#ρ ini be the unique measure solution on [0,T ] to the

interaction equation (1) with initial data ρ ini given by Theorem 4. Let us assume

that the CFL condition holds:

v∞

d

∑
i=1

∆ t

∆xi

≤ 1. (27)

Let us define (ρ0
J )J∈Zd by (24) and define the reconstruction

ρ∆ (t,x) = ∑
J∈Zd

ρn
J δxJ

(x)1[tn,tn+1)(t), (28)

where the approximation sequence (ρn
J ) is computed thanks to the scheme (25)–(26).

Then we have the weak convergence in the sense of measures ρ∆ ⇀ ρ in Mb([0,T ]×
R

d) as ∆ t and ∆xi go to 0 under the condition (27).

Before going into the proof of this Theorem, we mention that this result extends

to the upwind scheme and to the general system of equation (1) at hand the con-

vergence result stated in [12]. We mention also that an estimate of the order of

convergence in the same spirit as [15, 16] is under progress [17].

We first recall the following well-known properties for the upwind scheme,

whose proof is left to the reader.

Proposition 2. Let us assume that V satisfies assumptions (2)–(3)–(4)–(5) and con-

sider ρ ini ∈ P2(R
2). Let us assume that the CFL condition (27) holds. We define

(ρ0
J )J∈Zd by (24) and the reconstruction ρ∆ by (28), where the approximation se-

quence (ρn
J ) and (ai

n
J) are computed thanks to the scheme (25)–(26). Then, we have

(i) Positivity: for all J ∈ Z
d , n ∈ N, i = 1, . . . ,d, ρn

J ≥ 0, |ai
n
J | ≤ v∞.
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(ii) Mass conservation: for all n ∈ N
∗, we have ∑

J∈Zd

ρn
J = ∑

J∈Zd

ρ0
i j = 1.

(iii) Bound on the second moment: there exists a constant C > 0 such that for all

n ∈ N
∗, we have

Mn
2 := ∑

J∈Zd

|xJ|
2ρn

J ≤ eCn∆ t
(
M0

2 +C
)
.

Proof of Theorem 5

Step 1: weak convergence. Under the CFL condition (27), we deduce from Propo-

sition (2) that the sequence (ρ∆ )∆ is a sequence of nonnegative bounded measures

which satisfies for all t ∈ [0,T ], |ρ∆ (t)|(R
2) = 1. Therefore, we can extract a subse-

quence, still denoted (ρ∆ )∆ , converging for the weak topology towards ρ as ∆ t, and

∆xi go to 0, satisfying (27).

Step 2: identification of the limit. We choose ∆ t > 0 and NT ∈ N
∗ such that

T = ∆ tNT and condition (27) holds. Let φ ∈ D([0,T )×R
d), we multiply (25) by φ

and integrate on [tn, tn+1)×R
d , using a discrete integration by parts, we get

∑
J∈Zd

(ρn+1
J −ρn

J )φ
n
J =

d

∑
i=1

∑
J∈Zd

∆ t

∆xi

[
(ai

n
J)

+ρn
J (φ

n
J+ei

−φn
J )+ (ai

n
J)

−ρn
J (φ

n
J −φn

J−ei
)
]
,

with the notation φn
J =

∫ tn+1

tn φ(t,xJ)dt. ¿From a Taylor formula, we have

φn
J+ei

= φn
J + ∂xi

φn
J ∆xi +O(∆ t∆x2

i ), φn
J−ei

= φn
J − ∂xi

φn
J ∆xi +O(∆ t∆x2

i ).

Summing over n and using a discrete integration by parts, we deduce

NT

∑
n=1

∑
J∈Zd

ρn
J (φ

n−1
J −φn

J )− ∑
J∈Zd

ρ0
J φ0

J =
NT

∑
n=0

d

∑
i=1

∑
J∈Zd

∆ tai
n
J ρn

J ∂xi
φn

J +O(∆ t∆x).

Finally, using also a Taylor formula for the first term of the left hand side, we deduce

NT

∑
n=1

∑
J∈Zd

ρn
J

∫ tn+1

tn
∂tφ(t,xJ)dt + ∑

J∈Zd

ρ0
J

φ0
J

∆ t
+

NT

∑
n=0

d

∑
i=1

∑
J∈Zd

ai
n
J ρn

J ∂xi
φn

J = O(∆x+∆ t).

(29)

Let us define the reconstruction for i = 1, . . . ,d,

ai∆ (t,x) = ∑
J∈Zd

ai
n
J1[tn,tn+1)×CJ

(t,x).

Using also the definition (28), we may rewrite (29) as

∫ T

0

∫

Rd
ρ∆ (t,x)∂tφ(t,x)dtdx+

d

∑
i=1

∫ T

0

∫

Rd
ai∆ (t,x)ρ∆ (t,x)∂xi

φ(t,x)dtdx

+

∫

Rd
ρ0

∆ (x)φ(0,x)dx = O(∆x+∆ t).
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¿From the weak convergence of the sequence (ρ∆ ) (as a consequence of the first

step), we may pass to the limit in the first term. Using also Lemma 2, we can pass

to the limit in the second term. Then we deduce that the limit ρ is a solution in the

sense of distributions of equation (1).

Step 3: conclusion. We have established that we can extract from the sequence

(ρ∆ )∆ a subsequence that converges weakly in the sense of measures towards a so-

lution in the sense of distributions of the conservative transport equation (1). More-

over, we know from Theorem 4 that there exists a unique pushforward measure that

solves equation (1).

We may invoke the superposition principle (see [1, Chapter 8]) to conclude that

the limit ρ is the pushforward measure of Theorem 4. By uniqueness of such a

solution, we deduce also that the whole sequence (ρ∆ )∆ converges to ρ .

5 Numerical simulations

5.1 One dimensional examples

We consider an interval [−2.5,2.5] discretized with a Cartesian grid of size step

∆x = 1
80

. As an initial data, we choose

ρ ini(x) = e−10(x−1)2

+ e−10(x+1)2

.

Then we implement the numerical scheme presented in section 4 for the function

V (t,x) = ∂xW (x) where W (x) = 1
2
|x|+ 1

4
|x− ξ |+ 1

4
|x+ ξ | for ξ = 0.5. The times

dynamics is plotted in Figure 1. For the matter of comparison, we display in Figure 2

the result obtained for the function W (x) = |x|, which corresponds to the case ξ = 0

in the previous example. We observe that in both case blowup in finite time occurs

and that the solution concentrates in a Dirac delta in finite time. The only visible

difference between the two graphs is the time of concentration which is smaller in

the second case than in the first case.

5.2 Two dimensional examples

As an illustration, we propose now a numerical example in two dimensions. The

spacial domain [0,1]× [0,1] is discretized with Nx = 70 nodes in the x-direction and

Ny = 70 nodes in the y-direction and a time step ∆ t = 10−3. We choose as an initial

data:

ρ(t,x) = 1[0.2,0.8]×[0.2,0.8]\[0.3,0.7]×[0.3,0.7].


