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Almost all non-archimedean Kakeya sets have measure zero

Xavier Caruso

August 8, 2016

Abstract

We study Kakeya sets over local non-archimedean fields with a probabilistic point of
view: we define a probability measure on the set of Kakeya sets as above and prove that,
according to this measure, almost all non-archimedean Kakeya sets are neglectable according
to the Haar measure. We also discuss possible relations with the non-archimedean Kakeya
conjecture.
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At the beginning of the 20th century, Kakeya asks how small can be a subset of R2 obtained
by rotating a needle of length 1 continuously through 360 degrees within it and returning to
its original position. A set satisfying the above requirement is today known as a Kakeya set (or
sometimes Kakeya needle set) in R2. In 1928, Besikovitch [2] constructed a subset of R2 with
Lebesgue measure zero containing a unit length segment in each direction and derived from this
the existence of Kakeya sets with arbitrary small positive Lebesgue measure. Since this, Kakeya
sets have received much attention because they have connections with important questions in
harmonic analysis. In particular, lower bounds on the size of a Kakeya set have been found: it
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has been notably established that any Kakeya set in R2 must have Hausdorff dimension 2 (see
[7, Theorem 2] for a short and elegant proof).

Kakeya’s problem extends readily to higher dimensions: a Besikovitch set in Rd is a subset of
Rd containing a unit length segment in each direction while a Kakeya set in Rd is a set obtained
by rotating continuously a needle of length 1 is all directions (parametrized either by the (d−1)-
dimensional sphere of the (d−1)-dimensional projective space). We refer to §1.1.1 for precise
definitions. Kakeya sets in Rd with Lebesgue measure zero exist as well: the product of Rd−2 by
a neglectable Kakeya set in R2 makes the job. As for lower bounds, it has been proved by Wolff
[9] that a Kakeya set in Rd has Hausdorff dimension > d+2

2 . More recently Katz and Tao [8]
improved the lower bound to (2 −

√
2)(d − 4) + 3. Experts however believe that these results

are far from being optimal and actually conjecture that a Kakeya set in Rd should always have
Hausdorff dimension d: this is the so-called Kakeya conjecture.

More recently Kakeya’s problem was extended over other fields. The first case of interest was
that of finite fields and was first considered in [9] by Wolff. Given a finite field Fq, a Besikovitch
set in Fdq is a subset of Fdq containing an affine line in each direction (note that the length
condition has gone). Wolff wondered whether there exists a positive constant cd depending only
d such that any Besikovitch set in Fdq contains at least cd ·qd elements. A positive answer (leading
to cd = 1

d!) was given by Dvir in his famous paper [4].
In [5], Ellenberg, Oberlin and Tao introduced Besikovitch sets over Fq[[t]] and asked whether

there exists such a set whose Haar measure is zero. Dummit and Hablicsek addressed this
question in [3] and gave to it a positive answer: they proved that, for all d > 2 and all finite
field Fq, there does exist a zero-measure Besikovitch set in Fq[[t]]d. They more generally defined
Besikovitch sets over any ring R admitting a Haar measure µ for which µ(R) is finite and, for
those rings, they stated a straightforward analogue of the Kakeya conjecture. Apart from Fq[[t]],
an interesting ring R which falls within Dummit and Hablicsek’s framework is R = Zp, the ring
of p-adic integers. Dummit and Hablicsek then proved the Kakeya conjecture in dimension 2 for
R = Fq[[t]] and R = Zp. The existence of zero-measure Besikovitch sets over Zp was proved
more recently by Fraser in [6].

The general aim of this paper is to study further the size of Kakeya/Besikovitch sets over
non-archimedean local fields, i.e. Fq((t)) = Frac Fq[[t]], Qp = Frac Zp and their extensions. Our
main originality is that we adopt a probabilistic point of view.

Let us describe more precisely our results. Let K be a fixed non-archimedean local field:
similarly to R, it is equipped with an absolute value which turns it into a topological locally
compact field. It is thus equipped with a Haar measure µ giving a finite mass to any bounded
subset. Since K is non-archimedean, the unit ball R of K is a subring of K (it is Fq[[t]] when
K = Fq((t)) and Zp when K = Qp); we normalize µ so that µ(R) = 1. In this setting, we
provide a definition for Kakeya sets and Besikovitch sets1 and endow the set of Kakeya sets
included in Rd with a probability measure, giving this way a precise sense to the notion of
random non-archimedean Kakeya set. Our main theorem is the following.

Theorem 1 (cf Corollary 1.19). Almost all Kakeya sets sitting in Rd have measure zero.

We emphasize that the above theorem concerns actual Kakeya sets (and not Besikovitch
sets). It then shows a clear dichotomy between the archimedean and the non-archimedean
setup: in the former, Kakeya sets have necessarily positive measure (through it can be arbitrarily
small) while, in the latter, almost all of them have measure zero.

We will deduce Theorem 1 from a much more accurate result providing an exact value for
the average size of ε-neighbourhoods of Kakeya sets. Before stating (a weak version of) it, recall

1We emphasize that, similarly to the real setting, we make the difference between Kakeya and Besikovitch sets: ba-
sically, an additional continuity condition (corresponding to the fact that Kakeya’s needle has to move continuously)
is required for the former.
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that the ε-neighbourhood of a subset N ⊂ Kd consists of points whose distance to N is at most
ε. Let q be the cardinality of the residue field of K, i.e. of q = CardR/m where m is the open unit
ball in K. When R = Fq((t)), we can check that m = t · Fq[[t]], so that q is indeed q. Similarly
when R = Qp, we have m = pZp and q is equal to p.

Theorem 2 (cf Proposition 1.23). The expected value of the Haar measure of the ε-neighbourhood
of a random Kakeya set sitting in Rd is equivalent to:

2 · (qd − 1)

(q − 1)(qd−1 − 1)
· 1

| logq ε|
when ε goes to 0.

This refined version of Theorem 1 seems to us quite interesting because it underlines that,
although Kakeya sets tend to be neglectable according to the Haar measure, they are not that
small on average as reflected by the logarithmic decay with respect to ε. In particular Theorem 2
is in line with the non-archimedean Kakeya conjecture and might even be thought (with caution)
as an average version of it.

Of course, beyond the mean, one would like to study further the random variables Xε taking
a random Kakeya set sitting in Rd to the Haar measure of its ε-neighbourhood. For instance, in
the direction of the non-archimedean Kakeya conjecture, one may ask the following question:
can one compute higher moments of the Xε’s (possibly extending the technics of this paper)
and this way derive interesting informations about their minimum? In the real setting, results in
related directions were obtained by Babichenko and al. [1, Theorem 1.6] in the 2-dimensional
case.

This paper is organized as follows. In Section 1, we define non-archimedean Kakeya/Be-
sikovitch sets together with the probability measure on the set of Kakeya sets we shall work
with afterwards. We then state (without proof) our main theorem which is yet another refined
version of Theorem 2. We then derive from it several corollaries. Section 2 provides a totally
algebraic reformulation of the statements and results of Section 1. Its interest is twofold. First
it allows us to extend to the torsion case the notion of Kakeya/Besikovitch sets together with
the Kakeya conjecture. Second it positions the framework in which the forthcoming proof will
all take place. The proof of our main theorem occupies Section 3. Section 4 contains numer-
ical simulations whose objectives are, first, to exemplify our results and, second, to show the
behaviour of the random variables Xε’s beyond their mean. Pictures of 2-adic Kakeya sets (in
dimension 2 and 3) are also included.

1 Non-archimedean Kakeya sets

As just mentionned, the aim of this section is to introduce (random) Kakeya and Besikovitch sets
over non-archimedean local fields (cf §§1.1–1.3) and then to state and comment on our main
results (§1.4).

Throughout this paper, the letter K refers to a fixed discrete valuation field on which the
valuation is denoted by val. We always assume that K is complete and that its residue field
is finite. For our readers who are not familiar with non-archimedean geometry, we refer to
Appendix A (page 30) for basic definitions and basic facts about valuation fields.

We fix in addition an integer d > 2: the dimension.

1.1 Besikovitch and Kakeya sets

1.1.1 The real setting

We first recall the definition and the basic properties of Kakeya sets and Besikovitch sets in
the classical euclidean setting over R. Let Sd−1(R) denote the unit sphere in Rd. When d = 2,
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Kakeya considers subsets in R2 that can be obtained by rotating a needle of length 1 continuously
through 360 degrees within it and returning to its original position (or, depending on authors,
by rotation a needle of length 1 continuously through 180 degrees within it and to its original
position with reverse orientation). This notion can be extended to higher dimensions as follows.

Definition 1.1. A Kakeya needle set (or just a Kakeya set) in Rd is a subset N of Rd of the form:

N =
⋃

a∈Sd−1(R)

[
f(a)−a

2
, f(a)+

a

2

]
where f : Sd−1(R) → Rd is a continuous function. (Here [x, y] denotes the segment joining the
points x and y.)

Remark 1.2. Optionally one may further require that the segments corresponding to the direc-
tions a and −a coincide for all a ∈ Sd−1(R). This is equivalent to requiring that f(a) = f(−a)
for all a ∈ Sd−1(R), that is to requiring that f factors through the projective space Pd−1(R).

The natural question about Kakeya sets is the following: how small can be a Kakeya set? As
a basic example, Kakeya first asks whether there exists a minimal area for Kakeya sets in R2.
Besikovitch answers this question negatively and proves that there exists Kakeya sets (in any
dimension) of arbitrary small measure. Besikovitch introduced a weaker version of Kakeya sets:

Definition 1.3. A Besikovitch set in Rd is a subset of Rd which contains a unit line segment in
every direction.

Obviously a Kakeya set is a Besikovitch set. The converse is however not true. More precisely
Besikovitch managed to construct Besikovitch sets of measure zero whereas one can easily show
that a Kakeya set have necessarily positive measuree. The question now becomes: how small
can be a Besikovitch set? A famous conjecture in this direction asks whether any Besikovitch
set in Rd has Hausdorff dimension d? It is known to be true when d ∈ {1, 2} but the question
remains open for higher dimensions.

1.1.2 The non-archimedean setting

We now move to the non-archimedean setting: recall that we have fixed a complete discrete
valuation field K. We denote by R its rings of integers and by k its residue field. We set
q = Cardk. We fix a uniformizer π ∈ K and always assume that the valuation onK is normalized
so that val(π) = 1. Let µ be the Haar measure on K normalized by µ(R) = 1. In the sequel, we
shall always work with the norm |·| on K defined by |x| = q−val(x) (x ∈ K). We recall that it is
compatible with the Haar measure µ on K in the sense that:

µ(aE) = |a| · µ(E)

for all a ∈ K and all measurable subset E of K.
We consider the K-vector space Kd and endow it with the infinite norm ‖·‖∞:

‖(x1, . . . , xd)‖∞ = max
16i6d

|xi|.

Let Bd(K) (resp. Sd−1(K)) denote the unit ball (resp. the unit sphere) in Kd. Clearly Bd(K) =
Rd and Sd−1(K) consists of tuples (x1, . . . , xd) ∈ Rd containing at least one coordinate which is
invertible in R. The latter condition is equivalent to the fact that the image of (x1, . . . , xd) in kd

does not vanish. This notably implies that Sd−1(K) has a large measure: precisely µ(Sd−1(K)) =
1− q−d. This contrasts with the real case.
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Definition 1.4. Given a ∈ Sd−1(K), a unit length segment of direction a is a subset of Kd of the
form

{
ta+ b : t ∈ R

}
for some b ∈ Rd.

A Besikovitch set in Kd is a subset of Kd containing a unit length segment in every direction.

Definition 1.5. A Kakeya set in Kd is a subset N of Kd of the form:

N =
⋃

a∈Sd−1(K)

Sa with Sa =
{
ta+ f(a) : t ∈ R

}
where f : Sd−1(K)→ Kd is a continuous function.

It has been proved recently (see [6]) that Kakeya sets of measure zero exists in Kd! The
main objective of this article is to prove that it is in fact the case for almost all Kakeya sets (in a
sense that we will make precise later).

1.2 The projective space over K

Instead of working with Sd−1(K), it will be more convenient to use the projective space Pd−1(K).
Recall that is defined as the set of lines inKd passing through the origin. From an algebraic point
of view, P d−1(K) is described as the quotient ofKd+1\{0} by the natural action by multiplication
of K?. We use the standard notation [a1 : · · · : ad] to refer to the class in Pd−1(K) of a nonzero d-
tuple (a1, . . . , ad) of elements of K. Geometrically [a1 : · · · : ad] corresponds to the line directed
by the vector (a1, . . . , ad).

Definition 1.6. Let a ∈ Pd−1(K). A representative (a1, . . . , ad) ∈ Kd of a is reduced if it belongs
to Sd−1(K).

Any element a ∈ Pd−1(K) admits a reduced representative: it can be obtained by dividing
any representative (a1, . . . , ad) by a coordinate ai for which ‖(a1, . . . , ad)‖∞ = |ai|. We note
that two reduced representatives of a differ by multiplication by a scalar of norm 1, i.e. by
an invertible element of R. As a consequence Pd−1(K) can alternatively be described as the
quotient Sd−1(K)/R× where R× stands for the group of invertible elements of R.

Canonical representatives. Although there is no canonical choice, we will need to define a
particular set of representatives of the elements of Pd−1(K). The following lemma makes precise
our convention.

Lemma 1.7. Any element a ∈ Pd−1(K) admits a unique representative can(a) = (a1, . . . , ad) ∈
Sd−1(K) satisfying the following property: there exists an index piv(a) (uniquely determined) such
that apiv(a) = 1 and |ai| < 1 for all i < piv(a).

Proof. Let (a′1, . . . , a
′
d) ∈ Sd−1(K) be any representative of a of norm 1. Define j as the smallest

index i for which |a′i| = 1. Then the vector (a′j)
−1 · (a′1, . . . , a′d) satisfies the requirements of the

lemma (with piv(a) = j). The uniqueness is easy and left to the reader.

Remark 1.8. The notation piv means “pivot”.

The above construction defines two mappings piv : Pd−1(K)→ {1, . . . , d} and can : Pd−1(K)→
Sd−1(K) and the latter is a section of the projection Sd−1(K)→ Pd−1(K). In the sequel, we shall
often consider can as a function from Pd−1(K) to Rd.
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A distance on Pd−1(K). Recall that we have seen that Pd−1(K) = Sd−1(K)/R×. The natural
distance on Sd−1(K) (inherited from that on Kd) then defines a distance dist on Pd−1(K) by:

dist(a, b) = inf
â,b̂
|â− b̂|

where the infimum is taken over all representatives â and b̂ of a and b respectively lying in
Sd−1(K). One easily proves that dist takes its values in the set {0, 1, q−1, q−2, q−3, . . .} and
remains non-archimedean in the sense that

dist(a, c) 6 max
(
dist(a, b),dist(b, c)

)
for all a, b, c ∈ Pd−1(K). Moreover Pd−1(K) equipped with the topology induced by dist is a
compact space since there is a continuous map Sd−1(K)→ Pd−1(K) with compact domain.

Proposition 1.9. For all a, b ∈ Pd−1(K), we have:

dist(a, b) = |can(a)− can(b)|.

Proof. Clearly dist(a, b) 6 |can(a)− can(b)|.
Hence, we just need to prove that |can(a) − can(b)| 6 dist(a, b). Let us first assume that

piv(a) < piv(b) and let â = (â1, . . . , âd) and b̂ = (b̂1, . . . , b̂d) be two vectors in Sd−1(K) lifting
a and b respectively. Set j = piv(a). The coordinate âj has necessarily norm 1 while |b̂j | < 1.
Therefore |âj − b̂j | has norm 1 and dist(a, b) is equal to 1 as well. We conclude similarly when
piv(a) > piv(b).

Assume now that piv(a) = piv(b). Set j = piv(a) and write can(a) = (a1, . . . , ad) and
can(b) = (b1, . . . , bd), so that aj = bj = 1. We notice that any representative â ∈ Sd−1(K) of a
can be written â = λ ·can(a) for some λ ∈ R×. Similarly we can write b̂ = µ ·can(b) with µ ∈ R×
for any representative b̂ of b. We are then reduced to show that:

|λ · can(a)− µ · can(b)| > |can(a)− can(b)| (1)

for any λ and µ of norm 1. Set r = |can(a) − can(b)|. Observe that the j-th coordinate of the
vector λ·can(a)−µ·can(b) is λ−µ. The inequality (1) then holds if |λ−µ| > r. Otherwise, let j′ be
an index such that r = |aj′−bj′ |. For this particular j′, write λaj′−µbj′ = λ(aj′−bj′)+(λ−µ)bj′ .
Moreover |λ(aj′ − bj′)| = r while |(λ − µ)bj′ | 6 |λ − µ| < r. Thus |λaj′ − µbj′ | = r and (1)
follows.

Corollary 1.10. Let a, b ∈ Pd−1(K). Let (a1, . . . , ad) and (b1, . . . , bd) in Sd−1(K) be some repre-
sentatives of a and b respectively. Then dist(a, b) is the maximal norm of a 2×2 minor of the matrix(

a1 a2 · · · ad
b1 b2 · · · bd

)
. (2)

Proof. Since two representatives of a differ by multiplication by an element of norm 1, we may
safely assume that (a1, . . . , ad) = can(a). Similarly we assume that (b1, . . . , bd) = can(b). If
piv(a) 6= piv(b), the determinant of the submatrix of (2) composed by the piv(a)-th and piv(b)-
th columns is congruent to ±1 modulo m. It thus has norm 1 and the corollary is proved in this
case. Suppose now that piv(a) = piv(b) and assume further for simplicity that they are equal to
1. The matrix (2) is then equivalent to:(

1 a2 · · · ad
0 b2 − a2 · · · bd − ad

)
.

It is now clear that the maximal norm of a 2 × 2 minor is equal to ‖can(b) − can(a)‖∞. The
corollary then follows from Proposition 1.9.
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Projective Kakeya sets. Following Remark 1.2, one may define non-archimedean Kakeya sets
using the projective space instead of the sphere.

Definition 1.11. A projective Kakeya set in Kd is a subset N of Kd of the form:

N =
⋃

a∈Pd−1(K)

Sa with Sa =
{
t · can(a) + f(a) : t ∈ R

}
where f : Pd−1(K)→ Kd is a continuous function.

Proposition 1.12. (a) Any projective Kakeya set is a Kakeya set.

(b) Any Kakeya set contains a projective Kakeya set.

Proof. (a) The projective Kakeya set attached to a function f : Pd−1(K) → Kd is equal to the
Kakeya set attached to the compositum of f with the natural map Sd−1(K)→ Pd−1(K) sending
a vector to the line it generates.

(b) The Kakeya set attached to a function f : Sd−1(K)→ Kd contains the projective Kakeya set
attached to f ◦ can. (Notice that can is continuous by Proposition 1.9.)

In what follows, we will mostly work with projective Kakeya sets.

1.3 The universe

To each continuous function f : Pd−1(K) → Kd, we attach the (projective) Kakeya set N(f)
defined by:

N(f) =
⋃

a∈Pd−1(K)

Sa(f) with Sa(f) =
{
t · can(a) + f(a) : t ∈ R

}
.

Observe that N(f) is compact. Indeed it appears as the image of the compact space Pd−1(K)×R
under the continuous mapping (a, t) 7→ t · can(a) + f(a). In particular, it is closed in Kd.

We would like to define random Kakeya sets, that is to turn N into a random variable on
a certain probability space Ω. Of course, the whole set C0(Pd−1(K),Kd) of all continuous
functions Pd−1(K) → Kd cannot be endowed with a nice probability measure because K itself
cannot. We then need to restrict the codomain and a second natural candidate for Ω is then
C0(Pd−1(K), Rd). Unfortunately, we were not able to find a reasonable definition of a probability
measure on it2. Nevertheless our intuition is that C0(Pd−1(K), Rd) would be in any case too
large to be relevant for the application we have in mind; indeed, we believe that any reasonable
probability measure on it (if it exists) would eventually lead to N(f) = Rd almost surely.

Instead, we propose to define Ω as the set of 1-Lipschitz functions from Pd−1(K) to Rd. The
addition on Rd turns Ω into a commutative group. We endow Ω with the infinite norm ‖ · ‖∞
defined by the usual formula:

‖f‖∞ = sup
a∈Pd−1(K)

‖f(a)‖∞ (f ∈ Ω).

The induced topology is then the topology of uniform convergence. The Arzelà–Ascoli theorem
implies that Ω is compact. It is thus endowed with its Haar measure, which is a probability
measure.

2By the way, it would be interesting to define a nice probability measure on C0(R,Rd) and then investigate what
could be the non-archimedean analogue of the Brownian motion.
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Remark 1.13. More generally, one could also have considered r-Lipschitz functions Pd−1(K)→
Rd for some positive fixed real number r. This would actually lead to similar qualitative be-
haviours (although of course precise numerical values would differ). Moreover the technics
introduced in this paper extends more or less easily to the general case — and the reader is
invited to write it down as an exercise! We have chosen to restrict ourselves to the case r = 1 in
order to avoid many technicalities and be able to focus on the heart of the argumentation.

In the rest of this paragraph (which can be skipped on first reading), we give a more explicit
description of the universe Ω as a probability space. We fix a complete set of representatives of
classes modulo m and call it S. We denote by Sn the set of elements that can be written as

s0 + s1π + s2π
2 + · · ·+ sn−1π

n−1

where the si’s lie in S and we recall that π ∈ R denotes a fixed uniformizer of K. Then Sn forms
a complete set of representatives of classes modulo mn. Observe in particular that S1 = S.
We now introduce special “step functions” that will be useful for approximating functions in Ω.

Definition 1.14. For a positive integer n, let Ωan
n denote the subset of Ω consisting of functions

taking their values in Sn and which are constant of each closed ball of radius q−n.

Remark 1.15. The exponent “an” refers to “analytic” and recalls that we are here giving an
analytic description of Ω. Later on, in §2.3, we will revisit the constructions of this subsection in
a more algebraic fashion and notably define an algebraic version of Ωan

n .

Note that Ωan
n ⊂ Ωan

m as soon as n 6 m. Moreover Ωan
n is a finite set. Indeed Sn is finite and

the set of closed balls of radius q−n is in bijection with Pd−1(Sn) and thus is finite as well.

Proposition 1.16. Given n > 1 and f ∈ Ω there exists a unique function ψan
n (f) ∈ Ωan

n such that:

‖f − ψan
n (f)‖∞ 6 q−n.

Proof. Let a ∈ Pd−1(K). Set f(a) = (x1, . . . , xd) where the xi’s lie in R. For any i, let yi be the
unique element of Sn which is congruent to xi modulo mn. We define ψan

n (f)(a) = (y1, . . . , yd).
Remembering that ‖x−y‖∞ 6 q−n (with x, y ∈ Rd) if and only if x and y are congruent modulo
mn coordinate-wise, we deduce that ψan

n (f)(a) is the unique element of Sn with the property
that:

‖f(a)− ψan
n (f)(a)‖∞ 6 q−n.

This construction then defines a function ψan
n (f) : Pd−1(K)→ Sn such that ‖f−ψan

n (f)‖∞ 6 q−n.
and we have shown in addition that ψan

n (f) is the unique function satisfying the above condition.
It then remains to prove that ψan

n (f) ∈ Ωan
n , i.e. that (1) ψan

n (f) is constant on each closed
ball of radius q−n and (2) is 1-Lipschitz. Let us first prove (1). Let a, b ∈ Pd−1(K) such that
dist(a, b) 6 q−n. By the Lipschitz condition, we get ‖f(a) − f(b)‖∞ 6 q−n as well. In other
words, f(a) and f(b) are congruent modulo mn coordinate-wise. By construction of ψan

n (f), we
then derive that ψan

n (f)(a) = ψan
n (f)(b) and (1) is proved.

We now move to (2). Pick a, b ∈ Pd−1(K). If dist(a, b) 6 q−n, then we have just seen that
ψan
n (a) = ψan

n (b). Consequently we clearly have ‖ψan
n (a)− ψan

n (b)‖∞ 6 dist(a, b). Otherwise, we
can write:

‖ψan
n (a)− ψan

n (b)‖∞ 6 max
(
‖ψan

n (a)− f(a)‖∞, ‖f(a)− f(b)‖∞, ‖ψan
n (b)− f(b)‖∞

)
.

Now remark that ‖ψan
n (a) − f(a)‖∞ and ‖ψan

n (b) − f(b)‖∞ are both not greater than q−n by
construction. They are then a fortiori both less than dist(a, b) by assumption. Moreover since
f is 1-Lipschitz, we have ‖f(a) − f(b)‖∞ 6 dist(a, b). Putting all together we finally derive
‖ψan

n (a)− ψan
n (b)‖∞ 6 dist(a, b) as wanted.

8



Proposition 1.16 just above shows that the union of all Ωan
n are dense in Ω. Moreover, there

is a projection ψan
n : Ω → Ωan

n for any n > 1. For m > n, let ψan
m,n : Ωan

m → Ωan
n denote the

restriction of ψan
n to Ωan

m .

Proposition 1.17. Let n be a positive integer and fn ∈ Ωan
n . The fibre of ψan

n+1,n over fn consists
exactly of functions of the shape:

fn + πng

where g : Pd−1(K)→ Sd1 is any function which is constant on each closed ball of radius q−(n+1).

Proof. We notice first that any function fn+1 of the form fn + πng clearly lies in Ωan
n+1 and maps

to fn under ψan
n+1,n because

‖fn+1 − fn‖∞ = ‖πng‖∞ = q−n · ‖g‖∞ 6 q−n.

Pick now fn+1 ∈ Ωan
n+1 such that ψan

n+1,n(fn+1) = fn. Then ‖fn+1 − fn‖∞ 6 q−n, meaning that
fn+1 is congruent to fn modulo mn, i.e. that there exists a function g : Pd−1(K)→ Rd such that
fn+1 = fn + πng. Looking at the shape of the elements of Sn and Sn+1, we deduce that g must
take its values in Sd1 .

Let Gan be the set of functions Pd−1(K) → Sd1 which are constant on each closed ball of
radius q−i. Applying repeatedly Proposition 1.17, we find that the functions in Ωan

n are exactly
those that can be written as

∑n
i=1 giπ

i−1 with gi ∈ Gan
i . Moreover this writing is unique. Passing

to the limit, we find that the functions in Ω can all be written uniquely as an inifinite converging
sum

∑∞
i=1 giπ

i−1 with gi ∈ Gan
i as above. In other words there is a bijection:

∞∏
i=1

Gan
i

∼−→ Ω

(g1, g2, . . .) 7→
∞∑
i=1

giπ
i−1

(3)

Furthermore, if we endow Gan
i with the discrete topology, the above bijection is an homeomor-

phism. Since the Gan
i ’s are all finite, we recover that Ω is compact. Finally, the Haar measure

on Ω can be described as follows: it corresponds under the bijection (3) to the product measure
on
∏∞
i=1G

an
i where each factor is endowed with the uniform distribution (it may be seen di-

rectly but it is also a consequence of Proposition 2.16 below). In other words picking a random
element in Ω amounts to picking each “coordinate” gi in Gan

i uniformly and independantly.

1.4 Average size of a random Kakeya set

For f ∈ Ω, recall that we have defined a Kakeya set N(f). Recall that N(f) is closed and remark
in addition that N(f) ⊂ Rd since f takes its values in Rd. Given an auxiliary positive integer n,
we introduce the (q−n)-neighbourhood Nn(f) of N(f), that is:

Nn(f) =
{
x ∈ Rd

∣∣∣ inf
y∈N(f)

|x− y| 6 q−n
}

and let Xn(f) denote its measure. This defines a collection of random variables Xn : Ω → N
that measures the size of N(f). Our main theorem provides an explicit formula for their mean.
Before stating it, let us recall that q denotes the cardinality of the residue field k.

Theorem 1.18. Let (un)n>0 be the sequence defined by the recurrence:

u0 = 1 ; un+1 = 1−
(

1− un
qd−1

)qd−1

.

Then:
E[Xn] = 1− (1− un)1+q−1+···+q−(d−1)

.
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This theorem will be proven in Section 3. For now, we would like to comment on it a bit and
derive some corollaries. The first one justifies the title of this article.

Corollary 1.19. The set N(f) has measure zero almost surely.

Proof. The sequence (Xn)n>1 defines a nonincreasing sequence of bounded random variables
and therefore converges when n goes to infinity. Set X = limn→∞Xn. Noting that the Xn’s are
all bounded by 1, it follows from the dominated convergence theorem that E[X] = limn→∞ E[Xn].
Observing that

∀x > 0,

(
1− x

qd−1

)qd−1

> 1− x

we deduce that the sequence (un)n>1 of Theorem 1.18 is decreasing and therefore converges.
Furthermore, its limit is necessarily 0. This implies that E[X] = 0. Since X > 0, we deduce that
X = 0 almost surely. Moreover, for a fixed f ∈ Ω, X(f) is the volume of the

⋂
nNn(f) which is

equal to N(f) because the latter is closed. Therefore N(f) has measure zero almost surely.

Around Kakeya conjecture. In the real setting, the classical Kakeya conjecture asks whether
any Besikovitch set in Rd has maximal Hausdorff dimension. In the non-archimedean setting,
the analogue of the Kakeya conjecture can be formulated as follows.

Conjecture 1.20 (Kakeya Conjecture). Let B be a bounded Besikovitch set in Kd. For any positive
integer n, let Bn be the (q−n)-neighbourhood of B:

Bn =
{
x ∈ Kd

∣∣∣ inf
y∈B
|x− y| 6 q−n

}
and µn be its Haar measure. Then | log µn| = o(n) when n goes to infinity.

Remark 1.21. Using the fact the the balls of radius q−n are pairwise disjoint in the non-
archimedean setting, one derives that the minimal number of balls needed to cover Bn is qndµn.
The Hausdorff dimension of B is then defined by the limit of the sequence:

log(qndµn)

n log q
= d+

log µn
n log q

and thus is equal to d if and only if | log µn| = o(n).

The non-archimedean Kakeya conjecture is known in dimension 2 thanks to the works of
Dummit and Hablicsek [3, Theorem 1.2]. It is contrariwise widely open in higher dimensions
(to our knowledege). Before going further, we state a slight improvement of Dummit and Hablic-
sek’s result.

Theorem 1.22. Let B be a bounded Besikovitch set in K2. For any positive integer n, let Bn be the
(q−n)-neighbourhood of B and let µn be its Haar measure. Then:

µn >
1

q−1
q+1 n+ 1

.

We postpone the proof of this theorem to §3.1 because it will be convenient to write it down
using the algebraic framework on which we will elaborate later on. Instead let us go back
to random non-archimedean Kakeya sets. Studying further the asymptotic behaviour of the
sequence (un) defined in Theorem 1.18, one can determine an equivalent of the mean of the
random variable Xn.
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Proposition 1.23. We have the equivalent:

E[Xn] ∼ 2 · (qd − 1)

(q − 1)(qd−1 − 1)
· 1

n

when n goes to infinity.

Proof. A simple computation shows that un+1 = un − c · u2
n + o(u2

n) with c = qd−1−1
2qd−1 . For n > 0,

define wn = 1
un

, so that we have:

wn+1 − wn =
un − un+1

unun+1
=
cu2
n + o(u2

n)

unun+1
=

cu2
n + o(u2

n)

u2
n − cu3

n + o(u3
n)

= c+ o(1).

Thus wn ∼ cn and un ∼ 1
cn . The claimed result then follows from Theorem 1.18.

It follows from Proposition 1.23 that:

− logE[Xn] = log n+ log

(
(q − 1)(qd−1 − 1)

2 · (qd − 1)

)
+ o(1).

In particular | logE[Xn]| = o(n). Proposition 1.23 then might be thought as an average strong
version of Conjecture 1.20. We remark in addition that the lower bound given by Theorem 1.22
is rather close to the expected value of Xn provided by Proposition 1.23: roughly the differ by a
factor 2. We then expect the random variables Xn to be quite concentrated around their mean.
We refer to Section 4 for numerical simulations supporting further this expectation.

2 Algebraic reformulation

The aim of this section is merely to rephrase the constructions, theorems and conjectures of
Section 1 in the more abstract framework of algebra in which the proofs of Section 3 will be
written.

For any positive integer n, set Rn = R/mn = R/πnR. It is a finite ring of cardinality qn.
Concretely if S ⊂ R is a set of representatives of the quotient R/m = k, any class in Rn is
uniquely represented by an element of the shape:

s0 + s1π + s2π
2 + · · ·+ sn−1π

n−1 (4)

where the si’s lie in S and we recall that π is a fixed uniformizer of R (that is a generator of m).
Let pn : Rd → Rdn denote the canonical projection taking a tuple (x1, . . . , xd) to its class modulo
mn (obtained by taking the class modulo mn of each coordinate separatedly).

Proposition 2.1. Let E be a subset of Rd and En denote its (q−n)-neighbourhood, that is:

En =
{
x ∈ Kd

∣∣∣ inf
y∈E
|x− y| 6 q−n

}
.

Then En = p−1
n (pn(E)) and the volume of En is:

µ(En) = q−nd · Card pn(E).

Proof. Notice that, given x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd, ‖x − y‖∞ 6 q−n if and
only if xi ≡ yi (mod mn) for all i. As a consequence, the closed ball of radius q−n and centre x
is exactly Bx = p−1

n (pn(x)). This gives the first assertion of the proposition.
To establish the second assertion, it is enough to prove that each Bx has volume q−nd. Ob-

serve that Bx = By + (y − x). By the properties of the Haar measure, we then must have
µ(Bx) = µ(By). Finally we note that the Bx’s are pairwise distinct and cover the whole space
Rd when x runs over the tuples (x1, . . . , xd) where each xi has the shape (4). Since there are
qnd such elements, we are done.
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2.1 The torsion Kakeya Conjecture

Recall that the sphere Sd−1(K) — or equivalenty Sd−1(R) — consists of tuples (x1, . . . , xd) ∈ Rd
having one invertible coordinate. This algebraic description makes sense for more general rings
and allows us to define Sd−1(Rn) as the set of tuples (x1, . . . , xd) ∈ Rdn for which xi is invertible
in Rn for some i. Note that an element x ∈ Rn is invertible if and only if its image in R/m = k
does not vanish, i.e. if and only if x 6≡ 0 (mod m).

We can now extend the definition of a Besikovitch set (cf Definition 1.4) and the Kakeya
conjecture (cf Conjecture 1.20) over Rn.

Definition 2.2. Let n be a positive integer and let ` ∈ J0, nK. Given a ∈ Sd−1(Rn), a segment of
length q−` of direction a is a subset of Rdn of the form

{
ta+ b : t ∈ m`

}
for some b ∈ Rdn.

A `-Besikovitch set in Rdn is a subset of Rdn containing a segment of length q−` in every direction.

Conjecture 2.3 (Torsion Kakeya Conjecture). There exists a sequence3 of positive real numbers
(εn)n>1 converging to 0 satisfying the following property: for any n > 1, any ` ∈ J0, nK and any
`-Besikovitch set B in Rdn, we have:

logq CardB > n · (d− εn)

where logq stands for the logarithm in q-basis.

Theorem 1.22 admits an analogue in the torsion case as well; it can be formulated as follows.

Theorem 2.4. For any positive integer n, any integer ` ∈ J0, nK and any `-Besikovitch set B in R2
n,

we have:
CardB > q2(n−`) · 1

q−1
q+1 n+ 1

.

Again, we postpone the proof of this theorem to §3.1. Let us however notice here that it
implies Theorem 1.22. Indeed, let B be a bounded Besikovitch set in R2. Let ` be an integer
for which B is included in the ball of centre 0 and radius q`. Then π`B ⊂ R and pn(π−`B) is a
`-Besikovitch set in R2

n. Therefore, according to the above theorem, one must have:

Card pn(π`B) > q2(n−`) · 1
q−1
q+1 n+ 1

.

Combining this with Proposition 2.1, we get the result.

2.2 Algebraic description of the projective space

The projective space Pd−1(K) — considered as a metric space — which has been introduced
in §1.2 admits an algebraic description as well. In order to explain it, let us first recall that
Pd−1(K) = Sd−1(K)/R×. This allows us to define a specialization map:

sp1 : Pd−1(K) −→ Pd−1(k)

[a1 : · · · : ad] 7→ [ā1 : · · · : ād]

where (a1, . . . , ad) ∈ Sd−1(K) and āi denotes the image of ai in k. With these notations, the
index piv(a) (defined in §1.2) appears as the first index of a non-vanishing coordinate of sp1(a).
We notice that the mapping sp1 is surjective and that the preimage of any point in Pd−1(k) is
in bijection with Rd−1. Indeed let us define piv1(ā) as the smallest index of a non-vanishing
coordinate of ā and consider the unique representative (ā1, . . . , ād) of a such that āpiv1(ā) = 1.

3This sequence may a priori depend on K, d and `.
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Choose moreover a lifting a ∈ Rd of (ā1, . . . , ād) whose piv1(ā)-th coordinate is 1. We can then
define a bijection:

Hpiv1(ā) −→ sp−1
1 (ā)

x 7→ [a+ πx]

where Hpiv1(ā) denote the coordinate hyperplane of Rd defined by the equation xpivn(ā) = 0. We
remark moreover that the vectors a+ πx appearing above are all canonical representatives.

More generally, for any positive integer n, we define:

Pd−1(Rn) = Sd−1(Rn)/R×n

Given a ∈ Pd−1(Rn), let pivn(a) be the index of the first invertible coordinate of a and cann(a) ∈
Sd−1(Rn) be the unique representative of a whose pivn(a)-th coordinate is 1. We have a special-
ization map of level n:

spn : Pd−1(K) −→ Pd−1(Rn)

[a1 : · · · : ad] 7→ [a1 mod mn : · · · : ad mod mn].

Again spn is surjective and the preimage of any point a ∈ Pd−1(Rn) is isomorphic to Rd−1 via

Hpivn(a) −→ sp−1
n (a)

x 7→ [cann(a) + πnx]

Similarly, given a second integer m > n, the reduction modulo mn defines a map spm,n :

Pd−1(Rm) → Pd−1(Rn). This map is surjective and its fibres are all in bijection with Rd−1
m−n.

It notably follows from this that:

Card Pd−1(Rn) = q(d−1)(n−1) · q
d − 1

q − 1
. (5)

Proposition 2.5. The collection of applications spn induces a bijection:

sp : Pd−1(K) −→ lim←−n P
d−1(Rn)

where the codomain is by definition the set of all sequences (xn)n>1 with xn ∈ Pd−1(Rn) and
spn+1,n(xn+1) = xn for all n.

Proof. We define a function ϕ in the opposite direction as follows. Let (xn)n>1 be a sequence in
lim←−n P

d−1(Rn). The compatibility condition implies that pivn(xn) is constant and that cann(xn)
is the reduction modulo mn of cann+1(xn+1). Therefore the sequence (cann(xn))n>1 defines an
element x ∈ Rd. The piv1(x1)-th coordinate of x is 1, so that x ∈ Sd−1(K). Let define ϕ((xn)n>1)
as the class of x in the projective space Pd−1(K). It is clear that ϕ ◦ sp and sp ◦ ϕ are both the
identity, implying that sp is a bijection as claimed.

Algebraic version of the distance. For a, b ∈ Pd−1(K), define v(a, b) as the supremum in
N ∪ {+∞} of the set consisting of 0 and the positive integers n for which spn(a) = spn(b).
Thanks to Proposition 2.5, v(a, b) = +∞ if and only if a = b.

Proposition 2.6. Given a, b ∈ Pd−1(K), we have dist(a, b) = q−v(a,b).

Proof. Note that spn(a) = spn(b) if and only if a and b have the same image in Pd−1(Sn), i.e. if
and only if can(a) ≡ can(b) (mod mn). The proposition now follows from Proposition 1.9.

More generally, given a, b ∈ Pd−1(Sn), we define vn(a, b) as the biggest integer v ∈ {0, 1, . . . , n}
for which spn,v(a) = spn,v(b) (with the convention that v = 0 always satisfies the above require-
ment). As above vn(a, b) = n if and only if a = b. A torsion analogue of Proposition 1.9 then
holds.
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Proposition 2.7. For a, b ∈ Pd−1(Rn), we can write:

cann(b)− cann(a) = πvn(a,b) · u

where u lies in Rdn and has at least one invertible coordinate.

Proof. It is a simple adaptation of the proof of Proposition 1.9.

2.3 Algebraic description of the universe

Recall that we have defined in §1.3 the set Ω (our universe) consisting of 1-Lipschitz functions
Pd−1(K)→ Rd. The aim of this subsection is to revisit constructions and results of §1.3 with an
algebraic point of view. We recall that we have defined specialization maps spn : Pd−1(K) →
Pd−1(Sn) in §1.2 and, similarly, that we have introduced previously the projections pn : Rd → Rdn
taking a tuple to its reduction modulo mn.

The algebraic analogue of the existence of ψan
n (f) can be formulated as follows.

Proposition 2.8. Let f ∈ Ω. For all positive integer n, there exists a unique function ψn(f) :
Pd−1(Rn)→ Rdn making the following diagram commutative:

Pd−1(K) Rd

Pd−1(Rn) Rdn

f

spn pn

ψn(f)

(6)

Remark 2.9. Roughly speaking, the function ψn(f) encodes the action of ψan
n (f) on closed balls

of radius q−n.

Proof of Proposition 2.8. The proposition can be derived from Proposition 1.16. We nevertheless
prefer giving an independant and completely algebraic proof.

Let a, b ∈ Pd−1(K) with spn(a) = spn(b). By definition dist(a, b) 6 q−n. Thus |f(a)− f(b)| 6
q−n because f is assumed to be 1-Lipschitz. Thus f(a) and f(b) lie in the same ball of radius q−n

or, equivalently, pn ◦ f(a) = pn ◦ f(b). In other words, for x ∈ Pd−1(K), pn ◦ f(x) depends only
on spn(x). This implies the existence of the required mapping fn. The unicity follows from the
surjectivity of spn.

We emphasize that, we have not proved yet that ψn(f) is 1-Lipschitz. Indeed this notion has
not been defined yet. Here is the definition we will use.

Definition 2.10. A function f : Pd−1(Sn)→ Rdn is 1-Lipschitz if for all a, b ∈ Pd−1(Sn):

f(a) ≡ f(b) (mod mvn(a,b))

where the above condition means that all the coordinates of f(bn)− f(an) lie in mn−vn(a,b).
We denote by Ωn their set.

We notice that Ω1 is the of all set theoretical functions Pd−1(k)→ kd. Moreover, two integers
m > n together with a function fm ∈ Ωm, it is easily checked that there exists a unique function
ψm,n(fn+1) ∈ Ωn making the diagram below commutative:

Pd−1(Rm) Rdm

Pd−1(Rn) Rdn

fm

spm,n pm,n

ψm,n(fm)
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Lemma 2.11. The function ψn takes its values in Ωn.

Proof. Let f ∈ Ω. Let an, bn ∈ Pd−1(Sn). If an = bn, we have vn(an, bn) = n and there is
nothing to prove. Otherwise, pick a, b ∈ Pd−1(K) such that spn(a) = an and spn(b) = bn.
Then ψn(f) maps an and bn to pn(f(a)) and pn(f(b)) respectively. We then need to prove that
pn(f(a)) − pn(f(b)) = pn(f(a) − f(b)) has all its coordinates in mvn(an,bn). But, using that f is
1-Lipschitz, we get:

‖f(a)− f(b)‖∞ 6 dist(a, b) = q−v(a,b) = q−vn(an,bn)

and we are done.

One important benefit of working with Ωn instead of Ωan
n is that the former is naturally

endowed with algebraic structures. Precisely, one easily checks that Ωn is a R-module for the
usual operations (addition and scalar multiplication) on functions and that the projection maps
ψn : Ω→ Ωn and ψm,n : Ωm → Ωn are all R-linear.

The ψm,n’s are actually the exact algebraic analogue of the functions ψan
m,n’s introduced in

§1.3. In order to state an analogue of Proposition 1.17, we introduce the additive group Gn+1

consisting of functions Pd−1(Rn+1)→ kd and let it act on Ωn+1 by

∀gn+1 ∈ Gn+1, ∀fn+1 ∈ Ln+1, gn+1 • fn+1 = fn+1 + πngn+1.

Proposition 2.12. The map ψn+1,n : Ωn+1 → Ωn is surjective. Moreover the action of Gn+1

stabilizes each fibre of ψn+1,n and induces on it a free and transitive action.

Remark 2.13. Recall that an action of a group G over a space X is free and transitive if, given
two any points x, y ∈ X, there always exists a unique element g ∈ G such that y = gx. This
notably implies that, for all x ∈ X, the map hx : G → X, g 7→ gx is a bijection. In particular X
is either empty or in bijection with G.

Proof of Proposition 2.12. The surjectivity of ψn+1,n comes from that of spn+1,n while the claimed
properties on the action of Gn+1 are easily checked.

Corollary 2.14. The set Ωn has cardinality:

Card Ωn = q
d· q

d−1
q−1
· q

n(d−1)−1

qd−1−1 .

Proof. Proposition 2.12 implies:

Card Ωn = Card Ωn−1 · CardGn = Card Ωn−1 · qd Card Pd−1(Sn).

The claimed formula follows by induction using Eq. (5).

Proposition 2.15. The mapping ψ : f 7→ (ψn(f))n>1 induces a bijection between Ω and lim←−n Ωn

where the latter is by definition the set of all sequences (fn)n>1 with fn ∈ Ωn and ψn+1,n(fn+1) = fn
for all n.

Proof. We define the inverse bijection of ψ. Let (fn)n>1 be a sequence in lim←−n Ωn. Let a ∈
Pd−1(K). The sequence of fn ◦ spn(a) defines an element in lim←−nR

d
n, i.e. an element f(a) in Rd

by completeness of R. This yields a function f : Pd−1(K)→ Rd making all the diagrams

Pd−1(K) Rd

Pd−1(Rn) Rdn

f

spn pn

fn
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commutative. One derives from this that f is 1-Lipschitz, i.e. f ∈ Ω. Moreover it is apparently
an antecedent by ψ of the sequence (fn)n>1. Finally, starting with f ∈ Ω, the above construction
applied with fn = ψn(f) clearly rebuilds f . This concludes the proof.

Proposition 2.16. For all n and all subset E ⊂ Ωn, we have:

P[ψn(ω) ∈ E] =
Card E
Card Ωn

.

In other words the map ψn sends the probability measure on Ω to the uniform distribution on Ωn.

Proof. Let fn, gn ∈ Ωn. Pick h ∈ Ω mapping to gn − fn under ψn. Taking advantage of the fact
that ψn is a group homomorphism, we derive that the translation by h sends the fibre over fn to
the fibre over gn. The properties of the Haar measure consequently implies that all the fibres of
ψn have the same measure. The proposition follows from this.

2.4 Reformulation of the main Theorem

We fix a positive integer n. Following the construction of Section 1, given a function f ∈ Ωn, we
define a Besikovitch set N(f) ⊂ Rdn by:

N(f) =
⋃

a∈Pd−1(Sn)

Sa(f) with Sa(f) =
{
t · cann(a) + f(a) : t ∈ Rn

}
.

where we recall that cann(a) ∈ Rd denote the unique representative of a whose first invertible
coordinate is equal to 1 (see §2.2). The relationship between the above construction and that of
Section 1 is made precise by the following lemma.

Lemma 2.17. With the notations of §1.4, we have:

Xn(f) = q−nd · CardN(ψn(f))

for all f ∈ Ω.

Proof. Set fn = ψn(f). Proposition 2.1 shows that:

Xn(f) = q−nd · Card pn(N(f)).

It is then enough to show that N(fn) and pn(N(f)) have the same cardinality. We will actually
show that these two sets are equal.

Pick first x ∈ N(f). Thus x ∈ Sa(f) for some a ∈ Pd−1(K) from what we derive that
pn(x) ∈ Sspn(a)(fn). Therefore pn(x) ∈ N(fn) and we have proved that pn(N(f)) ⊂ N(fn).
Conversely, take xn ∈ N(fn), so that xn = tn ·cann(an)+fn(a) for some an ∈ Pd−1(Sn) and some
tn ∈ Rn. Consider now a ∈ Pd−1(K) and t ∈ R such that spn(a) = an and pn(t) = tn. Clearly
x = t · cann(a) + f(a) sits in N(f) and, coming back to the definition of ψn (cf Proposition 2.8),
we observe that pn(x) = xn. Thus xn ∈ pn(N(f)) and we have proved the reverse inclusion.

Combining the above lemma with Proposition 2.16, we find that our main theorem can then
be rephrased as follows.

Theorem 2.18. Let (un)n>0 be the sequence defined by the recurrence:

u0 = 1 ; un+1 = 1−
(

1− un
qd−1

)qd−1

.

and set:
u′n = 1− (1− un)1+q−1+···+q−(d−1)

.

Then, for any position integer n:
1

Card Ωn
·
∑
fn∈Ωn

CardN(fn) = qndu′n.
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3 Proofs

In this section, we give complete proofs of Theorem 1.18 and Theorem 1.22 or, more precisely,
of their algebraic analogues, namely Theorem 2.4 and Theorem 2.18 respectively. The strategy
of the proof of Theorem 2.4 follows closely that of the real case (see [7, Theorem 2] or [1,
Proposition 6.4]): a clever use of the Cauchy–Schwartz inequality reduces the proof to finding
good estimations of the size of the intersections of two segments. This is achieved by counting
the number of solutions of some affine congruences.

The proof of Theorem 2.18 basically follows the same idea of understading the size of the
intersections of unit length segments. Several complications nonetheless occur. The most sig-
nificant one is that we cannot restrict ourselves to 2 by 2 intersections but need to study s by s
intersections for any integer s > 2. Roughly speaking, using the inclusion-exclusion principle,
we will write Xn as an alternating sum:

Xn = Xn,1 −Xn,2 +Xn,3 − · · ·+ (−1)sXn,s + · · · . (7)

We will then compute the mean of Xn,s for all s, put it into the above formula and end up this
way with the value of E[Xn]. We would like to insist on the fact that, although Xn is rather
small (at least less than 1), the random variables Xn,s’s — and their mean — may take very
large values when n is large. For instance E[Xn,2] goes to infinity when n grows up. There are
then many compensations and the miracle is that we will be able to keep exact values during all
the computation and then simplify the result.

3.1 Kakeya conjecture in dimension 2

We fix a positive integer n and an integer ` ∈ J0, nK. Let B be a `-Besikovitch set in R2
n. Our aim

is to prove that:

CardB > q2(n−`) · 1
q−1
q+1 n+ 1

(8)

By definition B contains a segment Sa of length q−` and direction a for each a ∈ P1(Sn). Let ψa
be the indicator function of Sa. Set ψ =

∑
a∈P1(Sn) ψa. Note that ψ vanishes outside B. Applying

the Cauchy–Schwarz inequality with ψ and the indicator function of B, we then get:( ∑
x∈R2

n

ψ(x)

)2

6 CardB ·
∑
x∈R2

n

ψ(x)2.

Noting that ψ2
a = ψa and

∑
x∈R2

n
ψa(x) = Card Sa, the above inequality rewrites:(∑

a

Card Sa
)2

6 CardB ·
∑
a,b

Card (Sa ∩ Sb) (9)

where a and b run over P1(Rn). Recall that, given a, b ∈ P1(Rn), we have defined in §2.2 an
integer vn(a, b) between 0 and n.

Lemma 3.1. (a) For a ∈ P1(Rn), we have Card Sa = qn−`.

(b) For a, b ∈ P1(Rn), we have Card (Sa ∩ Sb) ∈ {0, qmin(n−`,vn(a,b))}.

Proof. (a) Recall that Sa consists of points mt = t · cann(a) + a′ where t runs over π`Rn and
a′ ∈ R2

n is fixed. We claim that these points are pairwise distinct. Indeed remember the pivn(a)-
th coordinate of cann(a) is equal to 1. Consequently the pivn(a)-th coordinate of mt is t + c
where c ∈ Rn is some constant. Our claim then becomes clear and it follows from it that the
map π`Rn → Sa, t 7→ mt is bijective. Hence Card Sa = qn−`.
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(b) Thanks to what we have just explained, there exists a′, b′ ∈ Rn for which the cardinality of
Sa ∩ Sb is equal to the number of solutions of the equation:

u · cann(a) + a′ = v · cann(b) + b′

where the unknown are u and v and run over π`Rn. The number of solutions of this affine
system is either 0 or equal to the number of solutions of the associated homogeneous system,
namely: (

u v
)
·
(
a1 a2

b1 b2

)
= 0

where can(a) = (a1, a2) and can(b) = (b1, b2). Thanks to (a direct adaptation of) Corollary 1.10,
the above square matrix is equivalent to the diagonal matrix Diag(1, πvn(a,b)). In other words
there exists a linear change of basis (u, v) 7→ (u′, v′) after which our system rewrites:{

u′ = 0

πvn(a,b)v′ = 0
i.e.

{
u′ = 0

πn−vn(a,b) divides v′

It is now clear that this system has qmin(n−`,vn(a,b)) solutions in (π`Rn)2.

Coming back to the inequality (9), we obtain:

CardB >

(
Card P1(Rn) · qn−`

)2∑
a,b q

vn(a,b)
=
q4n−2`−2 · (q + 1)2∑

a,b q
vn(a,b)

(10)

where a and b run over P1(Rn). Now fix a ∈ P1(Rn) and observe that the set of b’s in P1(Rn)
for which vn(a, b) > v is a fibre of spn,v. Thanks to the results of §2.2, there are qn−v of them
if v > 0 and, according to our convention, there are Card P1(Rn) = qn−1(q + 1) of them when
v = 0. Therefore, when a remains fixed, we obtain:

∑
b

qvn(a,b) = 2qn +
n−1∑
v=1

qv · (qn−v − qn−v−1)

= (n+ 1) qn − (n− 1) qn−1 = n qn−1(q − 1) + qn−1(q + 1)

Summing up over all a, we get:∑
a,b

qvn(a,b) = Card P1(Rn) ·
(
n qn−1(q − 1) + qn−1(q + 1)

)
= qn−1(q + 1) ·

(
n qn−1(q − 1) + qn−1(q + 1)

)
and injecting this in (10), we end up with Eq. (8) and the proof is complete.

3.2 Average size of a random Kakeya set

We now focus on the proof of Theorem 2.18 (which is equivalent to Theorem 1.18 thanks to the
results of §2.4). We fix a positive integer n and endow Ωn with the uniform distribution. Recall
that to any function f ∈ Ωn, we have attached the Kakeya set:

N(f) =
⋃

a∈Pd−1(Sn)

Sa(f) with Sa(f) =
{
t · cann(a) + f(a) : t ∈ Rn

}
.

Set C(f) = CardN(f) and, given in addition a subset A of Pd−1(Sn), define:

CA(f) = Card
⋂
a∈A

Sa(f). (11)
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Figure 1: Representation of a height function (with n = 5 and ` = 10)

This defines a family of random variables on Ωn and the value we want to compute is the mean
of C. The inclusion-exclusion principle readily implies:

C(f) =
∑

A⊂Pd−1(Sn)

(−1)1+CardA · CA(f)

from what we get:
E[C] =

∑
A⊂Pd−1(Sn)

(−1)1+CardA · E[CA]. (12)

Remark 3.2. The random variables Xn,s considered in the introduction of the Section 3 are
related to the CA’s as follows:

Xn,s = q−nd ·
∑

A⊂Pd−1(Sn)
CardA=s

CA.

Our strategy is now clear: first, we compute the expected values of the CA’s and second, we
inject the obtained result in Eq. (12). The first step is achieved in §3.2.2 while the second is
reached in §3.2.3. The first paragraph (§3.2.1) is devoted to work out one important notion on
which the rest of the proof will be based.

3.2.1 The height function

For i ∈ {1, . . . , n}, choose and fix a total order on Pd−1(Si) in such a way that the implication:

a < b =⇒ spi,i−1(a) < spi,i−1(b) (13)

holds for i > 2 and a, b ∈ Pd−1(Si). (We recall that the specialization maps spi,i−1 were defined
in §2.2.) These orders can be built inductively on i. Indeed first choose any total order on
Pd−1(S1). Then choose any total order on each fibre of sp2,1 and glue them together in order to
build a total order on Pd−1(S2) making the implication (13) true for i = 2. Now continue this
way with i = 3, . . . , n.

Definition 3.3. Let A be a subset of Pd−1(Sn) of cardinality ` + 1. The height function of A is
the function:

hA : J1, `K → J1, nK
j 7→ n− vn(aj , aj−1)

where the aj ’s (0 6 j 6 `) are the elements of A sorted by increasing order.

It is sometimes convenient to extend the function hA by setting hA(0) = n. We will often
represent a height function as a table with n rows (labeled from 1 to n) and ` columns (labeled
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from 1 to `), where the cell (i, j) is tinted in gray when i > h(j). Sometimes we will add a
0-th column on the left with all cells left white, in agreement with our convention hA(0) = n.
Figure 1 gives an example of such a representation. It turns out that interesting informations
can be read off immediately on this representation. For example, the numbers of white cells on
the i-th row (including that on the 0-th column) indicates the number of different values taken
by the spn,n+1−i(aj)’s (for 0 6 j 6 n). More precisely, if j < j′, the equality spn,n+1−i(aj) =
spn,n+1−i(aj′) holds if and only if the cells (i, j + 1), (i, j + 2), . . . , (i, j′) are all left white. This
remark notably implies that:

vn(aj , aj′) = n−max
(
h(j + 1), h(j + 2), . . . , h(j′)

)
(14)

provided that j < j′. In order to visualize even better the above properties, it can be helpful to
fill the table of Figure 1 by writing the value spn,n+1−i(aj) is the cell (i, j). The three following
properties then hold:

(i) each cell contains an element which lies in the fibre of the element written just below (or,
equivalently, each element of the table specializes to the element written just above),

(ii) each gray cell contains the same element as the cell immediately on the left,

(iii) on each line, the elements are sorted in increasing order.

Conversely remark that any filling of the table which satisfies the three above requirements
corresponds to one unique choice of A: it suffices to read the aj ’s on the first line. As we are
going to explain now, this point of view will be particularly suitable for counting the number of
subsets A having a fixed height function.

Definition 3.4. Let h : J1, `K→ J1, nK be any function.
The multiplicity function of h is the function M(h) : J1, `K→ N taking an integer j ∈ J1, `K to the
number of indices j′ ∈ J1, jK for which:

h(j′) = h(j) and h(x) 6 h(j) for all x ∈ Jj, j′K.

The weight function of h is the function W (h) : J1, `K→ R defined by:

W (h)(j) =
1

qd−1
· q

d−1 −M(h)(j)

M(h)(j) + 1
.

The modified weight function of h is the function W ′(h) : J1, `K→ R defined by:

W ′(h)(j) =
1

qd−1
· q

d−1 −M(h)(j)

M(h)(j) + 1
if h(j) 6= n

1

qd−1
· 1 + q + · · ·+ qd−1 −M(h)(j)

M(h)(j) + 1
if h(j) = n.

We emphasize that j′ = j is allowed in the definition of the multiplicity function, so that
M(h)(j) is always at least 1. As an example, the values of the multiplicity function attached to
the function hA represented on Figure 1 are:

j 1 2 3 4 5 6 7 8 9 10

hA(j) 3 2 4 3 1 3 5 2 2 2

M(hA)(j) 1 1 1 1 1 2 1 1 2 3

Proposition 3.5. Let h : J1, `K → J1, nK be a function. The number of subset A of Pd−1(Sn)
(necessarily of cardinality `+ 1) whose height function is h is:

(
1 + q−1 + q−2 + · · ·+ q−(d−1)

)
· q(d−1)n ·

∏̀
j=1

W ′(h)(j) · q(d−1)·h(j). (15)
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Proof. Let us first explain that the value (15) can be easily read off on the representation by cells
(see Figure 1) we have introduced before. To do this, write 1 + q + · · · + qd−1 in the cell (0, n),
write the number qd−1W ′(h)(j) in the cell (h(j), j) (0 6 j 6 `) and qd−1 in all other white cells.
In the example of Figure 1, we get:
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A
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A
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2

A−2
3

A

A
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A

A−1
2

A

A−2
3

A

A−3
4

A

where we have set A = qd−1 (A for “affine”) and P = 1 + q + · · ·+ qd−1 (P for “projective”). It
can then be easily checked that the quantity (15) equals the product of all the numbers written
in the above table.

Now recall that we have previously defined a bijection between the set of all A’s such that
hA = h and the fillings of the table corresponding to h obeying to the requirements (i)–(iii)
listed on page 20. We are going to show that the number of such fillings of the m last rows is
exactly the product of the numbers appearing on the m last rows. This will conclude the proof.
We proceed by induction on m. For m = 1, we have to count the number of strictly increasing
sequences of elements of Pd−1(k) of length c where c is the number of white cells located on
the last row. The data of such a sequence is obviously equivalent to the data of the set of its
values. Since furthermore Card Pd−1(k) = P , there are then

(
P
c

)
such sequences and we are

done for m = 1. More generally, going from m to m+ 1 is obtained in a similar fashion once we
have noticed that the fibres of spn−m+1,n−m all have cardinality A (see the discussion just below
Eq. (5), page 13).

3.2.2 Directional expected values

Throughout this paragraph, we fix a subset A of Pd−1(Sn). We write A = {a0, a1, . . . , a`} with
a0 < a1 < · · · < a` and denote by hA the height function of A. Recall that we have defined a
random variable CA on Ωn by Eq. (11). The aim of this paragraph is to compute its mean. In
order to do so, we consider the following evaluation mapping:

evA : Ωn → (Rdn)`+1

f 7→
(
f(a0), f(a1), . . . , f(a`)

)
.

Clearly, CA(f) only depends on evA(f) for f ∈ Ωn. Moreover evA is a group homomorphism,
which notably implies that the fibres of evA all have the same cardinality. As a consequence,
letting BA denote the image of evA, we get:

E[CA] =
1

Card BA
·
∑
b∈BA

Card
⋂̀
j=1

Σaj (bj) (16)

where Σaj (bj) =
{
t · cann(ai) + bi : t ∈ Rn

}
.

Lemma 3.6. The set BA consists of tuples (b0, b1, . . . , b`+1) ∈ (Rdn)`+1 such that bj+1 ≡ bj
(mod mn−h(j)) for all j ∈ J1, `K.

Proof. By definition of hA, we have vn(aj , aj+1) = n − hA(j) for all j. Going back to the
definition of Ωn, we deduce that, for any f ∈ Ωn and j ∈ J1, `K, we must have f(aj+1) ≡ f(aj)
(mod mn−hA(j)). In other words, evA takes its values in BA.
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Conversely pick (b0, b1, . . . , b`+1) ∈ BA. Given a ∈ Pd−1(Sn), let j(a) be the smallest index
for which vn(a, aj(a)) is maximal and set f(a) = bj(a). This defines a function f : Pd−1(Sn)→ Rdn
satisfying f(aj) = bj for all j. It remains to prove that f ∈ Ωn, i.e. that f is 1-Lipschitz. Let
a, a′ ∈ Pd−1(Sn) and set for simplicity j = j(a) and j′ = j(a′). Up to swapping a and a′, we
may assume that j 6 j′. If j = j′ there is nothing to prove. Otherwise, it follows from Eq. (14)
and the definition of BA that bj ≡ bj′ (mod mvn(aj ,aj′ )). This readily implies the 1-Lipschitz
condition under the extra assumption vn(a, a′) 6 vn(aj , aj′) since then mvn(aj ,aj′ ) ⊂ mvn(a,a′). Let
us now examine the case where vn(a, a′) > vn(aj , aj′). Put ν = vn(a, a′). From the assumption
vn(a, aj) > ν, we would derive:

vn(a′, aj′) > vn(a′, aj) > min(vn(a′, a), vn(a, aj)) > ν

and would deduce:

vn(aj , aj′) > min(vn(aj , a), vn(a, a′), vn(a′, aj′)) = ν

which is a contradiction. Hence vn(a, aj) < ν and similarly vn(a′, aj′) < ν. Noting that vn(x, z) =
min(vn(x, y), vn(y, z)) as soon as vn(x, y) 6= vn(y, z) (which comes from the very first definition
of vn), we find:

vn(a′, aj) = vn(a, aj) > vn(a, aj′) = vn(a′, aj′).

Now we conclude by remarking that the above inequality cannot be true since it contradicts the
minimality of j′ (remember that we had assumed j < j′).

Corollary 3.7. We have:

Card BA = qnd ·
∏̀
j=1

qd·hA(j). (17)

Proof. There are qnd possibilities for the choice of b0. Once this choice has been made, b1 must
satisfy b1 ≡ b0 (mod mn−hA(1)), which leads to qd·hA(1) possibilities. Repeating this reasoning,
we end up with the announced formula.

Proposition 3.8. We have:

E[CA] = qn ·
∏̀
j=1

q−(d−1)·hA(j).

Proof. Fix a point c ∈ Rdn. We are going to count the number of parameters (b0, b1, . . . , b`) ∈ BA
for which c lies on all lines Σaj (bj) (0 6 j 6 `). Call Nc this number.

We first focus on b0. By definition c ∈ Σa0(b0) if and only if there exists t0 ∈ Rn such
that t0 · can(a0) + b0 = c. Since one of the coordinates of can(a0) is equal to 1, the mapping
t 7→ t · can(a0) + b0 is injective and there is then exactly CardRn = qn acceptable values for b0.

Suppose now that we are given b0, . . . , bj satisfying the above condition and let us count the
number of possibilities for completing the sequence with an extra term bj+1. This bj+1 has to
satisfy the two following conditions:

∃tj+1 ∈ Rn, tj+1 · can(aj+1) + bj+1 = c

bj+1 ≡ bj (mod mn−hA(j))

Our problem then amounts to counting the number of values tj+1 ∈ Rn such that:

tj+1 · can(aj+1) + bj ≡ c (mod mn−hA(j)). (18)

Since c ∈ Σaj (bj), we know that there exists some tj ∈ Rn such that tj · can(aj) + bj = c. By
Proposition 2.7, we know moreover that can(aj) ≡ can(aj+1) (mod mn−hA(j)). Thus tj+1 = tj
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is a solution of (18) and, using again that can(aj+1) has one coordinate equal to 1, we find that
Eq. (18) rewrites tj+1 ≡ tj (mod mn−hA(j)). There are thus qhA(j) possibilities for tj+1.

As a consequence of the previous discussion, we find that Nc = qn · qhA(1) · qhA(2) · · · qhA(`)

(independantly on c). Finally notice that:

∑
b∈BA

Card
⋂̀
j=1

Σaj (bj) =
∑
c∈Rd

n

Nc = qnd · qn · qhA(1) · qhA(2) · · · qhA(`)

and conclude by injecting this equality together with Eq. (17) in Eq. (16).

3.2.3 Summing up all contributions

Let Hn be the set of all functions h : J1, `K → J1, nK for ` varying in J0,+∞J (agreeing as usual
that there exists a unique function h : ∅ → J1, nK). For h ∈ Hn, denote `(h) its `. Combining
Proposition 3.5 and Proposition 3.8, we find that the expected value of C is:

E[C] =
(
1 + q−1 + q−2 + · · ·+ q−(d−1)

)
· qnd ·

∑
h∈Hn

(−1)`(h)

`(h)∏
i=1

W ′(h)(i) (19)

Recall that we have defined a sequence (un)n>0 by:

u0 = 1 ; un = 1−
(

1− un−1

qd−1

)qd−1

. (20)

Proposition 3.9. The following formula holds:

un =
∑
h∈Hn

(−1)`(h)

`(h)∏
i=1

W (h)(i).

Proof. For simplicity, we set w(h) =
∏`(h)
i=1 W (h)(i). The key observation is the following: to

each h ∈ Hn, one can attach a finite sequence h0, h1, . . . , hm of functions inHn−1 as follows. Let
j1 < j2 < · · · < jm be the integers for which h(ji) = n, set j0 = 0 and jm+1 = `(h) + 1 and, for
i ∈ J0,mK, define:

hi : J1, ji+1−ji−1K → J1, n−1K
j 7→ h(j + ji).

On the representation of Figure 1, the functions hi’s then correspond to the bands (with last
row erased) located between two white columns. This construction clearly defines a bijection
between Hn and the set of finite sequences of elements of Hn−1. This bijection is moreover
compatible with the length and the weight functions in the following sense: if h corresponds to
(h0, h1, . . . , hm) then `(h) = m+ `(h1) + `(h2) + · · ·+ `(hm) and

W (h)(j) = W (hi)(j − ji) for ji < j < ji+1

W (h)(ji) =
1

qd−1
· q

d−1 − i
i+ 1

Hence w(h) = q−(d−1)(m+1) ·
(
qd−1

m+1

)
·w(h1) ·w(h2) · · ·w(hm). Taking the sum over all h ∈ Hn, we
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find the relation:∑
h∈Hn

(−1)`(h)w(h) =
∞∑
m=0

(−1)m ·
(
qd−1

m+ 1

)
·
( 1

qd−1

)m+1 ∑
h0,...,hm
∈Hn−1

m∏
i=0

(−1)`(hi)w(hi)

=

∞∑
m=0

(−1)m ·
(
qd−1

m+ 1

)
·
( 1

qd−1

)m+1
·

( ∑
h∈Hn−1

(−1)`(h)w(h)

)m+1

= 1 −
qd−1∑
m′=1

(
qd−1

m′

)
·
(
− 1

qd−1

)m′
·

( ∑
h∈Hn−1

(−1)`(h)w(h)

)m′

= 1 −

(
1− 1

qd−1

∑
h∈Hn−1

(−1)`(h)w(h)

)qd−1

.

The proposition now follows by comparing the above relation with Eq. (20).

Slightly adapting the arguments of the above proof, we get:

(
1 + q−1 + q−2 + · · ·+ q−(d−1)

)
·
∑
h∈Hn

(−1)`(h)

`(h)∏
i=1

W ′(h)(i)

= 1−
(

1− un−1

qd−1

)1+q+···+qd−1

= u′n

where u′n is defined in the statement of Theorem 2.18 (page 16). Using Eq. (19), we end up
with E[C] = qndu′n and Theorem 2.18 is proved.

4 Numerical simulations

We recall that the main objects studied in this paper are the random Kakeya sets and especially
the random variables Xn (defined in §1.4) that measure their size. In this last section, We
present several numerical simulations showing the behaviour of the Xn’s beyond their mean.

All our experiments have been done over the field of 2-adic numbers Q2. We recall briefly
that Q2 is the completion of Q for the 2-adic norm | · |2 defined, for two integers n and m, by:

|n|2 = 2−v if 2v is the highest power of 2 dividing n

and
∣∣ n
m

∣∣
2

= |n|2
|m|2 .

The unit ball of Q2 is the so-called ring of 2-adic integers Z2. Any element x in it can be uniquely
written as a convergent series

x = s0 + 2s1 + 22s2 + 23s3 + · · ·+ 2nsn + · · ·

where the si’s all lie in S = {0, 1} (decomposition in 2-basis). The si’s define mutually indepen-
dent Bernoulli variables of parameter 1

2 on Z2. In other words, generating a random element in
Z2 reduces to pick each digit si uniformly in S and independently.

4.1 Empirical distribution of the variables Xn

We recall that our universe Ω is the set of 1-Lipschitz functions Pd−1(K) → Rd. By the results
of §1.3, Ω comes equipped with projection maps Ω → Ωan

n where Ωan
n was defined as the subset
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def r a n d o m l i p s c h i t z i t e r (d , n) :
i f n == 1 :

# Run over elements a ∈ Pd−1(Z/2Z) according to the position of the first nonzero coordinate
for piv in range (d) :

for a in xmrange i ter ( p iv ∗[[0]] + [[1]] + (d−1−piv )∗ [ [0 ,1] ] ) :
# Gererate a random image b ∈ (Z/2Z)d of a
b = [ rand in t (0 ,1) for in range (d) ]
y i e l d ( piv , vec to r (a ) , vec to r (b ))

else :
# Run over elements a ∈ Pd−1(Z/2n−1Z) and call b the image of a
for ( piv , a , b) in r a n d o m l i p s c h i t z i t e r (d , n−1) :

q = 2∗∗(n−1)
# Run over the elements a+ a′ of the fibre of spn,n−1 above a

for aprime in xmrange i ter ( p iv ∗[[0 , q ]] + [[0]] + (d−1−piv )∗[[0 , q ] ] ) :
# Generate a random image b+ b′ ∈ (Z/2Z)d (with 2n−1 divides b′) of a+ a′

bprime = [ q∗ rand in t (0 ,1) for in range (d) ]
y i e l d ( piv , a+vec to r ( aprime ) , b+vec to r ( bprime ))

Figure 2: SAGEMATH function generating a random element in Ωan
n for K = Q2

n 5 6 7 8 9 10 11

E[Xn]

(theoretical value)
0.534 0.487 0.448 0.415 0.386 0.362 0.340

E[Xn]

(empirical value)
0.534 0.487 0.448 0.415 0.386 0.362 0.340

σ[Xn]

(empirical value)
0.0316 0.0229 0.0169 0.0126 0.0097 0.0076 0.0061

Figure 3: Expected value and standard deviation of Xn for K = Q2 and d = 2

of Ω consisting of functions which are constant on each closed ball of radius q−n and takes their
values in J0, 2n−1Kd. Alternatively functions in Ωan

n can be viewed as mapping Pd−1(Sn) → Sd

satisfying an extra condition (see §2.3). Two other interesting features of Ωan
n are the following:

(1) the measure induces on Ωan
n by the projection Ω → Ωan

n is the uniform distribution and
(2) the random variable Xn factors through Ωan

n .
We recall also that one can furthermore decompose any function in Ωan

n as a sum:

(g1 ◦ sp1) + 2 · (g2 ◦ sp2) + 22 · (g3 ◦ sp3) + · · ·+ 2n−1 · (gn ◦ spn) (21)

where gi : Pd−1(Si)→ Sd is any function and conversely that any function of the shape (21) lies
in Ωan

n . Generating a random function in Ωan
n then reduces to pick the gi’s (1 6 i 6 n) uniformly

and independently. Picking each gi is also easy: we enumerate the elements of Pd−1(Si) (this can
be done using the results of §2.2) and choose their image randomly and independantly in Sd.
The SAGEMATH function presented in Figure 2 generates a random element fn ∈ Ωan

n according
to the uniform distribution. More precisely, it returns an iterator over the sequence of triples
(piv(a), a, fn(a)) where a runs over Pd−1(Sn). (Note that the first coordinate piv(a) is useful for
the recursion but may be then omitted.) One nice feature of this implementation is its memory
cost which (almost) does not grow with n.

The tables of Figure 3 (page 25) and Figure 4 (page 26) show the expected value and the
standard deviation of some of Xn’s observed on a sample (renewed for each value of n) of
100, 000 random Kakeya sets in dimension 2 and 3 respectively. We note in particular that:

• the empirical mean agrees with the theoretical one (given by Theorem 1.18) up to 10−3,
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n 3 4 5 6 7 8 9

E[Xn]

(theoretical value)
0.628 0.551 0.490 0.442 0.402 0.369 0.341

E[Xn]

(empirical value)
0.628 0.551 0.490 0.442 0.402 0.369 0.341

σ[Xn]

(empirical value)
0.0502 0.0371 0.0286 0.0227 0.0187 0.0155 0.0132

Figure 4: Expected value and standard deviation of Xn for K = Q2 and d = 3

• the standard deviation is quite small and seems to converge to 0 faster than the mean, i.e.
faster than 1

n (although this phenomenon is less apparent in dimension 3).

Going further one can draw the empirical “density”4: we subdivise R into small intervals
and count, for each of them, the proportion of sample points (renormalized by the size of the
interval) leading to a point in it. The results are displayed in Figure 5 (page 27) and Figure 6
(page 28) in dimension 2 and 3 respectively. The red and green vertical lines (which actually
always collapse) in these pictures indicate the theoretical mean and the empirical mean of Xn

respectively.
For a fixed dimension, the density curves (for various n) all have a similar shape. This may

suggest that the law of Xn — correctly renormalized — converges to some limit. We believe
that it would be very interesting to investigate further this question. For example if one can
compute this limit and check that it is zero until some point, it would eventually imply the
Kakeya conjecture for almost all non-archimedean Kakeya sets.

We finally remark that, on the first diagram of Figure 5, one can clearly separate two curves.
This reflects a parity phenomenon: qndXn = 210X5 is even with probability ≈ 73% and odd
with probability ≈ 27%. The curve below then corresponds to odd values of X5 while the curve
above corresponds to even values. This phenomenon tends to disappear rapidly when n grows
up.

4.2 Visualizing a random 2-adic Kakeya set

In order to draw a 2-adic Kakeya set sitting naturally in Zd2, we will necessarily need to relate
Z2 and R. In order to do so, we use the “reverse” function r : Z2 → [0, 1] mapping the 2-adic
integer

∑∞
i=0 2isi (with si ∈ {0, 1}) to the real number

∑∞
i=0 2−i−1si.

Note that r is continuous (it is actually 1-Lipschitz) but not injective since the binary repre-
sentation of a real number fails to be unique in general. For instance 1

2 has two preimages which
are 1 ∈ Z2 and −2 ∈ Z2. The closed intervals [0, 1

2 ] and [1
2 , 1] correspond to the disjoint cosets

2Z2 and 2Z2 + 1 respectively. Note that the latter are open and closed in Z2. More generally all
real number of the form a

2n have two distinct preimages in Z2 and there always exist two closed
interval meeting a

2n corresponding to two open closed subsets of Z2.

Remark 4.1. There actually exist closed embeddings Z2 → R; an example of it is the Cantor
mapping C taking

∑∞
i=0 2isi ∈ Z2 to 2 ·

∑∞
i=0 3−i−1si. The image of C is the usual triadic Cantor

set and C induces an homeomorphism between it and Z2. We nevertheless preferred to use r
because it maps Z2 to an interval whereas C maps Z2 to a null set. Working with C has then
two disadvantages: it would lead to undrawable pictures on the one hand and would not reflect
properly the properties we want to emphasize on the other hand.

4It is not actually a density in the usual sense because the variables Xn’s take their values in a discrete subset of
R.
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n = 5:

n = 10:

n = 11:

Figure 5: Empirical density of Xn for K = Q2 and d = 2
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n = 3:

n = 8:

n = 9:

Figure 6: Empirical density of Xn for K = Q2 and d = 3
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Figure 7: A 2-dimensional random Kakeya set over Q2

Figure 8: A 3-dimensional random Kakeya set over Q2
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Viewing Z2
2 in R2 through the map (r, r), the picture of Figure 7 (page 29) represents a ran-

dom Kakeya set — or more precisely its (2−13)-neighbourhood — in Z2
2. An animation showing a

2-adic needle moving continuously in the 2-adic plane and filling a 2-adic Kakeya set is available
at the URL:

http://xavier.toonywood.org/papers/publis/kakeya/kakeya-2d.gif

Finally, a 3-dimensional 2-adic Kakeya set is displayed on Figure 8 and a movie showing it on
different angles can be found at:

http://xavier.toonywood.org/papers/publis/kakeya/kakeya-3d.mp4

A Appendix: Discrete valuation fields

This appendix is dedicated to readers who are not familiar with non-archimedean geometry. It
presents a quick summary of the most important basic definitions and facts of the domain. All
the material presented below is very classical.

Definitions

A discrete valuation field is a field K equipped with a map val : K → Z ∪ {+∞} (the so-called
valuation) satisfying the following axioms:

(i) val(x) = +∞ if and only if x = 0,

(ii) val(xy) = val(x) + val(y),

(iii) val(x+ y) > min(val(x), val(y))

for all x and y in K. The valuation val is non trivial if there exists an element x ∈ K? with
val(x) 6= 0. Under this additional assumption, the set val(K?) is a subgroup of Z and therefore is
equal to nZ for some positive integer n. An element π ∈ K of valuation n is called a uniformizer
of K. One can always renormalize the valuation (by dividing it by n) in order to ensure n = 1.

The valuation on K readily defines a family of absolute values |·|a (a > 1) on K by:

∀a ∈ (1,∞), ∀x ∈ K, |x|a = a−val(x)

with the convention that a−∞ = 0. Each of these absolute values defines a distance da on K by
the usual formula da(x, y) = |x − y|a. It is easily seen that all these distances define the same
topology on K. We underline that da is ultrametric in the sense that:

∀x, y, z ∈ K, da(x, z) 6 max
(
da(x, y), da(y, z)

)
. (22)

This stronger version of the triangle inequalities has unexpected and important consequences.
For instance it implies that da(x, z) = max

(
da(x, y), da(y, z)

)
as soon as da(x, y) 6= da(y, z),

showing then that every triangle in K is isosceles. Similarly if two balls B1 and B2 of K meet,
we necessarily have B1 ⊂ B2 or B2 ⊂ B1.

Let R be the closed unit ball of K (this does not depend on the parameter a); alternatively
R is the subset of K consisting of elements x with nonnegative valuation. An important remark
following from axioms (ii) and (iii) is that R is a subring of K; it is usually called the ring of
integers of K. The invertible elements in R are clearly exactly the elements of norm 1 (since
the norm is multiplicative). On the contrary, the open unit ball m is an ideal of R. It is actually
the unique maximal ideal of R (showing that R is a local ring). It is moreover principal and
generated by any uniformizer of K. The quotient k = R/m is a field which is called the residue
field of K.
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Examples

1. Let p be a prime number. Recall that the p-adic valuation of a nonzero integer n is defined
as the greatest integer v such that pv divides n; it is often denoted by vp(n). This construction
defines a function vp : Z\{0} → N. We extend it to a function Q→ Z ∪ {+∞} by setting:

vp(0) = +∞ and vp(
a
b ) = vp(a)− vp(b)

for a, b ∈ Z. One checks that vp satisfies the axioms of a valuation, turning then Q into a discrete
valuation field. A uniformizer of (Q, vp) is p. Its rings of integers is the ring Z(p) consisting of
fractions a

b where b is not divisible by p. Its residue field is isomorphic to Z/pZ.

2. Let k be any field and K = k(t) be the field of univariate rational fractions over k. Given
f ∈ K, f 6= 0, let ord(f) denote the order of vanishing of f at 0, i.e. ord(f) is the unique integer
for which one can write f = tord(f) · g where g ∈ k(t) is defined and does not vanish at 0. This
defines a function ord : K? → Z that we extend to K by letting ord(0) = +∞. One then checks
that (K, ord) is a discrete valuation field. Its ring of integers consists of fractions f

g where f and
g are polynomials with g(0) 6= 0. A uniformizer of (K, ord) is t and its residue field is canonically
isomorphic to k.

Completeness

A discrete valuation field (K, val) is said complete is it complete5 with respect to one (or equiva-
lently all) da. Using the ultrametric triangle inequality (22), we easily check that, assuming that
K is complete, a series

∑
n>0 un (with un ∈ K) converges if and only if the sequence (un)n>0

converges to 0.

Let (K, val) be a discrete valuation field and let K̂a be the completion of the metric space
(K, da). One checks that K̂a does not depend on a, so that we can denote it safely simply K̂.
Observe that the ring operations extend uniquely to K̂, turning then it into a field. Similarly the
continuous map val : K → Z ∪ {+∞} extends uniquely to K̂, turning then K̂ into a discrete
valuation field. By construction K̂ is moreover complete. The ring of integers R̂ of K̂ can be
seen as the completion of R or, alternatively, as the topological closure of R in K̂. Note moreover
that a uniformizer of K remains a uniformizer of K̂ (since the valuation on K̂ extends that on
K) and that the residue field of K̂ is canonical isomorphic to that of K.

Elements in complete discrete valuation fields can be explicitely described as the values at a
fixed uniformizer of particular power series.

Proposition A.1. Let K be a complete discrete valuation field. Let R be its ring of integers, k be its
residue field and π be a fixed uniformizer. Let S ⊂ R be a fixed complete system of representatives
of k and assume 0 ∈ S. Then:

(1) any element x ∈ R can be written uniquely as a converging sum:

x = s0 + s1π + s2π
2 + · · ·+ snπ

n + · · · (23)

with sn ∈ S for all n > 0

(2) any element x ∈ K can be written uniquely as a converging sum:

x = svπ
v + sv+1π

v+1 + sv+2π
v+2 + · · ·+ snπ

n

with v ∈ Z, sn ∈ S for all n > v. We can moreover require that sv 6= 0, in which case we have
v = val(x).

5In the sense that all Cauchy sequences converge.
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Proof. We only prove the first statement, the second being totally similar. We first remark that
the series (23) converges since its general term snπ

n goes to 0 when n goes to infinity.
Assume first that we are given a decomposition (23). Then s0 has to be congruent to x

modulo π and therefore is uniquely determined since S is by definition a complete set of rep-
resentatives of k = R/πR. Substrating s0, dividing by π and applying the same reasoning, we
find that s1 is uniquely determined as well. Repeating this argument again and again, we get
the unicity of the decomposition (23).

Now pick x ∈ R. Define s0 as the unique element of S which is congruent to x modulo
π. Then r1 = x−s0

π lies in R. We can thus repeat the construction and define s1 as the unique
element of S which is congruent to r1 modulo π. We construct this way an infinite sequence
(sn)n>0 of elements of S with the property that x ≡ s0 + s1π + s2π

2 + · · ·+ sn−1π
n−1 (mod πn)

for all n. Passing to the limit (and noting that πn goes to 0), we get (23).

Examples

1. The field Q equipped with the p-adic valuation vp is not complete. Its completion is the
field of p-adic numbers Qp. A uniformizer of Qp is p and its residue field is Z/pZ. The ring of
integers of Qp is usually denoted by Zp; its elements are the so-called p-adic integers. According
to Proposition A.1, any p-adic integer can be uniquely written as a sum:

s0 + s1p+ s2p
2 + · · ·+ snp

n + · · ·

with sn ∈ {0, 1, . . . , p−1}. It is the decomposition in p-basis of a p-adic integer.

2. Similarly, the field k(t) equipped with the valuation ord is not complete. Thanks to Proposi-
tion A.1, its completion consists of series of the shape:

svt
v + sv+1t

v+1 + sv+2t
v+2 + · · ·+ snt

n + · · ·

with v ∈ Z and sn ∈ k. It is therefore nothing but the field of univariate Laurent series over k,
usually referred to as k((t)). Its rings of integers is the ring of power series over k, namely k[[t]].
Again its rings of integers is canonically isomorphic to k.

The Haar measure

Let (K, val) be a complete discrete valuation ring with ring of integers R and residue field k.
From now and until the end of this appendix, we assume that k is finite.

The first part of Proposition A.1 shows that R is homeomorphic to kN (i.e. the set of all
sequences with coefficients in k) and therefore is compact. Since R carries in addition a group
structure, it is endowed with a unique Haar measure µ normalized by µ(R) = 1. This measure
extends uniquely to a Haar measure on K. Be careful nevertheless that µ(K) is infinite.

Under the additional assumptions of this paragraph, it is quite convenient to normalize the
norm | · | on K by |π| = 1

Card k where π is any uniformizer. (If the valuation is normalized so that
it takes the value 1, the above norm is the norm | · |Card k we have introduced before.) The above
convention leads to the expected relation:

µ(aE + b) = |a| · µ(E)

for all a, b ∈ K and all measurable subset E of K (and where aE+b denotes of course the image
of E under the affine transformation x 7→ ax+ b).

32



References

[1] Y. Babichenko, Y. Peres, R. Peretz, P. Sousi, P. Winkler, Hunter, Cauchy Rabbit, and Optimal
Kakeya Sets, Trans. Amer. Math. Soc. 366 (2014), 5567–5586

[2] A. Besicovitch, On Kakeya’s problem and a similar one, Math. Z. 27 (1928), 312–320

[3] E. Dummit, M. Hablicsek, Kakeya sets over non-archimedean local rings, Mathematika 59
(2013), 257–266

[4] Z. Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22 (2009), 1093–1097

[5] J. Ellenberg, R. Oberlin, T. Tao, The Kakeya set and maximal conjectures for algebraic vari-
eties over finite fields, Mathematika 56 (2010), 1–25

[6] R. Fraser, Kakeya-Type Sets in Local Fields with Finite Residue Field, Mathematika 62 (2016),
614–629

[7] B. Green, Restriction and Kakeya Phenomena, lecture notes from a course at Cambridge,
http://people.maths.ox.ac.uk/greenbj/papers/rkp.pdf

[8] N. Katz, T. Tao, New bounds for Kakeya problems, J. Anal. Math. 87 (2002), 231–263

[9] T. Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana
11 (1995), 651–674

[10] T. Wolff, Recent work connected with the Kakeya problem, in Prospects in mathematics
(Princeton, NJ, 1996), pp. 129–162, Amer. Math. Soc., Providence, RI (1999)

33

http://people.maths.ox.ac.uk/greenbj/papers/rkp.pdf

	Non-archimedean Kakeya sets
	Besikovitch and Kakeya sets
	The projective space over K
	The universe
	Average size of a random Kakeya set

	Algebraic reformulation
	The torsion Kakeya Conjecture
	Algebraic description of the projective space
	Algebraic description of the universe
	Reformulation of the main Theorem

	Proofs
	Kakeya conjecture in dimension 2
	Average size of a random Kakeya set

	Numerical simulations
	Empirical distribution of the variables Xn
	Visualizing a random 2-adic Kakeya set

	Appendix: Discrete valuation fields

