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A general BV existence result for conservation laws with spatial

heterogeneities

Benedetto Piccoli ∗ Magali Tournus †

Abstract

We consider a scalar conservation law with a flux containing spatial heterogeneities of bounded
variation, where the number of discontinuities may be infinite. We address the question of ex-
istence in the BV framework of an adapted entropy solution in the sense of Audusse-Perthame.
A sufficient key condition guaranteeing existence is identified and new BV estimates are given.
This provides the most general BV theory available for this adapted-entropy formulation. More-
over, we show with a counter-example that if this key hypothesis is violated, the problem may
be ill-posed in the BV framework.

Key-words. Scalar conservation laws, Discontinuous flux with Bounded Variations, Front-
Tracking Method, Adapted entropies.

AMS subject classifications. 35L65, 35B44, 35A01.

1 Introduction

We are interested in scalar conservation laws with a flux containing spatial heterogeneities. The
conservation law is written as

∂ρ

∂t
+

∂

∂x
A(ρ, x) = 0, t > 0, x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,
(1)

where A(ρ, .) may a priori be discontinuous in an infinite number of points x, and where ρ0 ≥ 0.
There are many models that lead to consider hyperbolic conservation laws with a flux function

discontinuous in the state space, arising in fields as various as vehicular traffic flows [4] [13] [17],
two-phase flows porous medias [2] (see also [16]), sedimentation [12], kidney physiology [25], cell
dynamics [7], and others.

1.1 Two selection criteria for general fluxes

When the space dependence is sufficiently smooth, well-posedness of the scalar equation (1) is well-
known and the commonly admitted criterion to select a physical solution was described by Kružkov
[22]. A function ρ ∈ L∞(R+ × R) is an entropy solution of (1) if for all k ∈ R it satisfies in the
distribution sense that

∂

∂t
|ρ− k|+ ∂

∂x
(sign(ρ− k)(A(ρ, x)−A(k, x)) + sign(ρ− k)

∂

∂x
A(k, x) ≤ 0. (2)
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For discontinuous fluxes, formulation (2) does not make sense: Since weak solutions of (1)
satisfy the Rankine-Hugoniot conditions through the discontinuities x0, i.e. A(ρ(x−0 , t), x

−
0 ) =

A(ρ(x+0 , t), x
+
0 ), the points x0 where A is discontinuous are precisely the points where ρ(., t) is

discontinuous. Thus, the product
(

sign(ρ−k)
∂

∂x
A(k, x)

)
which appears in (2) may not be defined.

Different criteria were then introduced to select the appropriate weak solution. Contrary to the case
of Lipschitz continuous flux, there is no general agreement on the right concept of entropy solution
for discontinuous fluxes: the solution we wish to select may depend on the context.

In the last two decades, different criteria for different contexts were proposed. In most theories,
authors restrict to fluxes with separated variables, i.e. of the type A(ρ, x) = a(ρ)f(x), see [3],
[8], [27], where f has a finite number of discontinuities, usually only one. Uniqueness theory then
mostly relies on some given constraints imposed on the solution at the points where the flux is
discontinuous, whereas, elsewhere, the usual entropy formulation holds, see [1], [11]. A natural
condition to impose, at the points x where the flux is discontinuous, is the conservation of the flux
through the heterogeneity

A(ρ(x−, t), x−) = A(ρ(x+, t), x+), t > 0, (3)

but it is not sufficient to isolate a unique solution. Interface entropy conditions may depend on which
solution we aim to select and may thereby vary with the context. Notice that to impose specific
entropy conditions at discontinuities of f , the use of traces across this line [29] is mandatory, which
requires the solution to be regular enough.

The existence of solutions is then usually obtained either by using specific Riemann solvers
related to the entropy formulation ([14], [18], [21]), either by approximating the flux by regular
ones ([19]) or by passing to the limit along robust and convergent numerical schemes, sometimes
established independently of any entropy criterion ([20], [28]). Note that the determination of the
appropriate Riemann solver is a necessary tool to define a Godunov scheme [23]. In all of the works
cited above, in addition to the separated variable framework, strong modeling assumptions were
done regarding the flux a (convexity, concavity, monotony, . . . ) and on the initial conditions ρ0.

One can find in [5] an exhaustive review of selection criterions available in the literature of
discontinuous fluxes in the case

A(ρ, x) =

{
a−(ρ), x < 0,

a+(ρ), x > 0,
(4)

where a− and a+ are Lipschitz continuous functions. Each existing admissibility condition (i.e. each
selection criterion that lead to a L1-contractivity property) is associated with a germ that underly
these conditions.

In the present paper, we only focus on formulations that allow an infinite number of discontinu-
ities, with possibly an accumulation point. Among the numerous interface conditions introduced,
two of them were extended to general fluxes. In both formulations, the idea is to get rid of the last
term in (2). A common feature to these two formulations is the conservation of the flux through
discontinuities given by the Rankine-Hugoniot condition. Both selection criteria are purely mathe-
matical criteria.

Audusse-Perthame adapted entropy formulation
The theory for conservation laws with BV flux we consider in this paper was introduced by

Baiti-Jenssen [9] in 1997, and then developed by Audusse-Perthame [6] in 2005. The novelty of the
approach of Baiti-Jensen [9] is that their framework does not distinguish the discontinuity points
one by one, allowing them to be infinite: The entropy criterion is not written in term of junction

2



condition. Their idea is to modify the usual Kružkov entropy formulation, which makes no sense
at the points where the flux is discontinuous, and to adapt the entropies to the discontinuous flux.
Here also, the theory provides a framework in which the solution of (1) can be uniquely defined
provided that the flux A satisfies the following assumptions

A-1. For all ρ ∈ R+, x 7→ A(ρ, x) is BV,

A-2. There are two continuous functions A− ≥ 0, A+ ≥ 0 (with A±(ρ) > 0 for ρ > 0), such that
A(±∞) = +∞, and A−(ρ) ≤ |A(ρ, x)| ≤ A+(ρ) for all x ∈ R.

A-3. For almost all x ∈ R, A(., x) is locally Lipschitz and one-to-one.

Under hypotheses (A-1,2,3), the usual Kružkov [22] entropies (|ρ − k|)k∈R are replaced by the
adapted entropies (|ρ− kp(x)|)p∈R, where kp is the unique solution of

A(kp(x), x) = p a.e. x ∈ R. (5)

The existence and uniqueness of the kp(x), defined in (5), is guaranteed by the fact that A(., x) is
one-to-one. Let us notice that the functions kp are the solutions to the stationary problem

d

dx
A(kp(x), x) = 0.

When A does not depend on x, the functions kp are then constant, as in the classical Kružkov
formalism. The surjectivity of A(., x) into the space Im(A) which does not depend on x (in A-3,
Im(A) = R) is crucial to guarantee the existence of the adapted entropies associated to (1) and also
to guarantee the existence of a solution to the Riemann problem. However, the injectivity may be
relaxed. Indeed, assumption A-3 can be replaced by

A-4. There exists a function u such that for all x ∈ R \N , A(., x) is a locally Lipschitz one-to-one
function from (−∞, u(x)] and [u(x),+∞) to [0,+∞) such that A(u(x), x) = 0.

Given p ≥ 0, there are two unique functions k−p (x) ∈ (−∞, u(x)] and k+p (x) ∈ [u(x),+∞) such
that A(k±p (x), x) = p. This framework leads to the following definition of entropy solutions :

Definition 1 (Adapted Entropy solution). A function ρ ∈ L∞([0, T ] × R) ∩ C0
(

[0, T ], L1
loc(R)

)
is

an adapted entropy solution of (1), on [0, T ]×R if for all the (kp)p∈R satisfying (5) (or in case A-4,
for all k+p , k

−
p ), the following inequality holds in the sense of distributions

∂

∂t
|ρ(x, t)− kp(x)|+ ∂

∂x

{
sign(ρ(x, t)− kp(x))[A(ρ(x, t), x)−A(kp(x), x)]

}
≤ 0. (6)

This formulation is well-adapted to guarantee uniqueness and L1 stability with respect to the
initial condition, since the technique of doubling the variables can be applied. However, existence
of such an entropy solution for (1) has only been shown under the specific assumption

A(ρ, x) = F (ρ, v(x)), (7)

where v ∈ BV(R) and F ∈ C2(R2), with the problem of existence for a general flux still open
and explored in the present paper. We also mention that contrary to the Panov formulation,
extending Audusse-Perthame adapted entropies to multi-dimensional conservation laws is still an
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open problem. To the best of our knowledge, writing a numerical scheme to solve this formulation
is an open problem as well.

We end this section with a list of comparative examples between these two formulations.
Panov formulation Another formulation was initiated by Klingenberg and Risebro [21] who

selected a weak solution shown to be unique and stable under a wave entropy condition. Based
on this idea, Towers [28] then defined a notion of entropy solution and proved the uniqueness of
piecewise smooth entropy solutions. The definition of Towers is a global definition in the sense that
the entropy conditions are enclosed in the weak formulation and not required as local conditions.
The theory only deals with fluxes of type A(ρ, x) = a(x)g(ρ), with g(ρ) = ρ(1 − ρ), and with
a(x) = aL for x < 0, and a(x) = aR for x > 0. For ρ0 ∈ L∞(R) such that 0 ≤ ρ0 ≤ 1, a function
ρ ∈ L∞(R+ × R) is an entropy solution if for all k ∈ R it satisfies in the sense of distributions

∂

∂t
|ρ(x, t)− k|+ ∂

∂x
(sign(ρ− k)(A(ρ, x)−A(k, x))) + |aL − aR|g(k)δ0 ≤ 0. (8)

A motivation to define such a criterion is the following: let us approximate a by a sequence of
smooth monotonous functions aε. Using (2), a unique sequence of functions ρε can then be defined
so that they satisfy

∂

∂t
|ρε − k|+

∂

∂x
(sign(ρε − k)aε(x)(g(ρε)− g(k))) + sign(ρε − k)a′ε(x)g(k) ≤ 0. (9)

It is proved in [27] that the sequence ρε converges strongly toward ρ ∈ L∞(R+ × R). Since for all
k ∈ R we have

sign(ρε − k)a′ε(x)g(k) ≤ |a′ε(x)|g(k) −→
ε→0
|aL − aR|g(k)δ0, (10)

the unique function ρ selected by (8) is the limit of the sequence ρε. Existence of solutions is obtained
in [28] through the convergence of a Godunov scheme, by using a discretization of a staggered with
respect to that of ρ and proving BV estimates. Notice that the Riemann solver associated to this
formulation may not be intuitive. It may happen that at the interface, 3 waves are created by the
discontinuity (see example b) below).

This formulation has been extended to the framework of general fluxes (non-separated variables)
in [24]. The concavity assumption was removed, but the non-degeneracy of the flux (see assumption
B − 2 below) is crucial to guarantee the existence of traces [29]. The theory provides a framework
in which the solution of (1) can be defined provided that the flux A the initial condition ρ0 satisfy
for some (ρa, ρb) ∈ R2,

B-1. ρa ≤ ρ0(x) ≤ ρb and A(ρa, x) = A(ρb, x) = C for some C ∈ R,

B-2. The flux is not linearly-degenerated in the sense that for all (ξ, ζ) ∈ R2 \ {(0, 0)},

µ{x : ζ + ξ
∂A

∂ρ
(ρ, x) = 0} = 0, where µ denotes the one dimensional Lebesgue measure.

B-3. For all ρ ∈ [ρa, ρb], x 7→ A(ρ, x) is BV, and maxρ∈[a,b]A(., ρ) ∈ Lqloc(R), q > 2.

We notice here that A − 3 and B − 3 are mutually exclusive, so that the two theories cannot be
compared.

Definition 2 (Panov Solution). Assume that the flux A satisfies B-1,2,3. For any k ∈ R, call µck,
respectively µsk, the continuous, respectively singular, part of the distributional derivative of the map
x 7→ A(k, x). A function ρ ∈ L∞(R+ × R) is a Panov solution to (1) if for any k ∈ R

∂

∂t
|ρ− k|+ ∂

∂x
(sign(ρ− k)(A(ρ, x)−A(k, x))) + sign(ρ− k)µck(x) + |µsk(x)| ≤ 0. (11)
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We stated here Definition 2 in one space dimension, but the existence result is stated in [24]
for multi-dimensional conservation laws. Existence is obtained through the weak convergence of
measure-valued functions and pre-compactness in specific Sobolev spaces. However, uniqueness was
not proven in that extended context. Numerical simulations were performed [27] using Godunov
type schemes.

1.2 Comparison between the two formulations

Both formulations described below were introduced for different purposes, and are adapted to
different types of fluxes. Roughly speaking, Panov formulation is adapted to strictly concave fluxes
(for instance arising in traffic flows), whereas Audusse-Perthame formulation was introduced for
Burgers type fluxes. We provide here some examples to compare the two formulations.

a) Both formulations are defined but the solutions do not coincide. For the following
flux and initial condition,

A(ρ, x) = H(x)
ρ2

2
+ (1−H(x))

(ρ− 1)2

2
, ρ0(x) =

1

2
, (12)

where H denotes the usual Heaviside function, the two formulations select distinct solutions. Ac-
tually, this flux does not satisfy the assumption B − 3. However, for any M large enough, we can
replace it by a flux AM which coincides with A over [−M,M ], and which satisfy B-1,2,3, with
AM (M + 1, x) = AM (−(M + 1), x). One can prove (see Appendix 2) that for any M large enough,

the Panov definition selects the constant solution ρ(x, t) =
1

2
. On the other hand, the Audusse-

Perthame (see [6]) solution is composed of a rarefaction wave (1/2, 1) moving to the left, a stationary
shock (1, 0) localized at x = 0 and another rarefaction wave (0, 1/2) moving to the right. More
precisely,

ρ(x, t) = 1 +
x

t
for − t

2
< x ≤ 0, ρ(x, t) =

x

t
for < 0 ≤ t

2
, and ρ(x, t) =

1

2
elsewhere. (13)

b) Only Panov solution is defined. The following flux does not satisfy the Audusse-Perthame
assumptions

A(ρ, x) = a(x)ρ(1− ρ), a(x) =

{
16, x < 0,

1, x > 0,
ρ0(x) =

1

4
. (14)

The Panov solution is composed of three waves: A shock

(
1

4
,
1

2
+

√
15

8

)
moving to the left, a

stationary shock

(
1

2
+

√
15

8
,
1

2

)
localized at the discontinuity point x = 0, and a rarefaction wave(

1

2
,
1

4

)
moving to the right.

c) Only Audusse-Perthame solution is defined. The following linearly-degenerated flux
is not included in Panov formulation

A(ρ, x) = H(x)|ρ|+ (1−H(x))|ρ− 1|, ρ0(x) =
1

2
. (15)

The Audusse-Perthame solution is composed of a contact discontinuity (1/2, 1) moving to the left,
a stationary shock (1, 0) localized at x = 0 and another contact discontinuity (0, 1/2) moving to the
right.

5



d) None of the formulations is defined. Let f be strictly increasing and g be strictly
decreasing, and define the flux

A(ρ, x) =

{
f(ρ), x < 0,

g(ρ), x > 0.
(16)

This flux does not enter neither Panov, nor Audusse-Perthame formulation. When fluxes have
opposite monotonicity on each side of the discontinuity, either the solution is a measure: a delta
function appears at the discontinuity points of the flux (singular compressive case) so that a BV
theory is hopeless, or the problem is ill-posed whatever the framework (singular expansive case).
See for instance the linear case A(ρ, x) = ρ sign(x) detailed in [26]: whatever the definition of the
solution, it is not possible to build a theory for which stability with respect to initial condition
holds.

In order to stress the importance of the surjectivity assumption in the Audusse-Perthame for-
mulation, we provide another example of a flux and initial condition for which no formulation can
be applied. Let us define

A(ρ, x) =

{
eρ, x < 0

2 + eρ, x > 0,
ρ0(x) = 0. (17)

In that case also, there is no right notion of weak solution: For x < 0, wave can only propagate from
left to right, and the continuity of the flux at the interface prevents the existence of any admissible
value for the trace of the solution at x = 0+.

2 Main Results

Audusse-Perthame formulation has been set in order to deal with discontinuous fluxes of general
shape, possibly having an infinite number of discontinuities. The formulation is not based on the
solution of junction problems: the selection process is a pure mathematical criterion. It was proved
[6] that the criterion was enough to select a unique solution. However, the question of general
existence is not solved. We explore here the question of existence of Audusse-Perthame solutions
in the BV framework. To do so, we identify what are the key-assumptions on the flux which
are necessary to build this theory, and provide in that sense optimal general estimates on the total
variation of the solution. We prove that there exists a solution that can be built via solving Riemann
problems for an approximated system, and then passing the sequence of solutions to the limit via
the Wave Front-Tracking method, proving stability of the solution with respect to the flux. The
function we obtain at the limit coincides with the adapted entropy solution (Definition 1). This
result is a generalization of [9] in the sense that we consider fluxes not included in their framework.

2.1 Framework of the paper

We set here the assumptions we make about the regularity and the shape of the flux. For modeling
purposes and simplicity of exposition, we adopt the following framework

H0 ρ 7→ A(ρ, x) is concave, strictly increasing, and A(0, x) = 0, for every x ∈ R.

We impose that there exist constants c > 0, C > 0, not depending on ρ or x, and a continuous
function M such that

H1 c |ρ− ρ̃| ≤ |A(ρ, x)−A(ρ̃, x)| ≤ C |ρ− ρ̃|, ρ, ρ̃ > 0,

TV.(A(ρ, .)) ≤M(ρ), x ∈ R.
(18)
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Let us recall that

TV.f := sup
{ N∑
j=1

|f(xj)− f(xj−1)|, x0 < x1 < · · · < xN

}
, (19)

where the sup is taken over all N ≥ 1 and over all N + 1-uplets (x0, . . . , xN ).

Comments on the assumptions. Since the fluxes are one-to-one, the monotonicity assumption
is stated to guarantee that the derivative of the flux ∂A

∂ρ does not change sign at the discontinuity
points. The surjectivity of A(., x) is also crucial to guarantee the existence of the adapted entropies
associated to (1) and also to guarantee the existence of a solution to the Riemann problem. However,
the injectivity may be relaxed, but this leads to a more complex definition of entropy solutions [6],
that can be explored in a future work. Notice that the injectivity of the flux is actually implied by the
bi-Lipschitz assumption H1 .The concavity is a technical assumption that allows us to significantly
reduce complexity when solving Riemann problems. It may as well be relaxed in a future work.
Unlike the assumption H0 whose main purpose is to fix the ideas, the conditions H1 we impose on
the regularity of the flux are crucial for existence and uniqueness. The combination of assumptions
H0 and H1 guarantees B − 3. We point out that in our framework, Panov solution cannot

be defined. Before we go further, we mention here that even if A is in a broader class than the
separated variables functions, not any function A is allowed. For any flux A, we define

Disc(A) = {x ∈ R | ∃ρ ∈ R+, A(ρ, x−) 6= A(ρ, x+)}. (20)

Lemma 1. Assuming H1 , Disc(A) is at most countable.

(21)

The proof of Lemma 1 is postponed to Appendix. It allows us to approximate fluxes with
infinitely many discontinuities by fluxes with a finite number of discontinuities. The key technical
argument to guarantee existence of the solution is the fact that

H2 There exist a continuous function R : R+ → R and f ∈ BV(R) such that

|A(ρ, x)−A(ρ, y)| ≤ R(ρ)|f(x)− f(y)|, for every ρ ≥ 0, and (x, y) ∈ R2.

We impose R to be continuous, but what matters is only the fact that it is locally bounded at any
point, including ρ = 0. Assumption H2 is not a consequence of H0 , H1 , and this leads to a
deep obstacle in building the theory in the general case, as seen later

2.2 Existence and Non-Existence

We identify what are the key-assumptions on the flux which are necessary to build this theory, and
provide in that sense optimal general estimates on the total variation of the solution. We prove that
there exists a solution that can be built via solving Riemann problems for an approximated system,
and then passing the sequence of solutions to the limit via the Wave Front-Tracking method. The
function we obtain at the limit coincides with the adapted entropy solution (Definition 1). This
result is a generalization of [9] in the sense that we consider fluxes not included in their framework.

Theorem 1 (Existence of an entropy solution for (1)). Assume H0 , H1 , H2 , and ρ0 ∈ BV(R),
then there exists an adapted entropy solution ρ ∈ L1

loc (R+ × R) to the Cauchy problem (1). Moreover
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the solution is obtained as almost everywhere limit of approximate Wave Front Tracking solutions,
and it satisfies

‖ρ‖L∞([0,T ]×R) ≤
C

c
‖ρ0‖L∞(R), (22)

and

TV.(ρ(., t)) ≤ C

c
TV.(ρ0) +

2

c
max
ρ∈[0,M ]

R(ρ) TV.f, M =
C

c
‖ρ0‖∞. (23)

Next Theorem explains why the technical assumption H2 is crucial for a BV theory.

Theorem 2 (Non-Existence of a BV solution in the general case). Assume H0 and H1 but not

H2 , then we can build an example where starting from an initial condition ρ0 ∈ BV(R), the total
variation of the solution blows up at t = 0+.

The correspondence between formulation (1) and the formulation provided by Baiti-Jenssen is
not trivial for non-separated variables. In other words, for a given flux A, it may not be possible
to find F and v such that (7) holds. For separated variables, the formal equivalence is clear by
picking f = v and F (u, v) = a(u)v provided that a ∈ C2(R), then, even in that context, our result of
existence is a slight generalization to the theory developed in [9] since we allow the flux to be only
Lipschitz in ρ, whereas their framework requires it to be at least C2. Notice that the framework
considered by [9] implies that H2 is satisfied since

|A(ρ, x)−A(ρ, y)| = |F (ρ, v(x))− F (ρ, v(y))| ≤ ‖F ′‖∞|v(x)− v(y)|, (24)

where ‖F ′‖∞ is the Lipschitz constant of F , independent of ρ. Thus, our results generalizes [9] also
for non-separated variables.

The paper is organized as follows. In Section 3, we consider an approximated version of (1) with
piecewise constant flux A, which enables us to define a solution via the use of an adapted Riemann
solver [18]. We check that this solution is an adapted entropy solution (Definition 1). In Section 4,
we derive uniform a priori estimates on the solution. Then, we approximate the general BV flux by
a sequence of piecewise constant approximated fluxes and pass to the limit using the uniform BV
estimates. In Section 5, we detail a counter-example preventing to generalize this theory to generic
fluxes and settling the importance of assumption H2 .

3 Building the solution using a Riemann solver - (One jump for
A, one jump for ρ0.)

Let us define the Riemann solver we use. The initial condition is a piecewise constant function
defined by

ρ0(x) =

{
ρ`, x < 0,

ρr, x > 0,
(25)

where ρ` ≥ 0, ρr ≥ 0. We assume here that the discontinuities in A(ρ, .) and ρ0 are localized at the
same point x = 0 since at the points where A(ρ, .) is continuous, the Riemann problems are usual
Riemann problems. The flux is written

A(ρ, x) =

{
a−(ρ), x < 0,

a+(ρ), x > 0,
(26)
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where a− and a+ are any strictly increasing and concave functions. We solve this unusual problem
using a specific Riemann solver based on the theory introduced in [18] and detailed below. A
Riemann solver is a function R : R×R→ R×R which provides the left and right traces ρ− and ρ+

at the boundary x = 0 of a solution to the Cauchy problem
∂

∂t
ρ+

∂

∂x
a−(ρ) = 0, x < 0,

∂

∂t
ρ+

∂

∂x
a+(ρ) = 0, x > 0,

ρ(0, x) = ρ0(x),

(27)

where ρ0 defined in (25). We write R(ρ`, ρr) = (ρ−, ρ+). There is an equivalence between a Riemann
solver R and a solution to the associated Riemann problem (27).

Definition 3 (Riemann solver for discontinuous flux [18]). A function ρ is said to be a weak solution
to the Riemann problem (25), (27) if the traces (ρ−, ρ+) at x = 0 are some constants that do not
depend on time, and which satisfy

R-1. The wave (ρ`, ρ
−) has a negative speed,

R-2. The wave (ρ+, ρr) has a positive speed,

R-3. The flux is preserved through the discontinuity x = 0, i.e. A(ρ−, 0−) = A(ρ+, 0+).

Proposition 1 (Existence of a bounded solution). There exists a unique weak solution ρ ∈ L∞
(

[0, T ]×

R
)

to the Riemann problem (25), (27) provided by the Riemann solver defined in Definition 3. It

is an entropy solution in the sense of Definition 1. If moreover a− < a+, it satisfies the maximum
principle

‖ρ(., t)‖L∞(R) ≤ ‖ρ0‖L∞(R), t ∈ [0, T ]. (28)

Proof. Building ρ−.
We first claim that ρ− = ρ`. Let us first assume by contradiction that ρ` < ρ−. The flux

a− is concave for x < 0 which implies that the wave (ρ`, ρ−) is a shock of velocity given by the
Rankine-Hugoniot formula σ = (a−(ρ−)− a−(ρ`))/(ρ

− − ρ`). Since a− is increasing, the velocity σ
is positive, which contradicts R − 1. Suppose now, still by contradiction, that ρ` > ρ−. The wave
(ρ`, ρ−) is then a rarefaction wave (concavity of the flux) and the velocity of its slowest front is
a′−(ρ−) > 0. This also contradicts R− 1, and thus ρ− = ρ`.

Building ρ+.
The trace ρ+ is uniquely determined by the relation a−(ρ`) = a+(ρ+) since a+ is one-to-one.

We point out that the condition a− < a+ implies that ρ+ ≤ ρ`, which guarantee that inequality
(28) is satisfied.

The wave (ρ+, ρr) is entropic. The wave (ρ+, ρr) (shock or rarefaction wave) only propagates
for x > 0, and is entropic in the sense given by Kruzkov [22]. As a consequence, it is entropic in
the sense of the adapted entropies.

The stationary shock (ρ`, ρ
+) is entropic. Let us now check that the shock (ρ`, ρ

+) is
entropic in the sense of the adapted entropies. The function kp defined by the formula (5) are
expressed in that context as

kp(x) =

{
a−1− (p) , x < 0,

a−1+ (p) , x > 0.
(29)
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The solution to the Riemann problem can be written as

ρ(x, t) = ρ`
(
1−H(x)

)
+ ρ+H(x), x < σt, (30)

where σ is the velocity of the shock (ρ+, ρr) if ρ+ < ρr or the velocity to the backward front of
the rarefaction wave (ρ+, ρr) if ρ+ > ρr, and H is the usual Heaviside function. We compute the
dissipation of entropy as

D(x, t) =
∂

∂t
|ρ(x, t)− kp(x)|+ ∂

∂x

{
sign

(
ρ(x, t)− kp(x)

)
{A(ρ(x, t), x)− p}

}
. (31)

We have

D(x, t) =
∂

∂x

[
sign

(
ρ`(1−H(x)) + ρ+H(x)− kp(x)

){
a−(ρ`)(1−H(x)) + a+(ρ+)H(x)− p

} ]
(32)

which is

D(x, t) =
∂

∂x
E(x), (33)

where

E(x) = sign
(
ρ`(1−H(x)) + ρ+H(x)− kp(x)

){
a−(ρ`)(1−H(x)) + a+(ρ+)H(x)− p

}
=

 sign
(
ρ` − a−1− (p)

)
(a−(ρ`)− p), if x < 0

sign
(
ρr − a−1+ (p)

)
(a+(ρr)− p) if x > 0.

Since a− and a+ are increasing, we have

E(x) =

{
|a−(ρ`)− p| , if x < 0

|a+(ρ+)− p| if x > 0.
(34)

Condition R− 3 then implies that the function E is constant in a neighborhood of x = 0, and then
D(x, t) = 0 in a neighborhood of x = 0, which means that the entropy inequality (6) is trivially
satisfied.

Remark 1. The stationary shock (ρ`, ρ
+) does not dissipate entropy. In that sense, we consider it

as a non-classical shock and will distinguish it in the following from classical shocks.

4 Existence of a solution

To prove the existence of an adapted entropy solution to (1), we use the Wave-Front-Tracking
algorithm [15]. We approximate the initial datum ρ0 ∈ BV (R) and the flux x→ A(ρ, x) by piecewise
constant functions ρ0,m and An(ρ, .) having respectively (m − 1) and (n − 1) discontinuities, such
that TV.{ρ0,m} ≤TV.{ρ0}. We solve the Riemann problems at any discontinuity points of ρ0,m and
An, using the Riemann solver defined in Section 3. Depending whether the discontinuities of the
initial profile are decreasing or increasing, they are evolving as shocks or rarefaction waves. We
split rarefaction waves into rarefaction fans formed by rarefaction shocks of strength 1/m (i.e. non
entropic shocks) so that the profile stays piecewise constant [10]. When two waves interact or a
wave interacts with a discontinuity of the medium, we solve a new Riemann problem. Notice that
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the number of waves can only increase at t = 0, so that the total number of waves is finite for
all n,m ≥ 0 and for every time. Thus, we can define ρn,m for all n,m and for every time which
provides a Wave Front Tracking approximate solution (in fact it is a weak solution violating the
entropy condition by a quantity going to zero with m→∞; see [10]). We first pass m to the limit
to obtain a solution for ρ0 ∈ BV(R) and n finite. Then, passing to the limit on the sequence of
approximate solution as well as on the approximated sequence of fluxes, we prove the existence of
a solution to the Cauchy problem (1) for ρ0 ∈ BV(R). The key point is to obtain a uniform BV
estimate for the sequence of fluxes An(ρn(., t), .), where ρn are Wave-Front Tracking approximations.
In the general case, it is not possible to obtain BV estimates directly for ρn, since interactions of
waves with the junction can increase the total variation of the conserved quantity [13].

Equation (1) governs the evolution of the profile made of elementary waves, and we need to
understand how two elementary waves interact to estimate the time evolution of the total variation.
In our context, since the flux depends on x, besides shock and rarefaction waves, another kind of
elementary wave may be created: Non-classical shocks. We define them and describe their evolution
after interaction with another classical wave.

Definition 4 (Elementary waves).

• A Classical Shock (CS) arising from x = xd is a discontinuity (ρ`, ρr) which satisfies ρ` < ρr

and moves forward with velocity s =
A(ρr, x

+
d )−A(ρ`, x

+
d )

ρr − ρ`
until it meets another elementary

wave.

• A Non Classical Shock (NCS) is a stationary discontinuity (ρ`, ρr) at x = xd which satisfies

∂

∂t

∣∣∣G(x, t)− kp(x)
∣∣∣+

∂

∂x

[
sign

(
G(x, t)− kp(x)

)
{A(G(x, t), x)− p}

]
= 0, (35)

where G(x, t) = ρ`(1−H(x− xd)) + ρrH(x− xd).

• A Rarefaction Shock (RS) arising from x = xd is a discontinuity which satisfies ρ` > ρr.

Its forward front moves with velocity
∂A

∂ρ
(ρr, x

+
d ) and its backward front moves with velocity

∂A

∂ρ
(ρ`, x

+
d ), until it meets another elementary wave. It is a piecewise constant approximation

of a rarefaction wave.

4.1 The number of discontinuities is finite.

In that part, we state and prove the existence of a solution for a piecewise constant flux A(ρ, .).

Proposition 2. Under assumptions H0 , H1 , H2 for A(ρ, .) uniformly piecewise constant, i.e.
such that there exists (z1, . . . zn) such that Disc(A)⊂ {z1, . . . , zn}, and for ρ0 ∈ BV(R) we can build
a solution in L∞([0, T ]× R) to the Cauchy problem (1). In addition, the solution ρ satisfies

‖ρ‖L∞([0,T ]×R) ≤
C

c
‖ρ0‖L∞(R), (36)

and

TV.(ρ(., t)) ≤ C

c
TV.{ρ0}+

2

c
max
[0,M ]

R(.) TV.{f}, M =
C

c
‖ρ0‖∞. (37)
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The rest of this section is devoted to the proof of Proposition 2. Let us denote by {zi, i = 1 · · ·n}
the set of points of discontinuity of A(ρ, .), and by {yj , j = 1 · · ·m} the points of discontinuity of
ρ0 (to simplify notations, we drop the m− and n−dependence in the notation for ρ, A and ρ0).
We can assume without any restriction that {zi, i = 1 · · ·n} ∩ {yj , j = 1 · · ·m} = ∅. We prove in
this part that the total variation of the solution is bounded independently of m and n. Since the
approximation ρ is piecewise constant, the total variation of ρ(., t) is defined as

TV.ρ(., t) =
∑
i

|ρ(x+i , t)− ρ(x−i , t)|, xi are the discontinuity points of ρ. (38)

The points of discontinuity xi actually depend on t, but we drop this dependence for simplifying
the notations. We distinguish the discontinuities of ρ as follows

TV.(ρ(., t)) = TVC .(ρ(., t)) + TVNC .(ρ(., t)), (39)

where

Definition 5 (Total variation of Non-Classical and Classical Shocks). We define for all time t > 0,
except for the times at which two waves interact:

TVC .(ρ(., t)) :=
I∑
j=1

|ρ(x+j , t)− ρ(x−j , t)|, (x1, . . . , xI) ∈ RI | xj /∈ {zi, i = 1 . . . n}, j = 1 . . . I, (40)

TVNC .(ρ(., t)) :=
n∑
i=1

|ρ(z+i , t)− ρ(z−i , t)|. (41)

The total variation TV.ρ(., t) evolves with time 1) when two waves interact, and 2) at time t = 0
because of the discontinuous medium. The interactions waves that can occur are of 3 types:

1. When a classical shock arrives at x = zi, we have an interaction of type CS/NCS, and this
gives rise to a Classical Shock and a Non-Classical Shock.

2. When a Rarefaction Shock arrives at x = zi, we have an interaction of type RS/NCS, and
this gives rise to another Rarefaction Shock and a Non-Classical Shock.

3. Two waves of type CS/RS, CS/CS, RS/CS can interact and it gives rise to one wave of type
CS or RS (usual Riemann problem).

See Figure 1 for an illustration. We now describe the waves creations at time t = 0. Let us remind
that ρ0 is continuous at the points where the medium is discontinuous, so that ρ0(zi) is well-defined.
At time t = 0,

1. At the points where ρ0 is discontinuous, a Classical Wave is created. It may be a classical
shock or a rarefaction shock depending on whether ρ0 is increasing or decreasing.

2. At the points zi of discontinuity of A(ρ, .), we have the creation of a classical wave (ρ∗i , ρ0(zi))
and creation of Non-Classical-Shock (ρ0(zi), ρ

∗
i ).

12



Figure 1: Waves interaction. A wave (ρ∗, ρ`) meets a Non-Classical Shock (ρ`, ρr) This gives rise to
a new state ρ∗∗ (Left) obtained by the Rankine Hugoniot conditions (Right).

Figure 2: Wave creation. Two waves (ρ0(zi), ρ
∗
i ) and (ρ∗i , ρ0(zi)) emerge at time t = 0. The new

state ρ∗i (Left) is obtained by the Rankine Hugoniot conditions (Right).
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See Figure 2 for an illustration. At time t = 0, the discontinuities in ρ0 can neither be classified as
Classical nor Non Classical Shocks so that we do not distinguish TVC .{ρ0} and TVNC .{ρ0}, but
we merely have

TV.{ρ0} =

m∑
j=1

|ρ0(y+j )− ρ0(y−j )|. (42)

The sequence of the following lemmas ends in the proof of Proposition 2.

Lemma 2 (TV. bounds on the fluxes). We denote by ρ the approximated solution to (1), where
the flux A is piecewise constant. Then, for almost every time (except interaction times), we have

TVC .(A(ρ(., t), .) = TV.(A(ρ0(.), .),

TVNC .(A(ρ(., t), .) = 0.
(43)

Proof. We have

TVC .(A(ρ(., t), .)) =

I∑
j=1

|A(ρ(xj , t), xj)−A(ρ(xj−1, t), xj−1)|, (x1, . . . , xI) ∈ RI | xj 6= zi,

j = 1 . . . I, i = 1 . . . n,

(44)

The Total Variation of ρ(., t) is not modified when two Classical Waves interact, and thus, the Total
Variation of A(ρ(., t), .) is not modified either since Classical waves can only interact at x 6= zi. Let
us assume that a Classical wave interacts with a Non Classical Shock at time t and at x = zi, then
we have (see Figure 1)

TVC .(A(ρ(., t+), .))− TVC .(A(ρ(., t−), .)) =
(
|A(ρ∗, z−i )−A(ρ`, z

−
i )|
)
−
(
|A(ρ∗∗, z+i )−A(ρr, z

+
i )|
)
,

(45)
where the Rankine-Hugoniot conditions impose that

A(ρ∗, z−i ) = A(ρ∗∗, z+i )

A(ρ`, z
−
i ) = A(ρr, z

+
i ).

(46)

Hence, as we have
TVC .(A(ρ(., t−), .)) = TVC .(A(ρ(., t+), .)), (47)

which implies that the total variation of the flux does not evolve after an interaction NCS-CS or
NCS-RS, i.e.

TVC .(A(ρ(., t), .)) = TVC .(A(ρ(., 0+), .)), t > 0. (48)

Let us now explore how the Total Variation is modified initially. At time t = 0, n Classical
Waves (ρ∗i , ρ0(xi)) are simultaneously created from the n discontinuities of the medium, and the
new states ρ∗i satisfy A(ρ0(zi), z

−
i ) = A(ρ∗i , z

+
i ). At time t = 0, we have

TV.(A(ρ0(.), .)) =

n∑
i=1

|A(ρ0(zi)), z
+
i )−A(ρ0(zi), z

−
i )|+

m∑
j=1

|A(ρ0(y
−
j ), yj)−A(ρ0(y

+
j ), yj)|. (49)

At time t = 0+, we have N + J classical waves and N non-classical shocks

TVC .(A(ρ(., 0+), .)) =
n∑
i=1

|A(ρ∗i , z
+
i )−A(ρ0(zi), z

+
i )|+

m∑
j=1

|A(ρ0(y
−
j ), yj)−A(ρ0(y

+
j ), yj)|

= TV.(A(ρ0(.), .)),

(50)
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and the first statement of Lemma 2 is proved combining (48) and (50). The result for Non-Classical
Shocks holds because of the flux conservation through the discontinuities zi.

In the following lemma, we state that the conservation of the flux implies that the solution stays
bounded for all time

Lemma 3 (L∞ bound). We denote by ρ the approximated solution to (1), where the flux A is
piecewise constant. Then

‖ρ(., t)‖L∞(R) ≤
C

c
‖ρ0‖L∞(R). (51)

Proof. We have, using H1

‖ρ(., t)‖L∞(R) ≤
1

c
‖A(ρ(., t), .)‖L∞(R). (52)

The flux conservation through both classical and non-classical waves implies

‖A(ρ(., t), .)‖L∞(R) = ‖A(ρ0(.), .)‖L∞(R). (53)

Then

‖ρ(., t)‖L∞(R) ≤
1

c
‖A(ρ0(.), .)‖L∞(R) ≤

C

c
‖ρ0‖L∞(R). (54)

Notice that this is not a maximum principle since it may happen that C > c.

Lemma 4 (TV. bounds for ρn). We denote by ρ the approximated solution to (1), where the flux
A is piecewise constant. Then,

TVC .(ρ(., t)) ≤ 1

c

(
max

[0,‖ρ0‖∞]
R(.) TV.{f}+ C TV.{ρ0}

)
,

TVNC .(ρ(., t)) ≤ 1

c
max
[0,M ]

R(.) TV.{f}, where M =
C

c
‖ρ0‖∞.

(55)

Proof. The solution ρ is piecewise constant, so that its Total Variation is uniquely determined by
its discontinuities.

First Step : TVC .(ρ(., t)). At time t, the number of classical waves is at most N + J . Let us
denote by (ρ−j , ρ

+
j ) the wave number j localized at x = xj . The localization xj does not coincide

with a discontinuity point zi (except maybe for a finite number of times we do not pick here). We
first control the Total Variation of ρ(., t) by the Total Variation of A(ρ(., t), .)

TVC .(ρ(., t)) =

n+m∑
j=1

|ρ+j − ρ
−
j | ≤

1

c

n+m∑
j=1

|A(ρ+j , xj)−A(ρ−j , xj)| ≤
1

c
TV.

(
A(ρ(., t), .)

)
. (56)

We now use Lemma 2 to obtain

TVC .(ρ(., t)) ≤ 1

c
TV.

(
A(ρ0(.), .)

)
. (57)
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For all (K + 1)−uplets x0 < x1 < · · · < xK , for all ρ ∈BV(R), using H1 and H2 ,

K∑
j=1

|A(ρ(xj), xj)−A(ρ(xj−1), xj−1)| ≤
K∑
j=1

|A(ρ(xj), xj)−A(ρ(xj), xj−1)|

+
K∑
j=1

|A(ρ(xj), xj−1)−A(ρ(xj−1), xj−1)|

≤
K∑
j=1

R(ρ(xj))|f(xj)− f(xj−1)|+
K∑
j=1

C|ρ(xj)− ρ(xj−1)|.

(58)

Hence,

TV.
(
A(ρ0(.), .)

)
≤ max

[0,‖ρ0‖∞]
R(.) TV.{f}+ C TV.{ρ0}. (59)

The combination of (57) and (59) gives us the first line of Lemma 4.

Second Step : TVNC .(ρ(., t)). The Non-Classical Shocks are the waves (ρ(z−i , t), ρ(z+i , t)) such
that

A(ρ(z−i , t), z
−
i ) = A(ρ(z+i , t), z

+
i ). (60)

Thus, we have, using H1

TVNC .{ρ(., t)} =

n∑
i=1

|ρ(z+i , t)− ρ(z−i , t)| ≤
1

c

n∑
i=1

|A(ρ(z+i , t), z
+
i )−A(ρ(z−i , t), z

+
i )| (61)

and then by (60)

TVNC .{ρ(., t)} ≤ 1

c

n∑
i=1

|A(ρ(z−i , t), z
−
i )−A(ρ(z−i , t), z

+
i )|, (62)

which is, using H2 and Lemma 3

TVNC .{ρ(., t)} ≤ 1

c

n∑
i=1

R(ρ(z−i , t)) |f(z−i )− f(z+i )|, (63)

which ends the proof of Lemma 4, since M ≥ ‖ρ0‖∞. Proposition 2 is obtained by approximating
ρ0 by piecewise a constant function ρ0,m such that TV.{ρ0,m} ≤TV.{ρ0}, and by letting m → ∞
(classical Wave Front Tracking algorithm).

4.2 The number of discontinuities is infinite.

We describe here how we pass to the limit and ends the proof of Theorem 1.

Lemma 5. Given a flux A which satisfies H0 , H1 , H2 , we can build a sequence of piecewise

constant fluxes An (with (n− 1) discontinuities) satisfying H0 , H1 , H2 as well and such that
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1. the fluxes An approximate the flux A in the sense that

∀ρ ∈ R, ‖An(ρ, .)−A(ρ, .)‖L∞(R) ≤ ε(n)R(ρ), ε(n)→ 0 as n→∞. (64)

2. If we denote by kpn and kp the functions which respectively satisfy An(kpn, x) = p and A(kp, x) =
p, then

lim
n→∞

‖kpn − kp‖L1(R) = 0. (65)

Proof. First Step. Building the An. The construction of the piecewise approximation of the
flux A is based on the constructive proof of Lemma 2.2, [10], which states that any BV function
can be approximated in L∞ by a sequence of piecewise constant functions. We adapt the proof in
our case, basically by showing that we can perform the same construction independently of ρ. Let
us define the right-continuous function

F (x) = TV.{f|(−∞,x]} = sup
{ N∑
j=1

|f(xj)− f(xj−1)|; N ≥ 1, x0 < x1 < · · · < xN = x
}
, (66)

where f is defined in H2 and assumed to be right-continuous (with no restriction). Given ε > 0,
let n be the largest integer such that nε ≤ TV.{f}, and consider the points

z0 = −∞, zn = +∞, zj = min{x;F (x) ≥ jε}, j = 1 . . . n− 1. (67)

Defining
fn(x) = f(zj), An(ρ, x) = A(ρ, zj), for x ∈ [zj , zj+1), (68)

we guarantee that the piecewise constant flux An satisfies H0 and H1 with the same constants

than A, and H2 is satisfied as well since there exists i, j ∈ [0, N ] such that

|An(ρ, x)−An(ρ, y)| = |A(ρ, zi)−A(ρ, zj)| ≤ R(ρ)|f(zi)− f(zj)| = R(ρ)|fn(x)− fn(y)|, (69)

and
TV.{fn} ≤ TV.{f}. (70)

Finally, the estimate (64) is guaranteed since for x ∈ [zj , zj+1),

|A(ρ, x)−An(ρ, x)| = |A(ρ, x)−A(ρ, zj)| ≤ R(ρ)|f(zj)− f(x)| ≤ R(ρ) ε(n). (71)

Second Step. Convergence of the
(
kpn
)
n
. We first claim that the kpn are uniformly bounded in

L∞(R). Indeed, we have, using H1

|kpn(x)| ≤ 1

c
|An(kpn(x), x)| = |p|

c
, x ∈ R. (72)

Secondly, we claim that the kpn are uniformly bounded in BV(R). Indeed, the functions kpn are
piecewise constant and we have

TV.{kpn} =

n∑
i=1

|kpn(z+i )− kpn(z−i )| ≤ 1

c

n∑
i=1

|A(kpn(z+i ), z+i )−A(kpn(z−i ), z+i )|. (73)
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Since A(kpn(z+i ), z+i ) = p = A(kpn(z−i ), z−i ), we obtain

TV.{kpn} ≤
1

c

n∑
i=1

|A(kpn(z−i ), z−i )−A(kpn(z−i ), z+i )| ≤ 1

c

n∑
i=1

R(kpn(z−i ))|fn(z−i )− fn(z+i )|

≤ 1

c
max

ρ∈[0,|p|/c]
R(ρ) TV.{f}.

(74)

Helly theorem assures that there exists kp ∈ L1(R) such that
∥∥kpn − kp∥∥L1(R) −→ 0

n→∞
. Let us now

check that A(kp(x), x) = p. We have

|A(kp(x), x)− p| = |A(kp(x), x)−An(kpn(x), x)|
≤ |A(kp(x), x)−An(kp(x), x)|+ |An(kp(x), x)−An(kpn(x), x)|.

(75)

According to (64),
|A(kp(x), x)−An(kp(x), x)| ≤ max

ρ∈[0,|p|/c]
R(ρ) ε(n), (76)

and using (65)

|An(kp(x), x)−An(kpn(x), x)| ≤ C|kp(x)− kpn(x)| →
n→∞

0, a.e., (77)

which ends the proof of Lemma 5.

Proof of Theorem (1). We approximate the flux x→ A(ρ, x) by An(ρ, .) given by Lemma 5.

According to Proposition 2, for all n ≥ 0, there exists ρn ∈ L∞
(

[0, T ] × R
)

uniformly bounded in

BV and such that we have in the distributional sense

∂t

∣∣∣ρn(x, t)− kpn(x)
∣∣∣+ sign

(
ρn(x, t)− kpn(x)

){
An(ρn(x, t), x)−An(kpn(x), x)

}
≤ 0. (78)

Clearly, the ρn are uniformly Lipschitz in time with values in L1(R). Then, Proposition 2 combined
with Theorem 2.6 of [10] gives us that ρn is uniformly bounded in BV([0, T ] × R) and thus there
exists ρ ∈ L1

loc([0, T ) × R) such that after extraction of a subsequence, ‖ρn − ρ‖L1([0,T ]×R) → 0 as
n→∞. We combine this with (65), and

|An(ρn(x, t), x)−A(ρ(x, t), x)| ≤ |An(ρn(x, t), x)−An(ρ(x, t), x)|+ |An(ρ(x, t), x)−A(ρ(x, t), x)|
≤ C|ρn(x, t)− ρ(x, t)| + ε(n) R(ρ(x, t)),

(79)
so that An(ρn(x, t), x) converges strongly toward A(ρ(x, t), x), after extracting a subsequence. We
can now pass to the limit in the entropy inequality (78), and we get that ρ satisfies

∂t

∣∣∣ρ(x, t)− kp(x)
∣∣∣+ sign

(
ρ(x, t)− kp(x)

){
A(ρ(x, t), x)−A(kp(x), x)

}
≤ 0, D′(R), (80)

which means that ρ is the unique entropy solution of (1). �

5 Non-Existence in the general case : A counter example.

This section is devoted to the proof of Theorem 2. We notice (see proof of Lemma 4) that assumption

H1 and H2 imply that
∀ρ ∈ BV(R), TV.A(ρ(.), .) < +∞. (81)
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Based on a diagonal argument, we show that if (81) is violated, discontinuities in x may imme-
diately generate a blow up: even if the initial condition has a finite total variation at time t = 0,
the total variation can become infinite at time t = 0+. We then exhibit a flux A satisfying H0

and H1 , and an initial datum ρ0 ∈ BV(R) such as

+∞∑
n=1

|A(ρ0(n
+), n+)−A(ρ0(n

−), n−)| = +∞. (82)

Our proof is divided in two steps:

1. Step 1: Picking the initial datum ρ0 ∈ BV(R) and a flux A satisfying H0 , H1 such that
the key point (81) is violated, the total variation of the solution ρ(., 0+) is unbounded.

2. Step 2: There exists ρ0 ∈ BV(R) and a flux A satisfying H0 , H1 such that the key point
(81) is violated.

5.1 Step 1. A necessary condition to prevent blow up at time t = 0+.

In this subsection, we focus on Step 1. We assume that the couple (A, ρ0) satisfies (82). Without
loss of assumption, we can have that ρ0 is continuous. We have

TV.{ρ(., 0+)} =

+∞∑
n=1

∣∣∣ρ(n+, 0+)− ρ(n−, 0+)
∣∣∣ ≥ 1

C

+∞∑
n=1

∣∣∣A(ρ(n+, 0+), n+)−A(ρ(n−, 0+), n+)
∣∣∣

=
1

C

+∞∑
n=1

∣∣∣A(ρ0(n), n−)−A(ρ0(n), n+)
∣∣∣, (83)

since A(ρ(n+, 0+), n+) = A(ρ(n−, 0+), n−) = A(ρ0(n), n−) (See Figure 1 ). Then, the total variation
of ρ(., 0+) is unbounded.

5.2 Step 2. Building A and ρ0.

We exhibit in this part a flux A such that Disc(A) ⊂ N, where N denotes here the set of strictly
positive integers, and an initial condition ρ0 ∈ BV([1,+∞)) such that (81) is violated. Let us first
consider the bounded initial condition

ρ0(x) =
1

x
, x ∈ [1,+∞), (84)

which satisfies

TV.{ρ0} =

∫ +∞

1

dx

x2
<∞. (85)

We then consider the flux A(ρ, x) defined as, for all n even

A(ρ, x) =

{
an(ρ), n ≤ x < n+ 1,

an(ρ), n− 1 ≤ x < n.
(86)

where an and an are defined as

an(ρ) =


2ρ, ρ ∈

(
0,

1

2n

)
,

2

3

(
ρ+

1

n

)
, ρ ∈

(
1

2n
,∞
)
,

ān(ρ) =


ρ, ρ ∈

(
0,

2

n

)
,

2

3

(
ρ+

1

n

)
, ρ ∈

(
2

n
,∞
)
.

(87)
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(see Figure 3, Left).

1. The flux A satisfies the requirements H-1,2,3. For all (ρ, x) ∈ R2, ρ → A(ρ, x) is
strictly increasing and concave, and uniformly Lipschitz in the sense that

2

3
|ρ− ρ̃| ≤ |A(ρ, x)−A(ρ̃, x)| ≤ 2|ρ− ρ̃|, x ∈ [1,+∞). (88)

The function ρ 7→ A(ρ, x) is piecewise linear for the sake of simplicity, but we can render it C∞ by
a smoothing process. The lack of regularity of ρ 7→ A(ρ, x) is not a key point here. Let us now
check that the spatial discontinuities of A are BV. We have

TV.A(ρ, .) =

+∞∑
n=1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣, (89)

where

|A(ρ, n+)−A(ρ, n−)| =

{
|an(ρ)− ān(ρ)|, n even,

|ān+1(ρ)− an−1(ρ)|, n odd.
(90)

Case 1 : ρ > 2. We have |an+1(ρ)− ān−1(ρ)| = 2

3

(
ρ+

1

n+ 1

)
− 2

3

(
ρ+

1

n− 1

)
, and

|an(ρ)− ān(ρ)| = 0, then

TV.A(ρ, .) =

+∞∑
n=3
n odd

∣∣∣2
3

(
ρ+

1

n+ 1

)
− 2

3

(
ρ+

1

n− 1

)∣∣∣ ≤ 4

3

+∞∑
n=3

1

(n− 1)(n+ 1)
<

2π2

9
. (91)

Case 2 : There exists m ∈ N such that ρ ∈ ( 2
m+1 ,

2
m ].

TV.A(ρ, .) =

bm
4
c∑

n=1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣+ m∑

n=bm
4
c+1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣+ +∞∑

n=m+1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣

(92)

We start by estimating the third term. For n ≥ m + 1, we have
1

2n
≤ 2

n
≤ 2

m+ 1
≤ ρ, and then

(an(ρ)− ān(ρ)) = 0. The third term is then equal to

+∞∑
n=m+1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣ =

+∞∑
n=m+1
n odd

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣ =

+∞∑
n=m+1
n odd

∣∣∣2
3

(
ρ+

1

n+ 1

)
− 2

3

(
ρ+

1

n− 1

)∣∣∣
≤ 4

3

+∞∑
n=2

1

(n− 1)(n+ 1)
<

2π2

9
.

(93)

We deal with the first term the following way. For n ≤ m

4
, we have ρ ≤ 2

m
≤ 1

2n
which implies

|A(ρ, n+)−A(ρ, n−)| = |2ρ− ρ| = ρ. Thus

bm
4
c∑

n=1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣ =

bm
4
c∑

n=1

ρ ≤ m

4

2

m
=

1

2
. (94)
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Let us finally deal with the second term. We pick n ∈ [bm4 c+ 1,m]. We have

|an(ρ)− ān(ρ)| ≤ an(ρ) + ān(ρ) ≤ 2ρ+
2

3n
+ ρ+

2

3n

|ān+1(ρ)− an−1(ρ)| ≤ ān+1(ρ) + an−1(ρ) ≤ 2ρ+
2

3(n+ 1)
+ ρ+

2

3(n− 1)

(95)

We get then, after separating the even and odd n

m∑
n=bm

4
c+1

∣∣∣A(ρ, n+)−A(ρ, n−)
∣∣∣ =

m∑
n=bm

4
c+1

n even

(
3ρ+

4

3n

)
+

m∑
n=bm

4
c+1

n odd

(
3ρ+

2

3(n+ 1)
+

2

3(n− 1)

)
.

(96)
Let us focus on the term corresponding to n even. On the first hand, since ρ ≤ 2

m we have

m∑
n=bm

4
c+1

n even

3ρ ≤ 3(m− m

4
− 1)

2

m
≤ 9

2
, (97)

and on the other hand, for m > 4

m∑
n=bm

4
c+1

n even

4

3n
≤ 4

3

∫ m

bm
4
c

dx

x
=

4

3

(
log(m)− log(bm

4
c)
)
≤ 4

3
log

(
4m

m− 4

)
≤ 4

3
log(20). (98)

The sum is trivially finite for m = 1, 2, 3 or 4. The terms corresponding to n odd are treated the
same way. As a consequence, the second line of H1 is satisfied.

2. The flux violates assumption (81). Using the expression (84) for the initial datum

+∞∑
n=1

|A(ρ0(n
+), n+)−A(ρ0(n

−), n−)| =
+∞∑
n=1

∣∣∣∣A( 1

n
, n+

)
−A

(
1

n
, n−

)∣∣∣∣
=

+∞∑
n=1
n even

∣∣∣∣an( 1

n

)
− ān

(
1

n

)∣∣∣∣+

+∞∑
n=1
n odd

∣∣∣∣ān+1

(
1

n

)
− an−1

(
1

n

)∣∣∣∣ . (99)

Using now expression (87), we find that the terms corresponding to the even integers are giving the
sum

+∞∑
n=1
n even

∣∣∣∣23
(

1

n
+

1

n

)
− 1

n

∣∣∣∣ =
1

3

+∞∑
n=1
n even

1

n
= +∞, (100)

and this ends the proof of Theorem (81).

Remark 2. We can assume the discontinuity points lay on a compact set, for example Disc(A)⊂
{arctan(n), n ∈ N}. In this counter example, there is no R continuous such that H2 is satisfied
(Indeed R would blow up at ρ = 0). We point out that ρ = 0 does not play a specific role here, and
that we can shift the flux so that the blow up for R occurs at any ρ > 0.
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Figure 3: Left: The flux A(., x) depends on x. For x ∈ [n − 1, n) with n odd, for ρ ∈ (0,
2

n
),

A(ρ, x) = an(ρ) = ρ, for ρ ∈ (
2

n
,+∞), A(ρ, x) = an(ρ) =

2

3
(ρ+

1

n
). For x ∈ [n, n+ 1) with n even,

for ρ ∈ (0,
1

2n
), A(ρ, x) = an(ρ) = 2ρ, and for ρ ∈ (

1

2n
,+∞), A(ρ, x) = an(ρ) =

2

3
(ρ +

1

n
). Right:

Tri-dimensional visualization of the flux function A detailed in the counter-example.
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6 Conclusion

We focus on a spatially heterogeneous conservation law, and define a BV framework in which an
adapted entropy solution defined by [9] exists for every Cauchy problem with BV initial datum.
We also provide new BV estimates on the entropy solution. To prove our result, we introduces a
key assumption on the flux, which is optimal since as soon as it is violated, we can exhibit counter-
examples where, starting from a BV initial condition, the total variation of the solution blows
up instantaneously. If the variables of the flux are separated, or are a combination of separated
variables, which is the focus of most authors, the key condition H2 is satisfied under conditions

H0 and H1 .

Appendix 1: Proof of Lemma 1.

Proof. Let us first introduce some notations. For all ρ > 0, we consider the following well-defined
limits

A(ρ, x−) = lim
y→x
y<x

A(ρ, y), A(ρ, x+) = lim
y→x
y>x

A(ρ, y), (101)

and denote the jump of A at (ρ, x) by

Jρ(x) = |A(ρ, x+)−A(ρ, x−)|. (102)

We then write
Disc(A) =

⋃
N∈N

⋃
k∈N

Ik,N , (103)

where

Ik,N = {x ∈ R | ∃ρx ∈ [0, N ] such that Jρx(x) >
1

k
} (104)

We claim that for all N ≥ 0, k ≥ 0, Ik,N is finite, which makes Disc(A) at most countable. Let us
assume by contradiction that there exists (k,N) ∈ N2 such that Ik,N is infinite. Then

∃ε > 0 | ∀x ∈ Ik,N , |ρ− ρx| < ε =⇒ Jρ(x) >
1

2k
. (105)

Indeed, ∀x ∈ Ik,N , ∀ρ ∈ R+,

1

k
< Jρx(x) ≤ |A(ρ, x+)−A(ρx, x

+)|+ Jρ(x) + |A(ρ, x−)−A(ρx, x
−)|

≤ 2C|ρ− ρx|+ Jρ(x)
(106)

and (105) holds for ε =
1

4Ck
. For all x ∈ Ik,N , we denote by

Uk(x) = [ρx − ε, ρx + ε]. (107)

The compact set [0, N + ε] is then covered by an infinite number of sets Uk(x), each of them being
of size at least 2ε. Thus, there exists ρ ∈ [0, N + ε] such that ρ belongs to an infinite number of
Uk(x). Indeed, by contradiction, if there is no such ρ, then, in particular, ε only belongs to a finite
number of Uk(x), which implies that [ε,N + ε] is covered by an infinite number of Uk(x). In the
same way, 2ε only belongs to a finite number of Uk(x), which implies that [2ε,N + ε] is covered by
an infinite number of Uk(x). By recursion, [N,N +ε] is covered by an infinite number of Uk(x), and
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thus, any ρ ∈ [N,N + ε] belongs to an infinite number of Uk(x), which contradicts the assumption.
Thus, for that specific ρ,

TV.A(ρ, .) =
∑

x∈Ik,N

|A(ρ, x+)−A(ρ, x−)| >
∑

x∈Ik,N

1

2k
= +∞, (108)

which contradicts H1 .

Appendix 2: In Example a), the Panov formulation selects the con-
stant solution.

We prove here that for the flux and initial condition (12), the Panov criterion selects (at least) the

constant solution ρ(x, t) =
1

2
. As explained in the Subsection 1.2 of the Introduction, example a),

the flux (12) was modified so that it satisfies B − 1. To do so, we replace it by

AM (ρ, x) =

{
a−M (ρ), x < 0

a+M (ρ), x > 0,
(109)

with

a−M (ρ) =


(ρ− 1)2

2
, −(M + 1) ≤ ρ ≤M,

h(ρ), M ≤ ρ ≤M + 1,
a+M (ρ) =


f(ρ), −(M + 1) ≤ ρ ≤ −M
ρ2

2
, |ρ| ≤M,

g(ρ), M ≤ ρ ≤M + 1,

(110)

where f, g, h are chosen such that both a−M and a+M are convex, and such that AM (M + 1, x) =
AM (−(M + 1), x) = (M + 2)2. Even though the newly built flux depends on M , we drop this
dependence in the notation in this Appendix, and we prove that the selected solution does actually

not depend on M for M > 1/2. Notice that we can impose f(ρ) ≤ (ρ− 1)2

2
for ρ ∈ (−(M+1),−M)

and h(ρ) ≤ g(ρ) for ρ ∈ (M,M+1). To check that ρ(x, t) =
1

2
satisfies the Panov selection criterion

(11), since the spatial derivative of the flux A contains only a singular part µsk (at x = 0), we need
to evaluate the entropy dissipation, i.e. to check that the quantity

E(k) =
∂

∂t

∣∣∣∣12 − k
∣∣∣∣+

∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
+ |µsk(x)|

=
∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
+ |µsk(x)|,

(111)

where

µsk(x) =
∂

∂x
A(k, x), (112)

is non-positive for k ∈ (−(M + 1),M + 1). We distinguish different cases depending on k.
Case 1. k ∈ (−M,M). In that case, we have

∂

∂x
A(k, x) =

(
k − 1

2

)
δx=0, (113)
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and for k <
1

2
,

sign

(
1

2
− k
)(

1

8
−A(k, x)

)
=


1

8
− (k − 1)2

2
, x < 0,

1

8
− k2

2
, x > 0,

(114)

and thus

∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
=
(
− k2

2
+

(k − 1)2

2

)
δx=0 = |k − 1

2
|δx=0. (115)

For k >
1

2
,

sign

(
1

2
− k
)(

1

8
−A(k, x)

)
=


−1

8
+

(k − 1)2

2
, x < 0,

−1

8
+
k2

2
, x > 0,

(116)

and thus

∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
=
(k2

2
− (k − 1)2

2

)
δx=0 = |k − 1

2
|δx=0. (117)

This implies that E(k) = 0.
Case 2. k ∈ (−(M + 1),−M). In that case, we have∣∣∣∣ ∂∂xA(k, x)

∣∣∣∣ =

∣∣∣∣f(k)− (k − 1)2

2

∣∣∣∣ δx=0 =

(
(k − 1)2

2
− f(k)

)
δx=0, (118)

and
∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
=
((k − 1)2

2
− f(k)

)
δx=0, (119)

so that E(k) = 0.
Case 3. k ∈ (M,M + 1). Similarly, we have E(k) = 0 since∣∣∣∣ ∂∂xA(k, x)

∣∣∣∣ = |g(k)− h(k)| δx=0 = (g(k)− h(k)) δx=0, (120)

and
∂

∂x

(
sign

(
1

2
− k
)(

1

8
−A(k, x)

))
=
(
h(k)− g(k)

)
δx=0. (121)
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