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1 Institut de Recherche pour le Développement (IRD), Mère et Enfant Face aux Infections Tropicales, Cotonou, Benin, 2 Institut de Recherche pour le Développement (IRD),
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Abstract

Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our
understanding of host-parasite interactions, knowing the environmental risk of transmission—even at a very local scale—is
essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic
and environmental factors. As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori
Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess
the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded
throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were
tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density
(related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be
largely explained by factors associated with the house’s immediate surroundings, namely soil type, vegetation index and
the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out
method, to predict the spatiotemporal variability of malaria transmission in the nine villages. This study points up the
importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of
individual children, based on environmental and behavioral characteristics.
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Introduction

Malaria remains endemic in sub-Saharan Africa although dramatic

declines in morbidity have been reported in the last five years across a

range of settings [1,2,3]. This is associated with the distribution of

long-lasting insecticide-treated mosquito nets and a switch to first line

artemisinin-based combination therapy (ACT). Nonetheless, the

disease’s burden is still high in Africa where it is a leading cause of

mortality, especially in children of under five years of age [4]: new

tools—a vaccine, effective drugs, better insecticides—are still needed

together with strategies for their use and evaluation. In addition,

improving our understanding of host-parasite interactions is a priority.

Accurately assessing the local risk of transmission is fundamental

to the development of a malaria control program. In Africa,

transmission levels vary enormously and transmission may be

either seasonal or perennial [5]. Differences exist not just between

different regions but also at the very local level [6,7,8]. Key

determinants of local transmission intensity [9,10] include vector

profile, ecology and seasonality [11,12], all of which will affect the

efficacy of control operations. The results of recent studies in two

different countries (Ghana and Gabon) point up the importance of

high-resolution analysis of local variations when designing and

monitoring a malaria control operation [12,13].

Recent findings showed that small-scale differences within an

area may have important consequences when it comes to studying

individual responses to a risk of infection or to an intervention, e.g.

responses to vaccination may be quite different in children who

have not been exposed to the antigen to the same extent [14,15].

Therefore, localized variations ought to be taken into account

when considering the risk of infection in a population and the
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determinants of individual variability (i.e. behavior, physiology

and genetics).

This applies to the consequences of placenta-associated malaria

(PAM) on the development of specific immunity to P. falciparum

and the lag before appearance of the first infection in newborns.

Four studies showed that children born to mothers with PAM have

a higher risk of infection during their first months of life, pointing

to the phenomenon of immune tolerance [16,17,18,19]. However,

these studies failed to take spatiotemporal variations into account

with no entomological or environmental data input into the

analyses [20,21]. Thus, it cannot be ruled out that differences in

transmission risk may have affected outcomes, i.e. no conclusion

can be drawn about immune tolerance from cohort studies unless

information about spatiotemporal variations in malaria transmis-

sion is included in the analysis.

This article describes- through the, statistical analysis of the

entomological and environmental data of a cohort study

conducted in Southern Benin- a new approach to predict the risk

of malaria transmission in cohort studies.

Methods

Ethics
A written informed consent was obtained from all participants

involved in the study. The study protocol was approved by the

Ethics Committee of the University of Abomey-Calavi (Faculté des

Sciences de la Santé; FSS) in Benin and the Consultative Committee

of Ethics of Institute of Development Research (IRD).

Study area
The study was conducted in the district of Tori-Bossito

(Republic of Benin), between July 2007 and July 2009. Tori

Bossito is on the coastal plain of Southern Benin, 40 kilometers

north-east of Cotonou. This area has a subtropical climate and

during the study the rainy season lasted from May to October.

Average monthly temperatures varied between 27uC and 31uC.

The original equatorial forest has been cleared and the vegetation

is characterized by bushes with sparse trees, a few oil palm

plantations and farms. The study area contained nine villages

(Avamé centre, Gbédjougo, Houngo, Anavié, Dohinoko, Gbétaga,

Tori Cada Centre, Zébè and Zoungoudo). Tori Bossito was

recently classified as mesoendemic with a clinical malaria

incidence of about 1.5 episodes per child per year [22].

Pyrethroid-resistant malaria vectors are present [8].

Mosquito collection and identification
Entomological surveys based on human landing catches (HLC)

were performed in the nine villages every six weeks for two years

(July 2007 to July 2009). Mosquitoes were collected at four catch

houses in each village over three successive nights (four indoors and

four outdoors, i.e. a total of 216 nights every six weeks in the nine

villages). Five catch sites had to be changed in the course of the study

(2 in Gbedjougo, 1 in Avamè, 1 in Cada, 1 in Dohinoko) and a total

of 19 data collections were performed in the field between July 2007

and July 2009. In total, data from 41 catch sites are available.

Each collector caught all mosquitoes landing on the lower legs

and feet between 10 pm and 6 am. All mosquitoes were held in

bags labeled with the time of collection. The following morning,

mosquitoes were identified on the basis of morphological criteria

[23,24]. All An. gambiae complex and An. funestus mosquitoes were

stored in individual tubes with silica gel and preserved at 220uC.

P. falciparum infection rates were then determined on the head and

thorax of individual anopheline specimens by CSP-ELISA [25].

Environmental and behavioral data
Rainfall was recorded twice a day with a pluviometer in each

village. In and around each catch site, the following information

was systematically collected: (1) type of soil (dry lateritic or humid

hydromorphic)—assessed using a soil map of the area (map IGN

Bénin at 1/200 000e, sheets NB-31-XIV and NB-31-XV, 1968)

that was georeferenced and input into a GIS; (2) presence of areas

where building constructions are ongoing with tools or holes

representing potential breeding habitats for anopheles; (3)

presence of abandoned objects (or ustensils) susceptible to be used

as oviposition sites for female mosquitoes; (4) a watercourse

nearby; (5) number of windows and doors; (6) type of roof (straw or

metal); (7) number of inhabitants; (8) ownership of a bed-net or (9)

insect repellent; and (10) normalized difference vegetation index

(NDVI) which was estimated for 100 meters around the catch site

with a SPOT 5 High Resolution (10 m colors) satellite image

(Image Spot5, CNES, 2003, distribution SpotImage S.A) with

assessment of the chlorophyll density of each pixel of the image.

Due to logistical problems, rainfall measurements are only

available after the second entomological survey. Consequently, we

excluded the first and second surveys (performed in July and

August 2007 respectively) from the statistical analyses. However,

the results of all 19 entomological catches were included in the

descriptive part of the results.

Statistical analysis
The statistical analysis was conducted in two phases.

First an explanatory regression model was constructed to determine

the correlation between Anopheles density and the above-mentioned

environmental factors. On the basis of these results, a predictive model

was constructed to predict spatiotemporal malaria transmission in

houses for which environmental but not entomological data were

available. The error distribution of this model was compared with that

of a simple ‘‘pragmatic’’ model based on real entomological data.

Variables. The dependent variable was the number of

Anopheles collected in a house over the three nights of each

catch, and the explanatory variables were the environmental

factors, i.e. the mean rainfall between two catches (classified

according to quartile), the number of rainy days in the ten days

before the catch (3 classes [0–1], [2–4], .4 days), the season

during which the catch was carried out (4 classes: end of the dry

season—February to April; beginning of the rainy season—May to

July; end of the rainy season—August to October; beginning of the

dry season—November to January), the type of soil 100 meters

around the house (dry or humid), the presence of constructions

within 100 meters of the house (yes/no), the presence of

abandoned tools within 100 meters of the house (yes/no), the

presence of a watercourse within 500 meters of the house (yes/no),

NDVI 100 meters around the house (classified according to

quartile), the type of roof (straw or sheet metal), the number of

windows (classified according to quartile), the ownership of bed

nets (yes/no), the use of insect repellent (yes/no) and the number

of inhabitants in the house (classified according to quartile).

Explanatory model. Since the dependent variable was a

count, in order to take into account the hierarchical structure of the

data (repeated catches in the same house, four sites per village) with

correlation possible between the entomological measurements, a

Poisson mixed model was constructed with three random intercepts

at the village, site and catch levels, i.e. for the kth catch in the jth site

in the ith village:

ln E(Yijk=ai,bij ,cijk)
� �

~b0z
Xp

l~1

blXijklzaizbijzcijk

Predicting Malaria Transmission in Cohort Studies

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e28812



where Y is the number of collected Anopheles, X is a p-vector of

environmental variables, b is a (p+1)-vector of the model’s

parameters (including the fixed intercept b0), ai is the random

intercept at the village level, bij is the random intercept at the site

level and cijk is the random intercept at the catch level. It can be

shown that in this model

Var(Yijk=ai,bij)~E(Yijk=ai,bij)z E(Yijk=ai,bij)
� �2

exp (s2
c){1

� �

Then Var(Yijk=ai,bij)§E(Yijk=ai,bij), showing that adding the

random intercept at the catch level is a way to preclude residual

over-dispersion of the model with only two random intercepts at the

village and site levels.

All environmental variables were first introduced in the model,

and a backward procedure was applied to select only those that

remained significant in the final model.

To achieve the most parsimonious model, adjacent classes of a

categorical variable were grouped together if the corresponding

regression estimates were close.

Predictive model. A regression model was then constructed

to predict Anopheles count when only environmental data are

available.

The model was selected using a leave-one-out method (e.g. see

[26]). For a given set of covariates X, the following steps were

repeated for all catch sites j from 1 to 41:

i. A regression model of the number of Anopheles collected versus

environmental variables was performed using the observa-

tions from all sites except the ith (i.e. by excluding the 17 data

collections of the ith site)

ii. This model was used to predict a number of Anopheles

collected Pjk (k in 1… 17) in the 17 data collections at the ith

site using the corresponding known environmental covariates

for the ith site and the coefficients of the model from the

above step

iii. The prediction errors Ejk = |Yjk2Pjk|/(Yjk+1) were comput-

ed

Once the algorithm had been applied for the 41 sites, the median

of the 612 prediction errors (all catches at all sites) was determined,

and the final set of covariates was the one with the lowest median

prediction error.

After the selection of variables, interaction terms were

introduced and conserved in the final model if they led to a lower

median prediction error.

In this prediction model, correlation between the observations

was taken into account by entering a ‘‘village’’ variable in the

model. The general equation of this model was then:

ln E(Yijk)
� �

~b0z
Xp

l~1

blXijkl

where Y is the number of collected Anopheles, and X is a vector of

environmental variables (including the ‘‘village’’ variable).

In order to evaluate our model’s ability to estimate the

spatiotemporal pattern of malaria transmission, we compared

the model’s predictions to the observed number of Anopheles

collected in the field.

We also used another predictive ‘‘pragmatic’’ model in which

the predicted number of collected Anopheles for the kth catch in the

jth site in the ith village was estimated by the mean number of

Anopheles collected at the other three sites in the same village during

the same catch, e.g. during the first survey in Gbetaga, 4, 7, 7 and

26 Anopheles were caught in the four catch sites respectively. The

numbers of collected Anopheles predicted by this pragmatic model

were then (7+7+26)/3, (4+7+26)/3, (4+7+26)/3 and (4+7+7)/3 in

the four houses respectively. Then, we compared the distribution

errors obtained from the two models (predictive and pragmatic)

according to the predicted Anopheles count.

All statistical analyses were performed by using STATA

software version 10 (Stata Corporation, College Station, Texas,

United States).

Results

During the 19 surveys between July 2007 and July 2009, a total

of 3,074 malaria vectors were caught (93.3% An. gambiae s.l. and

6.7% An. funestus). The median number of vectors caught in the

684 collections (19 catches at 4 catch sites in 9 villages), was 1

(interquartile range [0–4], max = 87). Evolution in vector density

as defined by the mean number of bites per human per night (m.a)

according to time is shown in Figure 1. These findings point to

time- and space-dependent fluctuations in vector density. Varia-

tion in m.a. was dependent on season and positively associated

with rainfall. Spatial differences in m.a. were observed between the

9 villages, particularly during each rainy season (from June to

November) even at a village scale, e.g. there was a strong

difference in m.a. changes between the 2 villages of Houngo and

Dohinoko which are only two kilometers apart (highlighted

curves), the first showing a low vector density throughout the

study and the second one showing strong seasonal variation with a

substantial increase during the rainy season. Furthermore, in all

villages (except Houngo) we observed marked m.a. differences

between catch sites, reflecting spatial variations in vector density at

the site level (Figure 2).

As mentioned above, statistical analyses were conducted for just

17 surveys in which a total of 2,292 malaria vectors were collected.

Table 1 shows the final multivariate explanatory model. This

model contained random intercepts at the village, site and catch

levels, each random intercept improving the likelihood of the data.

Both the mean rainfall between 2 surveys and the number of rainy

days in the 10 days before the survey correlated positively with

Anopheles density, as expected. Independently, season also corre-

lated with Anopheles density, with density higher during rains.

Several site characteristics correlated with higher vector density:

proximity to a watercourse, a dry soil, and a higher NDVI

(vegetation index). All these results point to local spatiotemporal

variations in malaria transmission. Figure 3 shows a very good

adjustment between the number of Anopheles collected at each

survey and the explanatory model’s predictions.

Therefore, when entomological data are not available, a

predictive model based on environmental data could be useful to

estimate the spatiotemporal entomological risk in a house.

The best predictive model contained the following covariates:

season, mean rainfall between 2 surveys, number of rainy days in

the 10 days before the survey, use of insect repellent, NDVI, and

an interaction term between season and NDVI. Figure 4 shows

comparisons between the predictions generated with the regres-

sion model and the real number of Anopheles collected at each of

the 41 sites. The model fits with the actual spatiotemporal

transmission pattern for most but not all sites. Figure 5 shows a

comparison between the error distributions of the regression and

the pragmatic models, according to the real number of Anopheles

collected. The error distributions and hence the predictive powers

of both models are highly comparable.

The number of infected Anopheles was low throughout the study:

the average Entomological Inoculation Rate (EIR) was 0.046

Predicting Malaria Transmission in Cohort Studies
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infected bite/human/night. When EIR was used as dependent

variable instead of m.a., the model failed to converge when too

many covariates were introduced together. However EIR and m.a.

were highly correlated (see figure 6, r = 0.95). Moreover, when

EIR was used as dependent variable with climatic variables—

mean rainfall between two collections, number of rainy days

during the 10 days before collection, and season—as the only

independent covariates, the same pattern was obtained (data not

shown). For these reasons we used the total number of Anopheles

caught on humans (m.a.) for the statistical analyses.

Discussion

This study set out to investigate the relationship between the

distribution of malaria vectors in southern Benin and local

environmental and climatic factors (at the level of both village

and house), and to propose a predictive model for the spatio-

temporal risk of exposure to Anopheles mosquitoes.

We observed substantial variations in malaria vector density at

the level of both village and house, even between houses which are

close together (separated by just a few dozen meters). We found

that this variability could be explained not only by conventional

climatic factors (rainfall, season) but also certain environmental

factors, i.e. a watercourse nearby, and vegetation index and soil

type in the immediate surroundings (see also [27]).

The density of malaria vectors and the intensity of transmission

are relatively low in this area, confirming previous findings [8,22].

We showed that EIR and m.a. correlate strongly and, when EIR is

used as the dependent variable in our models, the pattern of the

results is the same. However, problems of stability and

convergence were observed with EIR so m.a. was used for the

statistical modeling. Nevertheless, there is no reason why an

infected mosquito’s behavior—which depends on ecological and

environmental conditions—would be any different [28], [29].

Based on this finding, we believe that our model based on Anopheles

density can accurately predict malaria transmission.

For statistical analyses, some continuous variables (e.g. NVDI,

rainfall levels…) were recoded as categorical variables, leading to a

loss of information. This loss of information is reduced by using

more classes and, furthermore, this method presents a double

advantage: the results are easy to interpret between the different

classes; and there is no need to assume a linear relationship

Figure 2. Mean m.a. in the 9 villages. Each bar represents the mean m.a. throughout study in one house.
doi:10.1371/journal.pone.0028812.g002

Figure 1. Number of Anopheles gambiae s.l. collected per man per day (ma) in the 9 villages for each of the 19 surveys.
doi:10.1371/journal.pone.0028812.g001

Predicting Malaria Transmission in Cohort Studies
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between the dependent variable and the covariate. Three random

intercepts were introduced in our explanatory model, at the

village, site, and catch levels. Each random intercept increased

significantly the likelihood of the data (with the highest increase

afforded at the catch level). This is consistent with the fact that

they correctly take into account the hierarchical structure of the

data, as well as unobserved variables which could explain the

vector’s variability at each of the three levels. The quality of the

model’s adjustment to the data was spectacularly improved by the

random intercept at the catch level. This makes it possible to

introduce this intercept to deal with over-dispersed data—as

recommended by Rabe-Heskett and al. [30]—and confirms the

reliability of the model.

The association between vector density and environmental or

climatic factors has been widely studied [12,13,31,32,33,34] with

rainfall and season consistently identified as significant factors. We

Figure 3. Relationship between observed and predicted numbers of Anopheles gambiae collected (explanatory model). The straight
line is the bisector.
doi:10.1371/journal.pone.0028812.g003

Table 1. Environmental factors associated with the density of malaria vectors at Tori Bossito, Benin (explanatory Poisson mixed
model).

Fixed effects Estimation Standard error p-value

Watercourse No . .

Yes 1.86 0.63 0.003

Type of soil Humid .

Dry 2.27 0.72 0.002

NDVI Low .

High 0.46 0.23 0.05

Season End of dry season . . ,1023

Beginning of rainy season 1.63 0.18

End of rainy season 0.44 0.17

Beginning of dry season 20.49 0.19

Mean rainfall Low . . ,1023

High 0.99 0.23

Number of raining days before collection(1)

[0–1] . . ,1023

[2–4] 0.34 0.17

.4 0.70 0.20

Random intercepts (standard error)

Village level 0.71 0.19

House level 0.21 0.11

collection site level 1.04 0.06

(1)10 days period before the mosquito collection.
doi:10.1371/journal.pone.0028812.t001

Predicting Malaria Transmission in Cohort Studies

PLoS ONE | www.plosone.org 5 January 2012 | Volume 7 | Issue 1 | e28812



have identified the number of rainy days before mosquito collection

as an additional factor: this could be explained by an increase in the

number of temporary water habitats (puddles) favorable to the

development of the mosquito larvae. There was no correlation

between m.a. and the presence of a net or repellent use in the house,

even when the indoor biting rate was considered. This could be

explained by the fact that we used a man-landing capture technique

without a bed net in a limited number of houses. We also showed

substantial variations in vector density, not only between different

villages but also in the same village, between houses within a few

dozen meters of one another. Factors that could explain this include

factors in the houses’ immediate surroundings: the presence of a

watercourse nearby, a higher vegetation index, and dry soil were all

associated with higher vector density. The positive correlation with

dry rather than hydromorphic soil could be explained by the fact

that the latter is concentrated around the main river in the area, and

is overrun by dense aquatic vegetation which prevents Anopheles

gambiae breeding.

Other studies that have investigated the relationship between

domestic features and malaria transmission [35,36] have shown

that roof and ceiling type can also affect malaria transmission. All

these observations point up the importance of taking local

characteristics—of the village, the house and the house’s

immediate surroundings—into account when dealing with the

variability of malaria transmission.

These findings may also have important consequences when

focusing on mechanisms to explain differences in P. falciparum

infection or the incidence of malaria attacks between groups of

individuals when both ‘‘environmental’’ and ‘‘biological’’ deter-

minants are involved. This is particularly relevant for children

born to a mother with PAM who tend to develop malaria sooner

[16,17,18,19]. The hypothesis of immune tolerance has been put

forward to explain this, i.e. fetal exposure to malaria modulates

neonatal immunity in endemic areas where infection during

pregnancy is common [37,38]. However, even though immune

tolerance is due to infection status of the mother during gestation,

its consequences in term of newborn’s susceptibility to infection

manifests itself through the fact that offspring of mothers with

placental malaria at delivery experience their first P. falciparum

parasitemia at a younger age. However, it also seems self-evident

that babies more strongly exposed to Plasmodium would be at

greater risk of contracting malaria rapidly after birth. In

consequence, to demonstrate immune tolerance and evaluate its

role in determining susceptibility to early malaria infection, local

transmission variations have to be taken into account. This

parameter can be addressed by a statistical method that takes into

account both spatial and temporal variability but, in the studies

cited above, the only exposure-related variable introduced into the

Cox model was ‘‘area of residence’’. Such a variable—which is

time-independent and has the same value for all children living in

Figure 4. (Predictive model) and observed numbers of Anopheles in the 41 houses. Each graph shows the observed (solid line) and the
predicted (dashed line) number of Anopheles during each catch in a house.
doi:10.1371/journal.pone.0028812.g004
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the same village—provides little information about the differential

exposure of children in a cohort. After initial demonstration of

such local spatiotemporal variability, a novel approach was

formulated to predict malaria transmission in houses within a

limited area with known ecological and environmental character-

istics. We have demonstrated that a regression model including

spatial and time-dependent variables at the village and the house

levels, yields a spatiotemporal prediction of malaria transmission

comparable to that obtained on the basis of entomological data.

This approach constitutes a substantial improvement and the

model will be applied to all children in the cohort over the relevant

period. The predictions will be used as a time-dependent covariate

in analysis of the interval before the first malaria infection (Cox

model) to investigate the role of immune tolerance in this

parameter.

Finally, this approach can be used to estimate spatiotem-

poral variations in malaria transmission in cohort studies,

thereby delineating and elucidating the respective roles of

Figure 5. Error distributions of the pragmatic and predictive models according to the number of observed Anopheles. In each group
(number of Anopheles), the left box corresponds to the predictive regression model and the right box to the pragmatic regression model.
doi:10.1371/journal.pone.0028812.g005

Figure 6. Relationship between mean Entomological Inoculation Rates (EIR) and mean m.a. Coordinates are: x, the mean m.a. of all
houses during a catch and y, the mean EIR for all houses during a catch.
doi:10.1371/journal.pone.0028812.g006
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environment, behavior and physiology in determining suscep-

tibility to infection.
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