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CHAOTIC ATTRACTORS WITH THE SYMMETRY OF A 
TETRAHEDRON 

CLIFFORD A. REITER 

Department of Mathematics, Lafayette College, Easton PA 18042. U.S.A. 
e-mail: reiterc@lafcol.lafayette.edu 

Abstract- Functions that are equivariant with respect to the symmetries of a tetrahedron are determined. 
Linear combinations of these functions that give rise to chaotic attractors are used to create images in 3-
space of attractors with the symmetry of the tetrahedron. These a1 tractors are visually appealing because 
of the tension between the pattern forced by their symmetry and the randomness arising from their 
chaotic behavior. 

1. INTRODUCTION 

Chaotic attractors arising from the iterative solution 
to systems of differential equations have been the 
subject of study since Lorenz noticed strange 
behavior in a model related to weather prediction 
(1]. Even the iteration of simple functions such as the 
logistic function can be used to illustrate dynamics 
including chaotic behavior; see, for example Ref. [2]. 
More recently, attractors arising from the iteration 
of functions in the plane have been studied and 
equivariant functions have been used to create 
attractors that appear chaotic while having rota
tional and/or reflectional symmetries [3-5] . Examples 
of attractors with the symmetry of the cube in 3-
space and n-cube in n-space have also been created 
[6][7]; in addition, examples of attractors in 3-space 
with dueling planar symmetries have been studied [8f 
In this paper we create attractors in 3-space which 
empirically appear to be chaotic but which have the 
symmetry of the tetrahedron. 

Discussions of the symmetry groups of various 
geometric shapes can be found in a variety of places. 
In particular, Coxeter [9] describes the symmetry 
groups of the cube and tetrahedron. There are twelve 
rotations that preserve the four vertices of a regular 
tetrahedron. These include two third-turns that fix 
any one vertex of the tetrahedron yielding a total of 
eight third-turns. See Fig. 1. Also, there are three 
half-turns about the line connecting midpoints of 
opposing edges that switch two pairs of vertices. 
Lastly, the identity function also preserves the 
tetrahedron giving the twelve desired rotations. The 
results of composing these rotations can readily be 
observed geometrically. If reflections are also al
lowed, then the size of the symmetry group is twice 
as much: 24. While Fig. 1 shows the tetrahedron 
oriented with a vertex at a peak, it will be more 
convenient for us to consider the tetrahedron 
embedded in the cube by selecting alternate vertices 
of the cube. See Fig. 2. This representation makes it 

clear that the rotational symmetry group of the 
tetrahedron. is a subgroup of the rotational symmetry 
group of the cube. Notice the rotational symmetry 
group of the cube has quarter-turns (and some half
turns) that do not preserve the tetrahedron. 

The next section develops the mathematics we 
need in order to construct our chaotic attractors with 
the symmetry of the tetrahedron. In particular, 
functions equivariant with respect to those rotations 
are determined. The last section gives illustrations of 
such attractors selected for visual appeal and 
diversity and describes our computations. 

2. RNCTIONS WITH THE SYMMETRY OF A 
TETRAHEDRON 

Let T denote the tetrahedron with vertices (1, I , I), 
(1,-1,-1), (-1,1,-1) and (-1,-1,1). One can 
check by direct computation that all twelve of the 
rotational symmetries of the tetrahedron are gener
ated by composition from the two rotations 
rr(x,y , z)(--x , - y, z) and r(x,y, .:) = (z, x ,y) . Notice 
that r is a third-turn which fixes the first vertex of T. 
The convenience of our choice of T is given by the 
fact that we can describe this third turn on T without 
adding coordinates or introducing a factor of J3 
into the description of the rotations. The rotation () 
is a half-turn that interchanges two pairs of vertices 
of T. Moreover, all the reflectional and rotational 
symmetries of the tetrahedron are generated by () 
and r, along with the reflection v where 
v(x, y , .:) = (y , x , z) as can be verified by checking 
these generate the required 24 functions. 

In order to generate attractors with the symmetry 
of the tetrahedron, we need functions from R3 to R3 

that preserve those rotations and reflections in a 
certain manner. In particular, a function f is said to 
be equivar iant with respect to the group of symme
tries of T if for all a in that group of symmetries and 
X E R3,f(c((X)) = a(f(X)). If oc is a rotation andf is a
equivariant then the iterates of the rotation of a 
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Fig. I. A tetrahedron and axes of rotation for a third-turn 
and a half-turn. 

point are the same as the rotation of the iterates of 
the point. This means that the attractor associated 
with f tends to have the desired symmetries; however, 
it is possible that the attractor has only the symmetry 
given by an admissible subgroup of symmetries [10, 
II] or it may have the desired symmetry only in a 
trivial manner. Thus, even after identifying the 
appropriate equivariant functions one still needs to 
do some work to find examples that highlight the 
chaos and symmetry. 

It is straightforward to check that a function that 
is equivariant with respect to the generators of a 
group will be equivariant with respect to every 
element of the group. With that observation, we are 
ready to determine the polynomial functions equiv
ariant with respect to the symmetries of T. 

-- -- r-------------- -------

---- ~ - -- - -~ - - ------ - - - - -

' 

I • • 

k. .... - - - - - - - - - - - - -- - - - -

i - --;;.r 

Fig. 2. A regular tetrahedron embedded in a cube. 

Theorem. (i) The polynomial functions that are 
equivariant with respect to the rotational symmetries 
of the tetrahedron T are linear combinations of 
functions of the form 

T.. ( x 11 7 ) _ ( xiyj-): xk l/zi ,i- .k ..,i) 
ljk - , J , ~ - . ~ ' . • ' · " .v .;. 

where j and k have the same parity (even or odd) which 
is different from the parity of i. 

(ii) The polynomial functions that are equivariant 
with respect to the rotational and reflectional symme
tries c{ the tetrahedron T are linear combinations of 
functions of the form 

TiJk(x,y, :) + T;kj(X,y, z) 

where j and k have the same parity which is different 
from the parity of i . 

Proof. A general polynomial function, P, from R3 to 
R 3 has the form 

where N is the maximal degree of any coordinate 
that appears. P is equivariant with respect to the 
rotational symmetries of the tetrahedron if it is 
equivariant with respect to a and r. In particular, we 
must have r(P < x,y,z >) = P(r < x,y,z > ). Now 

r(P(x, y , z)) = / L CijkXi),Jzk , L aukxiyi:Jc , 
\o~ ij.k~N O ~ ij,k ,;;. N 

while 

" .. k) L.,; c iik z' xl y 
O ,;;. i,j.k ~N 

( 
""" ) k """ i . k = ~ akiJ:X. y' z , L....., bkiJX y' z , 

O~ij,k.;,N O.;,ij.k.;,N 

""" . k) L.,. CkijX
1y'Z 

O.;, ij,k .;,N 

where the second equality holds by renaming the 
indices. Equating like coefficients yields 

Thus any nonzero term in any coordinate will be 
associated with a term with the same coefficient in 



Table l. Details of J code 

T=:2: 'm.&*@ ( (*/@: ·"1)&( (-i.3) 1 ."O_n.))' 

f=: 3 T 3 2 4+5 T 1 0 2 
f": (i.4) 0.5 0.4 0.5 

0.5 
0.62875 
0.514 
0.70765 

0.4 
0.503 

1. 00391 
1. 38212 

0.5 
0.4024 
0.514 

2.69946 

each coordinate (but the exponents will be rear
ranged). Thus, each polynomial function equivariant 
with respect to r is a linear combination of functions 
of the form 

T .. ( x y ~) _ (xi),i " "y; ..J .,.jyk _,.;) ijk .. , , .... - z~, x- .... , __ ,_ .... 

Now P being 'equivariant with respect to rF means 
is the same as 

NB. define T 
NB. define f as above 
NB. compute some iterates 

Fig. 3. An attractor with tetrahedral shape and symmetry. 



Fig. 4. An attractor with tetrahedral symmetry and opposing ears. 
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""""' i+J i J k P(a(x,y,z)) = 6 (-!) a!;kX) z , 
O~ij,k~ N 

""""' ( l )i+jb ;v'· ~k 6 - !ikX . ~ , 
O~ iJ,k ~ N 

which implies that a nonzero term aiJkxiyi~ can 
occur only when the parity of i and j are different. 
Moreover, such a nonzero term corresponds to 
CJkixi / ::i in the third coordinate and a-equivariance 
implies j and k have the same parity. Thus, the only 
way for a function to be r and a-equivariant is if it is 
a linear combination of TiJk's where j and k have the 
same parity which is different from the parity of i. 

Now consider the condition implied by the third 
coordinate of the equality: v(P(x,y,z)) = P( v(x.y,.:) ). 
We see that 

= 

from which we see 

. . ..k 
c iJk .v' :..-!"" 

i . k 
Cj ikX /z 

c!ik = CJik and hence CJki = CkJi 

Now this means that any time there is a nonzero 
term in the third coordinate there are two such terms 
Gust one if j = k) and if we have equivariance with 
respect to the rotations then there are two corre
sponding terms in each other coordinate. In parti
cular, we see that a function equivariant with respect 
to a, r, and v must be a linear combination of 
functions of the form 

T iJk (x , y , z) + T ikJ(x, y, ::) 

Moreover, we can directly check that such func-



Fig. 5. A cube wrapping attractor that has only the symmetries of the tetrahedron. 

tions are equivariant with respect to (J, r, and v giving 
the desired result. 0 

For example, we see the function 

f(x,y,z) = JT324(x,y, z) + 5Ttoz (x, y,.:) 

is equivariant with respect to the rotational symme
tries of T. The function 

f( x, y , z) = ST324(x,y, z) + ST342(x,y, z) 

is equivariant with respect to the rotational and 
reflectional symmetries of T. Also, anytime i and j 
have different parities and we take j = k, it follows 
that 

T .. ·(x ,, '7) - lT .. ·(x )' -) + lT .. ·(x v ..,) •U , ' .r, - - 2 I}} • ' ' "- 2 l)J ' . , ~ 

is equivariant with respect to the rotational and 
reflectional symmetries of T. 

3. ILLUSTRATIONS AND COMPUTATIONS 

We noted above that linear combinations of the 
functions TiJk for the appropriate choice of indices 
gives functions that are equivariant with respect to 
the symmetry group of T. We created linear 
combinations of those functions in the programming 
language .I which is available from http://www.jsoft
ware.com/. The indices and coefficients were selected 
at random and the resulting function was tested to 
determine whether it created a nontrivial attractor 
(however, we always include the indices 1 0 0 since 
we want the fixed point at 0 0 0 to be repelling). If the 
attractor was nontrivial, then an image was created 
and observed. Images that appeared promising were 
mutated (:parameters varied along a search direction 
[8]) so that variations on the promising attractors 
could be observed. Finally, higher quality images 
were created for several functions using parallel 
computations of the attractors [12]. While the details 
of J code often cannot be read by the uninitiated, we 
offer. in Table l, three lines of the details so that 
readers interested in replicating our work have 



Fig. 6. An attractor with the symmetries of the tetrahedron and platelike components. 

sufficient information to implement our functions in 
J for comparison or experimentation. The first line 
constructs the function builder (conjunction) T; the 
second line creates a sample function f from the 
previous section and the third line shows how to 
create some iterates of that function. 

Figure 3 shows the result of 200 million iterations 
of the function defined by 

f = : 1. 66332962 T 1 0 0 + 0. 419143344 T 2 55 
+ 0. 542221824 T 3 0 0 + 1. 00 T 0 1 1 

Notice that the underlying shape of a tetrahedron 
is apparent, there are triple crossovers near the 
vertices and there are some hot spots nearby that are 
connected to each other in a complicated fashion . 
There are also hot spots near the edges that are 
interesting and this attractor also has reflectional 
symmetry. The color scheme shows pixels that are 
visited a small number of times in red; as the 
frequency of visits increases the colors run through 
the hues of the spectrum with magenta correspond
ing to the highest frequencies. Figure 4 also shows an 
attractor where a tetrahedron is also apparent. 
However, in this case notice that opposite each 
vertex there is a swirling ear/neck which lack 

reflectional symmetry and the attractor seems to fill 
space much more than the attractor in Fig. 3. The 
function used for Fig. 4 is given by the following. 

f = : _1. 972379872 T 1 0 0 + _1. 788455548 T 0 3 1 
+ 0. 802610368 T 0 11 + 1.847505316 T 3 0 0 

Figure 5 shows the attractor produced by the 
function 

f = : 1.672451176 T 10 0 + 1.550560932 T 14 4 
+ __ 0.340028192 T 14 0 + _ 0.416261108 T 3 0 0 

which appears to roughly form three girdles about a 
cube. However, notice that the rotations around the 
central axes perpendicular to any one of the girdles 
require a half-turn to preserve the attractor. Quarter
turns cause the oscillations to be misoriented. The 
point being that although there is a cubical under
lying form, the symmetries of the attractor are the 
symmetries of the tetrahedron and not the symme
tries of the cube. 

Figure 6 shows the attractor produced by the 
function 

f = : _ 1. 801862888 T 1 0 0 + 0. 0904 73 596 T 50 0 
+ 0. 5 8 9775 7 48 T 3 2 2 + 0. 36 102616 T 1 2 2 



Fig. 7. An attractor with the symmetries of the tetrahedron and wings. 

This figure is qualitatively quite different from the 
others since it seems to be constructed as a composite 
of many plates. This attractor also has reflectional 
symmetry. Figure 7 shows the attractor produced by 
the function 

f = : _1.131395052 T 10 0 + 0.643411644 T 2 3 1 
+ 1. 0 69549392 T 0 1 5 + 1.166645204 T 5 2 0 

Here the vertices of the tetrahedron lie along an arc 
connecting two points and the connections are 
reminiscent of wings. 

While it is difficult to prove results about the 
chaotic behavior of attractors, we can investigate this 
empirically via Ljapunov exponents [2, 13]. Table 2 
shows the Ljapunov exponents for the attractors 
shown in our images. Each of these has at least one 
positive Ljapunov exponent: this is associated with 
chaotic behavior. It is interesting to note that Figs 4 
and (i have two positive Ljapunov exponents and 
these appear to be the heaviest attractors. Of course, 
these computations are not definitive. For example, 
the function 

f =: 

0 .419143344T2 55 

+ 0. 99724 224 8 T 0 1 1 

_1 . 66 332962 T 1 0 0 + 

+ 0 .54222 182 4 T 3 0 0 

is closely related to the function used to produce Fig. 
3; however, our experience with this function shows 
the iterates of points converging to a 126-cycle after 
tens of thousands of iterations. One cannot exclude the 
possibility that our examples do not likewise become 
trivial after some very large number of iterations. 

Table 2. Lj apunov exponents for the symmetric attractors 

I. 

Fig. 1 2 3 

3 0.111 - 0 . 030 - 0.271 
4 0 .447 0 . 256 -0.072 
5 0.228 - 0 . 297 - 1.315 
6 0.556 0 . 555 - 0.003 
7 0.238 0.114 - 0. 227 



We have seen that by choosing a careful repre
sentation of a regular tetrahedron we could describe 
generators for the rotational and reflectional sym
metries in terms of sign changes and coordinate 
rearrangements. This allowed us to describe the 
functions equivariant with respect these symmetries 
as linear combinations of some simple generating 
functions. Random linear combinations of these 
functions could then be investigated yielding exam
ples of chaotic attractors with the desired symme
tries. Often the tetrahedral symmetry leads to 
attractors in the form of a tetrahedron but the 
attractor can be in the shape of a cube with some 
oriented features that destroy the cubical symmetry 
and even more bizarre shapes can appear. 
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