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Introduction

Stochastic PDEs are commonly used to model uncertain physical phenomena. One such model that is used, for instance, in groundwater modeling is the diffusion equation

-div(a∇u) = f in D, u| ∂D = 0, (1) 
with lognormally distributed coefficient, that is, a = exp(b), where b is a centered Gaussian random field defined on the computational domain D ⊂ R d (where typically d = 2 or d = 3).

Uncertainty quantification aims at describing the statistical properties of the resulting solution u, with various computational objectives: evaluating the mean field ū = E(u), estimating a plausible a based on some measurement data of the solution, describing the law of a scalar quantity of interest Q(u).

For such objectives, it is most convenient to represent b in the form of an expansion b = j≥1 y j ψ j ,

where y j are i.i.d. N (0, 1), that is, independent scalar standard Gaussian random variables, and ψ j are suitable functions on D. Once such an expansion is given, one may introduce approximations to the solution map y → u(y), y = (y j ) j≥1 ,

for example by multivariate polynomials in the variables y j . Such approximations provide a fast way to evaluate u(y) for any choice of y up to some prescribed accuracy, which is of crucial help for the above mentioned tasks. Expansions of the form (2) can also be of practical use for the fast generation of trajectories, provided that the ψ j have simple analytic expressions or are easy to compute numerically. The Gaussian field b is characterized by its covariance function

(x, x ) → K(x, x ) = E(b(x) b(x )), x, x ∈ D. (4) 
A standard way of obtaining a representation (2) is by using the Karhunen-Loève (KL) basis, that is, the L 2 (D)-orthonormal eigenfunctions (ϕ j ) j≥1 of the integral operator

T : v → T v = D K(•, z) v(z) dz, (5) 
with corresponding eigenvalues λ j ≥ 0 arranged in decreasing order. One then obtains (2) by setting ψ j := λ j ϕ j .

The distinguishing feature of this particular choice is that in addition to the statistical orthogonality E(y j y k ) = δ j,k , the functions ψ j are orthogonal in L 2 (D). However, other expansions of the form (2) may also be considered if one does not impose the L 2 (D)orthogonality.

As shown in [START_REF] Luschgy | Expansions for Gaussian processes and Parseval frames[END_REF], general expansions of the form (2) with i.i.d. N (0, 1) coefficients are characterized by the fact that the ψ j form a tight frame of the reproducing kernel Hilbert space (RKHS) H induced by K. Recall that H is the the closure of the finite linear combinations of the functions K z := K(•, z) for z ∈ D, with respect to the norm induced by the inner product K x , K z H := K(x, z), see [START_REF] Aronszajn | Theory of reproducing kernels[END_REF] for a general treatment. Recall also that a tight frame of a Hilbert space H is a complete system that satisfies the identity

j≥1 | g, ψ j H | 2 = g 2 H , g ∈ H. (7) 
We refer to [START_REF] Daubechies | Ten lectures on wavelets[END_REF] for classical examples of time-frequency or time-scale frames. In contrast to orthonormal bases, such systems may be redundant. The possible redundancy in [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients[END_REF] can be illustrated by following trivial example: if y 1 and y 2 are i.i.d. N (0, 1) and ψ is a given function, then y 1 ψ + y 2 ψ = z( √ 2ψ) with z = (y 1 + y 2 )/ √ 2 also N (0, 1).

As an elementary yet useful example of the different possibilities for expanding a Gaussian process, consider the Brownian bridge on D = [0, 1] whose covariance is given by K(x, x ) = min{x, x } -xx . On the one hand, the representation based on the KL expansion is given by the trigonometric functions

ψ j (x) := √ 2 πj sin(πjx), j ≥ 1. (8) 
On the other hand, another classical representation of this process is given by the Schauder basis, which consists of the hat functions

ψ j (x) := 2 -/2 σ(2 x -k), ≥ 0, k = 0, . . . , 2 -1, j = 2 + k, (9) 
where σ(x) = (1-|2x-1|) + . Both systems are orthonormal bases (and thus tight frames) of the RKHS, which in this case is

H = H 1 0 (D) endowed with norm v H := v L 2 (D)
. Lax-Milgram theory ensures that for each individual y = (y j ) j≥1 ∈ U := R N such that j≥1 y j ψ j converges in L ∞ (D), the corresponding solution u(y) is well defined in

V := H 1 0 (D), with a-priori bound u(y) H 1 0 ≤ C exp j≥1 y j ψ j L ∞ , C := f V . (10) 
Sufficient conditions have been established, either in terms of the covariance function K or of the size properties of the ψ j , which ensure that the solution map y → u(y) belongs to L k (U, V, γ) for all k < ∞, see [START_REF] Dashti | The Bayesian Approach to Inverse Problems, Handbook of Uncertainty Quantification[END_REF][START_REF] Charrier | Strong and weak error estimates for elliptic partial differential equations with random coefficients[END_REF][START_REF] Gittelson | Stochastic Galerkin discretization of the log-normal isotropic diffusion problem[END_REF][START_REF] Hoang | N -term Galerkin Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs[END_REF][START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients[END_REF]. Here L k (U, V, γ) is the usual Bochner space where γ denotes the countable tensor product of the univariate standard Gaussian measure.

In turn, approximation can be obtained in L 2 (U, V, γ), corresponding to mean-square convergence, by truncation of the tensor product Hermite expansion

u(y) = ν∈F u ν H ν (y), u ν = U u(y)H ν (y)dγ(y) ∈ V, H ν (y) := j≥1 H ν j (y j ). ( 11 
)
Here we have denoted by (H n ) n≥0 the sequence of univariate Hermite polynomials with normalization in L 2 (R, g(t)dt) where g(t) = 1 √ 2π e -t 2 /2 , and by F the set of finitely supported sequences ν = (ν j ) j≥1 of non-negative integers.

The best error for a given number n of terms retained in the above expansion is attained by the so-called best n-term Hermite approximation y → u n (y) obtained by retaining the indices ν corresponding to the n largest u ν V . By combining Parseval's identity with Stechkin's lemma [START_REF] Devore | Nonlinear Approximation[END_REF], the resulting error can be quantified in terms of the p -summability of the sequence (

u ν V ) ν∈F for p < 2, namely u -u n L 2 (U,V,γ) ≤ Cn -s , s := 1 p - 1 2 , C := ( u ν V ) ν∈F p (F ) . (12) 
As shown in [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients[END_REF], this extra summability may depend strongly on the particular representation (2) that is used, or in other words, on the choice of coordinates (y j ) j≥1 . Whereas previous results establishing summability properties of ( u ν V ) ν∈F are based only on the summability of ( ψ j L ∞ (D) ) j≥1 , that is, on the absolute sizes of the ψ j , the results in [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients[END_REF][START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients[END_REF] also take into account the localization properties of ψ j . More specifically, the following is shown in [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients[END_REF].

Theorem 1.1. Let 0 < p < 2 and let q = q(p) := 2p 2-p . Assume that there exists a positive sequence (ρ j ) j≥1 such that sup x∈D j≥1

ρ j |ψ j (x)| < ∞ (13) 
and

(ρ -1 j ) j≥1 ∈ q (N). ( 14 
)
Then the solution map y → u(y) belongs to L k (U, V, γ) for all 0 ≤ k < ∞. Moreover, ( u ν V ) ν∈F ∈ p (F). In particular, best n-term Hermite approximations converge in L 2 (U, V, γ) with rate n -s for s = 1 p -1 2 = 1 q . The above result draws an important distinction between representations using globally or locally supported functions ψ j . If nothing is assumed on the supports of ψ j , we may only apply the following immediate consequence of Theorem 1.1.

Corollary 1.2. If (ψ j ) j≥1 is a family of functions with arbitrary support such that ( ψ j L ∞ ) j≥1 belongs to r (N) for some r < 1, then best n-term Hermite approximations converge in L 2 (U, V, γ) with rate n -s for s = 1 r -1. Consider for example the above mentioned Brownian bridge. On the one hand, the KL functions given by ( 8) are globally supported with size of order j -1 . In turn, for any q < ∞, there exists no sequence (ρ j ) j≥1 satisfying ( 13) and ( 14), and therefore the best n-term truncation cannot be proved to converge with any algebraic rate. On the other hand, the Schauder functions given by ( 9) have local support properties which allow us to fulfill [START_REF] Devore | Nonlinear Approximation[END_REF] with ρ j = j s for any s < 1 2 . Hence best n-term Hermite truncation based on the Schauder representation is ensured to converge with rate n -s for any s < 1 2 . The same analysis applies to a general process on a bounded domain D ⊂ R d if it admits an expansion [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients[END_REF] where the ψ j have wavelet-like localization properties. In this case, it is convenient to index the basis functions ψ j by a scale-space index λ, with |λ| denoting the corresponding scale level. We denote by I the set of these indices, where #{λ ∈ I : |λ| = } ∼ 2 d for ≥ 0.

Corollary 1.3. Let (ψ j ) j≥1 = (ψ λ ) λ∈I be a wavelet basis such that for some α > 0,

sup x∈D |λ|= |ψ λ (x)| ≤ C2 -α , ≥ 0. ( 15 
)
If ( ψ λ L ∞ ) λ∈I belongs to q (I), which holds for q > d α , then the best n-term Hermite approximations converge in L 2 (U, V, γ) with rate n -s for all s < 1 q < α d . This leads to the question whether suitable wavelet-type systems (ψ j ) j≥1 forming orthonormal bases or tight frames of H can also be found for more general b with given covariance kernel K. In view of the above corollary, we are interested in the decay exponent α that can be ensured in [START_REF] Elliott | A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields[END_REF]. For practical purposes, we also need these systems to either have exact analytic expressions or be computable by simple and efficient numerical procedures.

We shall focus on stationary random fields, that is, covariances of the form

K(x, x ) = k(x -x ), x, x ∈ D, ( 16 
)
where k is an even function defined over R d which is the inverse Fourier transform of a positive measure. One typical class of examples is given by the family of Matérn covariances

k(x) = 2 1-ν Γ(ν) √ 2ν|x| λ ν K ν √ 2ν|x| λ , (17) 
where ν, λ > 0 and K ν is the modified Bessel function of the second kind, with Fourier transform given by

k(ω) = c ν,λ 2ν λ 2 + |ω| 2 -(ν+d/2) , c ν,λ := 2 d π d/2 Γ(ν + d/2)(2ν) ν Γ(ν)λ 2ν . ( 18 
)
Here, for the Fourier transform, we use the convention

f (ω) = R d f (x) e -ix•ω dx. ( 19 
)
The parameters ν and λ quantify the smoothness and correlation length, respectively, of the process. The idea of using wavelet-type systems for the representation of Gaussian processes was put forward in the pioneering works of Ciesielski [START_REF] Ciesielski | Hölder conditions for realizations of Gaussian processes[END_REF], motivated by the problem of analyzing the Hölder smoothness of univariate Gaussian processes. This program was pursued in [START_REF] Ciesielski | Quelques espaces fonctionnels associés à des processus gaussiens[END_REF] where Sobolev-Besov smoothness was investigated, in particular for the fractional Brownian motion. These papers were based on representing the processes of interest in the Schauder basis, with resulting components that are generally not independent and therefore not of the form [START_REF] Bachmayr | Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients[END_REF].

A general approach was proposed in [START_REF] Benassi | Elliptic gaussian random processes[END_REF] to obtain wavelet-type representations of Gaussian processes defined on R d , with independent components. This approach requires that the covariance function is the Green's function of an operator of pseudo-differential type, and it includes Matérn covariances, see also [START_REF] Cohen | Fractional Fields and Applications[END_REF]. A related approach was proposed in [START_REF] Elliott | A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields[END_REF] for stationary Gaussian processes, motivated by fast methods for generating trajectories. Both approaches strongly rely on the Fourier transform over R d , and do not carry over in a simple manner to the case of a bounded domain D ⊂ R d .

A general construction of wavelet expansions of the form (2) for Gaussian processes was recently proposed in [START_REF] Kerkyacharian | Regularity of Gaussian Processes on Dirichlet spaces[END_REF], in the general framework of Dirichlet spaces. Here the needed assumptions are that the covariance operator commutes with the operator that defines the Dirichlet structure. The latter does not have a simple explicit form in the case of Matérn covariances on a domain D, which makes this approach difficult to analyze and implement in our setting. Let us also mention the construction in [START_REF] Gittelson | Representation of Gaussian fields in series with independent coefficients[END_REF], where an orthonormal basis for the RKHS is built by a direct Gram-Schmidt process, however, with generally no size and localization bounds on the resulting basis functions.

In the present paper, we propose an approach where the complications that may arise due to the geometry of D are circumvented by performing a periodic continuation of the random field b on a larger torus T. The existence of such a continuation is discussed in §2. This leads to a simple construction of KL-type and wavelet-type expansions, by restrictions to D of similar expansions defined on T. While the systems introduced on T are bases, their restriction to D are redundant frames of the RKHS, the amount of redundancy being essentially reflected by the ratio |T|/|D|. Our construction thus achieves numerical simplicity at the price of redundancy.

The periodic continuation has some parallels to circulant embedding, proposed independently in [START_REF] Dietrich | Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix[END_REF] and [START_REF] Wood | Simulation of stationary Gaussian processes in [0, 1] d[END_REF] as an algebraic technique for evaluating a stationary Gaussian random field, given by k, at the points of a uniform grid. Here, the (block) Toeplitz matrix formed by the grid values of k is embedded into a (block) circulant matrix, enabling a factorization by fast Fourier transform. Although it was shown in [START_REF] Dembo | Embedding nonnegative definite Toeplitz matrices in nonnegative definite circulant matrices, with application to covariance estimation[END_REF] that a positive definite Toeplitz matrix can always be embedded into a sufficiently large positive definite circulant matrix, its required size depends on the particular k under consideration, similarly to the size of T in our construction. Under more restrictive assumptions on k, simple procedures produce an embedding into a matrix of size proportional to the original one [START_REF] Dietrich | Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix[END_REF]. This strategy has also been applied in the numerical treatment of lognormal diffusion problems by quasi-Monte Carlo (QMC) methods [START_REF] Graham | Quasi-Monte Carlo methods for for elliptic PDEs with random coefficients and applications[END_REF].

Also in the setting of sampling-based methods such as QMC, our results have several potentially advantageous features. They yield a periodically extended random field on all of D, rather than on a uniform spatial grid. Any further approximation (e.g. on unstructured finite element meshes) can thus be adjusted independently of the periodic extension and of a chosen expansion of the random field. Furthermore, the decay properties of the KL eigenvalues of the periodic process are directly controlled by the decay of the Fourier transform of k.

In the case of KL-type expansions, which are studied in §3, the functions ψ j that we obtain are simply the restrictions to D of trigonometric functions. This is an advantage in term of numerical simplicity compared to the L 2 (D)-orthogonal KL functions of b which may not be easy to compute accurately, and in addition may not satisfy uniform L ∞ bounds. Wavelet-type expansions are defined in §4, and we establish their localization and size properties. In the case of Matérn covariances, they correspond to the value α = ν in [START_REF] Elliott | A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields[END_REF], where ν is the smoothness parameter in [START_REF] Gittelson | Representation of Gaussian fields in series with independent coefficients[END_REF]. Therefore, corresponding best nterm Hermite approximations converge with algebraic rate n -s for any 0 < s < ν/d. Finally, in §5 details are given on numerical procedures which may be applied to define the periodic continuation and to construct the resulting wavelets, in the case of Matérn covariance, depending on the parameters λ, ν.

Periodic continuation of a stationary process

Let (b(x)) x∈R d be a real valued, stationary and centered Gaussian process defined on R d , whose covariance is thus of the form

E(b(x)b(x )) = k(x -x ), ( 20 
)
where k is a real valued and even function which is the inverse Fourier transform of a non-negative measure k. We work under the assumption that k is a function such that

0 ≤ k(ω) ≤ C(1 + |ω| 2 ) -r , ω ∈ R d , (21) 
for some r > d/2 and C > 0. Obviously, the Matérn covariances (17) satisfy this assumption with r = ν + d/2 and C depending on (d, λ, ν). We consider the restricted process (b(x)) x∈D defined on the bounded domain D of interest.

We aim for representations of the general form (2) where the y j are i.i.d. N (0, 1) and the (ψ j ) j≥1 are a given sequence of functions defined on D. As explained in the introduction, one natural choice is ψ j = λ j ϕ j , where (ϕ j , λ j ) are the eigenfunctions and eigenvalues of the covariance operator. However, this renormalized KL representation may not meet our requirements due to the possibly global support of the ψ j and due to the slow decay of their L ∞ norms, while other representations could be more appropriate.

Our strategy for deriving better representations of the process over D is to view it as the restriction to D of a periodic stationary Gaussian process b p defined on a suitable larger torus T. As a consequence, any representation

b p = j≥1 y j ψj , (22) 
with y j i.i.d. N (0, 1) and ( ψj ) j≥1 a given system of functions, yields a representation

b = j≥1 y j ψ j , ψ j := ψj | D . (23) 
The construction of b p requires additional assumptions on the covariance function k.

Let δ := diam(D), so that in a suitable coordinate system, D can be embedded into the box [-δ 2 , δ 2 ] d . We want to construct a periodic process (b p (x)) x∈T on a torus T = [-γ, γ] d with γ > δ, whose restriction on D agrees with b, that is, b p | D ∼ b. This is feasible provided that we can find an even and T-periodic function k p which agrees with k over [-δ, δ] d and such that the Fourier coefficients

c n (k p ) := T k p (z) e -i π γ n•z dz, n ∈ Z d , (24) 
are positive. In addition we would like that these Fourier coefficients have a similar rate of decay as the function k, that is,

0 ≤ c n (k p ) ≤ C(1 + |n| 2 ) -r , n ∈ Z d , (25) 
for some C > 0. Note that k p generally differs from the periodization n∈Z d k(• + 2γn), which corresponds to a periodic process that does not agree with b on D.

One natural way of constructing the function k p is by truncation and periodization: first we choose a sufficiently smooth and even cutoff function φ : R d → R, to be specified further, such that φ| [-δ,δ] d = 1 and φ(x) = 0 for x / ∈ [-κ, κ] d where κ := 2γ -δ, and define the truncation

k t (z) := k(z) φ(z). (26) 
We now define k p as the periodization of k t , that is,

k p (z) = n∈Z d k t (z + 2γn). ( 27 
)
Obviously, k p agrees with k over [-δ, δ] d , and

c n (k p ) = kt π γ n . (28) 
Therefore ( 25) follows if we can establish

0 ≤ kt (ω) ≤ C(1 + |ω| 2 ) -r , ω ∈ R d , (29) 
for some C > 0. Since we have kt = (2π

) -d k * φ, (30) 
it is easily seen that the upper inequality in (29) follows from the upper inequality in [START_REF] Hoang | N -term Galerkin Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs[END_REF], provided that φ is chosen sufficiently smooth such that

| φ(ω)| ≤ C(1 + |ω| 2 ) -r , (31) 
for some C > 0. Indeed, combining (30) with ( 21) and (31), we obtain

(2π) d | kt (ω)| ≤ |ξ|≤|ω|/2 k(ξ) φ(ω -ξ) dξ + |ξ|≥|ω|/2 k(ξ) φ(ω -ξ) dξ ≤ k L 1 max |ξ|≥|ω|/2 | φ(ξ)| + φ L 1 max |ξ|≥|ω|/2 | k(ξ)| ≤ C(1 + |ω| 2 ) -r . ( 32 
)
The main problem is to guarantee the lower inequality in (29), that is, the non-negativity of kt . Note that φ cannot be non-negative:

since 1 = φ(0) = (2π) -d R d φ(ω)dω, the non-negativity of φ would imply that |φ(x)| = (2π) -d R d φ(ω) e ix•ω dω < 1, x = 0, (33) 
therefore contradicting the assumption φ| [-δ,δ] d = 1. It follows that for any such φ, the convolution operator

v → v * φ, (34) 
does not preserve positivity for all functions v. Here, we are only interested in preserving positivity for the particular function k. However, the following result shows that this is in general not feasible only under the assumption (21).

Theorem 2.1. For any r > d/2, there exists an even function k that satisfies [START_REF] Hoang | N -term Galerkin Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs[END_REF] and such that for any

φ satisfying | φ(ω)| ≤ C(1+|ω| 2 ) -s for some s > r, φ| [-δ,δ] d = 1, φ(x) = 0 for x / ∈ [-κ, κ] d for some κ > δ, the function kt = (2π) -d k * φ is not non-negative.
Proof. Let h be a non-negative, smooth, even function on R d with h(0) = 1 and support contained in the unit ball. For ∈ N, we choose arbitrary but fixed ω ∈ R d such that |ω | = 2 . We now define k by its Fourier transform as

k(ω) := ≥1 2 -2r h (ω -ω ) + h (ω + ω ) . ( 35 
)
Then clearly, ( 21) is satisfied. As demonstrated above, there exists

ω * ∈ R d such that φ(ω * ) < 0. For > 1, consider kt (ω * + ω ) = (2π) -d R d φ(ω * -ξ) k(ξ + ω ) dξ = (2π) -d I 1 ( ) + I 2 ( ) , (36) 
where

I 1 ( ) := R d φ(ω * -ξ)2 -2r h( ξ) dξ = -d 2 -2r R d φ(ω * --1 ξ) h(ξ) dξ, I 2 ( ) := R d φ(ω * -ξ) k(ξ + ω ) -2 -2r h( ξ) dξ.
On the one hand, lim

→∞ d 2 2r I 1 ( ) = φ(ω * ) R d h(ξ) dξ < 0. ( 37 
)
On the other hand, k

∈ L 1 (R d ) and k(ξ + ω ) -2 -2r h( ξ) vanishes for |ξ| ≤ 2 -2 . As a consequence, |I 2 ( )| ≤ k L 1 (R d ) max |ξ|≥2 -2 | φ(ω * -ξ)|. ( 38 
)
For such that 2 -2 > 2|ω * |, we thus have

|I 2 ( )| ≤ C k L 1 (R d ) (1 + 2 2 -6 ) -s . ( 39 
)
Therefore lim

→∞ d 2 2r |I 2 ( )| = 0. ( 40 
)
As a consequence, kt (ω * + ω ) < 0 for sufficiently large .

The above counterexample reveals that further assumptions are needed on the covariance function k. Specifically, we work under the stronger assumptions

c(1 + |ω| 2 ) -s ≤ k(ω) ≤ C(1 + |ω| 2 ) -r , (41) 
for some s ≥ r > d/2 and 0 < c ≤ C, and lim

R→∞ |x|>R |∂ α k(x)| dx = 0, |α| ≤ 2 s . ( 42 
)
Remark 2.2. In the case of the Matérn covariance [START_REF] Gittelson | Stochastic Galerkin discretization of the log-normal isotropic diffusion problem[END_REF] with parameters ν, λ > 0, the assumption (41) holds with s = r = ν + d/2 as a consequence of [START_REF] Gittelson | Representation of Gaussian fields in series with independent coefficients[END_REF]. The assumption (42) actually holds for all derivation orders α, as a consequence of the exponential decay of the modified Bessel functions of the second kind K ν and of their derivatives. This exponential decay can be seen, for example, from the integral representation

K ν (x) = ∞ 0 e -x cosh t cosh νt dt, (43) 
see [26, p. 181]. (44)

We thus have, for all κ ≥ 2δ,

max |α|≤2p ∂ α φ κ L ∞ ≤ max |α|≤2p ∂ α φ 2δ L ∞ =: D < ∞. (45) 
Note that φ κ satisfies (31) with a constant C that depends on κ. For a value of κ to be fixed further, we take φ := φ κ , and let θ := 1 -φ. Then

kt (ω) = k(ω) -kθ(ω) ≥ c(1 + |ω| 2 ) -s -kθ(ω), (46) 
and

kθ(ω) ≤ (1 + |ω| 2 ) -p R d |(I -∆) p (kθ)| dx ≤ (1 + |ω| 2 ) -s R d |(I -∆) p (kθ)| dx. ( 47 
)
By repeated application of Leibniz' rule and separately bounding each term, one finds

R d |(I -∆) p (kθ)| dx ≤ C(κ) := (1 + 3d) p D max |α|≤2p |x|>κ/2 |∂ α k(x)| dx. ( 48 
)
Since lim κ→∞ C(κ) = 0 by (42), it follows that kt is non-negative for κ chosen large enough such that C(κ) ≤ c.

Karhunen-Loève representations

Let us recall that the standard Karhunen-Loève (KL) decomposition of the stationary Gaussian process b has the form (2) with

ψ j = ψ KL j := λ j ϕ j , (49) 
where (λ j ) j≥1 is the sequence of positive eigenvalues of the covariance operator

T : v → T v = D k(• -x) v(x) dx, (50) 
arranged in decreasing order, and (ϕ j ) j≥1 is the associated L 2 (D)-orthonormal basis of eigenfunctions.

Working under assumptions (41) and (42), the periodized construction described in the previous section provides us with an alternative decomposition based on the covariance operator associated to the periodized process b p , that is,

T p : v → T p v = T k p (• -x) v(x) dx, (51) 
with T = [-γ, γ] d . The L 2 (T)-orthonormal eigenfunctions of this operator are explicitly given by the trigonometric functions

θ n (z) := t n 1 (z 1 ) • • • t n d (z d ), n = (n 1 , . . . , n d ) ∈ N d 0 , (52) 
where t 0 (z) = (2γ) -1/2 and

t 2m (z) = γ -1/2 cos mπz γ and t 2m-1 (z) = γ -1/2 sin mπz γ , m ≥ 1. ( 53 
)
The eigenvalues are related to the Fourier coefficients c n (k p ) defined in [START_REF] Meyer | Wavelets and operators[END_REF]. For the above eigenfunction θ n , with each n i being either of the form 2m i or 2m i -1, the corresponding eigenvalue is

c m (k p ), m = (m 1 , . . . , m d ). ( 54 
)
We denote by (λ p,j ) j≥1 a decreasing rearrangement of these eigenvalues, with corresponding eigenfunctions (ϕ p,j ) j≥1 . We may thus write

b p = j≥1 y j ψ p,j , (55) 
where the y j are i.i.d. N (0, 1) and ψ p,j := λ p,j ϕ p,j .

Since b p ∼ b on D, this yields a decomposition of b by restriction, that is, taking

ψ j = ψ R j := λ p,j ϕ p,j | D . (57) 
Note that from ( 25) we obtain a decay estimate of the form

λ p,j ≤ Cj -2r d , j ≥ 1, (58) 
for some C > 0. One first observation is that a similar decay estimate holds for the original eigenvalues λ j .

Theorem 3.1. If the covariance function satisfies (41) and (42), then we have

λ j ≤ Cj -2r d , j ≥ 1, (59) 
for some C > 0.

Proof. We denote by

V n = span{ϕ 1 , . . . , ϕ n }, (60) 
the spaces generated by the Karhunen-Loève functions. These spaces satisfy the optimality property

j>n λ j = E b -P Vn b 2 L 2 (D) = min dim(V )=n E b -P V b 2 L 2 (D) , (61) 
where P V is the L 2 (D)-orthogonal projector. With V p,n := span{ϕ p,1 , . . . , ϕ p,n },

the spaces generated by the KL functions of b p , we denote by

W n := span{ϕ p,1 | D , . . . , ϕ p,n | D } (63) 
their restriction to D. We thus have

j>n λ j ≤ E b -P Wn b 2 L 2 (D) , (64) 
and since b and b p agree on D, it follows that

j>n λ j ≤ E b p -P Vp,n b p 2 L 2 (T) , (65) 
where P Vp,n is the L 2 (T)-orthogonal projector. Therefore

j>n λ j ≤ j>n λ p,j ≤ Cn 1-2r d , n ≥ 1, (66) 
where the second inequality follows from (58). Since the λ j are positive non-increasing, this implies the decay estimate (59).

Remark 3.2. In the case of the Matérn covariance, in view of ( 18), we therefore obtain (59) with the value r := ν +d/2. This estimate was derived in [START_REF] Graham | Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients[END_REF] by a different approach, using the theory developed by Widom for the eigenvalues of convolution-type operators. This theory makes the assumption that k is unimodal in each variable, see [27, p. 290], which holds for Matérn covariances, but is not needed in the above construction based on assumptions (41) and (42).

One interest of using the representation based on the functions ψ R j defined by restriction according to (57) is that the functions ϕ p,j are explicitly given by tensorized trigonometric functions. In particular, they are uniformly bounded. It follows that

ψ R j L ∞ ≤ Cλ 1/2 p,j , j ≥ 0, (67) 
and therefore, by (58

), ψ R j L ∞ ≤ Cj -r d , j ≥ 0. (68) 
In contrast, such uniform bounds for the L ∞ (D) norms are generally not available for the KL functions ϕ j , which are in addition not easily computable in the case of a general multivariate domain.

In the particular case of Matérn covariances, the L ∞ norms of these functions can be estimated by an argument introduced in [START_REF] Graham | Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients[END_REF], which uses their natural connections with Hilbertian Sobolev spaces. We briefly recall this argument. Fixing an s such that d 2 < s < r = ν + d/2, and assuming that the domain D satisfies the uniform cone condition, we may use Sobolev embedding to obtain

ϕ j L ∞ (D) ≤ C ϕ j H s (D) . (69) 
We then find by interpolation that

ϕ j L ∞ (D) ≤ C ϕ j 1-s/r L 2 (D) ϕ j s/r H r (D) = C ϕ j s/r H r (D) . (70) 
In order to estimate the H r (D) norms of the functions ϕ j , we use the following bound for the covariance operator T : for any v ∈ L 2 (D), denoting by w its extension by zero to R d , we have

T v 2 H r (D) = (k * w)| D 2 H r (D) ≤ k * w 2 H r (R d ) = R d (1 + |ω| 2 ) r | k(ω) ŵ(ω)| 2 dω ≤ C R d (1 + |ω| 2 ) -r | ŵ(ω)| 2 dω ≤ C R d k(ω)| ŵ(ω)| 2 dω = C k * w, w L 2 (R d ) ≤ C T v L 2 (D) v L 2 (D) ,
where we have used the characterization of Hilbertian Sobolev spaces by Fourier transforms and the particular form of the Matérn covariance. Taking v = ϕ j and using T ϕ j = λ j ϕ j , we thus obtain

ϕ j H r (D) ≤ Cλ -1/2 j . ( 71 
)
In summary we have obtained the non-uniform bound

ϕ j L ∞ (D) ≤ Cλ -s 2r j (72) 
and therefore, by (59),

ψ KL j L ∞ (D) ≤ Cj -r-s d . (73) 
In particular, we may take s = d 2 + ε for any sufficiently small ε > 0 to obtain

ψ KL j L ∞ (D) ≤ Cj -r d + 1 2 +ε . ( 74 
)
This needs to be compared with (58), which in the present case of the Matérn covariance

yields ψ R j L ∞ (D) ≤ Cj -r d , ( 75 
) since ϕ p,j L ∞ (D) ≤ 1.
Let us mention that in the particular univariate case d = 1, numerical experiment seem to indicate that ϕ j L ∞ (D) stays bounded independently of j, and therefore that the upper bound (72) is not always sharp. On the other hand, one can also exhibit examples of stationary processes such that the corresponding KL functions on the domain D are not uniformly bounded. Take for example the case

D = [-1, 1] and k such that k = χ [-F,F ]
for which the KL functions ϕ j coincide with the univariate prolate spheroidal functions introduced in [START_REF] Slepian | Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty -I[END_REF]. It is known that these functions are uniformly close to the Legendre polynomials L j as j → ∞, which shows that ϕ j L ∞ (D) ∼ j 1/2 , see [START_REF] Bonami | Uniform approximation and explicit estimates for the prolate spheroidal wave functions[END_REF].

In summary, we have obtained substantially better bounds on the decay of ψ R j L ∞ (D)

than available for ψ KL j L ∞ (D) , and in addition the ψ R j are easily computed numerically while this is generally not the case for the ψ KL j . However, (75) still leads to rather severe restrictions on the values of r for which Theorem 1.1 is applicable via Corollary 1.2, due to the global supports of the functions ψ R j . In the following section we consider an alternative wavelet-type construction for which Theorem 1.1, with Corollary 1.3, yields an approximation rate for corresponding solutions of u for any r > d 2 .

Wavelet representations

Our starting point is an L 2 (R)-orthonormal wavelet basis, that is a basis of the form

{ϕ(• -n)} n∈Z ∪ {2 /2 ψ(2 • -n)} ≥0,n∈Z (76) 
where ϕ and ψ the scaling function and mother wavelet, respectively. For simplicity we use the Meyer wavelets, whose construction is detailed in [START_REF] Daubechies | Ten lectures on wavelets[END_REF][START_REF] Meyer | Wavelets and operators[END_REF], and for which

supp( φ) = - 4π 3 , 4π 3 and supp( ψ) = - 8π 3 , - 2π 3 ∪ 2π 3 , 8π 3 . ( 77 
)
The functions φ and ψ may be chosen to be smooth, but for our purpose it will be enough to assume that they have M uniformly bounded derivatives with an integer M ≥ d + 1. Denoting ψ 0 := ϕ and ψ 1 := ψ, the multivariate scaling function and wavelets are defined by

Φ(x) := ϕ(x 1 ) • • • ϕ(x d ), Ψ ε (x) := ψ ε 1 (x 1 ) • • • ψ ε d (x d ), ε ∈ C, ( 78 
)
where

C := {0, 1} d \ {(0, . . . , 0)}. Then {Φ(• -n) : n ∈ Z d } ∪ {Ψ ε,n, : n ∈ Z d , ≥ 0, ε ∈ C}, (79) 
is an orthonormal basis of L 2 (R d ), where we have used the notation

Ψ ε,n, := 2 d /2 Ψ ε (2 • -n). (80) 
We obtain an orthonormal basis of L 2 (T), by rescaling and periodization. This basis consists of the constant scaling function

Φ p (x) := m∈Z d (2γ) -d/2 Φ (2γ) -1 x -m = (2γ) -d/2 , ( 81 
)
and the T-periodic wavelets

Ψ p ε, ,n (x) := m∈Z d (2γ) -d/2 Ψ ε,n, (2γ) -1 x -m , (82) 
for n ∈ {0, . . . , 2 -1} d , ≥ 0, ε ∈ C. From the Poisson summation formula, and the support properties of φ and ψ, it is easily seen that the above wavelets, at a given scale level , are finite linear combinations of the Fourier exponentials e n with n ∞ ≤ 2 +2 . In other words, they are trigonometric polynomials of degree at most 2 +2 in each variable. We now make the following general observation: let (g j ) j≥1 be any orthonormal basis of L 2 (T), with each basis function having the Fourier expansion

g j = (2γ) -d/2 n∈Z d c n (g j ) e n , (83) 
where e n (z) := (2γ

) -d/2 e i π γ n•z , n ∈ Z d . (84) 
Then, defining the functions (ḡ j ) j≥1 by ḡj := Sg j , where S is the filtering operator

v → Sv := (2γ) -d/2 n∈Z d c n (k p ) c n (v) e n , (85) 
we obtain a decomposition b p = j≥1 y j ḡj ,

where the y j are i.i.d. N (0, 1), and therefore b = j≥1 y j ḡj | D . We apply this procedure to the above described periodic wavelet basis, therefore obtaining new periodic functions

Φp = SΦ p and Ψp ε, ,n := SΨ p ε, ,n , (87) 
which are adapted to the decomposition of b p . By construction Φp is again a constant function with value (2γ) -d/2 c 0 (k p ), and the functions Ψp ε, ,n are trigonometric polynomials of degree at most 2 +2 in each variable. We next study in more detail the size and localization properties of these functions and show that they essentially behave like a wavelet basis with normalization 2 (d/2-r) in place of 2 d/2 . This geometric decay of the L ∞ norms, combined with the localization properties, will allow us to apply Theorem 1.1 and Corollary 1.3 for any value of r > d 2 . Note that since k p has been obtained by periodizing the truncated function k t = kφ, an equivalent construction of the functions Ψp ε, ,n is obtained by first defining over R d the rescaled and filtered wavelets Ψε, ,n according to

Ψε, ,n (ω) = k 1 2 t (ω) (2γ) d/2 Ψ ε, ,n (2γω), (88) 
and then applying T-periodisation, that is,

Ψp ε, ,n (x) = m∈Z d Ψε, ,n (x + 2γm). (89) 
We thus focus our attention on the size and localization properties of the functions Ψε, ,n . Note that these functions inherit from the wavelet basis the translation invariance structure, since, at any given scale level , the function Ψε, ,n are translates by 2γ2 -n of Ψε, ,0 . However, they do not inherit the dilation invariance structure, since the functions Ψε, ,0 are not obtained by a simple rescaling of Ψε,0,0 . We introduce rescaled functions

F ε, such that Ψε, ,0 (x) = 2 (d/2-r) F ε, (2 x), (90) 
that is, F ε, is defined by

F ε, (x) = 2 -(d/2-r) Ψε, ,0 (2 -x). ( 91 
)
Our objective is now to show that the functions F ε, satisfy a uniform localization estimate, independently of ε and .

For this purpose, we require some additional assumptions on the covariance function, namely that (41) holds with s = r, and that the partial derivatives of k satisfy improved decay estimates

|∂ α k(ω)| ≤ C(1 + |ω| 2 ) -(r+|α|/2) , |α| ≤ M, (92) 
for an M ≥ d + 1. It is easily seen that Matérn covariances satisfy such estimates, by straightforward differentiation of (18). Then φ in Theorem 2.3 can be chosen such that

|∂ α k 1 2 t (ω)| ≤ C(1 + |ω|) -(r+|α|) , 0 ≤ |α| ≤ M. (93) 
Proof. We proceed exactly as in the proof of Theorem 2.3 to obtain a family of functions

φ κ ∈ C 2p (R d ) for κ ≥ 2δ, supported on [-2δ, 2δ] d and such that φ 2δ | [-δ,δ] d = 1, and satisfying max |α|≤2p ∂ α φ κ L ∞ ≤ D < ∞ (94) 
for some D > 0, but here with p := r + M/2 . As in the proof of Theorem 2.3, we obtain that for φ := φ κ with κ sufficiently large, there exist c, C > 0 such that

c(1 + |ω| 2 ) -r ≤ kt (ω) ≤ C(1 + |ω| 2 ) -r . ( 95 
)
Note that φ obtained in this manner satisfies

| φ(ω)| ≤ C(1 + |ω| 2 ) -p . (96) 
Since kt = (2π) -d k * φ, we have

|∂ α kt (ω)| = (2π) -d |(∂ α k * φ)(ω)| ≤ C(1 + |ω| 2 ) -(r+|α|/2) , |α| ≤ M, (97) 
by the same argument used for the upper inequality in (29). We now turn to (93). For α = 0, this simply follows from (92) combined with

(1 + |ω| 2 ) ≤ (1 + |ω|) 2 . For α = 0 such that |α| ≤ M , we obtain by induction that

∂ α k 1 2 t
is of the form

∂ α k 1 2 t = |α| m=0 β 1 +•••+βm=α C β 1 ,...,βm k 1 2 -m t m =1 ∂ β kt ( 98 
)
for certain C β 1 ,...,βm ∈ R. Since for β 1 , . . . , β m such that

β 1 + • • • + β m = α, we have k 1 2 -m t (ω) m =1 ∂ β kt (ω) ≤ C(1 + |ω| 2 ) -r 2 +mr m =1 (1 + |ω| 2 ) -(r+|β |/2) , (99) 
and thus

k 1 2 -m t (ω) m =1 ∂ β kt (ω) ≤ C(1 + |ω|) -(r+|α|) , (100) 
we arrive at (93). 

|F ε, (x)| ≤ C(1 + |x|) -M , (101) 
for some C > 0 that is independent of and ε.

Proof. From its definition (91) we have

F ε, (ω) = 2 (d/2+r) Ψε, ,0 (2 ω), (102) 
and therefore by (88),

F ε, (ω) = (2γ) d/2 2 (d/2+r) k 1 2 t (2 ω) Ψ ε, ,0 (2γ2 ω) = (2γ) d/2 2 r k 1 2 t (2 ω) Ψ ε (2γω), (103) 
where we have used the scaling relation between Ψ ε, ,0 and Ψ ε . The functions F ε, are uniformly compactly supported since

|ω| ∞ ≥ 8π 6γ =⇒ Ψ ε (2γω) = 0. ( 104 
)
Applying partial differentiation for any α such that |α| ≤ M , and using the multivariate Leibniz formula, we find that

∂ α F ε, (ω) = (2γ) d/2 2 r β≤α α β 2 |β| ∂ β k 1 2 t (2 ω) (2γ) |α|-|β| ∂ α-β Ψ ε (2γω) . (105) 
The second factor (2γ) 

|2 |β| ∂ β k 1 2 t (2 ω)| ≤ C2 -r . (106) 
It follows that the derivatives ∂ α F ε, (ω) are uniformly bounded, independently of and ε, for all |α| ≤ M , which implies (101) since they are in addition uniformly compactly supported.

As we shall show next, Theorem 4.2 implies that Corollary 1.3 can be applied to the wavelet basis defined by (89), that is, with the basis in the corollary chosen as the scaling function Φp and the wavelets Ψp ε, ,n ordered by increasing scale level. Corollary 4.3. Under the assumptions of Theorem 4.2, for each ≥ 0 one has

sup x∈T ε∈C n∈{0,...,2 -1} d | Ψp ε, ,n (x)| ≤ C2 -α (107) 
with α := r -d 2 and C independent of . Proof. For the summation over n in (107), by ( 89) and (90) we obtain

n∈{0,...,2 -1} d | Ψp ε, ,n (x)| = 2 (d/2-r) m∈Z d n∈{0,...,2 -1} d |F ε, 2 x + 2γ(2 m -n) | = 2 (d/2-r) k∈Z d |F ε, (2 x + 2γk)|.
By Theorem 4.2,

k∈Z d |F ε, (2 x + 2γk)| ≤ C k∈Z d (1 + |2 x + 2γk|) -M ≤ C max z∈T k∈Z d (1 + |z + 2γk|) -M , (108) 
and the expression on the right is bounded since M ≥ d + 1.

Remark 4.4. In the estimate (107), the precise value of M enters only into the constant C. For numerical purposes, however, larger values of M corresponding to stronger spatial localization of the functions Ψp ε, ,n can be advantageous. Note that in the case of the Matérn covariance, if φ ∈ C ∞ , then Lemma 4.1 can be applied for any integer M ≥ d + 1. If in addition, we have φ, ψ ∈ C ∞ for the functions generating the Meyer wavelets, then Theorem 4.2 can be applied for any such M as well, and the resulting spatial decay of Ψp ε, ,n is faster than any polynomial order.

Numerical aspects

We now discuss in more concrete detail the periodic continuation and the resulting KL and wavelet representations in the case of the Matérn covariances [START_REF] Gittelson | Stochastic Galerkin discretization of the log-normal isotropic diffusion problem[END_REF]. In particular we discuss how these representations can be efficiently computed by using FFT and show some numerical examples which reveal the effect of the parameters λ and ν of the Matérn covariance. While these computational principles apply in any dimension, we work in the univariate setting, both for the sake of notational simplicity and for visualization purposes. Our computational domain is thus an interval -δ 2 , δ 2 for some δ > 0. Note however that varying the correlation length parameter λ in [START_REF] Gittelson | Stochastic Galerkin discretization of the log-normal isotropic diffusion problem[END_REF] amounts to rescaling the interval. Therefore we fix δ = 1, that is

D := - 1 2 , 1 2 , (109) 
and study the effect of varying λ.

Truncation and positivity

We need to first choose a φ satisfying the conditions in Theorem 2.3 such that k t = kφ has nonnegative Fourier transform. One option, which yields φ ∈ C ∞ (R), is based on the function θ defined by

θ(x) := exp(-x -1 ), x > 0, 0, x ≤ 0. (110) 
We then set

φ(x) := θ κ-|x| κ-δ θ κ-|x| κ-δ + θ |x|-δ κ-δ . (111) 
Recall that κ = 2γ -δ > δ. In view of Theorem 2.3, in order to ensure kt ≥ 0, it then suffices to take γ sufficiently large.

In order to illustrate the dependence of the required value of γ on the parameters ν, λ of the Matérn covariance, we now describe, for any chosen value of γ, a simple scheme for approximating kt based on the discrete Fourier transform. Let L > κ (so that supp k t ⊂ [-L, L]), and let N = 2 J for some J > 0. We consider the approximation of kt by the trapezoidal rule,

kt (ω) = L -L k t (x) e -iωx dx ≈ h N/2-1 n=-N/2 k t (x n )e -iωxn =: D L,N (ω), (112) 
where h := 2L/N and x n := nh. The sum on the right side can be evaluated by the FFT to obtain the values D L,N (ω k ) with

ω k := πk L , k = - N 2 , . . . , N 2 -1. (113) 
Thus, by making N and L large we may approximately compute kt on an arbitrarily large range of ω and with arbitrarily fine sampling rate. Since k t agrees on [-L, L] with its 2L-periodic extension, we have

k t (x n ) = ∈Z 1 2L L -L k t (y) e -πiy /L dy e πixn /L , (114) 
and consequently

D L,N (ω k ) = h N/2-1 n=-N/2 ∈Z 1 2L kt (ω ) e πixn /L e -πixnk/L = m∈Z kt (ω k+mN ). ( 115 
)
We thus have the error representation

| kt (ω k ) -D L,N (ω k )| = m∈Z m =0 kt (ω k+mN ) . (116) 
In view of ( 18) and (32), in our present setting we obtain

| kt (ω k ) -D L,N (ω k )| ≤ CN -(2ν+1) , k = - N 2 , . . . , N 2 -1, (117) 
where C > 0 is independent of L and N .

Based on this approximation, we can check positivity of the obtained approximate values D L,N (ω k ) for each γ and combine this with a simple bisection scheme to obtain an estimate of the minimum required value γ min for which kt remains non-negative on the chosen grid. As illustrated in Figure 1, we observe that γ min remains close to its lower bound δ = 1 for ν, λ < 1, and shows approximately bilinear growth for larger ν, λ. In other words, the continuation process requires a significantly larger domain as smoothness or correlation length increase. This also implies that the KL or wavelet frames of the RKHS obtained in §3 and §4 become more redundant as these parameters increase.

Matérn wavelets

The Meyer scaling function and wavelet can be defined by first taking φ to be a nonnegative function such that

| φ(ω)| 2 = β(ω), (118) 
where β(ω) is a smooth and even function supported in [-4π 3 , 4π 3 ], such that and

β(ω) = 1, ω ∈ - 2π 3 , 2π 3 , (119) 
β(π -ω) + β(π + ω) = 1, ω ∈ 0, π 3 . (120) 
Then, one defines ψ by

ψ(ω) := β(ω/2) -β(ω) 1/2 e iω/2 . (121) 
One simple example with explicit expressions of φ and ψ, following the construction given in [START_REF] Daubechies | Ten lectures on wavelets[END_REF], is 

φ(ω) :=        1 
where we take

ν(x) := θ(x) θ(x) + θ(1 -x) (124) 
with θ given by (110). From these we now construct the one-dimensional versions of Φ p and Ψ p described in §4. Recall that for the scaling function, Φ p = (2γ) -1/2 kt (0), which we can directly approximate using (112). For the wavelets, it suffices to consider Ψ p ε, ,0 for each wavelettype ε and scale level , since all further wavelets are obtained as translates of these functions. In the present univariate case, there is only a single wavelet type ε = 1, and we omit the corresponding subscript in what follows. 

We now choose L in (112) as L = 2γ, that is, ω k = πk 2γ . We assume that γ and N = 2 J , with J > 1, are sufficiently large to ensure D L,N (ω k ) ≥ 0 for the range of k in (113). This allows us to approximate the above expression by 

|Ψ p ,0 (x) -Ψp ,0 (x)| ≤ C2 -/2 min{N -ν+ 1 2 , 2 N -ν-1 2 } = C2 -νJ-1 2 |J-| , (131) 
where C > 0 depends on ν, λ, γ, but not on J or . The sum in (126) can be evaluated by FFT simultaneously for the 2 J-1 arguments at cost of order J2 J . In other words, if we prescribe a grid size h ∼ 2 -J , as a consequence of (131) we can determine the values of the wavelets at any level at the grid points up to an error of order h ν , using h -1 |log h| operations in total. Since the wavelets are trigonometric polynomials, their values between grid points can be approximated with similar order of accuracy by local polynomial interpolation of neighboring grid values.

x = 4γk N , k = - N 4 , . . . , N 4 -1, (132) 
As an illustration, we display in Figures 2 and3 the obtained wavelets at scales = 0, . . . , 5 for λ = 1 and (ν, γ) = (1/2, 3/2), (ν, γ) = (4, 5). Note that these wavelets behave asymptotically similarly to standard wavelets in terms of scale invariance. As expected the size decay in scale depends on ν. 
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 1 Figure1: Numerically observed minimum value of γ required for positivity of kt , with k as in[START_REF] Gittelson | Stochastic Galerkin discretization of the log-normal isotropic diffusion problem[END_REF], in dependence on the Matérn parameters λ, ν.
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 2 Figure 2: Wavelets Ψ p ,0 obtained with λ = 1, ν = 1 2 , and γ = 3 2 , for = 0, . . . , 5.
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 3 Figure 3: Wavelets Ψ p ,0 obtained with λ = 1, ν = 4, and γ = 5, for = 0, . . . , 5.
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