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Introduction

Routing algorithms using the computation of distance/path vectors, like RIP (Routing information protocol) or BGP (Border Gateway Protocol), are based on the construction of shortest-path trees. For any destination r, a shortest-path tree rooted at r is implicitly built by the routing scheme. Because of the dynamicity of the network, it may happen that the network is disconnected. Routing to node r is only guaranteed from the nodes that belong to the same component as r, namely V r . For the other nodes, one should remove, in the routing tables, information to reach r in order to prevent routing messages that will anyway never reach r, and thus to save some bandwidth. A legitimate configuration is characterized by the fact that every node that belongs to V r knows a route to r and every other node detects that r is not in its own component. The difficulty of converging toward a legitimate configuration is called, in this context, the count-toinfinity problem [START_REF] Leon-Garcia | Communication Networks[END_REF]: for nodes that do not belong to V r , some control messages keep on being exchanged infinitely in order to find a path to r. At the same time, the updates of routing tables for nodes belonging to V r should be done as quickly as possible.

In practice, the most standard techniques consist in exchanging distance/path vectors periodically and in using some timers in order to guess if a node is still within V r . However, the convergence is not guaranteed without any assumption (i) on the asynchrony of the network and/or (ii) on some known upper bound on the diameter or the size of the network. The convergence toward a legitimate configuration can be often provided by self-stabilizing algorithms.

However, solutions of the literature dedicated to the maintenance of a BFS tree or shortest paths are mainly for connected networks. Using them, we still face the countto-infinity problem in the disconnected components.

In the routing context, it is not always required to store information for every node. In compact routing schemes [START_REF] Abraham | Compact name-independent routing with minimum stretch[END_REF][START_REF] Gavoille | On the communication complexity of distributed name-independent routing schemes[END_REF], only some shortest-path trees completely spanning the connected components are built and need to be maintained. Given a set of roots r 1 , r 2 , . . . , r k , we aim at providing silent self-stabilizing algorithms that both maintain a shortest-path tree toward each r i , for nodes of V ri , and detect the nodes that no longer belong to V ri . In the following, we present an algorithm for a single root for an unfair daemon but our solution holds for any k. The identifiers of nodes do not need to be unique. Only r i 's identifiers should be different in order to distinguish the different roots. Thus, for k = 1, our self-stabilizing algorithm works in anonymous networks in the semi-uniform model.

The performance of an asynchronous distributed algorithm is often measured by the time complexity expressed as a number of rounds. Informally, a round is the smallest fragment of time for which every distributed process can compute at least one execution step. Thus, rounds intuitively count the number of execution steps of the slowest process. Note that the number of steps are rarely analyzed in the literature.

Related works

Self-stabilizing single-destination shortest-path constructions. The single-destination shortest-path problem is to find shortest paths from all vertices in the graph to a single destination vertex r. Edges can have weights and the length of a path corresponds to its sum of weights. The oldest distributed algorithms are inspired by the Bellman-Ford algorithm. In the articles dedicated to self-stabilizing algorithms in asynchronous networks, the difficulty is to find an algorithm that runs under the worst possible scenario. A scenario is a sequence of computational steps which is controlled by an adversary called daemon. In [START_REF] Chandrasekar | A self-stabilizing distributed algorithm for all-pairs shortest path problem[END_REF][START_REF] Huang | A self-stabilizing algorithm for the shortest path problem in a distributed system[END_REF], self-stabilizing algorithms for the single-destination shortest-path problem are presented; both protocols require a central daemon, that is only one process can be executed at each instant. In [START_REF] Huang | A self-stabilizing algorithm for the shortest path problem assuming the distributed demon[END_REF], Huang proves that the algorithms in [START_REF] Chandrasekar | A self-stabilizing distributed algorithm for all-pairs shortest path problem[END_REF][START_REF] Huang | A self-stabilizing algorithm for the shortest path problem in a distributed system[END_REF] also work under the unfair daemon, which is the most general daemon. However, no upper bounds on the time (rounds or number of execution steps) are given. The same author presents an algorithm under the read/write separate atomicity model (Dolev Model) in [START_REF] Huang | A self-stabilizing algorithm for the shortest path problem assuming read/write atomicity[END_REF].

In [START_REF] Arora | Composite routing protocols[END_REF][START_REF] Cobb | Stabilization of general loop-free routing[END_REF][START_REF] Johnen | Route preserving stabilization[END_REF], self-stabilizing algorithms for the single-destination shortest-path problem are presented; these algorithms ensure the loop-free property: after any edge weight changes, even during the rebuilding phase, there is always a path from any node to the destination. More generally, none of these articles provide tight bounds on the complexity of the convergence time in the most general asynchronous model, the unfair daemon, and the presented algorithms are not silent in the disconnected components.

Self-stabilizing breadth-first tree constructions. Whenever edges do not have any weight, shortest-path trees correspond to breadth-first trees. To our knowledge, this restriction does not help to get all the desirable guarantees. Chen et al. present the first selfstabilizing BFS tree construction in [START_REF] Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF] under the central daemon. Huang et al. present the first self-stabilizing BFS tree construction in [START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF] under the unfair distributed daemon. In [START_REF] Chen | A self-stabilizing algorithm for constructing spanning trees[END_REF][START_REF] Huang | A self-stabilizing algorithm for constructing breadth-first trees[END_REF], the exact network size has to be known by all nodes. Dolev, Israeli and Moran in [START_REF] Dolev | Self-stabilization of dynamic systems assuming only Read/Write atomicity[END_REF] present the first self-stabilizing BFS spanning-tree construction algorithm under read/write atomicity.

Blin et al. in [START_REF] Blin | Loop-free super-stabilizing spanning tree construction[END_REF] present a universal transformer of self-stabilizing tree construction with any metric on semi-uniform networks to a loop-free super-stabilizing algorithm under the fair daemon. All these cited works assume that the network is a connected graph.

According to our knowledge, only the two following works [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF][START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] take interest in the computation of the number of computation steps required by their algorithms. The algorithm in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] has an upper bound on the number of steps of O(∆.n 3 ) (∆ being the maximum node degree in the network) The algorithm in [START_REF] Cournier | Light enabling snap-stabilization of fundamental protocols[END_REF] is not silent, so some nodes change infinitely often their state. The silent algorithm in [START_REF] Cournier | The first fully polynomial stabilizing algorithm for BFS tree construction[END_REF] has a convergence time O(D 2 ) rounds having at most O(n 6 ) computation steps. All these cited works assume that the network is a connected graph.

Self-stabilizing routing algorithm. In [START_REF] Bein | Self-stabilizing local routing in ad hoc networks[END_REF], Bein et al. present a self-stabilizing algorithm building local routing tables under the fair daemon (the tables ensure the routing from any node v to its t closest nodes) in O(D) rounds in the connected component, but in O(t) rounds within the disconnected component. Choosing the parameter t correctly helps to tackle the count-to-infinity problem. However, it means that in order to use their solution an upper bound on the network size has to be known. Cobb and Huang [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF] propose an algorithm dedicated to the construction of shortest-path trees defined by any maximizable routing metrics. This algorithm works without any knowledge on the network but the correction is proved only for a restrictive class of asynchronous scenarios, namely the centralized weakly-fair daemon.

Leader election algorithms. Another way to tackle our problem is to focus on the problem of leader election, as in [START_REF] Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF][START_REF] Altisen | Self-stabilizing leader election in polynomial steps[END_REF]. It has the advantage of running under the most general daemon, the unfair one, without any knowledge about the network topology. In [START_REF] Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF], for each component, a BFS tree rooted at the selected leader is built within 4n + 11D + 4 rounds. Whereas in [START_REF] Altisen | Self-stabilizing leader election in polynomial steps[END_REF], leader election is performed within 3n + D rounds by building a spanning tree rooted at the leader. In the case of routing, it is obviously preferable to have a shortest-path tree instead of a spanning tree, therefore a realistic candidate for our purpose would be [START_REF] Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF]. Note that D stands for the diameter of the unweighted network.

These algorithms build, in each component, a tree rooted at the node with the smallest identifier. They could be tweaked to get semi-uniform algorithms that perform disconnection detection at the same time. To do so, instead of electing nodes based on their identifier, election would be done based on shared variables (and lexicographical order). Let us call these variables id, and change the algorithm in such a way that every node maintains its variable id equal to its identifier preceded by 0 if its r, or a 1 otherwise. After running this slightly modified election algorithm, every node can detect whether it belongs to the connected component of r by simply observing the first character of the elected node's identifier. This modification would only add a single round to the convergence time. However, it is not clear what would be the convergence time of these two algorithms for weighted networks. Moreover it is an interesting question to investigate whether it is possible to build a shortest path tree in a smaller number of rounds. Disjunction algorithm. Another potential candidate for our problem would be the algorithm proposed in [START_REF] Datta | Self-stabilizing silent disjunction in an anonymous network[END_REF] to solve the disjunction problem. It is silent and works with the assumption of an unfair daemon. Unfortunately no precise bound on the time complexity is given, this algorithm has a convergence time of O(n).

Model

A distributed system S is an undirected graph G = (V, E) where the vertex set V is the set of nodes and the edge set E is the set of communication links. A link {u, v} belongs to E if and only if u and v can directly communicate (links are bidirectional); so, u and v are neighbors. We note by Γ(v) the set of v's neighbors: Γ(v) = {u ∈ V | {u, v} ∈ E}. Each edge {u, v} has a positive weight denoted w(u, v); this notion is naturally extended to paths: the weight of a path is the sum of its edge weights. In the following, D stands for the hop-diameter of the underlying graph, that is the maximum over all pairs (u, v) of the minimum number of edges in a shortest path from u to v. The weighted distance between the nodes u and v is denoted d(u, v), it is the minimal weight of a path from u to v.

Each node v maintains a set of shared variables such that v can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The union of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has two parts, the guard and the action. The guard of a v's rule is a Boolean expression involving the state of the node v, and those of its neighbors. The action of a v's rule updates v's state. So, every rule will be graphically described by two braces. The first brace contains the predicates such that their conjunction is the rule guard; and the second brace contains the rule action (i.e. one or several local variable updates).

In a configuration, a rule can be executed only if it is enabled, i.e., its guard evaluates to true. A node is enabled in a given configuration if at least one of its rules is enabled. A configuration is said to be terminal if and only if no node is enabled. In a semi-uniform algorithm, all nodes except one, denoted r, perform the same distributed algorithm. The set V r denotes the connected component of the distinguished node r. In anonymous networks, nodes do not have distinct identifiers. However, we assume that a node can distinguish its neighbors since out-links of every node can be locally numbered.

During a computation step under the daemon S, c i → S c i+1 , one or several enabled nodes in configuration c i are selected by the daemon S. Theses nodes will simultaneously and atomically read their neighbors states and then perform their actions so that the system reaches the configuration c i+1 from c i . An execution e under daemon S is a sequence of configurations e = c 0 , c 1 , • • • , where c i+1 is reached from c i by one computation step under S: ∀i 0, c i → S c i+1 . The centralized daemon selects at each computation step only one node while a distributed daemon selects any non-empty set of enabled nodes. Any daemon that produces a weakly-fair execution, that is an execution in which an always enabled node is eventually activated, is called a weakly-fair daemon. There is no requirement on the unfair daemon, it may produce non weakly-fair execution.

We say that an execution e is maximal if it is infinite, or if it reaches a terminal configuration. We note by C the set of all possible configurations, and by E S the set of all maximal executions under the daemon S. The set of maximal executions under the daemon S starting from a particular configuration c ∈ C is denoted E S c .

Definition 1 (Silent Self-stabilization to L). Let L be a subset of C, called set of legitimate configurations. A distributed system is silent and self-stabilizing under the daemon S to L if and only if the following conditions hold:

• all executions under S are finite;

• all terminal configurations belong to L.

Stabilization time. We use the round notion to measure the time complexity. The first round of an execution 

e = c 1 , c 2 , • • • is the minimal prefix e 1 = c 1 , • • • , c j ,
c i → c i+1 , if v is enabled in c i but not anymore in configuration c i+1 .
Let e be the suffix of e such that e = e 1 e . The second round of e is the first round of e , and so on.

The stabilization time is the number of rounds of an execution reaching a legitimate configuration from any initial one.

Definition 2 (Round of a component).

The end of the i + 1-st round in the (connected) component H ⊆ G in a computation e is defined recursively as the configuration of the execution e where every node v ∈ H(V ) that was enabled at the end of the i-th round of e in H have been either activated or neutralized once. We can notice that the i-th round in a component H ⊆ G can end earlier than the i-th round (when the component is not explicitly given then the round is global).

Definition 3 (Node convergence).

A node v is said to have converged to its final state s under the daemon S at the configuration c 1 if along all executions under S from c 1 , the node v keeps its state s.

Our contribution

We present a variant, called FDcD, of the self-stabilizing silent algorithm originally presented in [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF] under the centralized weakly-fair daemon. Our main contribution is an in-depth analysis of this variant under the most general daemon, the distributed unfair one. More precisely, we show that algorithm FDcD, on anonymous semi-uniform weighted networks, builds a shortest-path tree rooted at r in V r and isolates the nodes in all other connected components. Algorithm FDcD converges to a legitimate configuration within less than 2n + D rounds in any n-node weighted graph of hop-diameter D. Thus the time complexity of algorithm FDcD improves the one of [START_REF] Datta | Self-stabilizing leader election in optimal space under an arbitrary scheduler[END_REF] by a factor at least 2. To conclude our work, we present an exponential lower bound on the worst-case number of steps, which also applies to the algorithm presented in [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF]. Note that our algorithm can easily be adapted to a wider class of routing metrics as shown in [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF]. 5 

R r            P root (u) ≡ (st r = C) ∨ (parent r = r) ∨ (d r = 0)    st r ← C parent r ← r d r ← 0

Algorithm FDcD

This section is devoted to the presentation of our algorithm, FDcD (Fast Disconnection Detection). The value of variable st indicates the status of the node: I for isolated (the node has no parent and no children), E for erroneous, and C for correct.

A non-isolated node u (st u = I) has two other meaningful variables: the variable d u containing the shortest weighted distance to r, and the variable parent u containing a pointer to the first out-link on the shortest path to r. Thus, only non-isolated nodes can belong to a branch (i.e. have children and/or a parent).

The single rule for node r is given in Figure 1. The rules for other nodes are given in Figure 2.

Only nodes with status C may gain new children; and only nodes without children and with the status C may increase the value of their variable d (rule R C ). These two properties ensure that the execution of the rule R C by a node u does not create any anomaly (because a node u doing R C during a computation step has no children and it cannot gain children during this step).

Definition 4 (Children of node u). children

u = {v ∈ Γ(u) | (st u = I) ∧ (st v = I) ∧ (parent v = u) ∧ (d v ≥ d u + ω(u, v))}
A given node u detects an anomaly in the relationship with its parent in four cases:

• the parent node is not in its neighborhood;

• it is not the best out-link for the destination r;

• the value of d u is not coherent with the value of d parentu ;

• it, or its parent, has not status C.

Besides, a node v is said to be an alternative parent for node u if it has status C and if:

• v is a better out-link than parent u (i.e. the cost of the path from u to r going through v is smaller than the cost of the path going through parent u );

• or d u matches d v (i.e. d v + ω(p, u) = d v ).
Note that the main difference with the algorithm presented in [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF] is in the definition of an alternative parent. In their definition, a node is not considered to be an alternative parent in the case described by the second item.

When a node u detects an anomaly in the relationship with its parent and there is no alternative parent, u takes the status E (rule R E ). Then, u's children have an anomaly in the relationship with their parent, u. Thus the nodes in the sub-tree rooted at u will take the status E or will change sub-tree. When a leaf has the error status it quits its branch: either it becomes isolated (rule R I ) or it joins a "correct" branch (rule R C ). Therefore every erroneous sub-tree is eventually deleted.

R C                                     P create (u) ≡ (st u = C) ∧ (children u = ∅) ∧ (∃v ∈ Γ(u) | st v = C) P update (u) ≡ (∃v ∈ Γ(u) | (st v = C) ∧ (d v + ω(u, v) < d u )) P correct (u) ≡ [ (parent u / ∈ Γ(u)) ∨ (d u = d parentu + ω(u, parent u )) ∨ (st parentu = C) ∨ (st u = C) ] ∧ [∃v ∈ Γ(u) | (st v = C) ∧ (d v + ω(u, v) = d u ) ]    st u ← C parent u ← argmin (v∈Γ(u))∧(stv=C) (d v + ω(u, v)) d u ← d parentu + ω(u, parent u ) R E        P error (u) ≡ (st u = C) ∧ (∀v ∈ Γ(u) | (d u < d v + ω(v, u)) ∨ (st v = C)) st u ← E R I        P isolate (u) ≡ (st u = E) ∧ (children u = ∅) ∧ (∀v ∈ Γ(u) | st v = C) st u ← I
Any configuration during the execution of algorithm FDcD induces a BFS tree rooted at node r that spans a subset of V r , a forest rooted at different illegal roots and some isolated nodes.

Definition 5 (Correct state).

A node u is said to be in a correct state if:

st u = C, d u = d(u, r) and d(parent u , r) = d u -ω(u, parent u ).

Definition 6 (Legitimate state).

A node u is said to be in a legitimate state if:

• it belongs to V r and is in a correct state; • or it does not belong to V r and it has status I.

Definition 7 (Legitimate configuration).

A legitimate configuration is a configuration where every node is in a legitimate state.

Correctness and convergence time of algorithm FDcD

We start this section by proving that the set of terminal configurations coincides with the set of legitimate configurations. This will be done thanks to the following two lemmas, the first one dealing with the connected components that do not contain node r, if some exist, and the second one dealing with the connected component V r containing root node r.

Correctness Lemma 1. For any connected component H not containing node r, any terminal configuration in H is a legitimate configuration.

Proof. The proof is done by contradiction. So consider that for some connected component H not containing node r, there exists a terminal configuration in which at least one node has not status I.

Further assume that there exists some node that has status C. Consider the node u ∈ H with status C having the smallest distance value d u . By construction, u can apply rule R , which is in contradiction with the configuration being terminal. Therefore any node that does not have status I must have status E.

Consider now the node u ∈ H that has status E having the largest distance value d u . By construction and from the previous point, this node has no child and no neighbor have status C. Therefore node u can apply rule R I , and we obtain again a contradiction, which concludes the proof of the lemma.

Lemma 2. Any terminal configuration within the connected component V r is legitimate.

Proof. The proof is done by contradiction. Let consider it exists some non-legitimate terminal configuration of the connected component V r .

Further, assume that there exists some node that has status E. Consider the node u of V r with status E having the largest distance value d u . Note that no node v that has status C can be a child of u, otherwise v could apply rule R E or rule R C . Therefore, node u has no child and thus can apply rule R I or rule R C , a contradiction.

Nodes have thus either status C or I. Assume now that there exists some node that has status I. Consider some node u with status I having at least one neighbor with status C. Such a neighbor node must exist because we are considering a connected component without any node with status E, but with at least one node that has status C, namely node r. Obviously, node u can apply rule R C , a contradiction. So every node in V r must have status C. Now consider the node u in V r having the smallest distance value d u among the nodes in V r that are not in a correct state. Then, either it exists some node v with status C in Γ(u) such that d u ≥ d v + ω(u, v), or not. If such a node v exists then node u can apply rule R C . If it does not, then, by definition, it can apply rule R E . In both those cases there is a contradiction, which concludes the proof.

After noticing that any legitimate configuration is a terminal one, we conclude with the following corollary. Corollary 1. The set of terminal configurations coincide with the set of legitimate configurations.

Convergence

We now prove that algorithm FDcD always terminates within 2n+D -2 rounds under a fair daemon, where D is the hop-diameter of the connected component containing r. Before proceeding with the proof, let us introduce some useful concepts.

Definition 8 (Branch).

A branch is a maximal sequence of nodes v 1 , • • • , v k , for some integer k ≥ 1, such that none of the nodes have status I and, for every i ≤ k, we have v i ∈ children vi+1 . The node v i is said to be at depth k -i. If v k = r but the state of r is not terminal, or simply if v k = r, the branch is said to be illegal, otherwise, the branch is said to be legal.

The first lemma essentially claims that all nodes that are in illegal branches progressively switch to status E within n rounds, in order of increasing depth. Lemma 3. Fix any integer i ≥ 1, and any connected component H. Starting from the beginning of round i in H, there does not exist any node of H both in state C and at depth less than i -1 in an illegal branch.

Proof. We prove this lemma by induction on i. The base case i = 1 is obvious so assume that the lemma holds for some integer i ≥ 1. Consider any node u of H both with status C and depth i -1 in an illegal branch. If u = r, then r executes R r . Otherwise, by induction hypothesis, the parent of u is not in state C. Therefore u is enabled at the beginning of round i. During round i, it will either execute rule R E and thus switch to state E, or it will execute rule R C .

Note that, from the beginning of round i, no node can ever choose a parent which is at depth smaller than i -1 in an illegal branch because those nodes will never be in state C, by induction hypothesis. This is also true for node u if it applies rule R C in round i. Therefore, no node can become in state C at depth smaller than i in an illegal branch. This concludes the proof of the lemma. Root node r does not belong to an illegal branch after the first round. Therefore, after the first round, the number of nodes of an illegal branch cannot be more than n -1. We thus obtain the following corollary.

Corollary 2. For any connected component H, once round n -1 in H has terminated, no node in an illegal branch in H has status C.

The next lemma essentially claims that, within at most n -1 subsequent rounds, the maximal length of an illegal branch progressively decreases until no illegal branches remain.

Lemma 4. Fix any integer i ≥ 0, and any connected component H. Starting from the beginning of round n + i in H, there does not exist any node of H at depth larger or equal to n -i -1 in an illegal branch.

Proof. We prove the lemma by induction on i. The base case i = 0 is obvious so assume that the lemma holds for some integer i ≥ 0. By induction hypothesis, at the beginning of round n + i, no node is at depth larger or equal to n -i -1. Therefore, the nodes at depth n -i -2 in an illegal branch have no children and are thus enabled at the beginning of round n + i. These nodes will thus all be executed within round n + i (they cannot be neutralized as no children can connect to them). We conclude the proof by noticing that, from Corollary 2, once round n -1 has terminated, every node in an illegal tree is in state E, and thus any node in an illegal branch that gets executed from this time will not be anymore in any illegal branch.

Corollary 3. For any connected component H, once round 2n -2 in H has terminated, there are no illegal branches in H.

Note that in a connected component that does not contain the root r, there are no legal branches. Since the only way for a node to be in no branch is to have status I, we obtain the following result.

Corollary 4.

For any connected component H not containing r, after 2n -2 rounds in H, every node v of H has status I.

After 2n -2 rounds, the connected components not containing r are in a legitimate state. In the connected component V r containing r, Algorithm FDcD may need additional rounds so that the correct distances to r are correctly propagated.

In the following lemma, we use the notion of hop-distance to r defined below.

Definition 9 (Hop-distance to the root node r).

A node v is said to be at k hops from r if k is the minimum number of edges of a shortest path from v to r.

Lemma 5. Consider any integer i ≥ 0. For any execution of Algorithm FDcD, starting from the beginning of round 2n -2 + i, every node in component V r at most i hops from r is in a correct state.

Proof. Let us prove the lemma by induction on i. Firstly, we need to remark that after one single round, node r has necessary converged to the correct state. So the base case i = 0 holds, as we can assume n to be at least 2. Secondly, at round 2n -2, from Corollary 3, every node either belongs to a legal branch or have status I, thus any node v ∈ V r always stores a distance d such that d ≥ d(v, r), its actual weighted distance to r. By induction hypothesis, every node at at most i hops from r has converged to a correct state before round 2n + i -1. Therefore, at the beginning of round 2n + i -1, every node v at i + 1 hops from r which is not in a correct state has rule R C enabled. Thus, at the end of round 2n + i -1, every node at at most i + 1 hops from r is in a correct state (such nodes cannot be neutralized during this round). Also, these nodes will never change their state since there are no nodes other than their parent that can make them get closer to r than their current parent.

Putting together all the results of this section, we obtain, for algorithm FDcD, the following theorem.

Theorem 1. Under a fair daemon, Algorithm FDcD always converges to a legitimate state within 2n+D-2 rounds, where D is the hop-diameter of the connected component V r containing node r.

Convergence under an unfair daemon

In this section, we will prove that algorithm FDcD always converges to a legitimate state, even under an unfair daemon. The proof, by contradiction, will go as follows. After noticing that a node activated infinitely often must execute rule R C infinitely many times, we will prove that nodes activated infinitely often must have globally increasing distance values. This means that these nodes will eventually behave as if the nodes activated a finite number of times do not exist. This will lead to a contradiction, as we proved before that a connected component has to become silent after a finite number of rounds. Lemma 6. If at some time a node has been executed k times, then it must have executed rule R C at least k-2 3 many times.

Proof. When a node with status E is enabled, it can either execute rule R C or rule R I . Moreover, a node with status I can only execute rule R C . Thus between two consecutive executions of rule R C by a node, only two other rule executions can happen.

Let us now introduce a useful notation for the next lemmas. Definition 10. A node u is said to execute a rule with (distance) value dist if the distance value d u is equal to dist immediately after this rule execution. Lemma 7. Rule R C cannot be executed infinitely often with the same distance value.

Proof. For the purpose of contradiction, consider any (infinite) execution e of algorithm FDcD in which rule R C is applied infinitely often with the same distance value. Let d min be the minimum such infinitely often used value. Let v be some node applying infinitely often rule R C with distance value d min . Now consider some suffix e of e in which no node with a distance value smaller than d min will ever apply any rule. Note that such a suffix e must exist, by definition of d min .

Let consider the maximal suffix e of e starting when node v has a parent u such that d u = d min -ω (u, v). By definition of e , node u will remain in state C and be the better possible parent within e , therefore node v will not apply any rule in e , contradicting the assumption that node v applies infinitely often rule R C .

We are now ready to conclude about the convergence under an unfair daemon.

Lemma 8. Every execution is finite.

Proof. For the purpose of contradiction, let us assume that there exists an infinite execution e. Let F , resp. F , be the set of nodes executed finitely, resp. infinitely, many times in this execution, and let F be the set of nodes in F that are neighbors of at least one node in F . Note that the set F is necessarily non-empty as it contains at least node r.

Let execution e 1 be a suffix of e in which every node v ∈ F is never executed. In e 1 , only the nodes from F will be executed. Let d max be the maximum distance stored in d v for any node v ∈ F within e 1 . From Lemma 7, if a node executes an infinite number of steps during an execution of algorithm FDcD, then it will necessarily change its distance an infinite number of times. Moreover, distances stored at a given node cannot be negative. Thus, there exists a suffix e 2 of e 1 such that for any node v in F , d v > d max + ω v , where ω v is the maximum weight of an edge incident to v.

Within e 2 , a node v ∈ F cannot have status C, otherwise any node v that belongs to Γ(v ) ∩ F would apply R C with distance value at most d max + ω(v, v ) which would be in contradiction with the definition of e 2 . Moreover, we have d v > d v , and thus v does not belong to children v .

Looking at the algorithm, one can observe that, if a rule can be applied for a node v ∈ F during e 2 , then it can still be applied after removing the nodes in F from the graph. In other words, the nodes in F can have the same execution in the graph obtained after removing the nodes in F . Now consider any connected component H of F . Notice that r is not a node of H. Since all nodes in H are activated infinitely many times, it means that there are an infinite number of rounds in H, without the nodes reaching a terminal configuration in H. Corollary 4 establishes that every node of H are isolated after at most 2n -2 rounds in H. Then, every node of H are and stays disabled forever, they have reached their terminal state. This concludes the proof of this lemma.

Summarizing the results proved so far, we obtain the following main theorem. Theorem 2. Under an unfair daemon, Algorithm FDcD always converges to a legitimate state within a finite number of steps and in at most 2n + D -2 rounds, where D is the hop-diameter of the connected component V r containing node r.

Lower bound on the number of steps

In this section, we prove that the step complexity of our algorithm can be as large as 2 n/2 in some n-node unweighted graphs. This lower bound is based on a family of graphs {G k } k≥1 , defined as follows.

Definition 11 (Graph G k ). For any positive integer k, the graph G k consists of one isolated node r, and k triangles with node sets {a

1 , b 1 , c 1 }, • • • , {a k , b k , c k }, where c i is merged with a i+1 , for 1 ≤ i < k. (See Fig. 3.)
In order to obtain the desired number of steps, we consider a particular initial configuration for each graph G k , called init k . In this configuration, the root node r is correctly initialized: st r = C, parent r = r, and d r = 0. Moreover, we have st a1 = C, parent a1 = a 1 , and d a1 = 1. Finally, all other nodes are in state I. As an illustrative example, the initial configuration of the graph G 3 is presented in Fig. 4. The intuition behind the exponential lower bound is the following. Node a 1 cannot stay in state C and thus eventually switches to state E, and finally to state I when becoming childless. As for node c 1 , it first switches to sate C, having a 1 as parent, then it gains state E when a 1 switches to state E. Node c 1 eventually comes back in state C when becoming childless, but this time choosing b 1 as its parent. The state E then propagates to c 1 via b 1 , both of them eventually switching to state I when becoming childless. To summarize, c 1 is basically doing twice the transition from C to E when a 1 is doing it once. More generally, we will prove that the number of such transitions by node c i+1 is twice the number of such transitions by node c i , yielding to the desired bound.

In order to derive more formally our lower bound on the number of steps, we prove by induction the following property.

Definition 12 (Property P k ). Given a positive integer k, we say that Property P k holds if and only if there exists an execution of our algorithm on G k , starting from the configuration init k , such that the node c i applies exactly 2 i-1 times the sequence of rules

R C , R E , R C , R E , R I , for 1 ≤ i ≤ k.
Lemma 9. For any positive integer k, Property P k holds.

Proof. We prove this lemma by induction on k.

Let us first consider the graph G 1 , in the initial configuration init 1 . The execution of our algorithm proving Property P 1 is defined by the following rule executions: R C by b

1 , R C by c 1 , R E by a 1 , R E by c 1 , R C by c 1 , R E by b 1 , R E by c 1 ,
and finally R I by c 1 . This execution is depicted by the concatenation of Fig. 5 and6.

Fix any positive integer k and assume that Property P k holds. We will prove that Property P k+1 holds as well. Let E k be the desired execution on G k whose existence is proved by the induction hypothesis. We now extend this execution to fit it to the graph G k+1 , with the initial configuration init k+1 , as follows.

As long as any node other than c k is concerned in E k , we can apply the same computation steps in G k+1 . Besides, whenever a rule R C is applied by c k in E k , we ensure that b k+1 and c k+1 (the neighbors that c k has in G k+1 but not in G k ) are in state I and thus do not modify the satisfiability of any predicate from rule R C (it is the case for the first execution of R C by c k and it will be the case by construction for the other executions). Moreover, after each application of R C by c k , the correct status is propagated to the the nodes b k+1 and c k+1 by having them apply rule R C , see Fig. 5.

Similarly, no predicates from R E see their satisfiability changed by the existence of these two nodes when a rule R E is applied by c k in E k . Indeed, by construction, both b k+1 and c k+1 store a greater distance than d, the distance stored by c k , because they This extended execution is thus well defined and has the required properties, which concludes the proof of this lemma. This technical lemma allows us to obtain the main result of this section. Corollary 5. For any n ≥ 4, there exists a n-node graph and a particular initial configuration from which our algorithm uses at least 2 n/2 steps to stabilize.

Proof. For even values of n, this follows directly from Lemma 9. For odd values of n, it is sufficient to just add an additional isolated node to the graph G (n-3)/2 . Note that this construction can be used to obtain the same lower bound for the algorithm presented in [START_REF] Cobb | Stabilization of maximal-metric routing without knowledge of network size[END_REF].

Conclusion

The algorithm FDcD analyzed is this paper is very efficient in terms of number of rounds but might be costly in terms of number of steps. A natural open problem is to 14 design an algorithm with a polynomial step complexity while preserving a small round complexity.
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