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DISCRETE LEAST SQUARES POLYNOMIAL APPROXIMATION

WITH RANDOM EVALUATIONS - APPLICATION TO PARAMETRIC

AND STOCHASTIC ELLIPTIC PDES

Abdellah Chkifa1, Albert Cohen2, Giovanni Migliorati3, Fabio

Nobile4 and Raul Tempone5

Abstract. Motivated by the numerical treatment of parametric and stochastic PDEs,

we analyze the least-squares method for polynomial approximation of multivariate func-

tions based on random sampling according to a given probability measure. Recent work

has shown that in the univariate case, the least-squares method is quasi-optimal in expec-

tation in [8] and in probability in [20], under suitable conditions that relate the number

of samples with respect to the dimension of the polynomial space. Here “quasi-optimal”

means that the accuracy of the least-squares approximation is comparable with that of

the best approximation in the given polynomial space. In this paper, we discuss the quasi-

optimality of the polynomial least-squares method in arbitrary dimension. Our analysis

applies to any arbitrary multivariate polynomial space (including tensor product, total

degree or hyperbolic crosses), under the minimal requirement that its associated index

set is downward closed. The optimality criterion only involves the relation between the

number of samples and the dimension of the polynomial space, independently of the

anisotropic shape and of the number of variables. We extend our results to the approx-

imation of Hilbert space-valued functions in order to apply them to the approximation

of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion

type” elliptic PDE models, and derive an exponential convergence estimate for the least-

squares method. Numerical results confirm our estimate, yet pointing out a gap between

the condition necessary to achieve optimality in the theory, and the condition that in

practice yields the optimal convergence rate.
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1. Introduction

In recent years, various strategies have been proposed for the numerical treatment of parametric

and stochastic partial differential equations

D(u, y) = 0, (1)

where u 7→ D(u, y) is a partial differential operator depending on a d-dimensional parameter vector

y := (y1, . . . , yd) ∈ Γ ⊂ Rd. (2)

Depending on the application, the parameter vector may be deterministic or stochastic. In the

latter case y is a random variable distributed over Γ according to a probability measure ρ. We

denote by (Γ,Σ, ρ) the corresponding probability space, where Σ is the Borel σ-algebra. In certain

applications one has to deal with a countable number of parameters y = (yj)j≥1 which means that

d = +∞.

Assuming well-posedness of the problem in some Banach space X, the solution map

y 7→ u(y), (3)

is defined from the parameter domain Γ to the solution space X. In both deterministic and

stochastic settings, the main challenge is to approximate the function y 7→ u(y) with a reasonable

cost. In the first setting, one typically searches for approximations that are uniformly accurate

over the parameter space Γ, which amounts in measuring the error in L∞(Γ, X). In the second

setting, one is typically interested in approximations that are accurate in a probabilistic sense,

such as in the least-squares sense which amounts in measuring the error in L2(Γ, X, ρ).

Polynomial approximation methods of the solution map have been studied for various types of

operators D corresponding to various PDEs. In such methods, the solution map is approximated

by polynomial maps of the form

uΛ(y) =
∑
ν∈Λ

uνy
ν , (4)

where Λ ⊂ F is a finite set of (multi-)indices. The set of multi-indices F coincides with Nd0 where

N0 = {0, 1, 2, . . . } in the case d < +∞ and denote the countable set of all finitely supported

sequences ν = (ν1, ν2, . . . , 0, 0, . . . ) ∈ NN
0 in the case d = +∞. Also, in both cases, the polynomials

y 7→ yν are defined by

yν :=

d∏
j=1

y
νj
j , (5)

with the convention 00 = 1. Note that the coefficients uν belong to the Banach space X and

therefore the construction of uΛ requires in principle the computation of #(Λ) such functions. The

functions uΛ are thus selected in XΛ := X ⊗ PΛ, where

PΛ := Span
{
yν : ν ∈ Λ

}
(6)
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denotes the polynomial space associated with the index set Λ and with coefficients in R. Through-

out this paper, we only work with index sets Λ that have the following natural property.

Definition 1. The index set Λ ⊂ F is downward closed if

ν ∈ Λ and ν′ ≤ ν ⇒ ν′ ∈ Λ, (7)

where ν′ ≤ ν means that ν′j ≤ νj for all j ≥ 1.

Following a more concise and established terminology in the literature, we will also denote by

lower set a downward closed set. Note that a lower set always contains the null index

0F := (0, 0, . . . ). (8)

Considering only polynomial spaces PΛ associated with such sets is very natural. In particular, the

downward closedness property of the set Λ allows us to replace the monomials yν in the definition

of the spaces PΛ by any other tensorized basis of the form Pν(y) =
∏
j≥1 Pνj (yj) where (Pk)k≥0 is

a sequence of univariate polynomials such that P0 = 1 and Pk has degree exactly equal to k, for

example the Legendre polynomials. Polynomial spaces associated with lower index sets have been

introduced in [16] in dimension d = 2 and in [17] and [13] in higher dimension.

Polynomial approximation is well known to be effective when the solution map has some smooth-

ness. In certain instances, it can even provably break the curse of dimensionality, in the sense that

an algebraic convergence rate with respect to #(Λ) can be established even for functions of count-

ably many parameters d = +∞. Such results are proven in [5, 9, 10] for the model parametric

elliptic equation

− div(a∇u) = f in D ⊂ Rq, u = 0 on ∂D, (9)

where D ⊂ Rq is a Lipschitz domain, f ∈ H−1(D), and the diffusion coefficient has the form

a(x, y) := ā(x) +
∑
j≥1

yjψj(x), (10)

with the functions ψj and ā in L∞(D), and y ∈ Γ := [−1, 1]N. Assuming the uniform ellipticity

assumption

0 < r ≤ a(x, y) ≤ R < +∞, x ∈ D, y ∈ Γ, (11)

the solution map is well defined from Γ to the Hilbert space X := H1
0 (D). Then, it is proved in [5]

that if (‖ψj‖L∞)j≥1 ∈ `p(N) for some 0 < p < 1, there exists a sequence of lower sets

Λ1 ⊂ Λ2 ⊂ · · · ⊂ F , #(Λm) = m, (12)

such that

inf
v∈XΛm

‖u− v‖L∞(Γ,X) ≤ Cm−s, s :=
1

p
− 1 > 0. (13)

Similar results with a slightly improved convergence rate are obtained in [7,9,10] for the L2(Γ, X, ρ)

norm, where ρ denotes the uniform probability measure: under the same assumptions there exists

a sequence of lower sets such that

inf
v∈XΛm

‖u− v‖L2(Γ,X,ρ) ≤ Cm−s, s :=
1

p
− 1

2
> 0. (14)

These general convergence results are extended in [6] to other models than (9).
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The construction of sequences of sets (Λm)m≥1 which achieve the convergence rates (13) or

(14), and therefore of the polynomial spaces PΛm , is critical in the design of algorithms for high-

dimensional approximation. Sequences of quasi-optimal sets giving such rates, with possibly a

suboptimal constant C > 0 can either be derived from a-priori estimates in [3, 6, 7, 9, 10] or by an

adaptive search [5,6,14]. The resulting spaces PΛm typically differ from the standard multivariate

polynomial spaces Pk of fixed total degree.

Given a finite index set Λ, several strategies can be used to compute uΛ ∈ XΛ:

(1) Taylor expansions [5] can be recursively computed in the case of problems with affine

parameter dependence such as (9). Adaptive methods based on such expansions have been

proved to converge uniformly with the same rate as in (13).

(2) Projection methods [2,3,9,14] produce quasi-optimal approximations in XΛ for the metric

L2(Γ, X, ρ) where ρ is a chosen measure in the parameter space. In addition, in the Galerkin

framework, it is possible to use techniques of a-posteriori analysis in order to adaptively

build the sequence of index sets (Λm)m≥1. This approach was developed in [14] for the

problem (9), and proved to converge with the same rate as in (14).

(3) Collocation methods [1,3,6,20,23,24] produce a polynomial approximation in XΛ based on

the data of particular solution instances ui := u(yi) for some chosen values yi ∈ Γ of the

parameter vector with i = 1, . . . , n. One significant advantage of this approach is that it is

non intrusive: the ui can be computed by any given numerical solver for the problem (1)

and the polynomial approximation is built from these solutions by numerical techniques

similar to those employed for scalar-valued maps such as interpolation or least-squares

regression.

The convergence analysis of collocation methods is less satisfactory in the sense that conver-

gence rates similar to (13) and (14) do not seem to have been established for such methods. This

is in part due to the difficulty to control the stability of interpolation or least-squares projection

for general multivariate polynomial spaces. For interpolation methods, several results have been

recently established in [6] showing that the convergence rate in (13) can be achieved if the interpo-

lation points are carefully selected. Least-squares methods have been recently analyzed in [8, 20]

in the stochastic setting, assuming that the samples yi are independent realizations of the random

variable y, therefore identically distributed according to ρ. This analysis reveals that in the uni-

variate case Γ = [−1, 1] and for the uniform distribution, the least-squares method is stable with

high probability under the condition that the number of samples n scales quadratically (up to a

logarithmic factor) with respect to the dimension m of the polynomial space Pm−1. By “stable”,

one means that the L2(Γ, ρ) of the least squares projection is bounded up to a fixed multiplicative

constant by the `2 norm of the discrete observations. This analysis also shows that the least squares

method produces quasi-optimal approximations in the L2(Γ, ρ) norm, either with high probability

or in expectation.

The objective of this paper is to address the problem of the stability and convergence of the

multivariate polynomial least-squares method in the general context of the spaces XΛ associated

with arbitrary lower sets. The extension of the stability results given in [8, 20] to the multivariate

case is not straightforward. One of our main results shows that the polynomial least-squares

method with Γ = [−1, 1]d is stable for any lower set Λ and arbitrary dimension d, in the case

of the uniform measure, under the same condition as in the univariate case. Namely, assuming

that n scales quadratically (up to a logarithmic factor) with respect to the dimension #(Λ) of the

polynomial space, the least-square method is stable with probability at least 1− 2n−r where r > 0
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can be taken arbitrarily large. We have also extended this result to more general measures from

the beta family. The strength of this result is that the stability condition depends only on the

cardinality of the set (provided it is downward closed) and not on its “shape”. This allows us to

establish effective quasi-optimal approximation results, even in infinite dimension, using suitable

sequences of anisotropic lower sets.

The outline of the paper is as follows. We begin in §2 by discussing the least-squares method for

real-valued functions in a general framework not limited to polynomials, recalling recent stability

and approximation results established in [8], and introducing some variants for the case of noisy

data. In §3 we focus on the particular framework of the multivariate polynomial spaces PΛ and

derive our stability and convergence results with Γ = [−1, 1]d for any lower set Λ and arbitrary

dimension d. Then in §4, we show how a similar analysis applies to X-valued functions, where X

is a Hilbert space, and therefore to the exact or discretized solutions of parametric and stochastic

PDEs. As a relevant example, the equation (9) with random inclusions in the diffusion coefficient

is discussed in §5, and numerical illustration for this example are given in §6.

2. Discrete least-squares approximations

Let (Γ,Σ, ρ) be a probability space. We denote by L2(Γ, ρ) the Hilbert space of real-valued

square integrable functions with respect to ρ and denote by 〈·, ·〉 and ‖ · ‖ the associated inner

product and norm, i.e.

〈v, w〉 :=

∫
Γ

v(y)w(y)dρ(y), ‖v‖ :=
√
〈v, v〉, v, w ∈ L2(Γ, ρ). (15)

We consider Vm a finite dimensional subspace of L2(Γ, ρ) with dim(Vm) = m. We assume that

the functions belonging to Vm are defined everywhere over Γ. We let BL := (Lj)1≤j≤m be any

orthonormal basis of Vm with respect to the above inner product. The best approximation of a

function u ∈ L2(Γ, ρ) in the least-squares sense is given by

Pmu =

m∑
j=1

cjLj , cj = 〈u, Lj〉, (16)

and its best approximation error by

em(u) := inf
v∈Vm

‖u− v‖ = ‖u− Pmu‖. (17)

If u is unknown and if (zi)i=1,··· ,n are noiseless or noisy observations of u at the points (yi)i=1,··· ,n

where the yi are i.i.d. random variables distributed according to ρ, we introduce the discrete

least-squares approximation

w := argmin
v∈Vm

n∑
i=1

|zi − v(yi)|2. (18)

More precisely, the observation model is

zi = u(yi) + ηi, i = 1, . . . ,m, (19)

where yi are i.i.d. random variable distributed according to ρ and where ηi represents the noise.

Several scenarii may be considered for modeling the noise:
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(1) Noiseless model: one has ηi = 0.

(2) Stochastic noise model: ηi are centered i.i.d. random variables, with uniformly bounded

variance

sup
y∈Γ

E(|η|2|y) <∞. (20)

(3) Deterministic noise model: ηi = η(yi) where η is a uniformly bounded function on Γ with

‖η‖L∞(Γ) <∞ (21)

In the framework of parametric PDE’s, the observation noise represents the discretization error

between the exact solution u(y) and the solution computed by deterministic numerical solver,

which is a function of y. The deterministic noise model is thererefore the appropriate one, with

‖η‖L∞(Γ) representing a uniform bound on the discretization error guaranteed by the numerical

solver.

This minimization problem always has a solution, which may not be unique. In particular, it is

never unique in the regime m > n. In the following, we only consider the regime m ≤ n. In the

noiseless case, zi = u(yi), the solution may be viewed as the orthogonal projection of u onto Vm
with respect to the inner product 〈·, ·〉n associated with the empirical semi-norm

‖v‖n =
( 1

n

n∑
i=1

|v(yi)|2
) 1

2

. (22)

In this case, we denote the solution w of the problem (18) by Pnmu. The projection Pnmu depends

on the sample (yj)1≤j≤n, so that Pnm is a “random” least-squares projector. In both the noisy and

noiseless case, the coordinate vector w ∈ Rm of w in the basis BL is the solution to the system

Gw = Jz, (23)

where G and J are the m×m and m× n matrices given by

Gij := 〈Li, Lj〉n, and Jij :=
Li(y

j)

n
(24)

and z ∈ Rn is the vector of coordinates zj . Note that

nJJt = G. (25)

When G is not singular, then the solution w of (18) is given by

w =

n∑
j=1

zjπj . (26)

where Bπ := {π1, . . . , πn} are the elements of Vm given by

Bπ =
(
G−1J

)t BL, (27)

with the product matrix-basis to be understood in the obvious sense. In the case where G is

singular, we set by convention w := 0.
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If u satisfies a uniform bound |u(y)| ≤ b over Γ, where b > 0 is known, we introduce the

truncated least-squares approximation

w̃ = Tb(w), Tb(t) := sign(t) min{b, |t|}, (28)

which we also denote by P̃nmu in the noiseless case.

The analysis in [8, 20] investigates the minimal amount of sampling n(m) ≥ m that allows an

accurate approximation of the unknown function u by the random approximations w or w̃. The

accuracy here is to be understood in the sense of a comparison between the error ‖u − w‖ and

the best approximation error em(u). This analysis is based on probabilistic estimates comparing

the norm ‖ · ‖ and its empirical counterpart ‖ · ‖n uniformly over the space Vm. This comparison

amounts in estimating the deviation of the random matrix G from its expectation E(G) = I, where

I is the m×m identity matrix, since for v ∈ Vm and v the vector representing v in the basis BL,

one has

‖v‖2n = vTGv and ‖v‖2 = vT Iv, (29)

so that, for any 0 < δ < 1,

|||G− I||| ≤ δ ⇔ |‖v‖2n − ‖v‖2| ≤ δ‖v‖2, v ∈ Vm, (30)

where ||| · ||| denotes the spectral norm of a matrix. For this purpose, one introduces the quantity

K(Vm) := sup
y∈Γ

m∑
j=1

|Lj(y)|2. (31)

One can easily check, using Cauchy-Schwarz inequality, that

K(Vm) = sup
v∈Vm,‖v‖=1

‖v‖2L∞(Γ), (32)

from which we deduce that K(Vm) does not depend on the choice of the orthonormal basis BL and

only depends on Vm and ρ. The quantity K(Vm) is also a uniform bound on the Froebenius norm

of the random matrix R = (Lj(y)Lk(y))j,k=1,...,m and therefore allows to bound the deviation of

G which is its empirical average from its expectation I, based on concentration inequalities for

matrix valued random variables.

One main result in [8] is that for any r > 0 and the number of samples n large enough such that

n

lnn
≥ K(Vm)

κ
, (33)

where κ := ζ
1+r with ζ :=

1− ln 2

2
≈ 0.15, the deviation between G and I satisfies the probabilistic

estimate

Pr
{
|||G− I||| > 1

2

}
≤ 2n−r. (34)

This estimate implies that with probability at least 1 − 2n−r the least square problem is stable:

indeed, with at least this probability, one has one has

|||G−1||| ≤ 2 and |||G||| ≤ 3

2
, (35)
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and therefore, according to (25)

|||J ||| ≤
√

3

2
n−1/2. (36)

Therefore it follows from (23) that

‖w‖2L2 ≤ 6
( 1

n

n∑
j=1

|zj |2
)
, (37)

also meaning, in the noiseless case, that

‖Pnmu‖2L2 ≤ 6‖u‖2n. (38)

Using this result, the following quasi-optimality results are proved in [8] for the truncated least-

square approximation

• In the noiseless model, if u satisfies a uniform bound b over Γ, then

E(‖u− P̃nmu‖2) ≤ (1 + ε(n))em(u)2 + 8b2n−r, (39)

where ε(n) := 4κ
ln(n) .

• In the stochastic noise model, if u satisfies a uniform bound b over Γ, then

E(‖u− w̃‖2) ≤ (1 + 2ε(n))em(u)2 + 8
(
b2n−r + σ2m

n

)
, (40)

where σ2 := maxy∈Γ E(|η|2|y) is the noise level.

The deterministic noise model is not treated in [8]. As already mention, this model relevant to

describe the discretization error, and we therefore provide with an analogous result in this case.

Theorem 1. For any r > 0, if n satisfies condition (33), and u satisfies a uniform bound b over

Γ, then under the deterministic noise model

E(‖u− w̃‖2) ≤ (1 + 2ε(n))em(u)2 + (8 + 2ε(n))‖η‖2 + 8b2n−r. (41)

If η = 0, corresponding to the noiseless model, the factor 2 in from of ε(n) can be removed.

Proof: It is quite similar to that of [8, Theorem 3], and so we sketch it. Introducing the event

Ωn+ := {|||G− I||| ≤ 1
2} for which Pr(Ωn+) ≥ 1− 2n−r by (34), we have

E(‖u− w̃‖2) ≤
∫

Ωn+

‖u− w̃‖2dρn + 8b2n−r ≤
∫

Ωn+

‖u− w‖2dρn + 8b2n−r. (42)

In the event Ωn+ we have

‖u− w‖2 = ‖u− Pmu+ Pnm(u− Pmu) + Pnmu− w‖2

= ‖u− Pmu‖2 + ‖Pnm(u− Pmu) + Pnmu− w‖2

≤ em(u)2 + 2‖Pnmh‖2 + 2‖Pnmη‖2,

(43)

where h := u− Pmu and η is the noise function. It follows that

E(‖u− w̃‖2) ≤ em(u)2 + 2E(‖Pnmh‖2 + ‖Pnmη‖2) + 8b2n−r. (44)
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In the noiseless model, we have η = 0 and the same computation thus leads to

E(‖u− w̃‖2) ≤ em(u)2 + E(‖Pnmh‖2) + 8b2n−r. (45)

Now for any function g, we may write with g = (g(yj))tj=1,...,n,

E(‖Pnmg‖2) ≤ 8E(‖Jg‖2`2) = 8E

 m∑
k=1

 1

n

n∑
j=1

g(yj)Lk(yj)

2


= 8

m∑
k=1

1

n2

 n∑
i=1

E(g(yj)2Lk(yi)2) +
∑
j 6=i

E(g(yi)g(yj)Lk(yi)Lk(yj)


= 8

m∑
k=1

1

n2

(
nE(g(y)2Lk(y)2) + n(n− 1)E(g(y)Lk(y))2

)
.

(46)

In the case g = h = u − Pmu, the second term is null since E(g(y)Lk(y)) =
∫

Γ
g(y)Lk(y)dρ, and

we this find that

E(‖Pnmh‖2) ≤ 8
K(Vm)

n
‖h‖2 ≤ 2ε(n)em(u)2. (47)

In the case g = η, we find

E(‖Pnmη‖2) ≤ 8
(K(Vm)

n
+ 1− 1

n

)
‖η‖2 ≤ (8 + 2ε(n))‖η‖2. (48)

We conclude the proof by combining these estimates.

It is also desirable to estimate the error between u and its estimator in probability rather than

in expectation. In the following we give such an estimate, in the noisless case and for the non-

truncated estimator w = Pnmu, however using the best approximation error in the uniform norm

em(u)∞ := inf
v∈Vm

‖u− v‖L∞(Γ), (49)

which is obviously larger than em(u). A similar result was already proven in [20] in the particular

case of discrete least squares on polynomial spaces, and for the noiseless model. Here, we treat the

more general deterministic noise model.

Theorem 2. For any r > 0, under condition (33), one has under the deterministic noise model,

Pr
(
‖u− w‖ ≥ (1 +

√
2)em(u)∞ + 2

√
3‖η‖L∞(Γ)

)
≤ 2n−r. (50)

Proof: As in the proof of Theorem 1, we use the event Ωn+ := {|||G − I||| ≤ 1
2}, which satisfies

Pr(Ωn+) ≥ 1− 2n−r. Given any draw in Ωn+, we have for any v ∈ Vm

‖u− w‖ ≤ ‖u− v‖+ ‖v − Pnmu‖+ ‖Pnmη‖ ≤ ‖u− v‖+
√

2‖v − Pnmu‖n + 2
√

3‖η‖n, (51)

where we have used (30) and (38). Since ‖u− v‖2n = ‖u− Pnmu‖2n + ‖Pnmu− v‖2n, we deduce

‖u− Pnmu‖ ≤ ‖u− v‖+
√

2‖u− v‖n + 2
√

3‖η‖n ≤ (1 +
√

2)‖u− v‖∞ + 2
√

3‖η‖L∞(Γ),
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which completes the proof.

All these above results lead to the problem of understanding which minimal amount n of sample

ensures the validity of condition (33). In the one-dimensional case d = 1, with Vm = Pm−1

and ρ being the uniform measure over Γ = [−1, 1], elementary computations using the Legendre

polynomials show that K(Vm) = m2 and therefore (33) holds for n
lnn ∼ m2, meaning that n

scales like m2 up to a logarithmic factor. This relation between n and m was also used in [20]

to establish (34) and (50) by arguments which are more tied to the use of univariate polynomials

and the uniform measure. The next section discusses the implications of condition (33) for the

multivariate polynomial spaces PΛ.

3. Least-squares approximation with multivariate polynomials

In this section, we investigate the implications of the condition (33) in the setting of multivariate

polynomial spaces PΛ. We consider the domain Γ := [−1, 1]d with d ∈ N and the uniform measure

ρ over Γ, i.e.

dρ := ⊗dj=1

dyj
2
. (52)

We may also consider the case Γ := [−1, 1]N for which d = +∞ and ρ is the uniform measure

defined over Γ in the usual manner.

We use the notations L2(Γ, ρ), 〈·, ·〉 and ‖ · ‖ of the previous section and denote F the set of

multi-indices in the cases d < +∞ and d = +∞ as explained in the introduction. Given Λ a finite

subset of F , u an unknown real valued function, and (zi)i=1,...,n noiseless or noisy observations of

u at the points (yi)i=1,...,n where the yi are i.i.d. random variables distributed according to ρ, we

introduce the polynomial discrete least-squares approximation

wΛ := argmin
v∈PΛ

n∑
i=1

|zi − v(yi)|2, (53)

where the polynomial space PΛ is defined as in (6). In order to study the optimality of the least-

squares approximation, we need to investigate the growth of the quantity K(Vm) introduced in

(32) with Vm = PΛ. We shall show that, under the minimal requirement that the index set Λ is

downward closed, we have as in the one-dimensional case that K(PΛ) ≤ (#Λ)2.

We introduce (Lk)k≥0 the univariate Legendre polynomials normalized according to∫ 1

−1

|Lk(t)|2 dt
2

= 1, (54)

and introduce (Lν)ν∈F the multivariate Legendre polynomials defined by

Lν(y) :=

d∏
j=1

Lνj (yj). (55)

The family (Lν)ν∈F is an orthonormal basis of the space L2(Γ, ρ). Using the remarks on lower sets

given in the introduction, one has that (Lν)ν∈Λ is an orthonormal basis of PΛ if the index set Λ is

downward closed. Therefore, the multivariate extension of (31) reads

KL(PΛ) := sup
y∈Γ

∑
ν∈Λ

|Lν(y)|2 =
∑
ν∈Λ

‖Lν‖2L∞(Γ), (56)
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with the latter equality being valid since all the Legendre polynomials achieve their maximum on

the boundary of Γ. Here, we use the subscript “L” to refer to the use of the uniform measure and

therefore of mutivariate Legendre polynomials. To lighten the notation, in the following we have

shortened KL(PΛ) to KL(Λ). Since the univariate Legendre polynomials satisfy ‖Lk‖L∞([−1,1]) =√
2k + 1, then

KL(Λ) =
∑
ν∈Λ

∏
j

(2νj + 1) (57)

Theses quantities have already been studied in [6] and proved to have moderate growth for finite

lower sets. To keep our document self contained, we recall the result of [6] with its proof in the

case d = +∞. The case d < +∞ is a straightforward consequence.

Lemma 1. For any finite lower set Λ ⊂ F , the quantity KL(Λ) satisfies

#(Λ) ≤ KL(Λ) ≤ (#(Λ))2. (58)

Proof: The first inequality is obvious. To prove the second inequality, we use induction on

nΛ := #(Λ) ≥ 1. When nΛ = 1, then Λ = {0F} and an equality holds. Let n ≥ 1 and let Λ denote

a lower set with nΛ = n + 1. Without loss of generality, we suppose that ν1 6= 0 for some ν ∈ Λ.

We introduce the index sets

Λk :=

{
ν̂ ∈ F : (k, ν̂) ∈ Λ

}
, k ≥ 0. (59)

Here (k, ν̂) denote the multi-index (k, ν̂1, ν̂2, · · · ). Since Λ is downward closed and finite, then it is

easy to check that the sets Λk are finite, downward closed (when not empty) and satisfy

· · · ⊂ Λk ⊂ · · · ⊂ Λ1 ⊂ Λ0. (60)

Let us also remark that there exists J ≥ 0 such that Λk = ∅ for any k > J and that #(Λ0) ≤
nΛ − 1 = n since ν1 6= 0 for some ν ∈ Λ. Therefore the induction hypothesis applied to the sets

Λk, implies

KL(Λ) =

J∑
k=0

(2k + 1)KL(Λk) ≤
J∑
k=0

(2k + 1)(#(Λk))2 . (61)

Now, by the nestedness of the sets Λk, we have

k(#(Λk))2 ≤ #(Λk)#(Λ0) + ...+ #(Λk)#(Λk−1), 1 ≤ k ≤ J. (62)

Therefore

KL(Λ) ≤
J∑
k=0

(#(Λk))2 + 2

J∑
k=1

k−1∑
k′=0

#(Λk)#(Λk′) =
( J∑
k=0

#(Λk)
)2

. (63)

Since #(Λ) =
∑J
k=0 #(Λk), we conclude the proof.

The previous bound is valid for any lower set independently of its shape. In addition, the

inequality is sharp, in the sense that the equality holds for certain types of lower sets. Indeed,

given ν ∈ F supported in {1, · · · , J} and considering the rectangle index set

Rν := {µ ∈ F : µ ≤ ν}, (64)
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one has

KL(Rν) =
∑
µ≤ν

∏
1≤j≤J

(2µj + 1) =
∏

1≤j≤J

∑
µj≤νj

(2µj + 1) =
∏

1≤j≤J

(νj + 1)2 = (#(Rν))2. (65)

However, we expect this bound to be pessimistic for lower sets that have shapes very different from

rectangles. For instance, let k ≥ 1 and consider the lower set

Sk,d := {ν ∈ Nd0 : |ν| ≤ k}, (66)

where |ν| :=
∑d
j=1 νj , associated with the polynomial space PSk,d of total degree (TD) k in dimen-

sion d.

By the inequality between the arithmetic and geometric means, one has for any ν ∈ Sk,d

∏
1≤j≤d

(2νj + 1) ≤
(1

d

∑
1≤j≤d

(2νj + 1)
)d

=
(2|ν|
d

+ 1
)d
≤
(2k

d
+ 1
)d
. (67)

Therefore (see also [18, Chapter 2 and Chapter 3])

KL(Sk,d) ≤
(2k

d
+ 1
)d

#(Sk,d), (68)

and
(

2k
d + 1

)d
is very small compared to #(Sk,d) =

(
d+k
k

)
for large values of d. On Figure 1, we

provide a comparison between #(Sk,d), KL(Sk,d) and (#(Sk,d))
2 for various dimensions.
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Figure 1. Comparison between #(Λ), KL(Λ) and (#(Λ))2 in the case where

Λ = Sk,d (see (66)). Left: d = 2. Center: d = 4. Right: d = 8.
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It is interesting to see if the estimates on the quantity K(PΛ) can be improved when using other

standard probability measures over Γ. In what follows, we study this quantity when the measure

ρ is the tensorized Chebyshev measure, i.e.

dρ := ⊗dj=1%(yj)dyj , with %(t) :=
1

π

1√
1− t2

. (69)

Using in this case the notation KT (Λ) = K(PΛ), we have

KT (Λ) :=
∥∥∥∑
ν∈Λ

|Tν |2
∥∥∥
L∞(Γ)

=
∑
ν∈Λ

‖Tν‖2L∞(Γ), (70)

where Tν(y) =
∏
j≥1 Tνj (yj) is the tensorization of the Chebyshev polynomials (Tk)k≥0 normalized

according to ∫ 1

−1

|Tk(t)|2%(t)dt = 1. (71)

It is easily checked that these polynomials are related to the classical Chebyshev polynomials of

the first kind by Tk(cos θ) =
√

2 cos(kθ) for any k ≥ 1 and T0 = 1. It follows that

KT (Λ) =
∑
ν∈Λ

2#(supp(ν)) (72)

where supp(ν) := {1 ≤ j ≤ d : νj 6= 0} is the support of ν ∈ F . Given ν in Λ, with Λ being a

lower set, the multi-index µ that has the same support as ν and has entries 1 satisfies µ ≤ ν, so

that µ ∈ Λ and Rµ ⊂ Λ. This implies that 2#(supp(ν)) = #(Rµ) ≤ #(Λ). Therefore we obtain

KT (Λ) ≤ (#(Λ))2, (73)

which is the same bound as for the uniform measure.

Sharper bounds can be established by a finer analysis. We first prove an elementary lemma.

Proposition 1. For any real positive numbers a0 ≥ a1 ≥ ... ≥ ak and any α ≥ ln 3
ln 2 , one has

aα0 + 2(aα1 + . . .+ aαk ) ≤ (a0 + . . .+ ak)α. (74)

Proof: We use induction on k. For k = 0, equality holds in (74). For k = 1, since the function

x 7→ (x + a1)α − xα is increasing in [a1,+∞[ then its value at a0 is greater than its value at a1,

that is

2aα1 ≤ (2α − 1)aα1 ≤ (a0 + a1)α − aα0 (75)

where we have used 2α > 3. Now let k ≥ 1 and a0 ≥ a1 ≥ ... ≥ ak+1 be real positive numbers. By

the induction hypothesis at steps 1 and k, we infer

(a0 + ...+ ak+1)α =
(

(a0 + ...+ ak) + ak+1

)α
≥ (a0 + ...+ ak)α + 2aαk+1

≥ aα0 + 2(aα1 ...+ aαk ) + 2aαk+1

= aα0 + 2(aα1 ...+ aαk+1).

(76)

The proof is then complete.
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Lemma 2. For any lower set Λ ⊂ F , the quantity KT (Λ) satisfies

KT (Λ) ≤ (#(Λ))β , with β =
ln 3

ln 2
. (77)

Proof: We use induction on nΛ := #(Λ). When nΛ = 1, then Λ = {0F} and an equality holds.

Let n ≥ 1 and Λ denote a lower set with nΛ = n+ 1. Without loss of generality, we suppose that

ν1 6= 0 for some ν ∈ Λ. Defining J ≥ 0 and the sets Λk as in the proof of Lemma 1 and using the

induction hypothesis with these sets, we obtain

KT (Λ) =

J∑
k=0

γ(k)KT (Λk) ≤
J∑
k=0

γ(k)(#(Λk))
ln 3
ln 2 , (78)

where γ is defined by γ(0) = 1 and γ(k) = 2 for k ≥ 1. Using (74), we infer

KT (Λ) ≤ (#(Λ0))
ln 3
ln 2 + 2

J∑
k=1

(#(Λk))
ln 3
ln 2 ≤

(
#(Λ0) + #(Λ1) + · · ·+ #(ΛJ)

) ln 3
ln 2

= (#(Λ))
ln 3
ln 2 . (79)

The proof is then complete.

The bound (77) is sharp for certain type of lower sets. For instance if ν is the multi-index such

that ν1 = · · · = νJ = 1 and νj = 0 for j > J , then

KT (Rν) =
∑
µ≤ν

2#(supp(µ)) =
∑
µ≤ν

2µ1+···+µJ =

J∏
j=1

(1 + 2) = 3J = (2J)β = (#(Rν))β . (80)

In the case of finite dimension d < +∞, the following bound can be easily obtained from the result

of Lemma 2:

KT (Λ) ≤ min
{

(#(Λ))
ln 3
ln 2 , 2d#(Λ)

}
.

Let us mention that similar algebraic bounds can also be obtained when the measure ρ is is of

the more general type

dρ := ⊗dj=1%(yj)dyj , %(t) =
(1− t)α1(1 + t)α2∫ 1

−1
(1− t)α1(1 + t)α2dt

, α1, α2 > −1, (81)

that is, the tensorization of a so-called β(α1, α2) measure. In this case, the relevant quantity,

KJ(Λ) =
∥∥∥∑
ν∈Λ

|Jα1,α2
ν |2

∥∥∥
L∞(Γ)

, (82)

where Jα1,α2
ν are the tensorized Jacobi polynomials. For this quantity, the following has been

proven in [19], in the case where α1, α2 are natural exponents.

Lemma 3. For any lower set Λ ⊂ F , the quantity KJ(Λ) with Jacobi polynomials (Jα1,α2
ν )ν∈Λ

and α1, α2 ∈ N0 satisfies

KJ(Λ) ≤ (#(Λ))2 max{α1,α2}+2. (83)

Note that this result includes the estimate KL(Λ) ≤ (#(Λ))2 as the particular case α1 = α2 = 0.

Combining the estimates on KT (Λ) and KJ(Λ), with the results stated in the previous section, we

arrive at our main theorem for multivariate polynomial least-squares.
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Theorem 3. For any r > 0, given a finite lower set Λ, if the measure ρ is the tensorized

beta(α1, α2) with α1, α2 ∈ N0 and

n

lnn
≥ 1 + r

ζ
(#(Λ))2 max{α1,α2}+2 (84)

or, if the measure ρ is the tensorized Chebyshev measure and

n

lnn
≥ 1 + r

ζ
(#(Λ))

ln 3
ln 2 , (85)

then the following holds true:

(i) The deviation between G and I satisfies

Pr

{
|||G− I||| > 1

2

}
≤ 2n−r; (86)

(ii) If u satisfies a uniform bound b over Γ, then one has the expectation estimate

E(‖u− w̃‖2) ≤ (1 + 2ε(n))em(u)2 + (8 + 2ε(n))‖η‖2 + 8b2n−r, (87)

for the deterministic noise model, where the factor 2 can be removed when η = 0.

(iii) For this model, one also has the probablistic estimate

Pr
(
‖u− w‖ ≥ (1 +

√
2)em(u)∞ + 2

√
3‖η‖L∞

)
≤ 2n−r. (88)

4. Discrete least-squares approximation of Hilbert space functions

In sections 2 and 3, the functions that we propose to approximate using the least-squares method

are real valued. Motivated by the application to parametric PDEs, we investigate the applicability

of the least-squares method in the approximation of X-valued functions, with X being any Hilbert

space. Similar to §2, we work in the abstract setting of a probability space (Γ,Σ, ρ). We study the

least-squares approximation of functions u belonging to the Bochner space

L2(Γ, X, ρ) :=

{
u : Γ→ X, ‖u‖ :=

∫
Γ

‖u(y)‖2Xdρ(y) < +∞
}
. (89)

Therefore L2(Γ, X, ρ) = X ⊗ L2(Γ, ρ) and we are interested in the least-squares approximation in

spaces of type X ⊗ Vm where Vm is an m-dimensional subspace of L2(Γ, ρ). Given u ∈ L2(Γ, X, ρ)

an unknown function and (zi)i=1,··· ,n noiseless or noisy observations of u at the points (yi)i=1,··· ,n

where the yi are i. i. d. random variables distributed according to ρ, we consider the discrete

least-squares approximation

w := argmin
v∈X⊗Vm

n∑
i=1

‖zi − v(yi)‖2X . (90)

The purpose of this section is to briefly discuss the extension of the results from §2 to this frame-

work.

Let BL be an orthonormal basis of the space Vm with respect to the measure ρ and consider the

matrices G and J and the family Bπ ⊆ Vm obtained from the basis BL and the points (yi)i=1,...,n
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as in §2. When the matrix G is not singular, we claim that the solution to (90) has the same form

n∑
k=1

zkπk, (91)

with zk ∈ X for all k = 1, . . . , n, as in the real-valued case. Indeed, for any g ∈ X, the real-valued

function wg :=
∑n
k=1〈zk, g〉πk ∈ Vm is the solution to the least-squares problem

wg = argmin
h∈Vm

n∑
i=1

|〈zi, g〉 − h(yi)|2, (92)

which implies the orthogonality relations

n∑
i=1

〈
n∑
k=1

zkπk(yi), gLj(y
i)〉 =

n∑
i=1

〈zi, gLj(yi)〉, g ∈ X, j ∈ {1, · · · ,m}, (93)

showing that
∑n
k=1 z

kπk is the solution to (90). When the matrix G is singular, the solution (90)

is non-unique and we set by convention w := 0.

The explicit formula of the least-squares approximation (90) being established, we are interested

in the stability and accuracy of the approximation. Similarly to the analysis in §2, we investigate

the comparability over X ⊗ Vm of the norm ‖ · ‖ and its empirical counterpart ‖ · ‖n defined by

‖v‖n =
( 1

n

n∑
j=1

‖v(yj)‖2X
) 1

2

, v ∈ L2(Γ, X, ρ). (94)

It is easily checked that given v :=

m∑
j=1

vjLj ∈ X ⊗ Vm, one has

‖v‖2n − ‖v‖2 =

m∑
i=1

m∑
j=1

(G− I)ij〈vi, vj〉X = 〈v, (G− I)v〉Xm , (95)

where v := (v1, · · · , vm)t ∈ Xm and the matrix-vector product is defined as in the real case. Here

the inner product 〈·, ·〉Xm is the standard inner product over Xm constructed from 〈·, ·〉X . Note

that we have ‖v‖ = ‖v‖Xm . We next observe that if M is an m ×m real symmetric matrix, one

has

sup
‖v‖Xm=1

|〈v,Mv〉Xm | = |||M|||, (96)

where |||M||| is the spectral norm of M (this is immediately checked by diagonalizing M in an

orthonormal basis). Therefore it holds that

‖v‖2n − ‖v‖2 ≤ |||G− I||| ‖v‖2, (97)

and, similarly to the results discussed in §2, we find that under condition (33) the norm ‖ · ‖ and

its counterpart ‖ · ‖n are equivalent over X ⊗ Vm with probability greater than 1− 2n−r, with∣∣∣‖v‖2n − ‖v‖2∣∣∣ ≤ 1

2
‖v‖2. (98)
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Similar to real valued functions, we want to compare the accuracy of the least-squares approxima-

tion (90) with the error of best approximation in L2(Γ, X, ρ)

em(u) := inf
v∈X⊗Vm

‖u− v‖ = ‖u− Pmu‖, (99)

where Pm is the orthogonal projector onto X ⊗ Vm.

We again use the notation Pnmu for the least-squares solution in the noiseless case. If u satisfies

a unifom bound ‖u(y)‖X ≤ b over Γ where b is known, we define the truncated least-squares

approximation

w̃ = Tb(w), (100)

also denoted by P̃nmu in the noiseless case, where Tb is the trunction operator, now defined as

follows

Tb(v) =


v if ‖v‖ ≤ b,

v
‖v‖b if ‖v‖ > b.

(101)

Note that Tb is the projection map onto the closed disc {‖v‖ ≤ b} and is therefore Lipschitz

continuous with constant equal to 1.

With such definitions, the result of Theorem 1 remains valid for Hilbert space valued functions

with the exact same proof as for real valued functions. Likewise, with

em(u)∞ = inf
v∈X⊗Vm

‖u− v‖L∞(Γ,X)

Theorem 2 remains valid for Hilbert space valued functions with the exact same proof as for real

valued functions. In turn, the approximation results listed in (i) and (ii) of Theorem 3 are also

valid for multivariate polynomial least-squares applied to Hilbert space valued functions.

As a general example of application, consider the model stochastic elliptic boundary value

problem (9) with a diffusion coefficient given by (10) and satisfying (11). As recalled in the

introduction, if (‖ψj‖L∞(D))j≥1 ∈ `p(N) for some p < 1, then there exists a nested sequence of

lower sets

Λ1 ⊂ Λ2 ⊂ · · · ⊂ F , #(Λm) = m, (102)

such that with X := H1
0 (D) and Vm := PΛm one has

em(u) ≤ Cm−s, s :=
1

p
− 1

2
> 0. (103)

Since the solution satisfies the uniform bound ‖u(y)‖X ≤ b := ‖f‖V ∗
r , we can compute its trunctated

least-squares approximation P̃nmu based on n observations ui = u(yi) where the yi are i.i.d. with

respect to the uniform measure over Γ := [−1, 1]N. Combining Theorem 1 for the noiseless model

and (58), it follows that

E(‖u− P̃nmu‖2) ≤ (1 + ε(n))C2m−2s + 8b2n−r, (104)

provided that n
lnn ≥

m2

κ with κ := 1−ln 2
2+2r . In particular, taking r = s, we obtain the estimate

E(‖u− P̃nmu‖2)<∼m
−2s. (105)
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Taking the minimal amount of sample n such that n
lnn ≥

m2

κ , this gives the convergence estimate

E(‖u− P̃nmu‖2)<∼
( n

lnn

)−s
. (106)

Remark 1. The error in the evalution of u(yi) due to space discretization can be taken into

account in several ways. In the case where the space discretization is independent of the parameter

y, for example if one uses the same finite element space Xh independently of y, we may view

the polynomial least squares approximation as the noiseless approximation P̃nmuh of the discrete

solution map y 7→ uh(y) ∈ Xh. This allows to decompose the total error into

‖u− P̃nmuh‖ ≤ ‖uh − P̃nmuh‖+ εdisc, (107)

where the second term εdisc is a uniform bound on the space discretization error, and where similar

convergence bounds to (106) can be obtained for the first term. An analogous approach was used

in [5] for the analysis of polynomial approximation obtained by truncated Taylor series. However,

in the more general case where the space discretization varies for different values of y, one cannot

apply this strategy and a better adapted approach is to view the space discretization error as an

additive deterministic noise in the observation model. Using Theorem 1 we then obtain the same

estimate as (106) for the error ‖u− w̃‖, where w̃ is the truncated polynomial least squares estimate

based on the discretized solution intances, up to the addition of the uniform bound εdisc on the

space discretization error. Both approaches therefore lead to the same type of estimate, but the

second one applies to more general settings.

Remark 2. An analysis of the Chebyshev coefficients of u reveals that the same approximation

rate as (103) holds for the L2 norm with respect to the tensorized Chebyshev measure. However,

in view of (77), the condition between m and n is now n
lnn ≥

mβ

κ with β := ln 3
ln 2 . It follows that the

rate in (106) can be improved into

E(‖u− P̃nmu‖2)<∼
( n

lnn

)− 2 ln 3
ln 2 s

, (108)

if we use samples yi that are i.i.d. with respect to the tensorized Chebyshev measure and if we

use the L2 error with respect to this measure. However, since the L2-norm with Chebyshev weight

controls the L2-norm with the uniform weight, i.e. ‖u‖L2
unif

≤
√
π/2‖u‖L2

Cheb
, estimate (108)

holds also with L2 norm with uniform weight.

5. Application to elliptic PDEs with random inclusions

5.1. The case of non-overlapping inclusions: approximation in total degree

polynomial spaces

* In this section, we focus on the subclass of stochastic PDEs (9)–(10) characterized by the fact
* The referee asks

to polish this sec-

tion; we have not

complete it yet but

we will.

that the functions ψj have nonoverlapping support. This situation allows to model, for instance,

the diffusion process in a medium with nonoverlapping inclusions of random conductivity (see e.g.

Fig. 2). In this case, a priori estimates on the Legendre coefficients have been obtained e.g. in [4]

and have been shown numerically to be quite sharp. They read:
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‖uν‖X ≤ C
d∏
j=1

exp{−νj gj}, ∀ ν = (ν1, . . . , νd) ∈ Nd0,

with X = H1
0 (D). Explicit expressions for the constant C can be found in [4, Corollary 8]. The

coefficients (gj)1≤j≤d can be estimated through an a posteriori procedure, that requires to solve

only “one-dimensional” problems, i.e. analyzing the convergence when considering one random

variable at a time and freezing all other variables to their expected value. As a consequence,

quasi-optimal index sets associated with the problems in the aforementioned class are of the form

Λw =
{
ν ∈ Nd0 :

d∑
j=1

gjνj ≤ w
}
, w = 1, 2, . . . (109)

and correspond to anisotropic total degree spaces, i.e. the anisotropic variants of (66). Analogous

estimates, showing the optimality of the total degree space, have been presented in [5].

In the remaining discussion, we consider the simple isotropic case where gj = g for all j =

1, . . . , d. Observe that this analysis can also be taken as a (crude) upper bound for the anisotropic

case by taking g = minj gj . For convenience we introduce the quantities τ, φ defined as:

τ :=
gd

e
, (110)

φ :=
Ĉ2

Leg

(1− e−g)d
exp

{
2 e2 (1− e−1) τ

5

}
. (111)

The expression of ĈLeg can be recovered from [4, Corollary 8] and depends on d and g.

Lemma 4. In the isotropic case, i.e. gj = g for all j = 1, . . . , d, the following estimate on the

error of the L2 projection Pm on the quasi-optimal lower set (109) with #(Λ) = m, it holds

‖u− Pmu‖2 ≤ φ exp
{
−τm 1

d

}
(112)

for m > (2e/5)d.

Proof. The following estimate has been obtained in [4, Theorem 22]:

‖u− PΛu‖2 ≤
Ĉ2

Leg

(1− e−g)d
exp

{
−τ ln

(
(1− ξ(m))

−1
)
m

1
d

}
, (113)

with

ξ(m) := (1− e−1)

(
1− 2e

5m
1
d

)
. (114)

When (2e/5)d < m then (1− ξ(m)) < 1, and moreover limm→+∞ (1− ξ(m))

(
τm

1
d

)
= 0. Intro-

ducing the change of variable z as *
* remove z?

z := m
1
d , (115)

using the definition of τ in (110) and replacing ξ by (114), then the exponential term on the right

side in (113) can be manipulated as(
e−1 +

2 e (1− e−1)

5 z

)τ z
=

(
1 +

2 e2 (1− e−1)

5 z

)τ z
· e−τ z < e

2 e2 (1−e−1)
5 τ · e−τ z. (116)
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Notice from (115) that the limit m → +∞ is equivalent to z → +∞. Thanks to (116) we can

bound the exponential term on the right hand side of (113), and using the definition (111) of φ we

obtain (112).

5.2. Convergence of the discrete least-squares approximation

In this subsection we derive an estimate for the expected L2 error E(‖u − P̃nmu‖2) of the discrete

least-squares approximation in terms of the number of sampling points n. To do this we rely on

the estimates regarding the exact L2 projection on total degree polynomial spaces that have been

recalled in Section 5.1. For the sake of notational simplicity, we ignore the space discretization

error which can be taken into account through an additional term in the estimates as explained in

Remark 1.

To begin with, we will use the isotropic estimate (112). The extension to anisotropic problems

can be obtained following the estimates presented in [4].

To lighten the notation we introduce the factor

ϕ = ϕ(n) :=
(
1 + ε(n)

)
φ, (117)

with ε being the same as in equation (39). Notice that ε = ε(n) is a decreasing function converging

to zero as n increases, and in practice its value is such that ϕ ≈ φ.

Theorem 4. In the aforementioned PDE model class, with τ as in (110) and ζ as in (33), when

the number of points n distributed according to the uniform measure is related to the cardinality m

of the polynomial space by the relation

n =

⌈
2τ

ζ
m2+ 1

d

⌉
, (118)

then the convergence rate of the discrete least-squares approximation with an optimal choice of the

polynomial space satisfies

E
(
‖u− P̃nmu‖2

)
≤ (ϕ+ 8b2) exp

{
−
(
τ2d ζ n

2

) 1
2d+1

}
. (119)

Proof. The first step to characterize the optimal convergence rate with respect to n is to impose

a relation between n, ζ, r and m to have a stable least-squares approximation. In the case of

polynomial approximation, the relation (33) holds choosing the multi-index set Λ such that

m =

⌊
ζ

r + 1

n

lnn

⌋ 1
2

. (120)

Therefore, the constraint (120) prescribes how to enlarge the dimension of the polynomial space

as n increases, to ensure stability and optimality of the discrete least-squares projection thanks to

(34). To achieve the fastest convergence, the value of r= r(n, ζ, d, τ) can be chosen optimally as

a function of the remaining parameters n, ζ, τ and d. Replacing m with (120) in the right hand

side of (112) we have

‖u− Pmu‖2 ≤ φ exp

{
−τ
(

ζn

(r + 1) lnn

) 1
2d

}
≤ φ exp

{
−τ
(

ζn

2r lnn

) 1
2d

}
, for r > 1. (121)
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Since we embedded the stability condition (33) as a constraint, then we can apply (??) and use

(121) to bound the error on the right hand side, obtaining

E
(
‖u− P̃nmu‖2

)
≤ ϕe−τ(

ζn
2r lnn )

1
2d

+ 8b2 e−r lnn. (122)

Notice the factor r lnn in both the exponents of (122). Now we can choose r = r(n, d) so that the

exponents of the two exponential terms in (122) are equal, i.e.,

r =
1

lnn

(
τ2d ζ n

2

) 1
2d+1

. (123)

Finally, substituting the expression (123) of r in (122) we obtain (119).

In (119) we observe that the error converges to zero sub-exponentially as exp{−αn
1

2d+1 } with

α := (dg/e)
2d

2d+1 (ζ/2)
1

2d+1 . The dimension d appears in α in favor of the convergence, and in the

exponent of n
1

2d+1 which slows down the convergence. The error of the best m-term approximation

converges to zero in expectation with the rate exp
{
− τm

1
d

}
(see (112)), whereas the error of

random discrete least squares converges to zero with the rate exp
{
− αn

1
2d+1

}
, with n ∝ m2+ 1

d .

6. Numerical experiments

In this section we present some numerical examples that confirm the theoretical findings presented

in Sections 2–5. In particular, we check that the convergence rate (119) is sharp when the number

of sampling points n is chosen as (118).

We consider the elliptic model (9) on the bounded domain D ⊂ R2 shown in Fig. 2, with the

random diffusion coefficient a defined in (124) by means of the geometry displayed in Fig. 2. The

eight inclusions D1, . . . , D8 are circles with radius equal to 0.13, and are centered in the points

x = (0.5, 0.5± 0.3), x = (0.5± 0.3, 0.5) and x = (0.5± 0.3, 0.5± 0.3). The 0.2-by-0.2 inner square

D0 lies in the center of D. The forcing term f is equal to 100 in D0 and zero in D \ D0. The

random diffusion coefficient depends on a multivariate uniform random variable Y ∼ U([−1, 1]d),

and is defined as

a(x,Y) =

0.395
(
Yi + 1

)
+ 0.01, x ∈ Di, i = 1, . . . , 8,

1, x ∈ D \ ∪8
i=1Di,

(124)

such that each random variable is associated with an inclusion. The range of variation of the

coefficient in each inclusion is therefore [0.01, 0.8]. This test case has been used in [3], and allows

a direct comparison of our results with those obtained when employing the classical Stochastic

Galerkin method. The mono-dimensional convergence rate g = 1.9 of this example has been

estimated in [4, Fig.7-left]. Notice that the coefficient a in (124) satisfies the assumption in 11.

We consider the following Quantity of Interest, related to the solution of the elliptic model (9):

QOI1(u(Y)) =
1

|D|

∫
D

u(x,Y) dx,

and present the results obtained when approximating this function on polynomial spaces of fixed

total degree. Similar results hold also with other Quantities of Interest, e.g.

QOI2(u(Y)) =
1

|D|

∫
D

∣∣∣∇u(x,Y)
∣∣∣2 dx, QOI3(u(Y)) =

1

|D0|

∫
D0

u(x,Y) dx,
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which will not be shown here. We consider three cases with d = 2, d = 4, d = 8 independent

random variables. In the case d = 2, the first random variable describes the diffusion coefficient

in the four inclusions at the top, bottom, left, right of the center square D0. The second random

variable describes the diffusion coefficient in the other four inclusions. In the case d = 4, each one

of the four random variables is associated with two opposite inclusions with respect to the center of

the domain. When d = 8 each one of the random variables is associated with a different inclusion.

The Figs. 3, 4, 5 show the convergence plots obtained by the discrete least-squares approximation

using a number of samples as in (118). The theoretical bound (119) is also shown as well as the

reference slope n−1/2 of a standard Monte Carlo method. In the same figures we also show the

convergence plots obtained when using a simple linear proportionality n = 3m or n = 10m.

*
* Replace Ω with D

in the figure

Figure 2. Mesh discretization and geometries of the inclusions. The domain D

is the unitary square. The inner square is named D0, the eight circular inclusions

are D1, . . . , D8.

The approximation error of the discrete least-squares projection is approximated as *
* Give more

details on the

cross-validation

procedure.

E
(
‖QOI1(u)− P̃nmQOI1(u)‖

)
≈ E

(
‖QOI1(u)− P̃nmQOI1(u)‖cv

)
,

employing the cross-validation procedure described in [20, Section 4], where the expectation in the

previous formula has been replaced by a sample average of the discrete least-squares approximation

using 1000 independent samples of size n.

The results presented in Figs. 3, 4, 5 show that the bound (119) proposed predicts very sharply

the error E(‖u− P̃nmu‖2), when the number of sampling points n is chosen according to (118). The

bound accurately describes the effect of the dimension d as well, in the cases of moderately high

dimensions.

On the other hand, a faster convergence of the error E(‖u−P̃nmu‖2) with respect to n is observed,

with the linear proportionality n ∝ m that yields a lower number of sampling points than (118),

for a given set Λ. The efficiency of the linear proportionality has been pointed out in [21], and

its importance is motivated by the impossibility to employ the number of sampling points (118)
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Figure 3. Error E(‖u − P̃nmu‖2) in the case d = 2. Different relations between

the number of samples n and the dimension of the polynomial space m are tested.

The black dash line is the bound (119). The magenta dash line is the Monte Carlo

convergence rate n−1/2.
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Figure 4. Error E(‖u − P̃nmu‖2) in the case d = 4. Different relations between

the number of samples n and the dimension of the polynomial space m are tested.

The black dash line is the bound (119). The magenta dash line is the Monte Carlo

convergence rate n−1/2.
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Figure 5. Error E(‖u − P̃nmu‖2) in the case d = 8. Different relations between

the number of samples n and the dimension of the polynomial space m are tested.

The black dash line is the bound (119). The magenta dash line is the Monte Carlo

convergence rate n−1/2.

when the dimension d is large. Fig. 5 shows that already when d = 8, the exponential gain of the

bound (119) with respect to a Monte Carlo rate becomes perceivable only with an astronomical

number of samples, making the choice (118) less attractive for the applications, whereas a linear

proportionality, even with n = 3m leads to very good results.

7. Conclusion

In this work the approximation technique based on least squares with random evaluations has

been analyzed. The condition between the number of sampling points and the dimension of the

polynomial space, which is necessary to achieve stability and optimality, has been extended to

any lower set of multi-indices identifying the polynomial space, in any dimension of the parameter

set, and with the uniform and Chebyshev densities. When the measure is uniform, this condition

requires the number of sampling points to scale as the square of the dimension of the polynomial

space up to logarithmic factors, to achieve optimal convergence rate within a given confidence level.

Afterwards, this technique has been applied to a class of “inclusion-type” elliptic PDE models

with stochastic coefficients, and an exponential convergence rate in expectation has been derived.

This estimate clarifies the dependence of the convergence rate on the number of sampling points and

on the dimension of the parameter set. Moreover, this estimate establishes a relation between the

convergence rate of the least-squares approximation with random evaluations and the convergence

rate of the best m-term “exact” L2 projection.

The numerical tests presented show that the proposed estimate is sharp, when the number of

sampling points is chosen according to the condition that ensures stability and optimality. In

addition, these results show that, in the aforementioned model class, a linear proportionality of

the number of sampling points with respect to the dimension seems to be sufficient to ensure the
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stability of the discrete projection, thus leading to faster convergence rates, although we have no

rigourous explaination of this fact.
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[2] I. Babuška, R. Tempone and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial

differential equations, SIAM J. Numer. Anal. 42:800–825, 2004.
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