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Higher-loop amplitude monodromy relations in string and gauge theory

The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalisation of the monodromy construction was lacking.

In this letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and non-planar topologies in string theory. We write one and two-loop monodromy formulae explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulae by unitarity in the case of the four-point N = 4 super-Yang-Mills amplitude.

The search for the fundamental properties of the interactions between elementary particles has been the driving force to uncover basic and profound properties of scattering amplitudes in quantum field theory and string theory. In particular, the colour-kinematic duality [1] has led to tremendous progress in the evaluation of loop amplitudes in gauge theories [2][3][4][5][6][7][8][9][10][11][12][13][14]. One remarkable consequence of this duality is the discovery of unsuspected kinematic relations between tree-level gauge theory amplitudes [1], generated by a few fundamental relations [15][16][17][18][19].

The monodromies of the open string disc amplitudes [15,16] did provide a rationale for the kinematic relations between amplitudes at tree-level in gauge theory. However, while the colour-kinematics duality has been successfully implemented up to the fourth loop order in field theory [3,4], there is not yet a systematic understanding of its validity to all loop orders. It is therefore natural to seek a higher-loop generalisation of the string theory approach to these kinematic relations.

In this paper we generalise the tree-level monodromy construction to higher-loop open string diagrams (worldsheets with holes). This allows us derive new relation between planar and non-planar topologies of graphs in string theory. The key ingredient in the construction relies on using a representation of the string integrand with a loop momentum integration. This is crucially needed in order to be able to understand zero mode shifts when an external state jumps from one boundary to another. Furthermore, just like at tree-level, the construction does not depend on the precise nature of the scattering amplitude nor the type of theory (bosonic or supersymmetric) considered.

The relations that we obtain in field theory emanate from the leading and first order in the expansion in the inverse string tension α . At leading order, we find identities between planar and non-planar amplitudes. At the next order, stringy corrections vanish and we find the loop monodromy relations. They are relations between integrands up to total derivatives, that involve both loop and external momenta. Upon integration, this give relations between amplitude-like integrals with extra powers of loop momentum in the numerator.

At one loop, our string theoretic construction reproduces the field theory relations of [20][21][22]. In observing how the loop momentum factors produce cancellations of internal propagators, we see that BCJ colour-kinematic representations for numerators [1] satisfy the monodromy relation at the integrand level. The generality of our construction lead us to conjecture that our monodromies generate all the kinematic relations at any loop order.

We conclude by showing how our construction extends to higher loops in string theory. In particular we write the two-loop string monodromy relations. The field theory limit is subtle to understand in the general case, but we provide a proof of concept with an example in N = 4 super-Yang-Mills at four-point two-loop, which we check by unitarity. We leave the general field theory relations for future work.

MONODROMIES ON THE ANNULUS

One-loop n-particle amplitudes A in oriented openstring theory are defined on the annulus. They have a U (N ) gauge group and the following colour decomposition [START_REF] Green | Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology[END_REF] 

A({ i , k i , a i }) = g n s π n-1 n p=0 α∪β∈Sp,n Tr(λ a α(1) • • • λ a α(p) ) Tr(λ a β(p+1) • • • λ a β(n) ) A(α|β) . (1) 
The summation over S p,n of the external states distributed on the boundaries of the annulus consists of permutations modulo cyclic reordering and reflection symmetry. The quantities k i , i and λ a are the external momenta, polarizations and colour matrices in the U (N ) fundamental representation, respectively. Planar amplitudes are obtained for p = 0 or p = n with Tr( take the following generic form in D dimensions

A(α|β) = ∞ 0 dt ∆ α|β d n-1 ν d D e -πα t 2 -2iπα • n k=1 kiνi 1≤r<s≤n f (e -2πt , ν r -ν s ) × e -α kr•ks G(νr,νs) , ( 2 
)
where t ∈ R is the modulus of the annulus and the ν i 's are the location of the gluons insertions on the string worldsheet -one of them is set to it by translation invariance. The loop momentum µ is defined as the average of the string momentum ∂X µ [START_REF] Hoker | [END_REF];

µ = 1 2 0 dν ∂X µ (ν) ∂ν . (3) 
The domain of integration ∆ α|β is the union of the or-

dered sets { m(ν α(1) ) < • • • < m(ν α(p) )} for e(ν i ) = 0 and { m(ν β(p+1) ) > • • • > m(ν β(n) )} for e(ν i ) = 1
2 . We will show that the kinematical relations at oneloop arise exclusively from shifts in the loop-momentumdependent part and monodromy properties of the nonzero mode part of the Green's function in ( 2)

G(ν r , ν s ) = -log ϑ 1 (ν r -ν s |it) ϑ 1 (0) . (4) 
We refer to the appendix for some properties of the propagators between the same and different boundaries.

The function f (e -2πt , ν r -ν s ) contains all the theorydependence of the amplitudes. The crucial point of our analysis is that it does not have any monodromy, therefore the relations that we obtain are fully generic. This function is a product of partition functions, internal momentum lattice of compactification to D dimensions, and a prescribed polarisation dependence [START_REF] Green | Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology[END_REF][25][26][27]. The latter is composed of derivatives of the Green's function. None of these objects have monodromies: that is why the precise form of f does not matter for our analysis. This property carries over to higher-loop orders.

Local and global monodromies

Let us consider the non-planar amplitude A(1, . . . , p|p + 1, . . . , n), but where we take the modified integration contour C of fig. 1 for ν 1 . The integrand being holomorphic, in virtue of Cauchy's theorem, the integral vanishes:

C dν 1 ∞ 0 d D e -πα t 2 -2iπα • n k=2 kiνi e -2iπα •k1 ν1 × n r=2 f (e -2πt , ν 1 -ν r )e -α k1•kr G(ν1,νr) = 0 . (5)
Each separate portion of the integration corresponds to a different ordering and topology. The portions along the vertical sides cancel by periodicity of the one-loop integral (cf. appendix). We are thus left with the contributions from the boundaries e(ν 1 ) = 0 and e(ν 1 ) = 1 2 . When exchanging the position of two states on the same boundary, the short distance behaviour of the Green's function

G(ν 1 , ν 2 ) -log(ν 1 -ν 2 ) implies G(ν 1 , ν 2 ) = G(ν 2 , ν 1 ) ± iπ , (6) 
with -iπ for a clockwise rotation and +iπ for a counterclockwise rotation. Thus, on the upper part of the contour in figure 1, exchanging the positions of two external states leads to an phase factor multiplying the amplitude

A(12 • • • m|m+1 • • • n) → e iπα k1•k2 A(21 • • • m|m+1 • • • n) (7)
On the lower part of the contour in figure 1, the phases come with the same sign due to an additional sign from ϑ 2 in eq. (A.27). For external states on different boundaries, the Green's function involves the even function ϑ 2 (ν rν s ) and the ordering does not matter (cf. the appendix).

The main difference with the tree-level case arises from the global monodromy transformation when a state moves from one boundary to the other, ν 1 → ν 1 + 1 2 . This produces a new phase exp(-iπα • k 1 ) in the integrand

A(12 • • • n) → A(2 • • • n|1)[e -iπα •k1 ] := ∞ 0 dt ∆ 2•••n|1 d n-1 ν 1≤r<s≤n f (e -2πt , ν r -ν s ) e -α kr•ks G(νr,νs) × ∞ 0 d D e -iπα •k1 e -πα t 2 -2iπα • n k=1 kiνi . ( 8 
)
On non-orientable surfaces the propagator is obtained by appropriate shifts of the Green's function (4) according the effects of the twist operators [25]. The local monodromies are the same because they only depend on the short distance behaviour of the propagator, and global monodromies are obtained in an immediate generalisation of our construction.

Open string relations

We can now collect up all the previous pieces. Paying great care to signs and orientations, according to what was described, the vanishing of the integral along C gives the following generic relation1 

A(1, 2, . . . , p|p + 1, . . . , n)+ p-1 i=2 e iα πk1•k2•••i A(2, . . . , i, 1, i + 1, . . . , p|p + 1, . . . , n) = - n i=p e -iα πk1•ki+1•••n × A(2, . . . , p|p + 1, . . . , i, 1, i + 1, . . . , n)[e -iπα •k1 ] (9)
where the bracket notation was defined in (8) and we set k 1...p := p i=1 k i . In particular, starting from the planar four-point amplitude we find the following formula

A(1234)+e iπα k1•k2 A(2134)+e iπα k1•(k2+k3) A(2314) = -A(234|1)[e -iπα •k1 ] . ( 10 
)
We also find, starting from a purely planar amplitude Note that some of our relations involve objects like A(2 • • • n|1) that seemingly contribute in (1) only if the state 1 is a colour singlet. However, our relations involve colour-stripped objects and are, therefore, valid in full generality. Note also that our relations are valid under the t-integration, thus they are not affected by the dilaton tadpole divergence at t → 0 [25].

(-1) |β| γ∈α¡β s a=1 r b=1 e iπα (αa,β b ) A(γ 1 • • • γ r+s n) = A(α 1 • • • α s n|β r • • • β 1 ) r i=1 e -iπα •k β i (11) 
We have thus shown that the kinematic relations (9) relate planar and non-planar open string topologies, which normally have independent colour structures. This is the one-loop generalisation of the string theory fundamental monodromies that generates all amplitude relations at tree-level in string theory [15,16]. Thus, we conjecture our one-loop relations (9), written for all the permutations of the external states, generate all the one-loop oriented open string theory relations. Let us now turn to the consequences in field theory.

FIELD THEORY RELATIONS

Gauge theory amplitudes are extracted from string theory ones in the standard way. We send α → 0 and keep fixed the quantity α t that becomes the Schwinger proper-time in field theory. We also set m(ν) = x t, with 0 ≤ x ≤ 1. The Green's function of eq. ( 4) reduces to the sum of the field theory worldline propagator x2 -|x| and a stringy correction

G(ν) = t x 2 -|x| + δ ± (x) + O(e -2πt ) . (12) 
(for details see appendix). 2 At leading order in α , open string amplitudes reduce to the usual parametric representation of the dimensional regulated gauge theory amplitudes [29,30]. 3 All the monodromy phase factors reduce to 1 and from (11) we recover the well-known photon decoupling relations between non-planar and planar amplitudes [34], with β T = (β r , . . . , β 1 ),

A(α|β T ) = (-1) |β| γ∈α¡β A(γ) . (13) 
This is an important consistency check on our relations. At the first order in α we get contributions from expansion of the phase factors but as well potential ones from the massive stringy mode coming from δ ± (x). The analysis of the appendix of [35] shows that this contributes to next order in α , which, importantly, allow us to neglect it here. Therefore, the field theory limit of (9) gives a new identity

p-1 i=2 k 1 • k 2•••i A(2, . . . , i, 1, i + 1, . . . , p|p + 1, . . . , n)+ n i=p k 1 • k i+1•••n A(2, . . . , p|p + 1, . . . , i, 1, i + 1, . . . , n) = n i=p A(2, . . . , p|p + 1, . . . , i, 1, i + 1, . . . , n)[ • k 1 ] . ( 14 
)
These relations are the one-loop equivalent of the fundamental monodromy identities [17][18][19] that generates all the amplitude relations at tree-level.

In particular, using (13), we obtain the relation between planar gauge theory integrands with linear power of loop momentum

A(1 • • • n)[ • k 1 ] + A(21 • • • n)[( + k 2 ) • k 1 ] + • • • + A(23 • • • (n -1)1n)[( + k 23...n-1 ) • k 1 ] = 0 . (15)
These are the relations derived in [20][21][22]: this constitutes an additional check on our formulae.

Let us now analyse the effect of the linear momentum factors at the level of the graphs. At this point we pick any representation of the integrand in terms of cubic graphs only and the field theory limit defines the loop momentum as the internal momentum following immediately the leg n. 4 We then rewrite the loop momentum factors as differences of propagators. Hence, each individual graph with numerator n G produces two graphs with one fewer propagator, e.g.

• k 1 4 3 2 1 5 = 1 2 3 5 4 - 1 5 -k 5 2 3 4 (16) 
Then, there always exist another graph G that will produce one of the two reduced graphs as well, with a different numerator n G . In the previous example, it would be the 21345 pentagon for the massive box with 1, 2 corner. Finally, reduced graphs also arise directly from string theory, when vertex operators collide [30]. In (15), these always appear in such combinations of two graphs, say G 1 and G 2 ;

• k 1 1 2 3 5 4 + ( + k 2 ) • k 1 2 1 3 5 4 (17) 
The color ordered 3-point vertex is antisymmetric, so n G1 = -n G2 and the • k 1 terms cancel. We then realize that the graphs entering the monodromy relations can be organised by triplets of Jacobi numerators n G +n G -n G1 times denominator. In a BCJ representation, all these triplets vanish identically and eq. ( 14) is satisfied at the integrand level. Thus, any BCJ representation satisfies these monodromy relations, but the converse is not true.

TOWARD HIGHER-LOOP RELATIONS

Higher-loop oriented open string diagrams are worldsheets with holes, one for each loop. 5 Just like at one loop, we consider the integral of the position of a string state on a contractible closed contour that follows the interior boundary of the diagram (cf. for instance fig. 2). The integral vanishes without insertion of closed string operator in the interior of the diagram. This constitutes the essence of the monodromy relations at higher-loop. 18), parallel integrations along a1, a2 cancel only up to a shift in the loop momentum.

Because the exchange of two external states on the same boundary depends only on the local behaviour of the Green's function, we have the same local monodromy transformation G(z 1 , z 2 ) = G(z 2 , z 1 ) ± iπ as at tree-level.

Like at one loop, the global monodromy of moving the external state 1 from one boundary to another boundary by crossing the cycle a I leads to the factor exp(-iα π I • k 1 ). The loop momenta I are the zero-modes of the string momenta I = a I ∂X [START_REF] Hoker | [END_REF]. The string integrand depends on them through the factor: g i=1 d i e α iπ I,J I J Ω IJ -2iπα I,j I •kj z j P ω I , (18) Importantly, the integration path between P and z j in (18) depends on a homology class. This implies that this expression has an intrinsic multivaluedness, corresponding to the freedom of shifting the loop momentum by external momenta when punctures cross through the a cycles. 6 . Choosing one for each of these contours induces a choice of g cuts on the worldsheet along g given a cycles that renders the expression single-valued. Our choice to make the a cycle join at some common point also removes the loop momentum shifting ambiguity and give globally defined loop momenta.

A two-loop example. The generalisation of (9) gives the two-loop integrated relations7 At four points we get

A (2) (1234)+e iπα k1•k2 A (2) (2134)+e iπα k1•k23 A (2) (2314)+ A (2) (234|1|.)[e -iπα 1•k1 ]+A (2) (234|.|1)[e -iπα 2•k1 ] = 0 ( 20 
)
where A (2) (1234) etc. are planar two-loop amplitude integrand, and A (2) (234|1|.), A (2) (234|.|1) are the two nonplanar amplitude integrands with the external state 1 on the b I -cycle with I = 1, 2, as fig. 2. The field theory limit of that relation, at leading order in α , leads to

A (2) (1234) + A (2) (2134) + A (2) (2314)+ A (2) (234|1|.) + A (2) (234|.|1) = 0 , (21) 
where A LC 4 (• • • ) are the leading colour field theory single trace amplitudes, and with our choice of orientation of the cycles A (2) (234|1|.) + A (2) (234|.|1) = A 3;1 (234; 1) is the double trace field theory amplitude. We recover the relation obtained by unitarity method in [37]. For N = 4 SYM, the graphs are essentially scalar planar and non-planar double boxes [38], and this relation is easily verified by inspection, thanks to the antisymmetry of the three-point vertex. At order α , we conjecture that the field theory limit yields;

k 1 • k 2 A (2) (2134) + k 1 • (k 2 + k 3 )A (2) (2314) -A (2) (234|1|.)[ 1 • k 1 ] -A (2) (234|.|1)[ 2 • k 1 ] = 0 . (22)
These relations are not reducible to KK-like colour relations, like these of [39], just like at tree-level where BCJ kinematic relation go beyond KK ones. An extension of the one-loop argument [40] indicates that the massive string corrections to the field theory limit of the propagator does not contribute at the first order in α . A detailed verification of this kind of identities will be provided somewhere else, but we give below a motivation by considering the two-particle discontinuity in the case of N = 4 SYM. The two-particle s-channel cut of the two-loop amplitude is the sum of two contributions, with one-loop and tree-level amplitudes, A(• • • ) and A tree (• • • ) [41], respectively: disc s A (2) (2134) = A( , 21, -˜ )A tree (-, 34, ˜ ) + A tree ( , 21, -˜ )A(-, 34, ˜ ) [START_REF] Green | Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies and Phenomenology[END_REF] where and ˜ are the on-shell cut loop momenta. The schannel two-particle cut of (22) gives a first contribution

k 1 • 1 A tree ( 1 , 12, -˜ 1 ) + k 1 • ( 1 + k 2 )A tree ( 1 , 21, -˜ 1 )
× A(-1 , 34, ˜ 1 ) = 0 [START_REF] Hoker | [END_REF] where 1 and ˜ 1 are the cut momenta. This expression vanishes thanks to the monodromy relation between the four-point tree amplitudes in the parenthesis [1,15,16]. The second contribution is

A(1, 2 , 2, -˜ 2 )[k 1 • 1 ] + A( 2 , 12, -˜ 2 )[k 1 • ( 1 + 2 )]+ A( 2 , 21, -˜ 2 )[k 1 •( 1 + 2 +k 2 )]
A tree (-2 , 34, ˜ 2 ) = 0 (25) where 1 is the one-loop loop momentum and 2 and ˜ 2 are the cut momenta. This expression vanishes thanks to the four-point one-loop monodromy relation (15) in the parenthesis. We believe that this approach has the advantage of fixing some ambiguities in the definition of loop momentum in quantum field theory. And the implications of the monodromy relations at higher-loop in maximally supersymmetric Yang-Mills, by applying our construction to the world-line formalism of [42], will be studied elsewhere.

Finally, we note that our construction should applies to both the bosonic or supersymmetric string, as far as the difficulties concerning the integration of the supermoduli [43] can be put aside.

  fig. 1. The sum is over the shuffle product α ¡ β and the permutation β of length |β|, and (α i , β j ) = k αi • k βj if m(ν βj ) > m(ν αi ) in γ and 1 otherwise. The phase factors with external momenta are the same as at treelevel: the new ingredients here are the insertions of loopmomentum dependent factors inside the integral.Note that some of our relations involve objects like A(2 • • • n|1) that seemingly contribute in (1) only if the state 1 is a colour singlet. However, our relations involve colour-stripped objects and are, therefore, valid in full generality. Note also that our relations are valid under the t-integration, thus they are not affected by the dilaton tadpole divergence at t → 0[25].We have thus shown that the kinematic relations (9) relate planar and non-planar open string topologies, which normally have independent colour structures. This is the one-loop generalisation of the string theory fundamental monodromies that generates all amplitude relations at tree-level in string theory[15,16]. Thus, we conjecture
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 2 FIG.2. Two-loop integrand monodromy. Integration over the red contour vanishes. Given the definition of the loop momentum in eq. (18), parallel integrations along a1, a2 cancel only up to a shift in the loop momentum.
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  iα πk1•kα s A(2) (. . . , α s-1 , 1, α s , . . . |β|γ)+ |β| r=1 r s=1 e -iα πk1•k βs A (2) (α| . . . , β s-1 , 1, β s , . . . |γ)[e -iα π 1•k1 ]+ |γ| r=1 r s=1 e -iα πk1•kγ s A (2) (α|β| . . . , γ s-1 , 1, γ s , . . .)[e -iα π 2•k1 ] = 0 . (19)

Compared to earlier versions, we correct here a sign mistake in the non-planar phases. Because of this mistake, in fig.1, we took the cuts of the non-planar vertical e(ν 1 ) = 1/2 contour to be downard cuts, the corrected version has upward cuts. The analysis for the e(ν 1 ) = 0 cuts is unchanged. Details on the correct version are given in[28, Appendix B].

In bosonic open string one would need to keep to the terms of the order exp(-2πt) because of the Tachyon.

See also[31][32][33] for equivalent closed string methods

This is checked by matching with usual definition of the Schwinger proper times.

We do not consider string diagrams with handles in this work. They lead to non-planar 1/N 2 corrections[36].

Doing the Gaussian integration reduces to the standard expression of the string propagator, which is single valued on the surface.

Compared to earlier versions, we corrected a sign in the nonplanar phases. Higher-loop phases are related to the ones at one-loop by the factorisation limit of the string amplitude.
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Planar and non-planar Green function

The Green function between two external states on the same boundary of the annulus e(ν r ) = e(ν s ) is given by G 26) and between two external states on the different boundaries of the annulus e(ν r ) = e(ν s )

where

The periodicity around the loop follows from

and an appropriate redefinition of the loop momentum.

The string theory correction δ ± (x) to the field theory propagator in ( 12) is

is the contribution of massive string modes propagating between two external states on the same boundary and δ + (x) on different boundaries.