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This work is articulated in three parts. Firstly, the Verchery’s polar method [1, 2] (a 

mathematical representation of the plane anisotropy based upon tensor invariants) is extended 

to the theoretical framework of both the First-order Shear Deformation Theory (FSDT) [3] 

and the Third-order Shear Deformation Theory (TSDT) [4] of laminates. Concerning the polar 

analysis of the FSDT, the major analytical result is that the number of independent tensor 

invariants characterising the laminate constitutive behaviour remains unchanged when passing 

from the context of the Classical Laminate Theory (CLT) to that of the FSDT. On the other 

hand, the major analytical results of the application of the polar formalism to the TSDT of 

laminates are the generalisation of the concept of a quasi-homogeneous laminate as well as 

the definition of some new classes of laminates. Moreover, for both theories, it is proved that 

the elastic symmetries of the laminate shear stiffness matrices (basic and higher-order terms) 

depend upon those of their in-plane counterparts. 

Secondly, a new design paradigm for the analysis and optimisation of composite structures 

consisting in a multi-scale numerical optimisation procedure that relies on the polar formalism 

and on the use of a special evolutionary algorithm is proposed. In particular, given a hybrid 

structure to be designed (according to some prescribed requirements), the proposed strategy is 

articulated into two distinct (but linked) problems as described here below.  

1. First-level problem. The aim of this phase is the determination of the optimum shape 

and the optimum distribution of the material properties of the structure in order to 

minimise the considered objective function and to meet, simultaneously, the full set of 

optimisation constraints provided by the problem at hand. At this level each laminate 

composing the hybrid structure is modelled as an equivalent homogeneous anisotropic 

continuum whose behaviour at the macro-scale is described in terms of laminate polar 

parameters, see [3-9]. This level can also involve different scales (typically meso and 

macro scales) thus the problem must be formulated and solved by considering the full 

set of design variables intervening at each scale [5-7]. Of course, when different scales 

are involved within the first-level problem a homogenisation phase (numerical or 

analytical) of the structure must be considered in order to determine the effective 
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material properties of some parts of the structure that will be used at the macro-scale 

(which depend upon the geometric/material parameters characterising the lower scale). 

2. Second-level problem. At the second level of the strategy, the goal is the determination 

of the optimum lay-up of the laminates composing the structure (the laminate meso-

scale) meeting the optimum combination of their material and geometrical parameters 

provided by the first level of the strategy. At this stage, the design variables are the 

layer orientations and the designer can add some additional requirements, e.g. more 

constraints on the elastic behaviour of the laminate or the orientations of the layers can 

be restricted to a set of possible values, etc. 

For a deeper insight in the matter (especially concerning the mathematical formulation 

underlying the multi-scale two-level optimisation strategy) the reader is addressed to [5-6, 8-

9]. 

Finally, the effectiveness of this strategy is proved through the resolution of a real-world 

engineering design problem: the least-weight (multi-scale) design of a sandwich panel 

composed of CFRP faces and Al honeycomb core. The goal here consists in simultaneously 

optimising the shape of the unit cell (meso-scale) of the honeycomb core (which will be 

fabricated by means of an additive manufacturing technique) and the geometrical as well as 

the material parameters of the CFRP laminated skins (meso and macro scales). This design 

problem is formulated as an optimisation problem subject to constraints of different nature [5-

7]: on the positive-definiteness of the stiffness tensor of the core, on the admissible material 

properties of the laminated faces, on the local buckling load of the unit cell of the core, on the 

global buckling load of the panel and geometrical as well as manufacturability constraints 

linked to the fabrication process of the honeycomb core.  
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