
HAL Id: hal-01352297
https://hal.science/hal-01352297v1

Submitted on 10 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Using the Formal Framework for P Systems
Sergey Verlan

To cite this version:
Sergey Verlan. Using the Formal Framework for P Systems. CMC 1414th International Conference
Membrane Computing „ Aug 2013, Chisinau, Moldova. pp.56-79. �hal-01352297�

https://hal.science/hal-01352297v1
https://hal.archives-ouvertes.fr

Using the Formal Framework for P Systems

Sergey Verlan

1 Laboratoire d’Algorithmique, Complexité et Logique,
Université Paris Est – Créteil Val de Marne,
61, av. gén. de Gaulle, 94010 Créteil, France

2 Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova,

Academiei 5, Chisinau, MD-2028, Moldova
email: verlan@u-pec.fr

Abstract. In this article we focus on the model called the formal frame-
work for P systems. This model provides a descriptional language power-
ful enough to represent in a simple way, via a strong bisimulation, most
of the variants of P systems. The article presents a series of concrete
examples of the application of the formal framework in order to under-
stand, extend, compare and explain different models of P systems leading
to new research ideas and open problems.

1 Introduction

The model called the formal framework for P systems (FF) was introduced in [4]
and later developed in [3]. It aims to provide a concrete variant of P systems
that can act as descriptional language powerful enough to represent in a simple
way most of the variants of P systems with the goal of better understanding and
comparison of different models of P systems.

The formal framework permits to simulate most of variants of P systems.
Moreover, in most cases it is a strong bisimulation, i.e. one step in the original
system is done by one step in the formal framework. This becomes possible
because the form of configurations and rules is close to multiset rewriting and
generalizes most common configuration changes in P systems. Hence, most of
existing models of P systems could be obtained by a restriction (eventually
using a simple encoding) of FF with respect to different parameters. The strong
bisimulation property also permits a discussion about the semantics of the target
P system, although this is not the primary goal of FF.

Using FF mainly benefits for the following cases (a) understand the function-
ing of some variant of P systems; (b) compare variants of P systems; (c) explain
points of the definition and semantics that can have different interpretations; (d)
extend variants of P systems with new features.

The aim of this paper is not to present the framework itself, but rather
several examples of its application for the description and the comparison of
different variants of P systems with static structure, with probabilities and with
dynamic structure. We also show how these investigations give a uniform view
on P systems and lead to new research ideas and open problems.

2 A short presentation of the formal framework

We assume that the reader is familiar with basic notions on formal languages
and on P systems and we refer to [9] and [8] for missing details. We will use
a string notation to denote multisets and we denote the set of finite multisets
over an alphabet V as V ◦. For a multiset M we denote by |M | its size and by
card(M) its cardinal (i.e. the number of different occurring symbols in M). By
|M |x we denote the number of occurrences of symbol x in M .

Before giving the definition of the formal framework we would like to make
some remarks about the definition of different variants of P systems. Informally
speaking, a definition of a P system consists of:

– a description of the initial structure (indicating the graph relation between
the compartments and any additional information like labels, charges, etc),

– a list of the initial multisets of objects present in each compartment at the
beginning of the computation,

– a set of rules, acting over objects and / or over the structure.

The configuration of a P system is generally representing the contents of each
compartment and the current structure (if it can be modified).

A computation of a P system can be defined as a sequence of transitions be-
tween configurations ending in some halting configuration. To give a more precise
description of the semantics we must define the following 4 notions (functions):

– Applicable(Π, C, δ) – the set of multisets of rules of Π applicable to the
configuration C, according to the derivation mode δ.

– Apply(Π, C, R) – the configuration obtained by the (parallel) application of
the multiset of rules R to the configuration C.

– Halt(Π, C, δ) – a predicate that yields true if C is a halting configuration of
the system Π evolving in the derivation mode δ.

– Result(Π, C) – a function giving the result of the computation of the P
system Π, when the halting configuration C has been reached. Generally
this is an integer function, however it is possible to generalize it, allowing,
for example, Boolean or vector functions.

The transition of a P system Π according to the derivation mode δ (gener-
ally this is the maximally parallel mode) is defined as follows: we pass from a
configuration C to C′ (written as C ⇒ C′) iff

C′ = Apply(Π, C, R), for some R ∈ Applicable(Π, C, δ)

In general, the result of the computation of a P system is interpreted as the
union of the results of all possible computations (in the same way as the lan-
guage generated by a grammar is defined in formal language theory, gathering
all possible derivations). Note that this is a theoretical (non-constructive) defini-
tion, since there may exist an infinite number of halting configurations reachable
from a single initial configuration C0.

The precise definition of the four functions above depends on the selected
model of P systems. The goal of works [3, 4, 12] is to provide a concrete class of
P systems (hence with concrete definitions of these functions), called the formal
framework, such that most of existing models of P systems could be obtained
by a strong bisimulation of a restriction (eventually using a simple encoding) of
this formal framework with respect to different parameters.

In the remainder of this section we give a summarized version of the definition
of a network of cells, the class containing all networks of cells being the formal
framework. We base the definitions on those given in [4] and we will call the
obtained model FF1. This version takes into account only P systems where the
membrane structure does not evolve in time (is static). In paper [3], an extension
of the formal framework to the case of P systems with dynamically evolving
structure is proposed (we will call this version of the definition FF2). However,
in order to have a more simple presentation, in this paper we will only consider
the FF1 variant, except for Section 6 which is devoted to the dynamical extension
of FF and therefore uses the FF2. We remark that in the case of static structures
FF1 and FF2 variants coincide, although the notation is slightly different.

Definition 1 ([4]). A network of cells of degree n ≥ 1 is a construct

Π = (n, V, w, Inf,R)

where

1. n is the number of cells;
2. V a finite alphabet;
3. w = (w1, . . . , wn) where wi ∈ V ◦, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;
4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set

of symbols occurring infinitely often in cell i (in most of the cases, only
one cell, called the environment, will contain symbols occurring with infinite
multiplicity);

5. R is a finite set of rules of the form

(X → Y ;P,Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi, yi ∈ V ◦, 1 ≤ i ≤ n, are vectors
of multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi, qi, 1 ≤ i ≤ n
are finite sets of multisets over V . We will also use the notation

(x1, 1) . . . (xn, n) → (y1, 1) . . . (yn, n) ; [(p1, 1) . . . (pn, n)]; [(q1, 1) . . . (qn, n)]

for a rule (X → Y ;P,Q); moreover, if some pi or qi is an empty set or some
xi or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from
the specification of the rule.

The semantics of the above rule is to rewrite objects xi from cells i into
objects yj in cells j, 1 ≤ i, j ≤ n, if every cell k, 1 ≤ k ≤ n, contains all

multisets from pk and does not contain any multiset from qk. In other words,
the first part of the rule specifies the rewriting of symbols, the second part of
the rule specifies permitting conditions and the third part of the rule specifies
the forbidding conditions.

For a rule r of the form above, the set

{i | xi ̸= λ or yi ̸= λ or pi ̸= ∅ or qi ̸= ∅}

induces a (hypergraph) relation between the interacting cells. However, this re-
lation need not give rise to a structure relation like a tree as in P systems or a
graph as in tissue P systems.

A configuration C of Π is an n-tuple of multisets over V (u1, . . . , un) satis-
fying ui ∩ Infi = ∅, 1 ≤ i ≤ n.

Example 1. Consider the network of cells C having 5 cells and the configuration
C = (ba, c, a, λ, λ). Suppose that C has the following rule:
r = (1, a)(2, c) → (1, c)(4, a)(5, b); [(1, b)]; [(3, d)].
Then C =⇒r C ′, where C ′ = (bc, λ, a, a, b).

The semantics of network of cells is defined as follows (see [4] for more details):

Applicable(Π,C, δ): An algorithm is used to compute Applicable(Π,C, asyn),
the set of multisets of all possible (parallel) applications of rules, which cor-
respond to the set of multisets applicable in the asynchronous mode (asyn).
Then this set is (set-)restricted according to δ. As well known examples of δ
we can cite max, seq, min, mink.

Apply(Π,C,R): The application is performed using an algorithm. In the dy-
namical case (in FF2 definition) there are several variants.

Halt(Π,C, δ): This function is not specified in the definition and is defined
separately. Several examples include total halting (no rule is applicable),
signal halting (the configuration has some properties) and adult halting (no
changes in the configuration occur).

Result(Π,C): This function is not specified in the definition and is defined
separately. Generally it is the contents of some cell.

2.1 Comparison with multiset rewriting

It is known that any variant of static P systems can be seen as multiset rewrit-
ing: an object x in membrane i corresponds to a symbol xi and each rule mov-
ing or rewriting x in membrane i, can be rewritten as corresponding multiset
rewriting involving xi. For example an antiport P system with 3 membranes ar-
ranged in the structure [1[2]2[3]3]1, the initial configuration (bc, λ, a) and a rule
(a, out; b, in) in membrane 3 can be rewritten as the following multiset rewriting:
starting multiset b1c1a3 and a rule a3b1 → a1b3.

However, considering a P system like a multiset rewriting loses the important
structural information. For example, try to figure out what happens in the system
defined as follows.

Example 2. Consider the multiset rewriting system with the starting multiset
a1b2c3 and the rules a1b2 → a2b1, a1c2 → a2c1, a2c3 → a3c2, a2b3 → a3b2,
a3c1 → a1c3, a3b1 → a1b3.

The formal framework groups the information in cells/membranes, does a
group rewriting and represents the structure of the P system separately. So it
is extremely close to the multiset rewriting, it just reorders objects and rules.
This permits to keep the information about the static structure: rules induce a
hypergraph. The communication graph can be deduced from this hypergraph.
A similar approach is used in Petri nets, for example a multiset rewriting rule
aabc → cde is represented as shown in Figure 1.

Fig. 1. A Petri net representation of the rule aabc → cde.

Example 3. Consider the system from Example 2. By rewriting the rules in terms
of network of cells we obtain the following rules:

(1, a)(2, b) → (2, a)(1, b) (1, a)(2, c) → (2, a)(1, c)

(2, a)(3, c) → (3, a)(2, c) (2, a)(3, b) → (3, a)(2, b)

(3, a)(1, c) → (1, a)(3, c) (3, a)(1, b) → (1, a)(3, b)

Consider the hyperedge induced by the first rule: it goes from the cells 1
and 2 to cells 1 and 2. So we can make a supposition that we could have a
communication graph that would contain an edge 1 − 2. By looking at what
the rule is doing we remark that it exchanges symbols a and b located in cells
1 and 2 respectively. Hence it corresponds to an antiport rule a/b on the edge
1− 2. By repeating this process for all above rules we obtain the antiport tissue
P system shown in Figure 2. Hence it is clear that the system is moving symbol
a in clockwise direction and symbols b and c in anticlockwise direction.

3 Implementing different features of P systems

In this section we discuss the implementation of some features of P systems that
are not present by default in the framework.

Fig. 2. The antiport system obtained in Example 3. The arc a ↔ b corresponds to the
antiport rule a/b.

3.1 New derivation modes

In order to define a new derivation mode for a P system it is sufficient to consider
the network of cells equivalent to that system and to provide a set restriction
for asynchronous (asyn) mode. Then, because of the bisimulation, the definition
can immediately be interpreted in the corresponding P system.

Example 4. In this example we define two derivation modes: minimally parallel
mode restricted to partitions of size 1 (min1) and mixed set minimally parallel
mode restricted to partitions of size 1 (msmin1). In order to do this we assume
that the ruleset R is divided into several sets R1, . . . , Rm, m > 0, such that R =∪

1≤i≤m Ri. Due to historical reasons we will call these sets partitions although
this term is not accurate because the sets R1, . . . , Rm are not necessarily disjoint.

The min1 mode is defined as follows (see also [5]):

Applicable(Π,C,min1) = {S ∈ Applicable(Π,C, asyn) : |S ∩Ri| ≤ 1, 1 ≤ i≤ m

and ̸ ∃S′ ∈ Applicable(Π,C, asyn),

with |S′ ∩Ri| ≤ 1 such that S′) S}

Hence, themin1 mode is in some sense requiring to take at most one rule from
each partition, when possible. It coincides with the definition of the minimally
applicable multiset of rules from Section 1.9 of [9].

For the msmin1 mode we additionally classify the partitions into two cate-
gories: *-partitions and 1-partitions. In order to simplify the definition we sup-
pose that R is divided intom partitions R1, . . . , Rm and that the first k partitions
are 1-partitions and the partitions from k+1 until m are *-partitions. Then the
mode is defined as follows:

Applicable(Π,C,msmin1) = {S ∈ Applicable(Π,C, asyn) :

such that for all i, j where 1 ≤ i ≤ k < j ≤ m,

|S ∩Ri| ≤ 1 and card(S ∩Rj) ≤ 1,

and ̸ ∃S′ ∈ Applicable(Π,C, asyn),

with |S ∩Ri| ≤ |S′ ∩Ri| ≤ 1,

card(S ∩Rj) ≤ card(S′ ∩Rj) ≤ 1 and S′) S}

The difference between the two definitions is that in msmin1 mode one rule
is chosen and applied from each 1-partition, if possible, and one rule is chosen
and applied a maximal number of times from each *-partition, if possible.

Example 5. Consider a symport/antiport P system with a mode that ensures
that a cell is used sequentially, only in a single operation. This can be done
by using a partition of rules such that a rule involving cell i, will be a part of
partition i. Hence, each rule will be in two partitions. The desired result is then
obtained by applying the min1 mode with the obtained partitions.

3.2 Membrane thinkness/polarization/labels

We remark that the notions of membrane thickness, polarization and label are
related to each other and designate the property of a membrane to be in some
finite state. In order to be able to simulate efficiently these concepts we introduce
into each membrane a special object coding the state of the membrane. All rules
involving a membrane will additionally have a permitting context (promoter)
checking this state object.

Example 6. Consider following active membranes rules (1) [a → bc]h and (2)
a[]h → [b]h′ in membrane k. They are simulated in the formal framework by the
following rules: (k, a) → (k, bc); [(k, h)] and (k′, a)(k, h) → (k, bh′), where k′ is
the parent of k.

As we can see the change of the state is done directly by the rule (case (2)).
However, it should be noted that in the above implementation only one state
change per membrane can occur in one step which is consistent with actual
definitions used in P systems.

We remark that in the example above the rules (1) and (2) become cooper-
ative after translation. This translates the intuitive idea that the object that is
communicated/rewritten is cooperating with membrane state at the level of the
rule.

We would like to remark that in FF2 the membrane state is an explicit part
of the configuration, so no special object is needed for its representation. This
is done because in P systems with dynamic structure the membrane labels are
always used, so considering them as a part of configuration permits to save space
in the description of the rule. However, it shall be noted that like in the case
above there is an implicit cooperation between the membrane state and the
objects used in the rule.

3.3 Priorities

Already in the first models of P systems a priority relation on the rules of the
system was considered. The underlying relation is a strict partial order (i.e. an
irreflexive, asymmetric, and transitive). We consider here two notions of priority
following [6], the strong priority and the weak priority. Under the semantics of

strong priority, if a rule with higher priority is used, then no rule of a lower
priority can be used even if the two rules do not compete for objects. For weakly
prioritized systems, a rule is applicable if it cannot be replaced by a higher
priority one. In the original definition of transitional P systems from [7] the
strong priority is used.

Example 7. Consider a transitional P system which has following three rules:
r1 : ab → cd, r2 : ac → bd and r3 : bc → aa. Let the priority relation be
r3 > r1. Suppose that the current configuration contains the multiset aabbc in
the corresponding membrane. Then in the case of the strong priority only rules
r2 or r3 are applicable. In the case of the weak priority it is possible to apply
additionally rule r1, yielding the following applicable sets: {r1, r2} and {r1, r2}.

It is not difficult to see that the strong priority corresponds directly to for-
bidding conditions: indeed r1 > r2 corresponds to two rules (1) r1 and (2) r2
enriched with forbidding sets containing the left-hand sides of all rules r > r2.

Example 8. Consider the system from Example 7. We can translate the first rule
to the formal framework as follows: r′1 : (k, ab) → (k, cd); []; [(k, bc)].

The case of weak priorities can be handled using a special derivation mode
that keeps track of the relation between rules. It will choose those multisets
where a rule of higher priority cannot be applied anymore even if all rules of a
lower priority are not taken:

Applicable(Π,C, Priwδ) = {R ∈ Applicable(Π,C, δ) |̸ ∃R′∈Applicable(Π,C, δ),

such that r ∈ R′ \R and R′′ ̸∈ Applicable(Π,C, δ),

where R′′ ⊇ R ∪ {r} \ {r′ ∈ R | r > r′}}

3.4 Dissolution

We recall that the dissolution operation (denoted by δ) removes the membrane
in which it occurred as well as all rules involving the dissolved membrane. All
objects present in that membrane are transferred to its parent. In a general
case this operation is handled in FF2 as a special operation acting on the struc-
ture like the creation or the division of membranes. However, if we consider the
class of P systems where only dissolution is used (no creation/division of mem-
branes) then it is obvious that such systems have a finite number of possible
membrane structures (the dissolution operation can only decrease the number
of membranes already present at the beginning of the computation). Hence, it
is possible to mimic the effect of the dissolution by assigning a marker to each
membrane in order to indicate if the membrane is dissolved or not, by using per-
mitting and/or forbidding context in order to check this marker and by using a
subset construction at the level of rules in order to capture all possible structure
changes.

Example 9. Consider the following transitional P system (see Figure 3)
Π = ({a, b, c, d,#}, [0[1]1[2]2]0, {ac}, {c}, {a}, R0, R1, R2), where

R0 = {r01 : ac → λ, r02 : da → #, r03 : bc → #, r04 : # → #},
R1 = {r11 : c → cc, r12 : c → dδ},
R2 = {r21 : a → aa, r22 : a → bδ}.

Fig. 3. The P system from Example 9.

In order to translate it to the formal framework we shall use 3 objects s0,
s1 and s2 indicating that corresponding membranes are not yet dissolved. We
place these objects in corresponding cells, although they all can be placed in a
particular cell, e.g. cell 0. There are 4 possible membrane structures and they
are encoded by the following combinations of objects si: {(0, s0)(1, s1)(2, s2)},
{(0, s0)(1, s1)}, {(0, s0)(2, s2)} and {(0, s0)}. Now in order to finalize the trans-
lation we shall do a subset construction for all rules in membrane 0 in order
to take into account that corresponding objects can originate from a dissolved
membrane:

Rules from R1 are translated as follows:

(1, c) → (1, cc); [(1, s1)] (1, s1)(1, c) → (0, d)

Rules from R2 are translated as follows:

(2, a) → (2, aa); [(2, s2)] (2, s2)(2, a) → (0, b)

Rules from R0 are translated as follows:

(0, ac) → λ; [(2, s0)] (0, a)(1, c) → λ; [(0, s0)]; [(2, s2)]

(0, c)(2, a) → λ; [(0, s0)]; [(1, s1)] (1, c)(2, a) → λ; [(0, s0)]; [(1, s1)(2, s2)]

(0, da) → (0,#); [(0, s0)] (0, d)(2, a) → (0,#); [(0, s0)]; [(2, s2)]

(0, bc) → (0,#); [(0, s0)] (0, b)(1, c) → (0,#); [(0, s0)]; [(1, s1)]

(0,#) → (0,#); [(0, s0)]

We observe that for the translation of rule r01 we had to consider 4 cases
depending on the possible origin of symbols a and c. The difference between
cases is done by corresponding permitting and forbidding conditions.

We also remark that is is possible to avoid forbidding conditions by consid-
ering that a state of the membrane i is defined by one of two (dual) objects si
or s̄i, where the first one indicates that the membrane exists and the second
one indicates that the membrane is dissolved. In this case the rule dissolving
the membrane will rewrite si to s̄i and the forbidding contexts for si are re-
placed by permitting for s̄i. For example, in the case above the second rule from
R1 becomes (0, s1)(1, c) → (0, d)(1, s̄1) and the second rule from R0 becomes
(0, a)(1, c) → λ; [(0, s0)(2, s̄2)].

In some particular cases it is possible to simplify the above construction by
assigning a number (hence a special object) to each of possible membrane struc-
tures and checking by permitting context the current structure. The drawback
of this method is the difficulty to perform several dissolutions in parallel, as sev-
eral rules should modify the same object at the same step. In some cases (e.g.
if the maximally parallel or sequential derivation mode is used) it is possible
to overcome this difficulty by using additional rules that perform all required
dissolutions in one step.

Example 10. Consider system Π from Example 9. We encode by objects si,
1 ≤ i ≤ 4, placed in cell 0, the four possible variants of the membrane structure
(initial, membrane 2 dissolved, membrane 1 dissolved, membrane 1 and 2 are
dissolved). In order to handle the parallel dissolution of membranes 1 and 2 a
special rule is introduced.

Rules from R1 are translated as follows:

(1, c) → (1, cc); [(0, s1)] (1, c) → (1, cc); [(0, s2)]

(0, s1)(1, c) → (0, ds3) (0, s2)(1, c) → (0, ds4)

Rules from R2 are translated as follows:

(2, a) → (2, aa); [(0, s1)] (2, a) → (2, aa); [(0, s3)]

(0, s1)(2, a) → (0, bs2) (0, s3)(2, a) → (0, bs4)

Rules from R0 are translated as follows:

(0, ac) → λ (0, a)(1, c) → λ; [(0, s3)]

(0, c)(2, a) → λ; [(0, s2)] (1, c)(2, a) → λ; [(0, s4)]

(0, da) → (0,#) (0, d)(2, a) → (0,#); [(0, s1)]

(0, bc) → (0,#) (0, b)(1, c) → (0,#); [(0, s3)]

(0,#) → (0,#)

Additional rule for parallel dissolution:

(0, s1)(1, c)(2, a) → (0, bds4)

We remark that the above construction cannot be generalized to any case.
For example, consider a P system evolving in a special derivation mode that
requires to use exactly one rule from every membrane at each step. In this case
the above construction would fail as the two dissolutions were replaced by a
single rule performing both of them.

3.5 Flattening

We call a flattening of a P systemΠ the process of construction of a new P system
Π ′ having only one cell such that N(Π) = N(Π ′). We remark that system Π ′

need not belong to the same class of P systems as Π. A strong flattening requires
that Π and Π ′ belong to the same class.

In the case of P systems with static structure (that does not change in time)
it can easily be seen that the flattening is very simple, because of the one-to-one
relation with multiset rewriting grammars. If the dissolution is present, then it is
possible to simulate it as described in previous subsection, hence the flattening
procedure will require the use of permitting and eventually forbidding contexts.
In the case of systems with dynamically evolving structure (with creation and/or
dissolution of membranes) the flattening is not trivial as one should deal with
an unbounded number of membranes. A trivial translation yields an unbounded
alphabet and an unbounded number of rules, so encodings are necessary to
represent the flattening correctly and it is a challenge to provide an algorithm
that performs this task.

For the strong flattening it can easily be seen that it is not always possible.
For example, any P system that does not allow rules corresponding directly to
the multiset rewriting (e.g. symport P systems or minimal symport/antiport P
systems) cannot be strongly flattened.

Another example of systems that do not admit strong flattening are systems
that have dissolution and do not allow permitting and forbidding contexts, e.g.
transitional P systems with dissolution. Because the algorithms eliminating the
dissolution require at least a permitting context, it is clear that the flattening
cannot be done if remaining inside the same model.

A longer discussion on flattening can be found in [2].

4 Examples of application of FF

In this section we consider three applications of the formal framework. The first
one is the comparison of (purely) catalytic P systems with context-free transi-
tional P systems. The second application consists in extending symport/antiport
P systems with variable membrane thickness. The third application studies the
model of P colonies and helps in understanding this model and allows to easily
obtain some new results.

4.1 Catalytic P systems

The translation of (purely) catalytic P systems to FF can be done in a quite
straightforward manner as follows: every rule ca → c(a1, tar1) . . . (ak, tark) of
cell i becomes (i, ca) → (F (i, tar1), a1) . . . (F (i, tark), ak), where F (i, here) = i,
F (i, inj) = j and F (i, out) = m, where m is the parent of i.

Now we remark that the inherent property of catalytic P systems is that at
each step only one rule can be chosen among all rules involving the same catalyst.
This property can be deduced from the form of rules of such systems. At the
same time it is clear that this property relates more to the way the rules are
used together, i.e. to the derivation mode, than to rules’ action itself. In FF it is
possible to consider a derivation mode that obeys the above restriction. It is not
difficult to see that in the case of catalytic (resp. purely catalytic) P systems the
above requirements are satisfied by the msmin1 (resp. min1) derivation mode.
The (1-)partitions used for the definition of corresponding modes correspond to
each catalyst. In the case of non-purely systems the *-partitions consist of single
rules, those that are used in a context-free manner. From the above analysis
we can also deduce that catalytic P systems having several membranes and one
catalyst are a restricted variant of catalytic P systems with one membrane and
using several catalysts.

Hence, we obtain that catalytic P systems evolving in the maximally parallel
mode are equal to context-free transitional P systems working in the msmin1

mode, where the 1-partitions correspond to catalysts and *-partitions to each
context-free rule. The systems corresponding to purely catalytic P systems have
the number of 1-partitions equal to the number of catalysts and no *-partitions,
so they evolve in the min1 mode. It immediately follows that the model of
purely catalytic P systems is weaker than the general variant, as context-free
rules add more complexity, that can be quantified by the increase of the number
of partitions and by the increase of the degree of parallelism.

The usage of the msmin1 mode may look a little bit artificial, so we remark
that it is also possible to consider a special mixed mode derived in a straightfor-
ward way from the real semantics of catalytic P systems with k catalysts: using
k + 1 partitions with k partitions working in the min1 mode (corresponding to
catalysts) and one special partition working in the maximally parallel mode.

Example 11. Consider the following catalytic P system
Π = (O, {c}, [0[1[3]3[4]4]1[2]2]0, {abc}, {aac}, {c}, {a}, ∅, R0, R1, R2, R3, R4),
where O = {a, b, c, d, e}, R0 = {cb → cain2}, R1 = {ca → cbindin4bouteoutehere},
R3 = {b → aa, a → bc}, R2 = R4 = ∅.

The straightforward translation of this system gives the following rules:

(0, cb) → (0, c)(2, a)

(1, ca) → (0, be)(1, ce)(4, bd) (1, ca) → (0, be)(1, ce)(3, b)(4, d)

(3, a) → (3, bc) (3, b) → (3, aa)

We remark that the translation of the in target is done as ink, for all k.

Now we construct the context-free network of cells Π ′ equivalent to Π. Con-
sider following sets of rules:

P1 = {(1, a) → (0, be)(1, e)(4, bd), (1, a) → (0, be)(1, e)(3, b)(4, d)},
P2 = {(0, b) → (0, c)(2, a)},
P3 = {(3, a) → (3, bc)},
P4 = {(3, b) → (3, aa)}.

Let P1 and P2 form 1-partitions and let P3 and P4 form *-partitions. Then
from the discussion above it is clear that Π ′ working in the msmin1 mode is
equivalent to Π. We remark that the obtained network of cells can easily be
translated to a context-free transitional P system working in the msmin1 mode.

4.2 Symport/antiport

In this subsection we discuss how it is possible to use the formal framework in
order to extend an existing class of P systems.

Consider the class of symport/antiport P systems. We will extend it with two
features: (1) membrane permeability – a symport rule can modify the membrane
permeability (with δ or τ). If the membrane is in state 2, then no antiport
rule involving this membrane can be used. At each step only one permeability
changing rule per membrane can be applied; (2) maximal objects: at each step
if there are several maximally parallel evolutions choose the one having the
maximal number of objects involved.

In order to define the semantics for both features we will translate sym-
port/antiport P systems to the formal framework, then we will do the necessary
transformations in order to accommodate the desired behavior. Then due to the
strong bisimulation we can recover the desired semantics in symport/antiport P
systems.

The translation of symport and antiport rules can be done in a quite simple
way: each antiport rule (a, in; b, out) (resp. symport rule (a, out)) of membrane
i is translated as (i, b)(j, a) → (i, a)(j, b) (resp. (i, a) → (j, a)), where j is the
parent membrane of i; each symport rule (a, in) is translated as (i, a) → (j, a),
for all child membranes j of i.

Now in order to implement the first proposed extension, for each membrane i
we consider an object in cell i taken from the triple (D,N,C) indicating the state
of the membrane (dissolved, normal, closed). Each symport rule having δ or τ
will modify this object (going to the left or right in the above sequence) and each
antiport rule will check the permitting context if it is in stateN . For example: the
rule (ab, out); τ in membrane i will correspond to rules (i, abN) → (i, C)(j, ab)
and (i, abC) → (i, C)(j, ab).

Now in order to satisfy the second requirement we consider the following
derivation mode maxobjmax:

Applicable(Π,C,maxobjmax) =
{
R ∈ Applicable(Π,C,max) |

̸ ∃R′ ∈ Applicable(Π,C,max) :∑
r′∈R′

|lhs(r′)| >
∑
r∈R

|lhs(r)|
}

It should be clear that the network of cells obtained using the transformations
above will be a strong bisimulation of the initial P system.

4.3 P colonies

We recall the definition of P colonies taken from [9].
A P colony consists of n cells (agents) Ci, 1 ≤ i ≤ n, each of them contain-

ing a multiset of exactly k symbols and an environment containing initially a
distinguished symbol e in an unbounded number of copies. Each cell Ci has a
set of programs {pi,1, . . . , pi,ki}, where each program pi,j consists of exactly k
rules of the forms a → b (internal point mutation), c ↔ d (one object exchange
with the environment), or r1/r2 (priority rule, where r1 and r2 are arbitrary
combinations of point mutation and/or exchange rules). The computation can
be performed in the maximally parallel or in the sequential mode with respect
to the programs of cells. If no more programs are applicable, the system halts
and the result is collected as the number of distinguished symbols f in the en-
vironment. The number of cells, the maximal number of programs in a cell, and
the maximal number of rules in each program in a given P colony Π are called
the degree, the height, and the capacity of Π, respectively. The family of sets
of numbers computed in the derivation mode x for x ∈ {par, seq} by P colonies
of capacity k, degree at most n ≥ 1 and height at most h ≥ 1, without (resp.
with) using priority rules in their programs, is denoted by NPColx(k, n, h) (resp.
NPColxK(k, n, h)).

We will construct a strong bisimulation of the P colony model in the formal
framework:

– each rule a → b in pij becomes rij : (i, a) → (i, b);
– each rule a ↔ b in pij becomes rij : (i, a)(0, b) → (i, b)(0, a);
– each rule r1/r2 in pij is replaced by two rules: r1, and r2; [∅]; [{(i, a)}] if r1

is a → b and r2; [∅]; [{(i, a)(0, b)}] if r1 is a ↔ b.

For the derivation mode each program becomes a rule partition and then the
derivation mode requires to be maximal, but using exactly k rules from each par-
tition (or using all rules from a partition). In the sequential case, the derivation
mode implies to use only one partition (but all rules from that partition).

Example 12. Consider the following P colony Π having 3 cells.

– C1 contains the initial multiset aa and the following programs: p11 : a →
b, a ↔ e, p12 : a → c, a ↔ e, p13 : b → a, e → a.

– C2 contains the initial multiset be and the following program: p21 : b ↔
e, e → b.

– C3 contains the initial multiset ee and the following programs: p31 : e ↔
a, e ↔ b, p32 : b → f, a → b, p33 : f ↔ a, b → b.

Figure 4 shows a graphical representation of this system.

Fig. 4. The P colony from Example 12.

We translate this system to a network of cells Π ′ having 4 cells (numbered
from 0 to 3), corresponding to the cells of Π, and having same initial contents as
corresponding agents and Inf0 = {e}. System Π ′ contains the following rules:

Rules simulating programs from the first cell:

r111 : (1, a) → (1, b) r112 : (1, a)(0, e) → (1, e)(0, a)

r121 : (1, a) → (1, c) r122 : (1, a)(0, e) → (1, e)(0, a)

r131 : (1, b) → (1, a) r132 : (1, e) → (1, a)

Rules simulating programs from the second cell:

r211 : (2, b)(0, e) → (2, e)(0, b) r212 : (2, e) → (2, b)

Rules simulating programs from the third cell:

r311 : (3, e)(0, a) → (3, a)(0, e) r312 : (3, e)(0, b) → (3, b)(0, e)

r321 : (3, b) → (3, f) r322 : (3, a) → (3, b)

r331 : (3, f)(0, a) → (3, a)(0, f) r332 : (3, b) → (3, b)

We remark that the derivation mode of P colonies groups rules corresponding
to programs, uses maximal parallelism or sequentiality, and requires that all
rules from a group shall be used. Since working with one symbol, the group r111
and r112 from example above is equivalent to the application of a single rule

r11 : (1, aa)(0, e) → (1, be)(0, a). Hence we obtain that a program corresponds
to a more complicated rule, and k is the size of the LHS of this rule (and equal
to RHS). By considering such rules, the evolution of a P colony becomes just
maximally parallel or sequential.

Example 13. Consider the system Π from Example 12. Using the above remark
it can be translated to the following network of cells Π ′′:

r11 : (1, aa)(0, e) → (1, be)(0, a) r12 : (1, aa)(0, e) → (1, ce)(0, a)

r13 : (1, be) → (1, aa)

r21 : (2, be)(0, e) → (2, be)(0, b)

r31 : (3, ee)(0, ab) → (3, ab)(0, ee) r32 : (3, ab) → (3, fb)

r33 : (3, bf)(0, a) → (3, ab)(0, f)

We can go further by remarking that the number of combinations of objects
in an agent is finite, so it can be represented by a single symbol, the state. Symbol
e from cell 0 can be ignored as it carries no information. This permits to deduce
that a P colony corresponds to a cooperative rewriting with the size of LHS or
RHS at most k + 1 and forbidding conditions (if checking rules are present). It
can be also possible to consider it as a catalytic P system with catalysts having
n-states.

Example 14. Consider system Π from Example 12. Consider the array of mul-
tisets A = (aa, be, ce, ee, ab, bf) and the following encoding f(A[i]) = si. Then
the rules from Example 13 can be rewritten as follows:

r11 : (1, s1) → (1, s2)(0, a) r12 : (1, s1) → (1, s3)(0, a) r13 : (1, s2) → (1, s1)

r21 : (2, s2) → (2, s2)(0, b)

r31 : (3, s4)(0, ab) → (3, s5) r32 : (3, s5) → (3, s6)

r33 : (3, s6)(0, a) → (3, s5)(0, f)

In order to highlight the original semantics (that only one program per cell
can be executed), we can use catalysts: the rule r11 : (1, s1) → (1, s2)(0, a)
becomes c1s1 → c1s2a. Although using catalysts is not necessary as the state is
unique, this permits to consider a restricted variant of the model of P colonies
that uses only rules of the above type and therefore corresponds to specific
purely catalytic P systems. This remark permits us to transpose results from
P colonies to purely catalytic P systems and conversely. For example, from the
results for P colonies (Remark after Theorem 23.1.1 and Theorem 23.1.2 from [9])
we immediately obtain that:

Proposition 1. The following results hold:

– Purely catalytic P systems with one catalyst and the size of the rule equal
to 3 are not computationally complete.

– Purely catalytic P systems of with rules of size 2, an unbounded number
of catalysts and using at most 6 rules for each catalyst are computationally
complete.

In the other direction we can also immeadiately obtain (Theorem 4.1 from [9])
that:

Proposition 2. NPColpar(3, 3, ∗) = RE.

Our representation of P colonies permits to answer the open question raised
in Section 23.1.3 from [9]:

Proposition 3. NPColseq(∗, 1, ∗) (RE.

This follows from the fact that the corresponding model is identical to purely
sequential multiset rewriting which is known to not be computationally complete.

5 Probabilistic P systems

In this section we extend the formal framework in order to take into account
probabilities and thus become able to represent via bisimulation different vari-
ants of probabilistic P systems. This section closely follows [11]. To achieve the
proposed goal we recall that in order to perform a computational step in a P
system a set of multisets of applicable rules, denoted by Applicable(Π,C, δ), is
computed according to the type of the system and the derivation mode δ, for
any configuration of the system C. After that, one of the elements from this set
is chosen, non-deterministically, for the further evolution of the system.

We remark that from the point of view of the computer simulation of P sys-
tems the non-deterministic choice can be considered equivalent to a probabilistic
choice where each multiset of rules has an equal probability to be chosen. Per-
mitting these multisets to have a different probability is the main idea of the
extension that we discuss in this section. More precisely, for each multiset of
rules R ∈ Applicable(Π,C, δ) we compute the probability p(R,C) based on the
propensity function f : R◦× (N×O◦)∗ → R, where R and O are the set of rules
and objects of Π respectively. This function associates a real value for a multiset
of rules with respect to a configuration. Hence the value f(R,C) depends not
only on the multiset of rules R, but also on the configuration C.

The probability to choose a multiset R ∈ Applicable(Π,C, δ) is defined as
the normalization of corresponding probabilities:

p(R,C) =
f(R,C)∑

R′∈Applicable(Π,C,δ) f(R
′, C)

(1)

5.1 Discussion

So far we did not indicate the propensity function f , which is the main ingredient
of the model. Below we will give examples of simple propensity functions each
leading to different execution strategies.

Constant strategy: each rule r from R has a constant contribution to f and
equal to cr:

f(R,C) =
∏
r∈R

cr (2)

Multiplicity-dependent strategy: each rule r from R has a contribution to
f proportional to the number of times this rule can be applied and to a
stochastic constant cr that only depends on r:

Nr(C) = min
x∈lhs(r)

[
|C|x

|lhs(r)|x

]
(3)

f(R,C) =
∏
r∈R

crNr(C) (4)

Concentration-dependent strategy: each rule r from R has a contribution
to f proportional to hr(C), the number of distinct combinations of objects
from C that activate r, and to a stochastic constant cr that only depends
on r (by

(
a
b

)
we denote the binomial function):

hr(C) =
∏

x∈lhs(r)

(
|C|x

|lhs(r)|x

)
(5)

hR(C) =
∏
r∈R

crhr(C) (6)

f(R,C) = hR(C) (7)

Gillespie strategy: each rule r from R has a contribution to f that depends
on the order in which it was chosen and it is equal to cr ·hr(C

′), where C ′ is
the configuration obtained by applying all rules that were chosen before r.

We remark that the concentration-dependent strategy is not equal to Gille-
spie strategy. More precisely, in a Gillespie run the probability to choose a new
rule depends on the objects consumed and produced by previously chosen rules.
We can consider a Gillespie run as a sequence of sequential (single-rule) appli-
cations using the concentration-dependent strategy.

We also remark that the Gillespie algorithm uses the notion of time that we
do not consider in this paper. However, the definitions can easily be adapted for
to handle this case.

5.2 Examples

Dynamical Probabilistic P Systems Dynamical probabilistic P (DPP) systems
were introduced in [10]. Below, we present the definition of the evolution step.
For the sake of the simplicity we will consider only one compartment, however
the discussion below can easily be generalized to several compartments.

Let C be the current configuration and R be the set of all rules. Then the
system evolves from C to C ′ as follows.

1. For each rule r ∈ R, the propensity of ar(C) = cr ∗ hr(C) (hr being defined
as in Equation (5)) is computed.

2. The propensities are normalized giving a probability for a rule r to be chosen:

pr(C) = ar(c)∑
r′∈R ar′ (C) .

3. The rules to be applied are chosen according to their probabilities. If a non-
applicable rule is chosen, the choice is repeated.

4. The process stops when a maximal (parallel) multiset of rules R is obtained.
5. The multiset of rules obtained at the previous step is applied and yields a

new configuration C ′.

It can be easily seen that, since the probabilities to apply a rule (pr) are
computed only at the beginning of each step, the maximal multiset of rules R
then is composed from independent rules (the order in which the rules were
chosen has no influence). Hence the probability to choose a multiset of rules R is
equal to the product of the probabilities of each rule: pR(C) =

∏
r∈R pr. Now if

we normalize this value with respect to all possible maximally parallel multisets
of rules we obtain:

∏
r∈R pr(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ pz(C)

=

∏
r∈R

ar(C)∑
r′∈R ar′ (C)∑

R′∈Appl(Π,C,max)

∏
z∈R′

pz(C)∑
r′∈R ar′ (C)

=

∏
r∈R ar(C)∑

R′∈Appl(Π,C,max)

∏
z∈R′ az(C)

(8)

Since in the case of the concentration-dependent strategy we have that
f(R,C) =

∏
r∈R ar(C), it follows that (8) equals (1). Hence we just showed that

DPP systems can be translated to probabilistic P systems with a concentration-
dependent strategy.

Probabilistic Functional Extended P Systems Probabilistic functional extended P
(PFEP) systems where introduced in [1] as a part of a framework used to model
eco-systems. In order to simplify the presentation we consider a flattening of
the structure of the P system, thus using only multiset rewriting rules. We also
consider that the rules having the same left-hand side form a partition of the set
of rules R into n subsets R = R1 . . .Rn, where r1, r2 ∈ Ri ⇒ lhs(r1) = lhs(r2),
1 ≤ i ≤ n.

The evolution of a PFEP system is done as follows:

1. A maximally parallel multiset of rules R is chosen.
2. R is partitioned into submultisets based on the left-hand side of rules: Ri =

{r ∈ R | r ∈ Ri}.
3. For each non-empty partition Ri, |Ri| rules from Ri are chosen according to

the given probability fr(a), where r ∈ Ri and a is a moment of time.
4. The resulting multiset of rules is applied yielding a new configuration.

From the description of the strategy it is clear that it corresponds to the
multiplicity-dependent strategy for the maximally parallel derivation mode (and
where the constant cr is replaced by fr(a)).

6 Active membranes

In this section we consider the FF2 model described in [3]. The first change with
respect to FF1 is the definition of the configuration, which now shall take into
account the labels and the membrane structure. Hence, a configuration becomes
a couple (L, ρ), where L is a list of “labeled cells” (i1, l1, w1) . . . (in, ln, wn), with
the id ij ∈ N, the label lj ∈ Lab (the set of labels) and the contents wj ∈ O∗ (O
being the alphabet of the system), for 1 ≤ j ≤ n, such that all the cells’ id’s (the
first element of each triple) are different from each other. The second component
ρ ⊆ N× N is a relation that represents the connections between cells (it can be
seen as a graph where the nodes are the cells id’s).

Note that in a configuration each cell has an id which is unique and a label
which is not necessarily unique.

The interpretation of relation ρmay differ depending on the selected P system
model, but its goal is to capture how cells (or membranes) are organized in the
“membrane structure”. In cell-like P systems this corresponds to the parent
relation, while in tissue P systems this corresponds to the communication graph
of the system.

The simulation of most existing variants of active membranes can be done
by rules that use following actions:

1. Rewriting of objects (in several cells simultaneously as it is done for the
static case).

2. Label change.
3. Creation of a new cell.
4. Creation of a new cell having a contents of some existing cell (and also some

additional object rewriting).
5. Deletion of a cell (loosing its contents).
6. Deletion of a cell and moving its contents to some other cell.
7. Arbitrary rewriting of the structure ρ using a graph transducer.

A rule of the network of cells is defined in terms of pattern-matching. First
a pattern subgraph structure is given and all actions like rewriting, membrane
deletion etc. are given in terms of the pattern structure. During the applicability
check the pattern is matched to the actual structure given by the relation ρ. This
procedure can yield several matches (instances), so all of them are considered.
For each match the preconditions given by the rule (presence or absence of some
objects in some cells) are checked and if all of them are satisfied then the rule
is applicable. The applicability check is extended to a multiset of rules in a
way that is consistent with individual instances of rules. The resulting set of all
applicable rules (Applicable(Π,C, asyn)) is computed as the multisets of couples
rule/instance that are applicable to C. Based on this set it is possible to define
derivation modes as in the static case. However, additional possibilities related
to instances of rules may be investigated, e.g. accepting only particular instances
during the derivation (e.g. mandatory including cell number 1).

Fig. 5. The P system with active membranes from Example 15. The bold symbols
represent the objects.

Example 15. Consider a P system with active membranes having the configura-
tion shown on Figure 5. Let r be the following rule (according to FF2):

r : Labels(r) = (z+, h); ρ(r) = {(1, 2)}; Rewrite(r) = (1, a)(2, c) → (1, c)(2, a).

In order to apply r we first should find a combination of two membranes having
the labels z+ and h. There are two such combinations. After that we check the
relation ρ(r) which states that membrane 1 (the one identified by the label z+)
is the parent of membrane 2 (the one identified by h). Hence, only the couple at
the left remains. We now can identify the numbers 1 and 2 with corresponding
cells. Next, the rewriting part of the rule can be applied. It will exchange the
symbols a and c, which are located in cells 1 and 2 respectively.

It can easily be seen that the “maximally parallel” derivation mode for active
membranes is not really maximally parallel. More precisely it is min1 for rules
involving membranes and max otherwise, so it can be seen as msmin1. This fact
makes the active membrane model similar to catalytic P systems, so interesting
links can be done. We also remark that even if it is not mentioned explicitly,
membrane labels induce cooperation to all rules, thus they have a hidden pro-
moter/permitting context. In the case of the minimally parallel derivation mode
for active membranes (min), see Section 11.5 from [9], there could be several
interpretations of this concept depending on whether rewriting and membrane
rules for a cell are considered to be in the same partition or not.

We would like to emphasize that the current definition of the derivation mode
for active membranes allows only one rule per membrane (except rewriting). Us-
ing the formal framework it is possible to define in a consistent non-ambiguous
way the application of several creation, communication and deletion rules in-
volving the same membrane/cell.

The application Apply(Π,C,R) is defined using an algorithm that first ap-
plies the rewriting, then creation and then deletion parts of R. At the end, the
structure can be modified in an arbitrary way by a graph transducer. We remark

that we used the order rewrite, create, delete (RCD), which is consistent with
actual definitions of active membranes. However, it is possible to define the appli-
cation using other orders like RDC or DCR, yielding slightly different semantics.
For example, in RDC order deleted membranes cannot be copied to newly cre-
ated ones and in CDR order the newly duplicated membranes get the “old”
contents, before rewriting. The application of rules in some sense is “global”,
because the applicability imposes the order of their application to be irrelevant.
It is possible to relax this condition and to obtain new application strategies
that will differ depending on whether the rules are applied from inside-out or
not.

Example 16. Consider a P system with active membranes Π having the config-
uration shown in Figure 5. Suppose that Π has the following rules:

r1 : a[]h → [b]h+ r2 : [b]h → c[]h− r3 : [c → da]h r4 : [d]h → [e]h+ [f]h

These rules are translated according to FF2 as follows (see [3]). We suppose
that h′ is an arbitrary membrane label from the set Lab. We also use the following
shorthand notation Ls for Labels, RW for Rewrite, LR for Label − Rename,
GC for Generate− and− Copy and CR for Change−Relation.

Ls(r1) = (h
′
, h); ρ(r1) = {(1, 2)}; RW (r1) = (1, a) → (2, b); LR(r1) = {(2, h+)};

Ls(r2) = (h
′
, h); ρ(r2) = {(1, 2)}; RW (r2) = (2, b) → (1, c); LR(r2) = {(2, h−)};

Ls(r3) = (h); ρ(r3) = ∅; RW (r3) = (1, c) → (1, da); LR(r3) = ∅;

Ls(r4) = (h
′
, h); ρ(r4) = {(1, 2)}; RW (r4) = (2, d) → (2, e); LR(r4) = {(2, h+)};

GC(r4) = {(1′, h, 2, d → f)}; CR(r4) = {INSERT − EDGE(1, 1
′
)}.

It can easily be seen that to the leftmost membrane labeled by h rules r1, r3,
and r4 are applicable, while to the rightmost membrane labeled by h only rules
r2 and r3 are applicable. The result of the maximally parallel evolution can be
seen in Figure 6.

We remark that this evolution does not correspond to a standard active
membranes derivation, because, as it was mentioned above, P systems with active
membranes evolve in the msmin1 mode and therefore it is not possible to apply
in parallel rules r1 and r4 to the leftmost membrane h.

7 Conclusion

In this article we described the model of P systems called the formal framework
and we showed how it can be useful when dealing with the following questions:
(1) understanding an existing model of P systems; (2) extending a model of P
systems with new features or using a different derivation mode; (3) compare two
different models of P systems; and (4) explaining details of the semantics that
can have several interpretations and raising questions related to these interpre-
tations.

Fig. 6. The result of the application of rules given in Example 16 on the configuration
from Figure 5.

The presented formalism permits to have a powerful language for the descrip-
tion of the features of P systems and is especially useful for making links and
transposing results between different models of P systems like it is exemplified in
Sections 4.3. Another advantage of the formalism is the ability to treat in a uni-
form way P systems with static structure, with dynamically evolving structure,
and with priorities. This permits to share some basic concepts like derivation
modes and may be useful in order to create new formalisms like P systems with
active membranes and probabilities.

Acknowledgements The author would like to thank Rudi Freund for many inter-
esting remarks and suggestions that permitted to improve this paper as well as
the support of ANR project SynBioTIC.

References

1. M. Cardona, M. A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, D. Sanuy, A computational modeling for real ecosystems based on
P systems. Natural Computing, 10(1): 39–53, 2011.

2. R. Freund, A. Leporati, G. Mauri, A.E. Porreca, S. Verlan, C. Zandron, Flattening
in (Tissue) P Systems. In this volume.

3. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez, S. Verlan (2013), A formalization
of membrane systems with dynamically evolving structures, International Journal
of Computer Mathematics, 90(4), 801–815.

4. R. Freund, S. Verlan, A formal framework for static (tissue) P systems, In Mem-
brane Computing, 8th International Workshop, WMC 2007, Thessaloniki, Greece,
June 25-28, 2007 Revised Selected and Invited Papers. Lecture Notes in Computer
Science, Vol. 4860, pp. 271-284, 2007.

5. R. Freund, S. Verlan, P systems working in the k-restricted minimally parallel
mode, In International Workshop on Computing with Biomolecules, Wien, Austria.
Vol. 244 of Oesterreichische Computer Gesellschaft, 2008, 43–52.

6. O. Ibarra, H.Yen, Deterministic catalytic systems are not universal. Theor. Com-
put. Sci., 363(2): 149-161. (2006).

7. Gh. Păun, Membrane Computing. An Introduction, Springer–Verlag, Berlin, 2002.
8. G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, Springer,

1997.
9. Gh. Păun, G. Rozenberg and A. Salomaa (eds.), The Oxford Handbook Of Mem-

brane Computing, Oxford University Press, 2010.
10. D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P

systems. International Journal of Foundations of Computer Science, 17:183–204,
2006.

11. S. Verlan, A note on the probabilistic evolution for P systems, In Proc. of Tenth
Brainstorming Week on Membrane Computing Sevilla, Volume II, 2012, 229–234.

12. S. Verlan. Study of language-theoretic computational paradigms inspired by biol-
ogy. Habilitation thesis, University of Paris Est, 2010.

