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Discontinuous Galerkin methods

Bernardo Cockburn

University of Minnesota, School of Mathematics, Minneapolis, MN 55455, USA
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This paper is a short essay on discontinuous Galerkin methods intended for a very wide audience. We present the discontinuous Galerkin
methods and describe and discuss their main features. Since the methods use completely discontinuous approxima-tions, they produce
mass matrices that are block-diagonal. This renders the methods highly parallelizable when applied to hyperbolic problems. Another
consequence of the use of discontinuous approximations is that these methods can easily handle irregular meshes with hanging nodes and
approximations that have polynomials of different degrees in different elements. They are thus ideal for use with adaptive algorithms.
Moreover, the methods are locally conservative (a property highly valued by the computational fluid dynamics community) and, in spite
of providing discontinuous approximations, stable, and high-order accurate. Even more, when applied to non-linear hyperbolic problems,
the discontinuous Galerkin methods are able to capture highly complex solutions presenting discontinuities with high resolution. In this
paper, we concentrate on the exposition of the ideas behind the devising of these methods as well as on the mechanisms that allow them to
perform so well in such a variety of problems.

1 Introduction

The discontinuous Galerkin (DG) methods are locally conservative, stable, and high-order accurate methods which can easily
handle complex geometries, irregular meshes with hanging nodes, and approximations that have polynomials of different
degrees in different elements. These properties, which render them ideal to be used with hp-adaptive strategies, not only
have brought these methods into the main stream of computational fluid dynamics, for example, in gas dynamics [11, 14, 39],
compressible [10, 64–66] and incompressible [13, 32, 33] flows, turbomachinery [12], magneto-hydrodynamics [77], granular
flows [52,53], semiconductor device simulation [24,25], viscoplastic crack growth and chemical transport [21], viscoelasticity
[5,8,51], and transport of contaminant in porous media [1,28,29,41], but have also prompted their application to a wide variety
of problems for which they were not originally intended like, for example, Hamilton-Jacobi equations [59,60,62], second-order
elliptic problems [4, 6, 20, 22, 31, 38, 67, 70], elasticity [46, 54], and Korteweg-deVries equations [72, 73].

An introduction to DG methods can be found in the short monograph [26]. A history of their development and the state of
the art up to 1999 can be found in [34]. Finally, a fairly complete and updated review is given in [40]. This paper is a short essay
on DG methods which differs from the above mentioned references in that it is intended for a wider audience and focuses on
the exposition of the ideas behind the devising of these methods as well as in the mechanisms that allow them to perform so
well in such a variety of problems.

Let us briefly carry out this program in what is perhaps the simplest situation, namely, that of approximating the solution of
an ordinary differential equation (ODE). So, consider the following model initial-value problem:

d

dt
u(t) = f(t) u(t), t ∈ (0, T ), u(0) = u0, (1)

and suppose that we want to compute an approximation uh to u on the interval (0, T ) by using a DG method. To do that, we
first find a partition of the interval (0, T ), { tn }N

n=0 and set In = (tn, tn+1) for n = 0, . . . , N −1. Then we look for a function
uh which, on the interval In, is the polynomial of degree at most kn determined by requiring that

−
∫

In

uh(s)
d

dt
v(s) ds + ûh v

∣∣tn+1

tn =
∫

In

f(s)u(s) v(s) ds, (2)

for all polynomials v of degree at most kn. To complete the definition of the DG method, we still need to define the quantity
ûh. Note that the method establishes a link between the values of uh in different intervals only through ûh. Since for the ODE,
the information travels “from the past into the future”, it is reasonable to take ûh as follows:
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ûh(tn) =

⎧⎨⎩u0, if tn = 0,

limε↓0 uh (tn − ε) otherwise.
(3)

This completes the definition of the DG method.
In this simple example, we already see the main components of the method, namely,

(i) The use of discontinuous approximations uh,
(ii) The enforcing of the ODE on each interval by means of a Galerkin weak formulation, and

(iii) The introduction and suitable definition of the so-called numerical trace ûh.
The choice of the numerical trace is perhaps the most delicate and crucial aspect of the definition of the DG methods as it can
affect their consistency, stability, and even accuracy. The simple choice we have made is quite natural for this case and gives
rise to a very good method; however, other choices can also produce excellent results. Next, we address the question of how to
choose the numerical trace ûh.

Let us begin with the problem of the consistency of the DG method. As it is typical for most finite element methods, the
method is said to be consistent if we can replace the approximate solution uh by the exact solution u in the weak formulation (2).
We can immediately see that this is true if and only if û = u.

Next, let us consider the more subtle issue of the stability of the method. Our strategy is to begin by obtaining a stability
property for the ODE (1) which we will then try to enforce for the DG method (2) by a suitable definition of the numerical
trace ûh. If we multiply the ODE by u and integrate over (0, T ), we get the equality

1
2 u2(T ) − 1

2 u2
0 =

∫ T

0
f(s) u2(s) ds,

from which the L∞-stability of the solution follows. The result we have to obtain for the DG method is a similar equality.
To do that, it is enough to set v = uh in the weak formulation (2), integrate by parts and add over n. We get

N−1∑
n=0

(
− 1

2
u2

h + ûh uh

)∣∣∣∣tn+1

tn

=
1
2

u2
h(T−) + Θh(T ) − 1

2
u2

0 =
∫ T

0
f(s)u2

h(s) ds,

where

Θh(T ) = − 1
2

u2
h(T−) +

N−1∑
n=0

(
− 1

2
u2

h + ûh uh

)∣∣∣∣tn+1

tn

+
1
2

u2
0.

Note that if Θh(T ) were a non-negative quantity, the above equality would imply the stability of the DG method. In other
words, the stability of the DG method is guaranteed if we can define the numerical trace ûh so that Θh(T ) ≥ 0. Setting

uh(t) = u0, t < 0,

and using the notation

{uh} =
1
2

(
u−

h + u+
h

)
, [[uh]] = u−

h − u+
h , u±

h (t) = lim
ε↓0

uh (t ± ε) ,

we rewrite Θh(T ) as follows:

Θh(T ) = − 1
2

u2
h(T−) +

(
− 1

2
u2

h(T−) + ûh(T ) uh(T−)
)

+
N−1∑
n=1

(
− 1

2
[[u2

h]] + ûh [[uh]]
)

(tn)

−
(

− 1
2

u2
h(0+) + ûh(0)uh(0+)

)
+

1
2

u2
0

=
(
ûh(T ) − uh(T−)

)
uh(T−) +

N−1∑
n=1

((ûh − {uh}) [[uh]]) (tn) − (ûh(0) − u0) uh(0+) +
1
2

[[uh]]2(0),

where we used the simple identity

[[u2
h]] = 2 {uh} [[uh]].

It is now clear that if we take

ûh(tn) =

⎧⎪⎪⎨⎪⎪⎩
u0, if tn = 0,

({uh} + Cn [[uh]]) (tn), if tn ∈ (0, T ),

uh(T−), if tn = T,
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where Cn ≥ 0, we would have, setting C0 = 1/2,

Θh(T ) =
N−1∑
n=0

Cn [[uh]]2(tn) ≥ 0,

just as we wanted.
We thus see that it is possible to define the numerical trace ûh to enforce the stability of the method. Note that the choice

Cn ≡ 1/2 corresponds to the numerical trace we chose at the beginning, namely, ûh(t) = uh(t−). Note that the resulting DG
methods are not only stable but consistent for all values of Cn ≥ 0, as the condition û = u is satisfied. Moreover, in our search
for stability, we found, in a very natural way, that the numerical trace ûh(t) can only depend on both traces of uh at t, that is,
on uh(t−) and on uh(t+).

Finally, let us address the issue of how the choice of the coefficients Cn can affect the accuracy of the method. It can be
proven that if we take Cn = 1/2, the order of the method at the points tn is 2k + 1, [63]. However, if we simply take Cn = 0,
the order is 2k + 2, [42]. Of course, in this case we must sacrifice the ability of solving for uh interval by interval since, if
Cn �= 1/2, we must solve for uh in the whole computational domain (0, T ) at once. Thus, if we insist in having a DG method
that is consistent, stable and can solve for the approximate solution interval by interval, we must take Cn ≡ 1/2!

Next, we want to emphasize three important properties of the DG methods that do carry over to the multi-dimensional case
and to all types of problems. The first is that the approximate solution of the DG methods does not have to satisfy any inter-
element continuity constraint. As a consequence, the method can be highly parallelizable (when dealing with time-dependent
hyperbolic problems) and can easily handle different types of approximations in different elements which renders it ideal for
use with hp-adaptivity.

The second is that the DG methods are locally conservative. This is a reflection of the fact that the method enforces the
equation element-by-element and of the use of the numerical trace. In our simple setting, this property reads

ûh|tn+1

tn =
∫

In

f(s) u(s) ds,

and is obtained by simply taking v ≡ 1 in the weak formulation (2). This a much valued property in computational fluid
dynamics.

The third property, which has not been properly discussed in the available literature on DG methods, is the strong relation
between the residuals of uh inside the intervals and its jumps across inter-interval boundaries. To uncover it, let us integrate by
parts in (2) to get∫

In

d

dt
uh(s) v(s) ds + (ûh − uh) v|tn+1

tn =
∫

In

f(s)u(s) v(s) ds,

or, equivalently,∫
In

R(s) v(s) ds = (uh − ûh) v|tn+1

tn ,

where R denotes the residual
(

d
dt uh − f uh

)
. If we now take v = 1 and use the definition of the numerical trace ûh, we obtain∫

In

R(s) ds = [[uh]](tn).

In other words, the jump of uh at tn, [[uh]](tn), is nothing but the integral of the residual over the interval In.
This means that if the ODE has been very well approximated in the interval In, the jump [[u]](tn) is very small. On the other

hand, if the ODE was not well approximated therein, the jump [[uh]](tn) is big and the DG method becomes more dissipative
as can be seen directly from the stability identity

1
2

u2
h(T−) +

1
2

N−1∑
n=0

[[uh]]2(tn) − 1
2

u2
0 =

∫ T

0
f(s)u2

h(s) ds.

Thus, roughly speaking, the jumps [[uh]] act as dampers that stabilize the DG method whenever the ride becomes bumpy and the
ODE cannot be well approximated. This renders the method very stable without degrading its accuracy. In multi-dimensions, the
residual is a more complicated linear functional of the jumps, but the dissipative mechanism just described remains essentially
the same. This mechanism is shared with the so-called stabilized finite element methods for convection and for second-order
problems.

In what follows, we consider DG methods for a variety of problems. In each of them, we study the properties of consistency,
stability, and accuracy of the method, and discuss the relevance of the properties of local conservativity and stabilization by the
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jumps. We also comment on some computational issues and establish various links with other numerical schemes. In Sect. 2,
devoted to linear problems, we consider (i) the transport equation, (ii) the wave equation, (iii) the Poisson equation, and (iv)
the Oseen system. In Sect. 3, we consider the more difficult non-linear hyperbolic problems. We end the paper in Sect. 4, with
some concluding remarks.

2 Linear problems

2.1 The transport equation

In this sub-section, we consider DG methods for the transport equation

ut + ∇ · (a u) = 0 in Rd × (0, T ),

u(t = 0) = u0 on Rd.

We consider only the discretization of this equation in space; the full discretization will be studied when when deal with
non-linear hyperbolic problems in Sect. 3.

The objective here is to examine three properties that are especially relevant in this case. The first is that when the DG
methods are strongly related to classical finite volume methods like the up-winding and the Lax-Friedrichs methods. The
second is that when polynomials of high degree are used, the DG method can achieve high-order accuracy while remaining
highly parallelizable. The third is that the artificial viscosity of the method is given by the size of the jumps which, in turn,
are associated with the residual inside the elements. As a consequence, as the polynomial degree of its approximate solution
increases, the artificial viscosity diminishes even in the presence of discontinuities.

The DG methods. To discretize the transport equation in space by using a DG method, we first triangulate the domain Rd;
let us denote by Th such triangulation. We then seek a discontinuous approximate solution uh which, in each element K of
the triangulation Th, belongs to the space V (K). There is no restriction in how to choose the space V (K), although a typical
choice is the space of polynomials of degree at most k, P k(K). We determine the approximate solution on the element K by
weakly enforcing the transport equation as follows:∫

K

(uh)t v −
∫

K

auh · ∇v +
∫

∂K

âuh · n v ds = 0, (4)

for all v ∈ V (K). To complete the definition of the DG method, it only remains to define the numerical trace âuh.
To do that, we proceed as in the ODE considered in the Introduction and begin by obtaining a stability result for the problem

under consideration. We thus multiply the transport equation by u, and integrate over the space and time to get

1
2

∫
Rd

u2(x, T ) dx +
1
2

∫ T

0

∫
Rd

∇ · a(x) u2(x, t) dx dt =
1
2

∫
Rd

u2
0(x) dx.

From this equation, a stability result immediately follows if we assume, for example, that −∇ · a ≤ L.
Now, let us mimic the above procedure for the DG method under consideration. Taking v = uh in the weak formulation

defining the approximate solution uh, and adding on the elements K, we get

1
2

∫
Rd

u2
h(x, T ) dx +

1
2

∫ T

0

∫
Rd

∇ · a(x) u2
h(x, t) dx dt +

∫ T

0
Θh(t) dt =

1
2

∫
Rd

u2
h,0(x) dx,

where

Θh(t) =
∑

K∈Th

(
− 1

2

∫
K

∇ · (a uh)(x, t) dx +
∫

∂K

âuh(x, t) · n uh(x, t) ds

)
.

Next, we investigate if it is possible to define the numerical trace âuh in such a way as to render Θh non-negative.
At this point, it is convenient to introduce the following notation. Let x be a point on the set e = ∂K+ ∩ ∂K− and let n±

denote the unit outward normal to ∂K± at the point x. Let u±
h (x) denote the value limε↓0 uh

(
x − εn±)

and set

{uh} =
1
2

(
u+

h + u−
h

)
, [[uh]] = u−

h n− + u+
h n+.

Finally, let Eh denote the set of sets e = ∂K+ ∩ ∂K− for all K+ and K− ∈ Th.
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We are now ready to rewrite Θh in a suitable way. Indeed, dropping the argument t, we have

Θh =
∑

K∈Th

∫
∂K

(
âuh · n uh − 1

2
au2

h · n

)
ds

=
∑
e∈Eh

∫
e

[[ âuh uh − 1
2

au2
h ]] ds

=
∑
e∈Eh

∫
e

(
âuh [[uh]] − 1

2
[[au2

h]]
)

ds

=
∑
e∈Eh

∫
e

(âuh − a {uh}) · [[uh]] ds

since 1
2 [[u2

h]] = {uh} [[uh]]. Thus, if we take

âuh = a {uh} + C[[uh]],

we get

Θh =
∑
e∈Eh

∫
e

C [[uh]] · [[uh]] ds ≥ 0,

if C is a non-negative definite matrix. This completes the definition of the DG space discretization and shows that it is possible
to define the numerical trace as to render the method consistent and stable.

Examples of the DG methods. There are two main examples of DG methods in this case. The first uses the following
choice for its artificial viscosity coefficient: C = 1

2 |a · n | Id. This implies that the numerical trace is

âuh(x) = a lim
ε↓0

uh(x − εa),

which is nothing but the classical up-winding numerical flux.
The second example is when we take C = 1

2 |a | Id. For this choice, we have

âuh = a {uh} +
1
2

|a |[[uh]],

which is the so-called Lax-Friedrichs numerical flux.

Some properties. (i) From the two examples above, we see that the DG methods are strongly related to finite volume methods.
Indeed, the method of lines, that is, the discretization in space, for the up-winding scheme and the local Lax-Friedrichs scheme
coincide with the corresponding DG method under consideration when the local space V (K) is taken to be the space of constant
functions.

The DG methods, like finite volume methods, can easily handle complex computational domains. Also like finite volume
methods, they have the property of being locally conservative, that is,∫

K

(uh)t dx +
∫

∂K

âuh · n ds = 0,

provided that the local space V (K) contains the constant functions. Indeed, this property is easily obtained from eq. (4) by
simply taking the test function v to be a constant.

Unlike finite volume methods, however, DG achieve with ease high-order accuracy. Indeed, a theoretical order of convergence
of k+1/2 can be proven simply by requiring that the local spaces V (K) contain all polynomials of degree at most k. Moreover,
this is achieved while keeping a high degree of locality since to evolve the degrees of freedom of the approximate solution uh

in an element, only the degrees of freedom of uh in the immediate neighbors are involved.
(ii) This last property and the fact that the mass matrix is block diagonal, and hence easily invertible, renders the DG methods

extremely parallelizable when they are discretized in time by, for example, an explicit Runge-Kutta method.
We give an example taken from [18]. In Table 1 below, we see the solution time and total execution time for the two-

dimensional linear problem

ut + ux + uy = 0, in (−π, π)2 × (0, T ),

5



Table 1 Scaled parallel efficiency. Solution times (without I/O) and total execution times measured on the nCUBE/2.

Number of Work (W ) Solution time Solution parallel Total time Total parallel

processors (secs.) efficiency (secs.) efficiency

1 18,432 926.92 - 927.16 -

2 36,864 927.06 99.98 % 927.31 99.98 %

4 73,728 927.13 99.97 % 927.45 99.96 %

8 147,456 927.17 99.97 % 927.58 99.95 %

16 294,912 927.38 99.95 % 928.13 99.89 %

32 589,824 927.89 99.89 % 929.90 99.70 %

64 1,179,648 928.63 99.81 % 931.28 99.55 %

128 2,359,296 930.14 99.65 % 937.67 98.88 %

256 4,718,592 933.97 99.24 % 950.25 97.57 %

with initial condition u(x, y, 0) = sin(πx) sin(πy) and periodic boundary conditions. We can see that as we progress from 1
to 256 processors while keeping the work per processor constant, a remarkable parallel efficiency is achieved. Polynomials of
degree two and an explicit time-marching scheme were used.

(iii) Next, we show that the dissipation of the DG methods is given by the jumps of their approximate solution. This can
be immediately seen when we realize that the DG method has a higher rate of dissipation of the energy, which in this case is
nothing but the square of the L2-norm, than the exact solution of the transport equation. The extra rate of dissipation for the
DG method is given by

Θh =
∑
e∈Eh

∫
e

C [[uh]] · [[uh]] ds.

In the literature for monotone finite difference schemes for hyperbolic problems, the above term, when C = ν Id, is introduced
by what could be considered to be a term modeling a viscosity effect, with ν being the viscosity coefficient, artificially inserted
to render the scheme stable. That is why it is also called artificial viscosity. We thus see that the artificial viscosity of the DG
method solely depends on the jumps of their approximate solution.

Moreover, the jumps and the local residual (uh)t + ∇ · (a uh), which we denote by R, are strongly related. To see this, it
is enough to carry out a simple integration by parts in the definition of the approximate solution:∫

K

R v =
∫

∂K

(auh · n v − âuh · n v) dx.

Note that in the case of the up-winding flux, we get∫
K

R v =
∫

∂K−
a · [[uh]] ds, where ∂K− = {x ∈ ∂K : a(x) · n(x) ≤ 0}.

In other words, the residual of uh in K is linearly related to the jump of uh on its inflow boundary ∂K−. A similar, but more
complicated relation holds for general DG methods.

This indicates that the artificial viscosity of the method depends on the polynomial degree of the approximate solution. If
the solution is very smooth, as the polynomial degree increases, we expect to have a smaller residual, hence a smaller jump and
hence a smaller artificial viscosity. This is indeed what happens as the method can be proven to be of order k+1/2 uniformly in
time in the L2-norm when polynomials of degree k are used and the exact solution is smooth. Moreover, the artificial viscosity
or, better, the dissipation of the DG methods, does decrease as the polynomial degree increases. This can be seen in Fig. 1
where we compare the exact solution of the transport equation

ut + ux = 0, in (0, 1) × (0, T = 100),

with initial condition

u(x, 0) =

⎧⎨⎩1, if x ∈ (.4, .6),

0, otherwise,

and periodic boundary conditions, with the DG approximations obtained with polynomial approximations of degree k = 0, 1, 2.
To march in time, a Runge-Kutta method of order k + 1 was used.
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Fig. 1 Effect of the polynomial degree on the dissipation of the DG method. The
exact solution u (solid line) is contrasted against the approximate solution obtained
on a mesh of 160 elements with piecewise-constant (dash-point line), piecewise-
linear (dotted line) and piecewise-quadratic (dashed line) approximations.

2.2 The wave equation

In this subsection, we want to show how to extend the definition of DG methods to linear hyperbolic systems. To do that, we
consider DG methods for the wave equation

utt − c2Δu = 0, in Rd × (0, T ),

where, for simplicity, we the take speed c to be constant, and rewrite it as a first-order hyperbolic problem, namely, as

Ut + ∇ · F (U) = 0, in Rd × (0, T ),

where

U =

⎛⎜⎜⎜⎜⎜⎜⎝
q1

q2

. . .

qd

u

⎞⎟⎟⎟⎟⎟⎟⎠ , F (U) = −c

⎛⎜⎜⎜⎜⎜⎜⎝
u 0 . . . 0
0 u . . . 0

. . . . . . . . . . . .

0 0 . . . u

q1 q2 . . . qd

⎞⎟⎟⎟⎟⎟⎟⎠ .

We want to show that the properties of local conservativity, stability, dissipation, and parallelizability of DG methods for the
transport equation also hold for the above model hyperbolic problem. We also want to establish a natural link between the DG
discretization of the wave equation and the DG discretization of the Laplacian operator.

The DG methods. To discretize the wave equation in space by using a DG method, we proceed as follows. After triangulating
the domain Rd, for each element K of the triangulation Th, we choose the local space U(K) which Uh|K belongs to. Note, once
again, that there is no constraint on how to take the space U(K); a typical choice, however, is U(K) = P k(K)× . . .×P k(K).
Then, we determine the approximate solution on the element K by weakly enforcing the conservation law as follows:∫

K

(Uhi)t Vi −
∫

K

Fij(Uh) Vi,j +
∫

∂K

F̂ij nj Vi dx = 0,

for all V ∈ U(K). Here, we adopt Einstein summation convention; note that Vi,j denotes ∂xj Vi. To complete the definition of

the DG method, it only remains to define the numerical trace F̂ij .
To do that, we begin by obtaining the stability result for the problem under consideration. We multiply the hyperbolic system

by U , integrate over the space and time to get

1
2

∫
Rd

U2(x, T ) dx =
1
2

∫
Rd

U2(x, 0) dx,

where U2 = Ui Ui. Now, let us mimic the above procedure for the DG method under consideration. Taking V = Uh and adding
on the elements K, we get

1
2

∫
Rd

U2
h(x, T ) dx +

∫ T

0
Θh(t) dt =

1
2

∫
Rd

U2
h(x, 0) dx,
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where

Θh(t) =
∑

K∈Th

(
−

∫
K

Fij(Uh)(x, t) Uhi,j(x, t) dx +
∫

∂K

F̂ij(x, t) nj Uhi(x, t) dx

)
.

Next, we show can define the numerical trace F̂ij in such a way that the above quantity is non-negative. Dropping the argument
t, we get

Θh =
(

−
∫

K

Fij Uhi,j dx +
∫

∂K

F̂ij nj Uhi dx

)
=

∑
K∈Th

∫
∂K

(
F̂ij nj Uhi − c u qj nj

)
dx,

since Fij Uhi,j = (c u qj),j . Then, setting [[Vi]]j = V −
i nj

− + V +
i nj+ , we get

Θh =
∑
e∈Eh

∫
e

(
F̂ij [[Uhi]]j − c [[u qj ]]j

)
dx =

∑
e∈Eh

∫
e

(
F̂ij −

{
Fij

})
· [[Uhi]]j dx,

since

c [[u qj ]]j = c
(
{u} [[qj ]]j +

{
qj

}
[[u]]j

)
= c

(
{u} δij [[qi]]j +

{
qj

}
[[u]]j

)
=

{
Fij

}
[[Uhi]]j .

Thus, if we take,

F̂ij =
{
Fij

}
+ Cijk� [[Uhk]]�,

we obtain

Θh =
∑
e∈Eh

∫
e

Cijk� [[Uhk]]� [[Uhi]]jds ≥ 0,

provided Cijk� is non-negative definite.

Examples of DG methods. We give three examples of DG methods for this case. We only have to determine their numerical
trace F̂ij . Two of them are widely known in computational fluids dynamics as the up-winding and Lax-Friedrichs numerical
fluxes. The third has been recently discovered in the context of DG methods for second-order elliptic problems. To write them
down, we use the following notation:

[[q]] = [[qj ]]j .

They are as follows:

(i) F̂ij =
{
Fij

}
+

|c|
2

[[q]] δij +
|c|
2

[[u]]j δi(d+1) (up-winding),

(ii) F̂ij =
{
Fij

}
+

|c|
2

[[qi]]j +
|c|
2

[[u]]j δi(d+1) (Lax-Friedrichs),

(iii) F̂ij =
{
Fij

}
+ (C22[[q]] − C12 · [[u]]) δij +

(
(C12)j [[q]] + C11[[u]]j

)
δi(d+1).

The last numerical trace is, of course, a generalization of the up-winding numerical trace.
It is not difficult to see that the dissipation term Θh for each of these numerical traces is given by

(i) Θh =
∑
e∈Eh

∫
e

( |c|
2

[[q]]2 +
|c|
2

[[u]]2
)

ds (up-winding),

(ii) Θh =
∑
e∈Eh

∫
e

( |c|
2

[[qi]] · [[qi]] +
|c|
2

[[u]]2
)

ds (Lax-Friedrichs),

(iii) Θh =
∑
e∈Eh

∫
e

(
C22 [[q]]2 + C11 [[u]]2

)
ds.

Note that the dissipation of the first two methods is proportional to the speed of propagation |c|. Note also that the DG
method with Lax-Friedrichs numerical trace is more dissipative than the DG method with the up-winding numerical trace since

[[qi]] · [[qi]] ≥ [[q]]2,
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where the equality holds only if the tangential component of q is continuous. Finally, note that if C22 = C11 = |c|/2, the third
method produces the same amount of dissipation than the DG method using the up-winding numerical trace. This indicates
that, for that method, the vector-parameter C12 does not have any stabilizing effect; it could be used, however, to enhance the
accuracy of the method.

Some properties. It is not difficult to extend to the case of linear hyperbolic systems, what was discussed for the transport
equation. Let us just briefly point out that the DG methods for those systems (i) are related to finite volume methods like the
up-winding and the Lax-Friedrichs methods and always are locally conservative, (ii) are high-order accurate (in fact, of order
(k +1/2) when polynomials of degree k are used) while remaining highly parallelizable when discretized in time with explicit
methods, and (iii) have a dissipative mechanism that solely depends on the jumps which, in turn, are strongly linked with the
residuals inside the elements.

A point we are particularly interested in stressing here is that working with the wave equation allows us to see, in a very
natural way, how to discretize the Laplace operator −Δ by using DG methods. Indeed, since the hyperbolic system for the
wave equation can be rewritten as

qt − c∇u = 0, ut − c∇ · q = 0,

if we eliminate the term ut from the second equation and formally replace qt by q, we get

q − c∇u = 0, −c∇ · q = 0,

which is nothing but a rewriting of the equation c2Δu = 0. Thus, we can establish a one-to-one correspondence between
the numerical traces used to discretize the hyperbolic system for the wave equation and those used to discretize the Laplace
operator. This shows that switching from hyperbolic problems to elliptic ones is, in fact, does not entail a dramatic change as
far as DG discretizations are concerned.

2.3 Second-order elliptic problems

In this sub-section, we consider DG methods for the model elliptic problem

−Δu = f in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain of Rd. Following what was done for the wave equation, to define them, we rewrite our elliptic
model problem as

q = ∇u, −∇ · q = f in Ω, u = 0 on ∂Ω.

If when dealing with hyperbolic problems, we emphasized the DG methods are a generalization of finite volume methods,
here we are going to show that DG methods are in fact mixed finite element methods. We also emphasize the fact that also in
this context, DG methods are locally conservative methods ideally suited for adaptivity. Finally, we show that the dissipation
mechanism of the DG methods, which is associated to the idea of artificial diffusion in the framework of hyperbolic equations,
is associated to the idea of penalization of the discontinuity jumps in this context.

The DG methods. A DG numerical method is obtained as follows. After discretizing the domain Ω, the approximate solution
(qh, uh) on the element K is taken in the space Q(K) × U(K) and is determined by requiring that∫

K

qh · v dx = −
∫

K

uh ∇ · v dx +
∫

∂K

ûh v · n ds,∫
K

qh · ∇w dx −
∫

∂K

w q̂h · n ds =
∫

K

fw dx,

for all (v, w) ∈ Q(K) × U(K). Note that now we have two numerical traces, namely, ûh and q̂h, that remain to be defined.
To do that, we begin by finding a stability result for the solution of the original equation. To do that, we multiply the first

equation by q and integrate over Ω to get∫
Ω

|q|2 dx −
∫

Ω
q · ∇u dx = 0.

Then, we multiply the second equation by u and integrate over Ω to obtain

−
∫

Ω
∇ · q u dx =

∫
Ω

f u dx.
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Adding these two equations, we get∫
Ω

|q|2 dx =
∫

Ω
f u dx.

This is the result we sought. Next, we mimic this procedure for the DG method.
We begin by taking v = qh in the first equation defining the DG method and adding on the elements K to get∫

Ω
|qh|2 dx −

∑
K∈Th

(
−

∫
K

uh ∇ · qh dx +
∫

∂K

ûh qh · n ds

)
= 0.

Next, we take w = uh in the second equation and add on the elements to obtain∑
K∈Th

(∫
K

qh · ∇uh dx −
∫

∂K

uh q̂h · n ds

)
=

∫
Ω

fuh dx.

Adding the two above equations, we find that∫
Ω

|qh|2 dx + Θh =
∫

Ω
f u dx,

where

Θh = −
∑

K∈Th

(
−

∫
K

∇ · (uh qh) dx +
∫

∂K

(ûh qh · n + uh q̂h · n) ds

)
.

It only remains to show that we can define consistent numerical traces ûh and q̂h that render Θh non-negative. Since,

Θh =
∑

K∈Th

∫
∂K

(uh qh · n − ûh qh · n − uh q̂h · n) ds

=
∑
e∈Eh

∫
e

[[ uh qh − ûh qh − uh q̂h ]] ds

=
∑

e∈Eih

∫
e

([[uh qh]] − ûh [[qh]] − [[uh]] · q̂h) ds +
∫

∂Ω
(uh qh − ûh qh · n − uh q̂h · n) ds

=
∑

e∈Eih

∫
e

(({uh} − ûh) [[qh]] + [[uh]] · ({q} − q̂h)) ds +
∫

∂Ω
(uh (qh − q̂h) · n − ûh qh · n) ds,

it is enough to take, inside the domain Ω,

q̂h = {qh} + C11[[uh]] + C12[[qh]], ûh = {uh} − C12 · [[uh]] + C22[[qh]],

and on its boundary,

q̂h = qh − C11 uh n, ûh = 0,

to finally get

Θh =
∑

e∈Eih

∫
e

(
C22 [[qh]]2 + C11 [[uh]]2

)
ds +

∫
∂Ω

C11 u2
h ds ≥ 0,

provided C11 and C22 are non-negative. Note how the boundary conditions are imposed weakly through the definition of the
numerical traces. This completes the definition of the DG methods.

Some properties. (i) Let us show that to guarantee the existence and uniqueness of the approximate solution of the DG
methods, the parameter C11 has to be greater than zero and the local spaces U(K) and Q(K) must satisfy the following
compatibility condition:

uh ∈ U(K) :
∫

K

∇uh v dx = 0 ∀ v ∈ Q(K) then ∇uh = 0.
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Indeed, the approximate solution is well defined if and only if, the only approximate solution to the problem with f = 0 is
the trivial solution. In that case, our stability identity gives∫

Ω
|qh|2 dx +

∑
e∈Eih

∫
e

(
C22 [[qh]]2 + C11 [[uh]]2

)
ds +

∫
∂Ω

C11 u2
h ds = 0,

which implies that qh = 0, [[uh]] = 0 on Eih, and uh = 0 on ∂Ω, provided that C11 > 0. We can now rewrite the first equation
defining the method as follows:∫

K

∇uh v dx = 0, ∀ v ∈ Qh,

which, by the compatibility condition, implies that ∇uh = 0. Hence uh = 0, as wanted.
(ii) When all the local spaces contain the polynomials of degree k, the orders of convergence of the L2-norms of the errors

in q and u are k and k + 1, respectively; see [22] when C11 is of order O(h−1). Superconvergence in q has been proven
and numerically observed in Cartesian grids, with a special choice of the numerical fluxes and equal-order elements with
Qk-polynomials; see [31].

(iii) Next, we show that DG methods are in fact mixed finite element methods. To see this, let us begin by noting that the
DG approximate solution (qh, uh) can be also be characterized as the solution of

a(qh,v) + b(uh,v) = 0,

−b(w, qw) + c(uh, w) = F (w),

for all (v, w) ∈ Qh × Uh where

Qh = {v : v ∈ Q(K) ∀ K ∈ Th}, Uh = {w : w ∈ U(K) ∀ K ∈ Th},

and

a(q, r) :=
∫

Ω
q · r dx +

∫
Ei

C22[[q]][[r]] ds,

b(u, r) :=
∑
K∈T

∫
K

u ∇ · r dx −
∫

Ei

({u} + C12 · [[u]]) [[r]] ds,

c(u, v) :=
∫

Eih

C11 [[u]] · [[v]] ds +
∫

∂Ω
C11 uv ds,

F (r) :=
∫

Ω
fv dx.

As a consequence, the corresponding matrix equation has the form(
A −Bt

B C

) (
Q

U

)
=

(
0
F

)
,

which is typical of stabilized mixed finite element methods. As it is well known, those methods are not well defined unless
the ‘stabilizing’ form c(·, ·), usually associated with residuals, is introduced. For DG methods, the ‘stabilizing’ form c(·, ·)
solely depends on the parameter C11 and the jumps across elements of the functions in Uh. This is why we could think that
this form stabilizes the method by penalizing the jumps, C11 being the penalization parameter; thus, what was interpreted to
be the artificial dissipation coefficient in hyperbolic problems can now be thought of a penalization parameter.

Finally, let us emphasize that, for DG methods, penalizing the jumps is also a way of introducing stabilization by using
residuals. Indeed, just as for the hyperbolic case, the residuals are related to the jumps. To see this, set R1 = qh − ∇uh and
R2 = −∇ · qh − f and use the weak formulation of the DG method and the definition of its numerical trace to get∫

K

R1 · v dx =
∫

∂K

((
− 1

2
n − C12

)
· [[uh]] + C22[[qh]]

)
v · n ds,∫

K

R2w dx =
∫

∂K

((
− 1

2
n + C12

)
[[qh]] + C11[[uh]]

)
· n w ds,

for all (v, w) ∈ Q(K) × U(K).
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(iv) Let us now comment on an essential difference between the DG and the classical mixed methods. To solve the system
associated to classical mixed methods, namely,(

A −Bt

B C

) (
Q

U

)
=

(
0
F

)
,

we can try to eliminate Q from the equations to obtain(
BA−1Bt + C

)
U = F.

Since the matrix A is not easily invertible, due to continuity constraints on the approximation qh, we can hybridize the method;
see [19]. We then obtain a new system of the form⎛⎜⎝A −Bt −Dt

B C 0
D 0 0

⎞⎟⎠
⎛⎜⎝Q

U

Λ

⎞⎟⎠ =

⎛⎜⎝ 0
F
0

⎞⎟⎠ ,

where Λ is the vector of degrees of freedom associated to the so-called Lagrange multiplier λh. As is now well-known, the
new vectors of degrees of freedom Q and U actually define the same approximation (qh, uh) as the original mixed method.
Moreover, since now A is block-diagonal, both Q and U can now be easily eliminated to obtain an equation for the multiplier
only, namely,

E Λ = H ,

where E and H are given by

E = DA−1
(
A − Bt

(
BA−1Bt + C

)−1
B

)
A−1Dt,

H = −DA−1Bt
(
BA−1Bt + C

)−1 F . (5)

In the case of DG methods, the above procedure it not necessary as the matrix A is block diagonal when C22 is identically
zero. In this case, the DG method remains well-posed and the matrix A can be made equal to the identity, if a suitable basis is
used. This allows us to easily eliminate qh from the equations. Finally, note that, unlike classical and stabilized mixed methods,
this can be achieved even if polynomials of different degrees are used in different elements. This renders DG methods ideal for
adaptivity.

(v) The methods we have presented are locally conservative. As we saw in the hyperbolic case, this is a reflection of the
form of the weak formulation and the fact that the definition of the numerical traces on the face e does not depend on what side
of it we are. More general DG methods define the approximate solution by requiring that∫

K

qh · r dx = −
∫

K

uh ∇ · r dx +
∫

∂K

ûh,K r · nK ds,∫
K

qh · ∇v dx =
∫

K

fv dx +
∫

∂K

v q̂h,K · nK ds,

for all (r, v) ∈ Q(K) × U(K). In this general formulation, the numerical traces ûh,K and q̂h,K can have definitions that
might depend on what side of the element boundaries we are. Hence they are not locally conservative. This is the case for the
numerical fluxes in u of the last four schemes in Table 2 taken from [3]. The acronym LDG stands for local DG, and IP for
interior penalty.

Finally, let us point out that, in that table, the function αr([uh]) is a special stabilization term introduced by Bassi and
Rebay [12] and later studied by Brezzi et al. [20]; its stabilization properties are equivalent to the one originally presented.
In [4], a complete study of these methods is carried out in a single, unified approach.

2.4 The Oseen system

In this sub-section, we show how to discretize the Oseen system, namely,

−Δu + (a · ∇)u + ∇p = f , ∇ · u = 0 in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain of Rd and ∇ · a = 0.
The objective here is to put to work what we have learned about DG-space discretizations for convection and diffusion

operators.
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Table 2 Some DG methods and their numerical fluxes.

Method q̂e,K ûh,K

Bassi–Rebay [10] {qh} {uh}
LDG [38] {qh} + C11 [[uh]] − C12[[qh]] {uh} + C12 · [[uh]]
DG [22] {qh} + C11 [[uh]] − C12[[qh]] {uh} + C12 · [[uh]] + C22[[qh]]
Brezzi et al. [20] {qh} − αr ([[uh]]) {uh}
IP [45] {∇uh} + C11 [[uh]] {uh}
Bassi–Rebay [12] {∇uh} − αr ([[uh]]) {uh}
Baumann–Oden [15] {∇uh} {uh} − nK · [[uh]]
NIPG [70] {∇uh} + C11[[uh]] {uh} − nK · [[uh]]
Babuška–Zlámal [7] C11[[uh]] uh|K
Brezzi et al. [20] −αr ([[uh]]) uh|K

The DG methods. To define a DG method for the Oseen system, we begin by rewriting it as a first-order system,

σi = ∇ui, −∇ · σi + ∇ · (aui) + ∂i p = fi, 1 ≤ i ≤ d, ∇ · u = 0 in Ω, u = 0 on ∂Ω.

where ui denotes the i-th component of the velocity u. To discretize the above equations, we take the approximate solution
(σh,uh, ph) on the element K to be in the space S(K)d × U(K)d × P(K) and determine it by imposing that, for 1 ≤ i ≤ d,
and for all (τ , v, w) ∈ S(K) × U(K) × P(K),∫

K

σi h · τ dx = −
∫

K

ui h∇ · τ dx +
∫

∂K

ûσ,i hτ · n ds,∫
K

(σi h · ∇v − ui h a · ∇v − ph ∂i v) dx +
∫

∂K

(
−σ̂i h · nv + â ui h · nv + p̂h v ni

)
ds =

∫
K

fi v dx,

−
∫

K

uh · ∇q dx +
∫

∂K

ûp,h · n q ds = 0.

It remains to find numerical traces that ensure that the method is well defined and stable. As usual, we begin by finding the
stability equality for the continuous case. To do that, we first multiply the equation defining σi by σi sum over i and integrate
over Ω to get∫

Ω
|σ|2 dx =

∫
Ω

σi · ∇ui dx,

where |σ|2 = σi · σi; we are using the Einstein summation convention. Now, we multiply the second equation of the Oseen
system by ui, sum over i and integrate over Ω to get∫

Ω

(
−∇ · σi ui − 1

2
∇ · a|u|2 + u · ∇p

)
dx =

∫
Ω

f · u dx,

where |u|2 = uiui. Adding the last two equations, and integrating by parts, we get∫
Ω

|σ|2 dx −
∫

Ω
p ∇ · u dx =

∫
Ω

f · u dx,

and using the incompressibility of the velocity u,∫
Ω

|σ|2 dx =
∫

Ω
f · u dx.

Next, we mimic the above procedure for the DG method. First, we take τ = σi h, add over i and then over K, to get∫
Ω

|σh|2 dx = −
∑

K∈Th

∫
K

ui h∇ · σi h dx +
∑

K∈Th

∫
∂K

ûσ,i h σi h · n ds.
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Now, take v = ui,h, add over i and then over K to obtain

∑
K∈Th

∫
K

(
σi h · ∇ui h − 1

2
a · ∇|uh|2 − ph ∇ · u

)
dx

+
∑

K∈Th

∫
∂K

(
−σ̂i h · nui h + â ui h · nui h + p̂h uh · n

)
ds =

∫
Ω

f · uh dx.

Adding the last two equations, we get∫
Ω

|σh|2 dx +
∑

K∈Th

∫
K

(
∇ · (σi h ui h) − 1

2
a · ∇|uh|2 − ph ∇ · u

)
dx

+
∑

K∈Th

∫
∂K

(
−ûσ,i h σi h · n − σ̂i h · nui h + â ui h · nui h + p̂h uh · n

)
ds =

∫
Ω

f · uh dx.

Finally, we take q = ph, add over K and add the result to the above equation to get∫
Ω

|σ|2 dx + Θh =
∫

Ω
f · u dx,

where

Θh = Θ1
h + Θ2

h,

and

Θ1
h =

∑
K∈Th

∫
K

∇ ·
(

σi h ui h − 1
2

a |uh|2 − ph uh

)
dx

=
∑
e∈Eh

∫
e

[[
σi h ui h − 1

2
a |uh|2 − ph uh

]]
dx,

and

Θ2
h =

∑
K∈Th

∫
∂K

(
−ûσ,i h σi h · n − σ̂i h · nui h + â ui h · nui h + p̂h uh · n + ûp,h · n ph

)
ds

=
∑
eEh

∫
e

[[ −ûσ,i h σi h − σ̂i h ui h + â ui h ui h + p̂h uh + ûp,h ph ]] ds.

Adding and rearranging terms, we get

Θh =
∑

e∈Eih

∫
e

((
{ui h} − ûσ,i h

)
[[σi h]] + ({σi h} − σ̂i h) [[ui h]] −

(
{a ui h} − â ui h

)
[[ui h]]

− ({ph} − p̂h) [[uh]] −
(
{uh} − ûp,h

)
[[ph]]

)
ds

+
∫

∂Ω

(
−ûσ,i h σi h + (σi h − σ̂i h) ui h −

(
1
2

aui h − â ui h

)
ui h − (ph − p̂h) uh + ûp,h ph

)
· n ds.

We now take the numerical traces as to render Θh non-negative. On the interior of the domain, we take

σ̂i h = {σi h} − C11[[ui h]] + C12 [[σi h]],

âui h(x) = a lim
ε↓0

ui,h (x − εa) ,

ûσ,i h = {ui h} − C12 · [[ui h]],

and, on the boundary,

σ̂i h = σi h − C11 ui h n, ûσ,h = 0.
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The numerical traces associated with the incompressibility constraint, ûp,h and p̂h, are defined by using an analogous recipe.
In the interior of Ω, we take

ûp,h = {uh} + D11 [[ph]] − D12 [[uh]],

p̂h = {ph} + D12 · [[ph]],

and on the boundary, we take

ûp,h = 0, p̂h = p+
h .

With the above choice, we get

Θh =
∑

e∈Eih

∫
e

(
(C11 + |a · n|) |[[uh]]|2 + D11 [[ph]]2

)
ds +

1
2

∫
∂Ω

|a · n||uh|2 ds ≥ 0,

whenever the parameters C11 and D11 are non-negative. This completes the definition of the DG method for the Oseen system.

Some properties. (i) Let us show that the above DG method is well defined when the stabilization parameters C11 and D11
are positive and when the two following compatibility conditions on the local spaces are satisfied:

uh ∈ U(K) :
∫

K

τ · ∇uh dx = 0 ∀ τ ∈ Sd(K) then ∇uh = 0,

and

ph ∈ P(K) :
∫

K

v · ∇ph dx = 0 ∀ v ∈ Ud(K) then ∇ph = 0.

Thus, we must show that when f = 0, the only solution is uh = σi h = 0 and ph is a constant. From the stability result,
we get that ∫

Ω
|σ|2 dx +

∑
e∈Eih

∫
e

(
(C11 + |a · n|) |[[uh]]|2 + D11 [[ph]]2

)
ds +

1
2

∫
∂Ω

|a · n||uh|2 ds = 0,

which implies that σi h = 0, [[ui h]] = 0, ui h = 0 on ∂Ω, and [[ph]] = 0.
With this information, the first equation defining the DG method becomes∫

K

τ · ∇ui h dx = 0 ∀ τ ∈ Sd,

which, by the first compatibility condition implies that ∇ui h = 0 on each element K. Since uh is continuous and zero in the
border, we must have that uh = u.

Finally, the second equation defining the DG method becomes∫
K

v · ∇ph dx = 0 ∀ v ∈ Ud(K),

which, by the second compatibility condition, implies that ∇ph = 0 on each element K. Since ph is continuous, this shows
that ph is a constant.

(ii) In obtaining error estimates, one of the main issues is the so-called inf-sup condition. It turns out that, when D11 > 0,
it is possible to circumvent that condition and obtain optimal error estimates. Indeed, if we take S(K) = U(K) = P(K) to
be the space of polynomials of degree k, the L2-norm of the error in p and σi converge with order k, and the L2-norm of the
velocity with order k +1. Moreover, if polynomials of degree k −1 are used to approximate the pressure p and the stress tensor
σi, the above mentioned orders of convergence remain the same. This method is, however, not more efficient; see [33].

The fact that the inf-sup condition can be circumvented is typical of stabilized numerical methods. In the case of DG
methods, this happens because it is possible to obtain a much weaker, generalized inf-sup condition. Moreover, in some cases,
this inf-sup condition can be proven even if we take D11 = 0. In such a case, the conditions on the velocity and pressure spaces
are more restrictive, of course; see [71, 76].

(iii) Let us end this section by pointing out that the method is locally conservative and that all the local residuals can be
easily computed solely in terms of the jumps of the approximate solution. Moreover, the method is robust with respect to
the Reynolds number. To support this claim, we quote a result from [32] about the Kovasznay flow with different Reynolds
numbers. We use quadrilateral meshes generated by consecutive refinements. In each refinement step, each grid cell is divided
into four similar cells by connecting the edge midpoints. Therefore, grid level L corresponds to a mesh-size hL = 21−L. All
the unknowns are approximated with tensor product polynomials of degree k ≥ 1. The discontinuity and pressure stabilization
functions σ and δ are chosen of the order O(1/h) and O(h), respectively. Fig. 2 shows robustness of the discretization with
respect to the Reynolds number.
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Fig. 2 Scaled L2-errors in u with k = 2 for different Reynolds numbers.

3 Non-linear hyperbolic conservation laws

In all the previous section, we have considered DG-space discretizations for linear problems ranging from ODEs to the Oseen
system. In computational fluid dynamics, the next natural step would be to consider the incompressible case. However, this
topic is currently being vigorously addressed by several researchers; see the pioneering work [9, 61].

In this section, we switch to the numerical solution of non-linear hyperbolic equations. One of the main applications is to
devise a locally conservative, stable and high-order accurate method to discretize the Euler equations of gas dynamics, as this
is the bottleneck to deal with the compressible Navier-Stokes equations.

3.1 The RKDG methods: Introduction

The DG methods we consider are called the Runge Kutta discontinuous Galerkin (RKDG) methods, [30,35–37,39]. To describe
these methods, we use the simple model problem of the non-linear hyperbolic scalar conservation law

ut + ∇ f(u) = 0.

The RKDG methods are obtained in three steps:

Step 1: The DG space discretization. First, the conservation law is discretized in space by using a DG method. A
discontinuous approximate solution uh is sought such that when restricted to the element K, it belongs to the finite dimensional
space U(K). It is defined by imposing that, for all vh ∈ U(K),∫

K

(uh)t vh dx −
∫

K

f(uh) · ∇vh dx +
∫

∂K

f̂(uh) · nK vh ds = 0.

Here, as we have seen in the previous section, the proper definition of the numerical trace f̂(uh) (called, in this kind of problems,
the approximate Riemann solver or also the numerical flux) is essential for the stability and convergence of the method.

Step 2: The RK time discretization. Then, we discretize the resulting system of ordinary differential equations, d
dt uh =

L(uh), by using special explicit Runge-Kutta (RK) methods:

1. Set u
(0)
h = un

h .
2. For i = 1, . . . ,K compute the intermediate functions:

u
(i)
h =

i−1∑
l=0

αil wil
h , wil

h = u
(l)
h +

βil

αil
ΔtnLh

(
u

(l)
h

)
.

3. Set un+1
h = uK

h .
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The distinctive feature of these RK methods is that their stability follows from the stability of the mapping u
(l)
h 
→ wil

h defining
the intermediate steps. Unfortunately, this mapping is not necessarily stable and, as a consequence, the method requires another
component to enforce stability.

Step 3: The generalized slope limiter. This component is nothing but the so-called generalized slope limiter ΛΠh. This
non-linear projection operator, is devised in such a way that if u

(l)
h = ΛΠhvh for some function vh, then the mapping u

(l)
h 
→ wil

h

is stable.
Thus, we incorporate the generalized slope limiter in the above time-marching algorithm as follows:

1. Set u
(0)
h = un

h .
2. For i = 1, . . . ,K compute the intermediate functions:

u
(i)
h = ΛΠh

(
i−1∑
l=0

αil wil
h

)
, wil

h = u
(l)
h +

βil

αil
ΔtnLh

(
u

(l)
h

)
.

3. Set un+1
h = uK

h .

This is the general form of the RKDG methods
In what follows, we elaborate on each on the above points and pay special attention to how to enforce the stability of the

method. This is by far more delicate than what was done in the previous section because, as we can see, the stability of the
method relies on the stability of the forward Euler step u

(l)
h 
→ wil

h . Unfortunately, this operator is always unstable in the
L2-norm. Nevertheless, we are going to show that it is possible to find a weaker stability property for the forward Euler and
then enforce it with the generalized slope limiter to obtain a stable method. The remarkable fact is that this can be achieved
while maintaining the high-order accuracy of the method.

3.2 The DG-space discretization

With respect to the DG-space discretization, we do not have to say too many things that are different from the DG-space
discretization of the transport equation. However, let us very briefly emphasize, that the method is locally conservative, and
has order k +1/2 when polynomials of degree k are used. It is highly parallelizable since its mass matrix is block diagonal and
since, as it is typical of DG methods, the numerical trace f̂ solely depends on the traces of uh on both sides of the inter-element
boundary. The classical examples are the following:

(i) The Godunov flux:

f̂G(a, b) =

⎧⎨⎩mina≤u≤b f(u), if a ≤ b,

maxb≤u≤a f(u), otherwise.

(ii) The Engquist-Osher flux:

f̂EO(a, b) =
∫ b

0
min(f ′(s), 0) ds +

∫ a

0
max(f ′(s), 0) ds + f(0).

(iii) The Lax-Friedrichs flux:

f̂LF (a, b) =
1
2

[f(a) + f(b) − C (b − a)], C = max
inf u0(x)≤s≤sup u0(x)

|f ′(s)|.

When piecewise constant approximate solutions are taken and when the forward Euler method is used to march in time, a
monotone scheme is obtained. Monotone schemes are not only very stable but converge to the physically relevant solution, the
so-called entropy solution. Unfortunately, monotone schemes are at most first order accurate. By using high-degree polynomials
in a DG-space discretization, the accuracy of the scheme is raised. However, a RK time-discretization that that has the same
accuracy in time and renders the scheme stable has to be devised.

3.3 The RK time discretization

The RK method we consider is required to satisfy the following conditions:

(i) If βil �= 0 then αil �= 0.
(ii) αil ≥ 0.

(iii)
∑i−1

l=0 αil = 1.
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Note that, by the first property, we can express the RK method in terms of the functions wil
h . Note also that if we assume

that, for some semi-norm | · |, we have that
∣∣ wil

h

∣∣ ≤
∣∣∣ u

(l)
h

∣∣∣, then

∣∣∣ u
(i)
h

∣∣∣ =

∣∣∣∣∣
i−1∑
l=0

αil wil
h

∣∣∣∣∣ ,

≤
i−1∑
l=0

αil

∣∣∣ wil
h

∣∣∣ , by the positivity property (ii),

≤
i−1∑
l=0

αil

∣∣∣ u
(l)
h

∣∣∣ , by the stability assumption,

≤ max
0≤l≤i−1

∣∣∣ u
(l)
h

∣∣∣ , by the consistency property (iii),

which readily implies that |un
h | ≤ |u0

h |, ∀n ≥ 0, by a simple induction argument. In other words, the stability of the Euler

forward step u
(l)
h 
→ wil

h implies the stability of the RK method!
We must also keep in mind that, the RK method being explicit, we must ensure that the round-off errors are not amplified.

For DG-space discretizations using polynomials of degree k and a (k + 1)-stage RK method of order k + 1 (which give rise
to a (k + 1)-st order accurate method), a von Neumann stability analysis for the one-dimensional linear case f(u) = c u gives
us the stability

|c| Δt

Δx
≤ 1

2 k + 1
.

This is a condition to be respected, since otherwise the round-off errors will be amplified.

3.4 The stability of the step uh �→ wh = uh + δ Lh(uh)

It is not difficult to prove that the forward Euler step is not stable in the L2-norm, except in the case in which polynomials of
degree 0 are used. If polynomials of degree k > 0 are used, the Euler step can be rendered stable if Δt/Δx is proportional
to (Δx)p(k), where p(k) > 0; for example, p(1) = 1/2, see [23]. This is clearly an unacceptable situation for hyperbolic
problems.

This negative result prompted the search of weaker norms, or semi-norms, for which the forward Euler step would be stable.
To do that, recall that, when using polynomials of degree zero, the DG methods are nothing but monotone schemes, which are
stable methods for the L∞ norm in several space dimensions and in the total-variation semi-norm (in one space dimension).
Thus, the idea is to see if these stability properties remain invariant when high-order degree polynomials are used.

To address this issue as clearly as possible, let us restrict ourselves to the one dimensional case. In this case, the forward
Euler step for the method reads∫

Ij

(wh − uh)
δt

vh dx −
∫

Ij

f(uh) (vh)x dx + f̂(uh) vh

∣∣xj+1/2

xj−1/2
= 0.

Taking vh ≡ 1, we obtain,(
wj − uj

)
/δ +

(
f̂

(
u−

j+1/2, u
+
j+1/2

)
− f̂

(
u−

j−1/2, u
+
j−1/2

))
/Δj = 0, (6)

where uj denotes the mean of uh on the interval Ij , u−
j+1/2 denotes the limit from the left and u+

j+1/2 the limit from the right.
When the approximate solution is piecewise-constant, we obtain a monotone scheme for small enough values of | δ | and, as a
consequence, we do have that the scheme is total variation diminishing (TVD), that is, that

| wh |TV (0,1) ≤ |uh |TV (0,1),

where

| uh |TV (0,1) ≡
∑

1≤j≤N

| uj+1 − uj |

is the total variation of the local means.
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Fig. 3 Example of slope limiters: The MUSCL limiter (left) and the less restrictive ΛΠ1
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local means of uh (thick line), the linear function uh in the element of the middle before limiting (dotted line), and the resulting
function after limiting (solid line).

For approximate solutions that are not necessarily piecewise-constant, the above result still holds provided that the following
sign conditions are satisfied:

sign
(
u+

j+1/2 − u+
j−1/2

)
= sign

(
uj+1 − uj

)
,

sign
(
u−

j+1/2 − u−
j−1/2

)
= sign

(
uj − uj−1

)
.

Since these conditions are not necessarily satisfied it is necessary to enforce them by means of what will be called a generalized
slope limiter, ΛΠh.

We see that, unlike what happened in the previous section, the introduction of the numerical traces is not enough to guarantee
the stability of the DG method. For non-linear hyperbolic problems, the use of a generalized slope limiter is indispensable,
as was originally shown for the so-called high-resolution methods. See also [27] for a motivation of the introduction of this
operator.

3.5 The generalized slope limiter

For piecewise-linear functions

vh|Ij = vj + (x − xj) vx,j ,

we define uh = ΛΠ1
h(vh), [68], as follows:

uh|Ij
= vj + (x − xj) m

(
vx,j ,

vj+1 − vj

Δj/2
,
vj − vj−1

Δj/2

)
,

where the minmod function m is defined by

m (a1, a2, a3) =

⎧⎨⎩s min1≤n≤3 | an | if s = sign(a1) = sign(a2) = sign(a3),

0 otherwise.

Note that this projection is non-linear and can be rewritten as follows:

u−
j+1/2 = vj + m

(
v−

j+1/2 − vj , vj − vj−1, vj+1 − vj

)
(7)

u+
j−1/2 = vj − m

(
vj − v+

j−1/2, vj − vj−1, vj+1 − vj

)
. (8)

Next, we define a generalized slope limiter ΛΠh for general discontinuous functions. Let us denote by v1
h the L2-projection

of vh into the space of piecewise-linear functions. We then define uh = ΛΠh(vh) on the interval Ij , as follows:

(i) Compute u−
j+1/2 and u+

j−1/2 by using (7) and (8).

(ii) If u−
j+1/2 = v−

j+1/2 and u+
j−1/2 = v+

j−1/2 set uh|Ij = vh|Ij .

(iii) If not, take uh|Ij equal to ΛΠ1
h(v1

h).
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Since the above generalized slope limiter enforces the sign conditions, the forward Euler step is stable, that is, we have the
following result.

Proposition 1 (The TVBM property). Suppose that for j = 1, . . . , N

| δ |
(

| f̂(a, ·) |Lip

Δj+1
+

| f̂(·, b) |Lip

Δj

)
≤ 1/2.

Then, if uh = ΛΠhvh, for some vh, then

| wh |TV (0,1) ≤ |uh |TV (0,1).

3.6 The stability of the RKDG method

For this method, we have the following stability result.

Theorem 2 (TVBM-stability of the RKDG method). Let each time step Δtn satisfy the following CFL condition:

max
il

∣∣∣∣ βil

αil

∣∣∣∣ Δtn

(
| f̂(a, ·) |Lip

Δj+1
+

| f̂(·, b) |Lip

Δj

)
≤ 1/2. (9)

Then we have

|un
h |TV (0,1) ≤ |u0 |TV (0,1) ∀ n ∈ N.

3.7 Extensions

We must point out that with the above generalized slope limiter, there is loss of accuracy when the exact solution displays
critical points. It is possible, however, to modify the above limiter to completely overcome this difficulty. It is also possible to
extend the above results to the multi-dimensional case if we use the L∞-norm of the local means instead of their total variation.
Finally, let us point that, although there are no stability proofs for DG methods applied to non-linear hyperbolic problems, the
methods work extremely well.

To show this, we show some computational results from [39]. We display the contours of the density for the so-called double
Mach reflection problem. We see that both the strong shocks as well as the contacts are well approximated and that no spurious
oscillations appear when we go from linear to quadratic approximations. Moreover, the contact discontinuities seem to be better
approximated by using quadratic polynomials. In fact, as argued in [39], even though the use of higher degree polynomials
entails a more restrictive CFL condition, the enhanced quality of the approximation more than off-sets the increase of cost per
mesh point.

4 Concluding remarks

In this paper, we have displayed the main ingredients (discontinuous approximations, element-by-element Galerkin weak
formulations, and the numerical traces) and properties (local conservativity, high-order accuracy, and dissipation or stabilization
through the jumps) of the DG methods as applied to a wide variety of problem ranging from ODEs to non-linear hyperbolic
systems. We have also shown some of the particularities of these methods when applied to different problems: High accuracy
and parallelizability for hyperbolic problems, easy elimination of the auxiliary unknowns for elliptic problems, and robustness
with respect to the Reynolds numbers for the Oseen problem.

In [40], some of the challenges that the development of these methods present are described. Let us end this paper by
pointing out that a very important issue that has not been touched in this paper is the ease with which these methods can handle
hp-adaptive strategies [16–18, 43, 44, 47–50, 55–58, 74, 75] and can be coupled with already existing methods [2, 29, 69]. This
is already having an important impact on the development of hp-adaptive algorithms and will also facilitate the handling of
multi-physics models.
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