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PREFACE 

This book embodies an approach to non-linear elasticity which 
marks a fundamental departure from classical and current trends. 
The basic theory was first published between the years 1934 and 
1940 in seven papers listed at the end of this Preface. In addition to 
a systematic treatment of the general theory and extensions to 
viscoelasticity, the book includes comprehensive new developments 
and applications, many of which are presented here for the first time. 

The work is characterized by the use of cartesian concepts and of 
elementary mathematical methods that do not require a knowledge 
of the tensor calculus or other more specialized techniques. The 
explicit introduction of a local rotation field in the three-dimensional 
equations leads to a theory which separates the physics from the 
geometry and is equally valid for elastic and non-elastic materials, 
using either rectangular or curvilinear coordinates. 

As this book demonstrates, the scope of problems solved by these 
new methods goes far beyond the results which it has been possible 
to obtain by the more elaborate and less general traditional approach. 
New insights, leading to many discoveries and a unified outlook have 
been brought into such widely diversified areas as rubber elasticity, 
internal gravity waves in a fluid and tectonic folding in geodynamics. 

The theory provides rigorous and completely general equations 
governing the dynamics and stability of solids and fluids under 
initial stress in the context of small perturbations. It does not 
require that the medium be elastic or isotropic but is applicable to 
anisotropic, viscoelastic, or plastic media. No assumptions are 
introduced regarding the physical process by which the initial stress 
has been generated. The treatment of viscoelasticity, which 
constitutes a substantial portion of the book, incorporates some of 
the results established in my previous work on non-equilibrium 
thermodynamics. 

Non-linear theories of deformation and applications to problems 
of finite strain are obtained by extension ofthe concept of incremental 
deformation in a medium under initial stress. In contrast to the 
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presentation in the papers listed at the end of this Preface, the 
concepts and methods are developed primarily in the context of the 
linearized mechanics of continuous media under initial stress as an 
independent theory. 

In its earlier phase this work was interrupted by the Second 
World War. My interest in the subject was revived some fifteen 
years ago in connection with geological problems. Because the 
theory is valid for non-elastic media, it was found applicable to 
problems in geodynamics where it has opened a new phase and 
provided new and fruitful methods of analysis. Although the basic 
theory has been available in the scientific literature for more than 
twenty-five years and has been used occasionally by a few investi
gators in technological and geophysical problems, its potentialities 
seem to have been generally overlooked. This is perhaps due to a 
prevalent emphasis on tensor formalism. For many·. years it has 
been my feeling that, between the formalistic approach of the mathe
matician and the more pragmatic treatment of problems by the 
engineer, there is a need for a rigorous but intermediate theory based 
on cartesian concepts. It would extend to three-dimensionaf 
deformations the viewpoints and methods of what has come to be 
known as "Strength of Materials." 

Classical approaches to non-linear elasticity have been handi
capped in technological applications by a rigid formalism which 
obscures the physical significance of the analytical results. In the 
solution of complex problems encountered in practice an important 
requirement is the possibility of recognizing those factors which add 
considerably to the mathematical complexity and at the same time 
are not relevant to the physical problem and may be neglected. 
This cannot be achieved unless the analytical formulation itself is 
sufficiently simple and physically clear. One of the basic difficulties 
arising from the tensor theory is due to the use of the metric tensor 
as a measure of the finite strain. This requires the physical properties 
to be expressed in terms of the squares of the distances between 
material points. By its very nature this definition of the strain leads 
to a formulation which does not provide a clear distinction between 
the geometry of the deformation field and those properties which 
represent the physics of the material. Because it contains quadratic 
terms to begin with, the metric tensor is also the source of much 
confusion regarding the significance of second and higher order 
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elastic coefficients. In this respect illuminating contrast is provided 
by the simplified treatment of second order elasticity in Chapter 2 
(section 9). 

The formal conciseness'of the tensor calculus js deceptive, since it 
leaves to the engineer and the physicist the burden of expressing 
physical properties of materials by means of non-cartesian concepts 
which are not essential and generally complicate the task. In fact, 
it may be said that the overemphasis on tensor inethods in this case 
provides a prime example of mathematical techniques which in some 
areas have slowed progress and led occasionally to false physical 
interpretations. 

The approach presented in this book is essentially free of these 
limitations and difficulties. A small region of the medium is con
sidered to undergo a "pure deformation" followed by a solid rotation. 
The order in which these two transformations are applied is important 
and is chosen so that the strain components are referred to axes 
which have been rotated with the material. Thus a local rotation is 
introduced which varies from point to point and provides a separation 
of the purely geometric properties of the deformation field from those 
which depend on the physics of the material. Correspondingly the 
stress is also defined relative to these locally rotated axes. A dual 
representation is introduced by referring the stress to areas before or 
after deformation. This provides considerable freedom in the 
formulation of physical properties and permits the incorporation of 
thermodynamic principles in the stress-strain relations. On the 
other hand, problems may be formulated with equal ease when, for 
example, it is necessary to introduce a hydrostatic stress. 

To be sure, the separation between rotation and pure deformation 
is not unique. Mathematically speaking, no restriction is imposed 
on how this separation is to be made. It depends entirely on the 
nature of the problem considered. Although in the general theory 
of Chapter 1 the pure deformation is defined by a linear trans
formation with symmetric coefficients which implies no rotation of 
the strain axes, the formulation is by no means restricted to this 
choice. 

On the other hand, this very arbitrariness in the definition of the 
pure deformation and, at the same time, the use of a dual representa
tion of the stress lead to greater flexibility. This is particularly 
important in applications where substantial simplifications are 
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achieved by direct and ad hoc solutions specifically tailored to the 
problem. In many cases it is preferable to carry out the analysis 
by a specialized approach which is not handicapped from the start 
by rigid methods and by the burden of invariance and excessive 
generality. Specialized and simple methods applied to typical 
problems which embody all essential features will generally bring 
out more clearly the fundamental physical properties. 

These points are illustrated by the treatment of plates and rods in 
Chapter 2 (section 10) and Chapter 3 (sections 2 and 3) where 
remarkable simplification and physical clarity are achieved through 
a choice of variables. which are not tensors and are tailored to the 
specific asymmetry of the physics and the geometry. On the other 
hand, the analysis of isotropic. media and rubber elasticity in Chapter 
2 (section 8) provides a good example of the use of alternative 
definitions of the stress which lead to new results and insights. For 
the purpose of comparison I have also derived these new results in a 
separate paper (see page 95) by a method oftensor invariants showing 
that the latter procedure is considerably more elaborate and tends to 
conceal the physics as well as potential algebraic simplifications. 

The general analysis of stability in the presence of hydrostatic 
stress which is developed in Chapter 3 clears up some fundamental 
paradoxes and further illustrates the advantages provided by the 
alternative representations of the stress. 

In later years it became apparent that the methods which I had 
developed earlier in the context of the theory of elasticity could be 
extended to stability problems of viscous and viscoelastic media. 
In fact, this realization has opened an entirely new phase in problems 
of deformation of the earth's crust and tectonic folding of geological 
structures. A similar extension is applicable to problems of acoustic 
propagation in viscoelastic media under initial stress. Incremental 
deformations of a medium initially at rest and in a given state of 
stress may be considered as thermodynamic perturbations of an 
equilibrium state. Hence the mechanics of such a medium may be 
analyzed by introducing the thermodynamics of irreversible processes 
as a unifying background. This systematic theory, which is 
developed in Chapter 6, includes many new results and theorems 
which are presented here for the first time. For vanishing initial 
stress, new results are also obtained in linear viscoelasticity as a 
particular case. The simultaneous treatment of elasticity and 
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viscoelasticity of initially stressed media under conditions which 
include the most general cases of anisotropy is a consequence of the 
separation of the physics from the geometry, in combination with a 
very general "principle of viscoelastic correspondence" (see pages 
359 and 490). Some ofthe results may also be extended to plasticity 
by adding appropriate stress-strain relations to the equations which 
express only geometric and equilibrium properties. 

Fluids at rest under initial stress are treated as a particular case of 
elasticity and viscoelasticity. This includes the theory of internal 
gravity waves and problems of stability and dynamics of viscous 
fluids in a gravity field. 

The case of viscous fluids, which are not at rest under initial stress, 
requires special treatment. In particular, the conditions which 
determine the validity of viscoelastic correspondence in this case 
have been examined. At the same time a number of rather subtle 
difficulties associated with fundamental kinematic properties of the 
strain rate have been clarified. 

A good deal of attention has been given in this book to variational 
methods and the principle of virtual work. They lead to the concept 
of generalized coordinates, generalized stresses and to Lagrangian 
equations. They are applicable to both elastic and non-elastic 
media and may be used to derive approximate solutions for complex 
problems. In addition, an important application of the principle of 
virtual work is its use to formulate general dynamical equations in 
curvilinear coordinates. This provides a simple technique based 
only on cartesian concepts which is applicable to all media regardless 
of their physical properties. 

The methods and concepts used in the linearized theory of initially 
stressed media are directly applicable to non-linear theories and 
large deformations. The equations obtained in both of these cases 
are analogous. A brief outline of this is given in the Appendix. It 
is sometimes necessary to distinguish infinitesimal quantities of 
various orders in the mathematical sense and quantities which may" 
be small but are not negligible in the physical context. This is 
particularly true in certain problems of elastic stability of thin plates 
and shells where some components of strain are very small while the 
corresponding stresses are not negligible. In such cases the linearized 
theory may not be adequate to determine practical stability. The 
so-called "post-buckling" behavior where similar effects must be 
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taken into account may also be analyzed by applying the results 
outlined in the Appendix. 

Such limitations of the linearized perturbation theory in problems 
of elastic stability along with others of purely mathematical or 
academic interest are discussed in Chapter 3. There it is indicated 
how they may be clarified by considering non-elastic properties and 
non-linearity. 

The equations discussed in the Appendix and developed in the 
papers listed at the end of this Preface provide a simple tool for 
non-linear analysis. In particular, I have shown (1934-38) that 
the separation of the deformation from the rotation leads to important 
simplifications when the strain remains small relative to the rotations. 
For the same reason it is possible to separate the non-linearity due to 
physical properties of the material from that due to the geometry of 
the deformation field. This type of non-linear analysis shows that 
in the vast majority of problems the essential features are adequately 
represented by expressions which involve a discriminating choice of 
suitable second and third order terms. These considerations are 
very important in theories of plates and shells. 

Equations applicable to finite strain and expressed in terms of a 
velocity field and rate variables are readily obtained from the 
mechanics of incremental deformations by a trivial limiting process 
which introduces infinitesimal increments. This amounts to con
sidering finite strain to be generated by a continuous sequence of 
incremental deformations. 

It should be borne in mind that Applied Mathematics is an art as 
much as it is a science. * In physical theory it is of paramount 
importance to acquire an intimate grasp of the reality behind the 
mathematical symbols. The formalism alone or even numerical 
solutions do not by themselves bring to light the significant qualitative 
features which lead to deeper insight and constitute an essential part 

* See the author's papers, Applied Mathematics an Art and a Science, Journal pf the 
Aeronautical Sciences, Vol. 23, No.5, pp. 406-410, p. 489, 1956; Are We Drowning 
in Complexity?, Mechanical Engineering, Vol. 85, No.2, pp. 26-27, 1963; and Science 
and the Engineer, Applied Mechanics Reviews, Vol. 16, No.2, pp. 89-90, 1963. 
The last paper has been reprinted in the following journals: Journal of Engineering 
Education, Vol. 54, No.5, pp. 169-170, 1964; Scientific World, Vol. 7, No.4, pp. 9-10, 
1963; Bulletin of Mechanical Engineering Education, Vol. 2, No.3, pp. 149-151, 1963; 
Engineering and Science, Vol. 26, No.4, pp. 30-36, 1963; Ciencia y Tecnica, (Spanish 
translation), Vol. 133, No. 673, 1964. 
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of any truly comprehensive theoretical treatment. The commonly 
accepted notion that all problems are solved once exact equations 
have been established which can be fed into automatic computers is 
a fundamental fallacy. The criterion of adequacy of a physical 
theory is not necessarily based on pure logical structure and 
generality. The theory must be associated with other advantages of 
a conceptual and pragmatic nature. This obviously involves a 
judgment of values which lies beyond the scope of mathematical 
principles. 

There is no mathematical synthesis which guarantees the simplest 
and most direct solution to every type of problem. Some exceptional 
cases of large deformation may require the use of more specialized 
techniques. Many such problems. are mainly of academic interest. 
They constitute a small fraction of the vast field of technological and 
physical problems which can be handled by more appropriate 
methods. 

While stressing the practical limitations of the tensor calculus in 
problems of applied mechanics, one should of course recognize the 
well-established value of the tensor concept itself, particularly in its 
simpler cartesian form. The concept of cartesian tensor is implicit 
throughout the present work. However, as in the classical treat
ment of linear elasticity, it has not been found necessary to depend 
on the rules of tensor algebra as a separate mathematical discipline. 

My efforts have been directed toward giving the engineer and 
physicist adequate tools with a sound mathematical foundation, and 
a minimum requirement in mathematical techniques. Procedures 
and viewpoints which tend to build up the mechanics of continuous 
media as an exercise in tensor formalism have been avoided. The 
emphasis has been put on methods which achieve a compromise 
between simplicity, generality, and usefulness. It is not intended 
to exclude other methods provided that the difference in emphasis is 
clearly understood and proper balance is maintained. 

This book is divided into six chapters and an Appendix. The 
first chapter, parts of Chapters 2 and 5, and the Appendix are 
concerned mainly with the material originally developed during 
the years 1934 to 1940 in the seven papers listed at the end of 
this Preface. The presentation here is given in quite different form: 
the non-linear and large deformation theories are treated separately 
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in the Appendix as an extension of the linearized equations for a 
medium with initial stress. Chapter 2 deals primarily with the 
general theory of elasticity. The next two chapters are devoted to 
problems of elastic stability of isotropic and anisotropic media. The 
general dynamics of elastic media under initial stress is developed in 
Chapter 5; it includes problems of acoustic propagation, dynamic 
stability, and the theory of internal gravity waves in a fluid. The 
last chapter, which is by far the longest, is devoted exclusively to 
viscous and viscoelastic media under initial stress and includes a 
discussion and applications of the thermodynamics of irreversible 
processes. 

For a detailed description of the contents and interrelations of 
various parts of the book the reader is referred to the introductory 
sections at the beginning of each chapter. 

The basic theory contained in the seven papers listed below was 
developed while I was a member of the Applied Science Department 
of the University of Louvain, and of the Physics Department of 
Columbia University. 

The preparation of the book itself and most of the research con
nected with the new developments, some of which have been 
presented in separate publications, were supported by the Air Force 
Office of Scientific Research under contracts AF 49 (638)-266, 
AF 49 (638)-837, and AF 49 (638)-1329. 

Other original contributions incorporated in this book result from 
work sponsored by the Shell Development Company as part of a 
general research program in geodynamics. 

I am indebted to Dr. A. Winzer for valuable assistance in proof
reading, in the preparation of the Index, and in some of the analytical 
derivations in section 8 of Chapter 3 and section 7 of Chapter 5. 

The earlier papers (1934--1940) on which this book is based are: 

1. M. A. Biot, Sur la stabilite de l'equilibre elastique. Equations de l'elasticite d'un 
milieu soumis a tension initiale, Annales de la Societe Scientifique de Bruxelles, 
Vol. 54, Ser. B, part I, pp. 18-21, 1934. 

2. M. A. Biot, Theory of Elasticity with Large Displacements and Rotations, in 
Proceedings of the Fifth International Congress for Applied Mechanics (Cambridge, 
Mass., September 1938), pp. 117-122, John Wiley & Sons, Inc., New York, 
Chapman & Hall Ltd., London 1939. 

3. M. A. Biot, Theorie de l'elasticite du second ordre avec application a la theorie du 
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flambage, Annales de la Societe Scientifique de Bruxelles, Vol. 59, Ser. I, pp. 104-112, 
1939. 

4. M. A. Biot, Non·linear Theory of Elasticity and the Linearized Case for a Body 
unde: Initial Stress, Philosophical Magazine, Vol. 27, Ser. 7, pp. 468-489, 1939. 

5. M. A. Biot, Elastizitatstheorie zweiter Ordnung mit Anwendungen, Zeitschrift 
fur Angewandte Mathematik und Mechanik, Vol. 20, No.2, pp. 89-99, 1940. 

6. M. A. Biot, Increase of Torsional Stiffness of a Prismatical Bar due to Axial 
Tension, Journal of Applied Physics, Vol. 10, No. 12, pp. 860-864, 1939. 

7. M. A. Biot, The Influence of Initial Stress on Elastic Waves, Journal of Applied 
Physics, Vol. 11, No.8, pp. 522-530, 1940. 

In order to avoid undue repetition, these papers are referred to in 
the book by their numbers as listed here. 

New York, New York 
October, 1964 

MAURICE A. BlOT 
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CHAPTER ONE 

Statics and Kinematics 

of Incremental Stresses and Strains 

1. INTRODUCTION 

It is well known that a state of initial stress in a deformable medium 
induces mechanical properties which depend mainly on the magnitude 
of the stress and are quite distinct from those associated with the 
rigidity of the material itself. 

This is best illustrated by the example of a string under tension. 
A perfectly flexible string is stretched under a tension T between two 
fixed points A and B (Fig. 1.1). If a vertical load F is applied to the 
string at point 0, the deflection w at that point is determined entirely 
by the laws of static equilibrium. 

The static analysis is simplified by assuming that the slope of the 
string is small and may be treated mathematically as a quantity of 
the first order. The deflection of the string is 

F 
(1.1) w=k 

with 

k = T (A10 + O~) (1.2) 

Although no elastic properties of the material itself are involved, the 
deflection is the same as if the load were acting on a spring whose 
rigidity is measured by a modulus k. 

1 
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The same analogy extends to variational and energy methods. 
When the string deflects, the elastic potential energy in the string 
increases by the amount 

W = T(AD + DB - AB) 

To the second order we may write 

Hence 

1 w2 

AD = V (AC)2 + w2 = AC + 2 AC 

1 w2 

DB = V(CB)2 + w 2 
= CB + 2CB 

W = 1T (_1_ + _1_) w2 = 1kw2 
2 AC CB 2 

(1.3) 

(1.4) 

(1.5) 

This expression also represents the potential energy stored in a 
spring of modulus k. The deflection of such a spring under a force F 
may be obtained by the principle of virtual work: 

Fow = oW = kwow (1.6) 

The deflection w derived from (1.6) coincides with the value (1.1). 

~ Ar==-__ ~~C~ ______ ~~=--AB ____ ~~~T 
T ""iI1(;----~--s ; ______ ~--- ~ 

D W 

Figure 1.1 Deflection of a string under tension as an example 
of the apparent rigidity of a system under initial stress. 

This simple example brings forth the important point that the 
equations derived from direct balance of the forces involve only first 
order terms in the geometry of the deformation. By contrast the 
corresponding variational principle involves second order geometry. 

The next step which comes to mind is represented by problems in 
which the elastic properties of the material and the initial stress both 
contribute to the over-all rigidity of the structure. For example, we 
may ask what happens when the string considered in the previous 
example is not perfectly flexible and possesses an elastic rigidity in 
bending. 
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Problems of this type have been treated extensively in the past 
mostly in the context of engineering and the particular branch of 
science usually referred to as "Strength of Materials." One of the 
early developments is Euler's theory of buckling of a thin rod under 
axial compression. The presence of an initial stress may increase or 
decrease the over-all rigidity of an elastic structure. In a rod under 
axial compression the initial stress produces a decrease in lateral 
stiffness. For increasing values of the compression this decrease will 
overcome the natural bending rigidity of the rod, producing an in
stability known as buckling. On the other hand, a cable hanging 
under its own weight is under an initial tension which increases its 
rigidity. This effect is used in the design of suspension bridges. 

These problems have usually been treated by approximate methods 
restricted to special structures such as slender rods and thin plates. 
The viewpoints and methods used in these approximate theories lead 
to a formulation which brings out explicitly in the equations the 
particular terms which contain the initial stress and are responsible 
for the characteristic features due to the presence of this stress. 
The same viewpoint can be maintained to develop a systematic and 
rigorous three-dimensional theory of the initially stressed continuum 
using elementary methods and following exactly the same procedures 
as in the classical theory of linear elasticity. 

The presentation of this theory along the lines developed by the 
author is the objective of this chapter. It is essentially an analysis 
of the statics and kinematics for incremental deformations in the 
presence of initial stress. The concepts and equations are developed 
entirely with reference to the geometry of the deformation and the 
equilibrium of the stresses. At no time is any reference made to the 
physical properties of the material. The results of this chapter are 
therefore applicable to any type of continuum, whether it be a fluid 
or a solid, with elastic, plastic, or viscoelastic properties. 

As shown in the simple example of the string under tension, a com
plete analysis of the problem requires an understanding of the 
geometry of the deformation which includes both first and second 
order terms. The second order terms are required in the linear theory 
in order to formulate the corresponding variational principles. We 
have therefore analyzed the concept of strain from this viewpoint in 
the two initial sections of this chapter. This is done by considering 
first a state of finite strain. A small region around a material point 
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undergoes a translation, a solid body rotation, and a "pure" homo
geneous strain. The pure strain is defined by using the property that 
there are three orthogonal directions in the medium which remain 
orthogonal after deformation. This also leads to a unique definition 
of the solid rotation of an element. This particular definition of 
finite strain is well known and leads generally to transcendental 
equations due to the introduction of a solid body rotation, equations 
which in three dimensions involve intricate relations for the trans
formation of the coordinate axes. 

However, this difficulty disappears in two important cases. One 
of them is represented by the classical theory of infinitesimal 
deformations of the first order. The other, which is the one con
sidered in this chapter, involves an evaluation of the strain with an 
approximation of the second order. This second order analysis 
provides immediately the required quadratic expression for the strain 
energy leading to a variational formulation of the theory which is 
developed in detail in the next chapter. The non-linear expressions 
derived for the strain also clarify the validity of first order approxi
mations. In addition, as shown by the author, they lead to a 
simplified non-linear theory of elasticity. * 

We have treated separately the two-dimensional deformation (in 
section 2) and the three-dimensional deformation (in section 3). This 
separation of the two cases is maintained throughout because the 
physical significance is more easily explained and illustrated in two 
dimensions, whereas the mathematical symmetry of the equations is 
more readily emphasized in three dimensions. In connection with 
the three-dimensional kinematics of strain we have used the so-called 
"dummy index" rule. This is a notation of considerable conciseness 
used as a standard procedure in the tensor calculus. It has been 
used extensively in this book whenever needed either to avoid un
necessary writing or to bring out the mathematical structure of the 
equations. It should be remembered that, although this is a notation 
of the tensor calculus, no use is made of the tensor calculus itself and 
the mathematical procedures remain entirely elementary. 

The following sections are devoted to the linear mechanics of a 
continuum under initial stress under conditions of static equilibrium. 

* See references 3, 4, and 5 at the end of the Preface. A brief discussion of the 
non·linear theory is also given in the Appendix. 
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The original coordinates refer to the medium in the state of initial 
stress. A small displacement field is then superimposed. The 
strain associated with this deformation is infinitesimal and is de
scribed by the classical components for small strain. These classical 
considerations do not apply to the stress. The significance of incre
mental stresses is analyzed in sections 4 and 5. Of importance is the 
introduction of incremental stress components referred to axes whose 
directions are obtained by rotating the original coordinates by an 
amount equal to the local rotation of the material. The stress is thus 
referred to axes whose orientation varies from point to point. The 
purpose of representing the stress in this way is that its components 
now depend only on the physical properties of the material; thus the 
physics is separated from the geometry and the solid body rotation is 
eliminated from the relations between stress and strain. This 
feature is particularly useful in studies of viscoelastic and plastic 
materials. 

It should be kept in mind that the linear theory is strictly applic
able only if the stress variation is a small fraction of the initial stress. 
Smallness of the deformation in the physical sense does not always 
guarantee this condition to be fulfilled, as in certain types of problems 
of thin plates and shells. Such problems must be handled by special
ized methods. The non-linear theories developed earlier by the 
author* also provide a basis for a fundamental but elementary 
approach to such problems which is similar to the linear theory. 

The last two sections of this chapter are devoted to the derivation 
of equilibrium equations and boundary conditions using the fore
going definition of the incremental stresses. One important char
acteristic of these equations is that they are intrinsic, i.e., they depend 
on the local geometry of the deformation and at the same time retain 
the cartesian representation of the stress. This has the advantage of 
clarifying the physical significance of the mathematics and constitutes 
the reason for the usefulness of this form of the equations. 

The equations derived in this chapter are restricted to cartesian 
coordinates. Their formulation for curvilinear coordinates has been 
relegated to Chapter 2 as an application of the variational principles. 

Finally it should also be remarked that this approach does not 
require any knowledge of the physical process by which the initial 

* See references 3, 4, and 5 at the end of the Preface. 
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stress has been generated. We should remember that the physics of 
initial stresses can be very different from that of incremental stresses. 
For example, a gas may be in isothermal equilibrium under gravity 
and incremental acoustic waves may propagate through it adiabati
cally. The same considerations apply to rapid elastic deformations 
in the earth where the initial stress is associated with a slow process 
of creep due to viscous and plastic deformations. 

2. THE KINEMATICS OF TWO-DIMENSIONAL STRAIN 

We consider a homogeneous deformation in the plane x, y such that 
a square S is transformed into a rectangle R while the sides keep fixed 
orientations I and II (Fig. 2.1). Such a deformation is represented 
by the linear transformation with symmetric coefficients: 

g = (1 + Bll)X + B12Y 
(2.1 ) 

where 

(2.2) 

A point P of coordinates x, Y is transformed into a point P' of co
ordinates g,7]' The coefficients Bij define a pure deformation. The 
reason for this appellation is the existence of two directions I and II, 

y 

II 

Figure 2.1 Representation of a pure deformation. The square S 
is transformed into the rectangle R. 
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perpendicular to each other, called principal directions, whose orienta
tion remains fixed during the transformation. The deformation 
represented by equations 2.1 is therefore always equivalent to 
positive or negative elongations in the principal directions. 

The existence of the principal directions is a consequence of the 
symmetry property (2.2). This can be shown by considering the 
quadratic form 

rP = HI + Bll)X2 + B12XY + t(1 + B22)y2 (2.3) 

Because of the symmetry relation (2.2) we may write the trans
formation (2.1) as 

(2.4) 

Therefore the vector g, TJ is parallel to the gradient of rP, i.e., normal 
to the conic section whose equation is 

rP = const. (2.5) 

and which passes through the point x, y. Obviously the axes of this 
conic section are the principal directions of the deformation. 

Let us now write the general linear homogeneous transformation in 
the plane x, y, i.e., 

g = (1 + all)x + a12 y 

TJ = a21x + (1 + a22)Y 
(2.6) 

where the coefficients aij mayor may not be symmetric, i.e., where 
in general 

In matrix form we write 

a12 ] [X] 
1 + a22 Y 

(2.7) 

A pure rigid rotation is a particular case of transformation (2.6). A 
clockwise rotation through the angle 0 transforms the coordinates 
x', y' into g, TJ by the linear relations: 

-sin 0] [X'] 
cos 0 y' 

(2.8) 
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The question immediately arises whether the transformation (2.6) is 
always equivalent to two successive transformations, namely, first a 
pure deformation 

[
X:] [1 + ell e12] [X] (2.9) 
Y e21 1 + e22 Y 

with e12 = e21 followed by a pure rotation (2.8). The successive 
application of these two transformations leads to 

[g] = [C~s 0 
YJ sm 0 

-sin 0] [1 + ell 

cos 0 e21 
(2.10) 

This transformation must be equivalent to transformation (2.7). 
Performing the matrix multiplication and equating the corresponding 
matrix elements in equations 2.7 and 2.10, we derive the four 
equations 

(1 + ell) cos 0 - e21 sin 0 = 1 + all 

(1 + ell) sin 0 + e21 cos 0 = a 21 

(1 + e22) cos 0 + e12 sin 0 = 1 + a 22 

- (1 + e22) sin 0 + e12 cos 0 = a 12 

(2.11) 

We may solve the first two of these equations for 1 + ell and e21 and 
the last two for 1 + e22 and e12. We find 

e21 = a 21 cos 0 - (1 + all) sin 0 

e12 = a 12 cos 0 + (1 + a 22 ) sin 0 
(2.12) 

1 + ell = (1 + all) cos 0 + a 21 sin 0 

1 + e22 = (1 + a22) cos 0 - a 12 sin 0 

Because e12 = e21 expressions on the right side of the first two of 
relations (2.12) are equal, and we derive 

(2.13) 

This yields the magnitude of the pure rotation contained in trans
formation (2.7). It is a counterclockwise rotation through an angle 
O. Knowing 0, we are able to calculate from relations (2.12) the 
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x 

Figure 2.2 Superposition of a pure deformation and a rotation O. 

coefficients 8ij of the pure deformation (2.9) contained in equation 
2.7. They are 

821 = 812 =. t(a21 + a12) cos (J + t(a22 - all) sin (J 

811 = all cos (J + a21 sin (J + cos (J - 1 

822 = a22 cos (J - a12 sin (J + cos (J - 1 

(2.14) 

The first of equations 2.14 is obtained by adding the first two of 
equations 2.12 and dividing by 2. 

By transformation (2.6) the unit square OABO in Figure 2.2 is 
transformed into the parallelogram OA' B'O'. We have just shown 
that this is equivalent to rotating the square counterclockwise through 
an angle (J, then submitting it to a pure deformation. This pure 
deformation is defined by the coefficients 81i' i.e., by a symmetric 
transformation (2.1) where the coordinates x, yare now referred to axes 
1, 2 which are rotated by the angle (J from their original direction. It is 
important to note that this is a consequence of the fact that we have 
first applied the transformation (2.9) and then the rotation (2.8). 
The sequence of these two transformations is not arbitrary since the 
multiplication of the two matrices in equation 2.10 is not commuta
tive; that is, we find a different result if we reverse the order of 
mUltiplication. If we reverse the order of transformations (2.8) and 
(2.9), i.e., if we first apply a rotation and then perform a pure defor
mation, we find the same expression (J for the angle of rotation but 
different values for the coefficients 8ij. There is, of course, no con
tradiction here because the 8ij represent the same pure deformation, 
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referred this time to the original unrotated axes instead of the rotated 
axes 1,2. 

In the present theory the definition (2.12) of the pure deformation 
is adopted; that is, we shall refer the pure deformation to rotated axes. 

Until now we have considered finite deformations. We now intro
duce an assumption of "smallness"; that is, we shall arbitrarily 
consider the coefficients aij to be small quantities of the first order, 

(2.15) 

Letting 

(2.16) 

we may write to the first order 

() ~ W (2.17) 

Furthermore we obtain expressions for the coefficients 8lj which are 
correct to the second order if in relations (2.14) we replace 

sin () by w 

cos () by 1 

1 - cos () by tw2 

Hence to the second order we find 

821 = 812 = t(a21 + a12) + t(a22 - ail)w 

811 = all + a21w - tw2 

822 = a22 - a12w - tw2 

(2.18) 

(2.19) 

In the text below we have used an equivalent form of these expres
sions which introduces explicitly the quantity t(a21 + aI2 ). We 
may write the identities 

a21 = !(a21 + a12) + w 

a12 = t(a21 + a12 ) - w 

and the coefficients (2.19) become 

821 = 812 = !(a21 + a12) + !(a22 - all)w 

811 = all + !(a21 + al2)w + tw2 

822 = a22 - t(a21 + al2 )w + !w2 

(2.20) 

(2.21) 
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The next and last step in the analysis is to consider an inhomo
geneous deformation, i.e., such that a point P of coordinates x, y is 
transformed into a point P' of coordinates 

(2.22) 

The displacement field is represented by the vector of components 

u = u(x, y) 

v = v(x, y) 

both functions of the initial coordinates x, y. 
relations 

dg = 1 + - dx + - dy ( 
OU) ou 
ox oy 

ov ( OV) dTJ = ox dx + 1 + oy dy 

(2.23) 

The differential 

(2.24) 

represent a linear transformation of the infinitesimal vector of com
ponents dx, dy in the vicinity of point P into an infinitesimal vector 
of components dg, dTJ in the vicinity of point P'. In other words, 
relations (2.24) define a homogeneous transformation of the infini
tesimal area around P into an infinitesimal area around P' (Fig. 2.3). 
Such a transformation is identical with the homogeneous trans
formation (2.6), and the previous analysis is immediately applicable. 
The coefficients aij become the partial derivatives, 

OU 
all = ox 

OV 
a21 = ox 

OU 
a12 =-

oy 

OV 
a22 =-

oy 

(2.25) 

It is possible therefore to define a local rotation B of the material 
which varies from point to point; it is given by expression (2.13). 
The pure deformation of the infinitesimal region around point P is 
represented by the coefficients Bij given by expressions (2.14). We 
must remember that these coefficients represent a pure deformation 
which is defined relative to the locally rotated directions 1, 2 (Fig. 
2.3). 
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y 

d~ 

oL---------------------------------x 

Figure 2.3 Deformation in the vicinity of a point P' originally at P. 

From equation 2.16 we see that the magnitude of the local rotation 
is given to the first order by 

W = ~ (:~ - :;) (2.26) 

For convenience we introduce the notation 

au ov 
exx ax eyy = oy 

I (OV aU) 
eXY = eyX ="2 ax + oy 

(2.27) 

To the second order the coefficients ejj or strain components are given 
by equations 2.21. With the notation (2.27) we may write* 

e12 = eXY + t(eyy - exx)w 

ell = exx + eXYw + tw2 

e22 = eyy - eXYw + tw2 

(2.28) 

The quantities exx, eyy, eXY are the first order strain components of the 
classical theory of elasticity. 

To the first order we may write 

(2.29) 

* Expressions (2.28) were derived by the author in 1938 (reference 2 at the end of the 
Preface). 
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\ 
\ 

"-

dy 

-
Figure 2.4 Uniform dilatation represented by linear 

transformation (2.32). 

13 

Another interesting consequence of relations (2.28) arises when the 
classical strain components are zero: 

e xx = e)J)J = eX)J = 0 

In this case there is a second order strain, 

which corresponds to an isotropic extension of magnitude lw2 . 

is easily verified directly by considering the transformation 
which in this case becomes 

dg = dx - w dy 

dYJ = w dx + dy 

(2.30) 

(2.31 ) 

This 
(2.24) 

(2.32) 

All points on a unit circle centered at the origin are transformed by a 
displacement w in a direction tangent to the circle. Hence the radius 
of the circle is enlarged by a factor 

The circle, of course, also rotates through an angle B given by 

tanB=w 

This is illustrated in Figure 2.4. 

(2.33) 

(2.34) 
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An interesting feature of the pure deformation as defined above is 
that two successive pure deformations do not combine to give a pure 
deformation. In mathematical language we say that pure deforma
tions do not constitute a group. In order to show this let us consider 
the two following pure deformations 

[~~] 812 ] [dX] 
1 + 822 dy 

(2.35) 

[dX'] 
dy' 

(2.36) 

The latter transformation is equivalent to a resultant transformation: 

[dX:] =' [Cll 

dy C21 

C12] [dX] 
C22 dy 

(2.37) 

The matrix of this resultant transformation is obtained by multi
plication of the matrices defining the transformations (2.35) and 
(2.36); hence 

The elements of this matrix are 

Cll =:= 1 + 8~1 + 811 + 8~1 811 + 8~2812 
C12 = 8~2 + 812 + 8~1 812 + 8~2822 
C21 = 8~2 + 812 + 8~28ll + 8~2812 
C22 = 1 + 8;2 + 822 + 8;2822 + 8~2812 

(2.38) 

(2.39) 

The resultant transformation (2.37) will represent a pure deforma
tion only if 

(2.40) 

This relation which in general will not be fulfilled is equivalent to 

(2.41) 

The significance of this relation appears if we consider the principal 
directions of strain. These directions are given by the principal 
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axes of the conic represented by equation 2.5. By a simple calcula
tion the angle a of these principal directions with the x axis is found 
to satisfy the relation 

tan 2a = (2.42) 

We conclude that the necessary and sufficient condition for two 
successive pure deformations to represent also a pure deformation is 
that their principal directions coincide. 

Condition (2.40) is always fulfilled if we neglect the second order 
quantities such as 8~1 812 and 8~2822' Hence for infinitesimal strain 
the combination of two pure deformations yields a pure deformation. 

It is also interesting to note that if relation (2.41) is not satisfied 
the resultant transformation (2.37) contains a higher order rotation 
of angle B defined by equation 2.13. For instance, the successive 
application of two pure deformations of the first order produces a 
rotation of the second order. The sign of this rotation is reversed if 
we reverse the sequence of the pure deformations (2.35) and (2.36). 

3. THE KINEMATICS OF THREE-DIMENSIONAL STRAIN 

The concepts developed in the preceding section for two-dimen
sional strain may be extended readily to three dimensions. It is not 
necessary to repeat all the arguments in detail, and we start im
mediately with the general non-homogeneous transformation. The 
point P of initial coordinates x, y, Z, is transformed into a point P' 
of coordinates 

g=x+u 

T)=y+v 

'=z+w 

(3.1) 

The displacement field is represented by the vector of components 

u = u(x, y, z) 

v = v(x, y, z) 

w = w(x, y, z) 

(3.2) 
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In the vicinity of point P the continuum undergoes the linear 
transformation 

(3.3) 

This is a homogeneous transformation. In this transformation a 
point of coordinates dx, dy, dz in the vicinity of point P is trans
formed into a point of coordinates dg, dYj, d, in the vicinity of P'. 
As in the two-dimensional case discussed above, we shall show that 
the transformation (3.3) is equivalent to a pure deformation followed 
by a pure solid rotation. In three dimensions the kinematics of 
solid rotation is considerably more involved, and we shall therefore 
approach the analysis from a different viewpoint. 

Let us introduce the symmetric and linear transformation 

with 

de = (1 + ell) dx + e12 dy + e13 dz 

dr/ = e21 dx + (1 + e22) dy + e23 dz. 

de = e31 dx + e32 dy + (1 + e33) dz 

(3.4) 

That this transformation represents a pure deformation can be seen 
by using the same arguments as for two-dimensional strain and 
writing the quadratic form 

~ = t(l + eu)X2 + t(l + edy2 + t(l + edz2 

+ e23YZ + e31ZX + e12XY (3.5) 

The three axes of the quadric 

~ = const. (3.6) 

represent the three principal directions of strain. * These three 

* A more extended discussion of homogeneous strain will be found in Love's treatise, 
The Mathematical Theory of Elasticity. Fourth Edition, pp. 66-73, Cambridge 
University Press (reprinted by Dover Publications, New York, 1944). 
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directions are mutually perpendicular and do not change when the 
medium undergoes the symmetric transformation (3.4). A cube 
whose edges are originally oriented along these three directions 
becomes a rectangular parallelepiped, with its edges oriented along 
the same directions. We are therefore justified in defining the sym
metric transformation (3.4) as a pure deformation. The coefficients 
in the transformation (3.4) are represented by the symmetric matrix 

812 8 31] 

822 823 

823 833 

(3.7) 

These coefficients are called the strain components of the pure 
deformation. 

Immediately there arises the problem of finding out under what 
condition the more general transformation (3.3) will contain the same 
deformation as the symmetric transformation (3.4). The necessary 
and sufficient condition for this to occur is obviously that the distance 
between any pairs of points remain the same for both transformations. 
It may be expressed mathematically as follows. A pair of points 
whose vectorial distance is represented by dx, dy, dz acquire an 
absolute distance ds by the transformation (3.3) and an absolute 
distance ds' by the transformation (3.4). These distances are given 
by 

ds2 = de + dYJ2 + d~2 
dS'2 = dg'2 + dYJ'2 + d~'2 (3.8) 

The condition that the two transformations contain the same 
deformation is that the relation 

ds2 = dS'2 (3.9) 

be verified identically for all values dx, dy, dz. 
In order to carry out this identification we introduce the notation 

OU 1 (OW OV) 1 (OW OV) 
exx = ox eyZ = eZy = '2 oy + oz Wx = '2 oy - oz 

OV 1 (OU OW) 1 eu OW) (3.10) eyy = oy ezx = exz = '2 oz + ox Wy = '2 oz - ox 

ow 1 (OV OU) 1 (OV OU) 
ezz = OZ eXY = eyX = '2 ox + oy w=----

z 20x oy 
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With this notation the transformation (3.3) becomes 

dg = (1 + exx ) dx + (eXY - wz) dy + (ezx + wy) dz 

dTJ = (eXY + wz) dx + (1 + eyy ) dy + (eyZ - Wx) dz (3.11) 

d~ = (ezx - wy) dx + (eyZ + Wx) dy + (1 + ezz ) dz 

The length element for this transformation is written 

ds2 = (1 + 2flxx) dx2 + (1 + 2flyy) dy2 + (1 + 2flzz) dz2 

+ 4flyz dy dz + 4flzx dz dx + 4flxy dx dy (3.12) 

with the definitions 

flxx = exx + ie;x + i(exy + wz)2 + i(ezx - wy)2 

flyy = eyy + ie~y + i(eyz + wx)2 + i(exy - wz)2 

flzz = ezz + ie;z + i(ezx + ~y)2 + i(eyz - wx)2 (3.13) 

flyz = eyZ + i(eXY - wz)(ezx + wy) + ieyy(eyZ - Wx) + -!ezAeyz + Wx) 

flzx = ezx + i(eyZ - wx)(eXY + wz) + iezAezx - wy) + iexAezx + wy) 

flxy = eXY + i(ezx - wy)(eyZ + Wx) + iexAexy - wJ + ieyy(exy + wJ 
These quantities represent the classical definition of finite strain. 
The length element for the pure deformation (3.4) is 

dS'2 = (1 + 2Y11) dx2 + (1 + 2Y22) dy2 + (1 + 2Y33) dz2 

+ 4y23 dy dz + 4y31 dz dx + 4y12 dx dy (3.14) 
with 

Y11 = 811 + i(8i1 + 8i2 + 8~1) 
Y22 = 822 + i(8~2 + 8~3 + 8i2) 

Y33 = 833 + i(8~3 + 8~1 + 8~3) 
Y23 = 823 + i(8 128 31 + 8228 23 + 8338 23) 

Y31 = 831 + i(823812 + 8338 31 + 811831) 

Y12 = 812 + i(831 8 23 + 811812 + 822812) 

(3.15) 

Now, as already pointed out, the pure deformation (3.4) can be made 
to represent exactly the same state of strain as that produced by the 
transformation (3.3) provided the length elements ds and ds' are 
identical after the transformation, i.e., provided that relation (3.9) is 
satisfied identically. This condition is expressed analytically by the 
six equations 

flxx = Y11 

flyy = Y22 

flzz = Y33 

flyz = Y23 

flzx = Y31 

flxy = Y12 

(3.16) 
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These equations determine the six strain components (3.7) as 
functions of the nine coefficients (3.10) appearing in transformation 
(3.3). 

Transformations (3.3) and (3.4) thus related represent the same 
state of strain and can differ only by a rigid body rotation. The 
rigid body rotation that we must add to transformation (3.4) in order 
to obtain transformation (3.3) will be called the local rotation of the 
material. Transformation (3.3) contains nine independent coeffi
cients, while the state of strain is determined by only six quantities. 
There are therefore three degrees of freedom leaving unchanged the 
length element ds and corresponding to the rigid body rotation 
contained in the general transformation (3.3). 

The finite strain components (3.7) have the advantage that they 
are linearly related to the actual changes of length in the material, 
whereas the classical components (3.13) are linearly related to the 
change of the square of the length. On the other hand, the com
ponents (3.7) have the disadvantage that they cannot be expressed 
rationally by means of the nine quantities (3.10). However, this 
disadvantage vanishes when we assume the nine quantities (3.10) to 
be small of the first order and when we consider only the first and second 
order terms in the expressions for the strain components (3.7) as a 
function of the nine quantities (3.10). A solution of equations 3.16 
is obtained immediately as follows. 

We notice from equations 3.16 that exx and ell differ only by a 
second order quantity; the same is true for e XY and e121 etc., so that we 
may write with an error of only the third order 

e~x + e~y + e;x = erl + er2 + e~1 
e~y + e~z + e~y = e~2 + e~3 + er2 

e;z + e;x + e~z = 8~3 + 8~1 + 8~3 
(3.17) 

eXyeZX + eyyeyZ + eZZeyZ = 8128 31 + 8228 23 + 8338 23 

eYZeXY + ezzezx + exxezx 8238 12 + 8338 31 + 8118 31 

eZXeyZ + eXXeXY + eyyeXY 831 e 23 + 8118 12 + 822812 

Introducing the approximate relations (3.17) into equations 3.16, we 
find for the strain components with an error of only the third order* 

* Equations 3.18 were derived by the author in 1939, in references 3 and 4 at the 
end of the Preface. They were applied subsequently in reference 5. 
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dr 
3 

2 

dz J£'------ d7J 

d~ 

r------dy 

(]x 

Figure 3.1 Local rotated coordinate system (1,2,3) and unrotated coordinate 
system (dg, dT], d~) in the vicinity of a point P' initially at P. 

811 = exx + eXYwZ - ezxwy + !(wz 
2 + Wy 2) 

822 = eyy + eyZwX -:- eXYwZ + !(wx 
2 + Wz 2) 

833 = ezz + eZXwy - eyZwX + !(wy2 + wx
2) 

823 = eyz + !wx(ezz - eyy ) + !wyeXY - !wzezx 

831 = ezx + !wy(exx - ezz ) + !wZeyZ 

812 = eXY + !wieyy - exx) + !wxezx 

!wyWZ 

iwxexy !wzwx 

!wyeyZ - !WXwy 

(3.18) 

At this point it is important to stress the physical significance ofthese 
components of strain. If we look at the homogeneous transforma
tion (3.3) of a small region in the vicinity of a point attached to the 
material, we see that it can be obtained as follows (Fig. 3.1). 

l. The material is translated as a rigid body so that point P 
coincides with P'. 

2. We rotate this region as a rigid body. (We show below that 
this rotation is defined to the first order by the vector wx , W Y ' w z .) 

3. A system of rectangular coordinates with its origin at point pi 
and parallel with the x, y, z directions is rigidly rotated by the same 
amount as the material and becomes thereby a system we call (1, 2, 3). 
With respect to this coordinate system (1, 2, 3) we then perform the 
pure deformation (3.4) with strain components (3.18). 
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Therefore we may look upon strain components (3.18) as repre
senting the pure deformation referred to a rectangular frame (1, 2, 3) 
originally parallel with the x, y, z directions and undergoing the same 
rotation as the material. The strain field is thus referred to a field 
of rectangular axes whose orientation varies from point to point 
according to the local rotation of the material. It is important to 
bear this in mind when considering the stress, because to correlate 
stress and strain we must refer them to the same set of axes. 

Let us now examine the solid body rotation. We have mentioned 
above that to the first order it is represented by a vector of com
ponents w x, W Y ' W z • This may easily be verified as follows. If we 
denote the components ell, e12, etc., by eij and exx, eyy , etc., by eli' 

we derive from relations (3.18) that the components of the pure 
deformation are represented by elj if we neglect second order terms. 
In other words, to the first order 

Therefore to the same order the pure deformation is represented by 
the transformation in matrix form 

::: ] [::] 
1 + ezz dz 

(3.19) 

On the other hand, let us add a second transformation of de', dr/, d,' 
into dg, d'Y}, d, 

(3.20) 

By substituting transformation (3.19) into (3.20), we must perform 
the matrix multiplication. If we do this and keep only the first 
order terms, we obtain transformation (3.11). Hence transformation 
(3.20) represents to the first order the solid rotation. The matrix 
which represents this rotation may be written by introducing double 
indices as follows. 

o W
Y

] [Wll 
-Wx = W21 

o W31 

(3.21) 
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with 

With general indices these matrix elements are written Wo. 

W!j = 0 for i = j 

Wo = -Wj! for i of: j 

(3.22) 

Hence 

(3.23) 

It will also be found convenient to introduce general indices for the 
coordinates and displacements by putting 

Z = X3 

W = U3 

We may then write the more concise general expressions 

elf = ! (au! + aUf) 
2 oXj ax! 
1 (aU! OUj) 

Wij ="2 OX
j 

- oX
i 

(3.24) 

(3.25) 

By such definition we may write relations (3.18) for the strain in a 
form which is completely symmetric and also much more concise: 

(3.26) 

This form may be further abbreviated, using the so-called dummy 
index rule by which summation signs are dropped altogether. We 
then write 

eij = eij + !(eillw/lJ + ejllWlli) + !WillWjll (3.27) 
By this notation, which is standard procedure in the tensor calculus, 
summations are taken for all possible values of the indices which 
appear more than once in the same term. 

Another form of the strain components is found directly in terms 
of the gradients of U! by substituting expressions (3.25) in equation 
3.27. This yields 

e .. = ! (OUi + OUj) + ! (3 oUIl OUIl 

11 2 oXj ax! 8 ax! oXf 
oUj oUi oUIl oUj oUIl OUi) 

- aXil aXil - ax! oX
Il 

- oXj aXil (3.28) 
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This form, which is convenient in some mathematical derivations, 
obscures the physical significance of the expression. 

Dummy Index Rule Not To Be Oonfv:sed with the Tensor 
Oalculus. Use of a dummy index as a conventional notation to 
replace the summation sign is extremely helpful not only for the 
purpose of abbreviation but also because it brings out the hidden 
symmetry in the formulas. It is used throughout this book when
ever convenient. Although the dummy index is generally associated 
with the tensor calculus, it is in fact quite independent of it. The 
treatment of continuum mechanics in this book is carried out without 
recourse to the tensor calculus at any time. 

4. INCREMENTAL STRESSES IN TWO DIMENSIONS 

We now turn our attention to the analysis of the stress field. It 
differs essentially from the strain analysis. The fact that the con
tinuum is already deformed in the initial state is irrelevant for the 
definition of the incremental strain. This is not so for the incre
mental stress, and we shall see that the state of initial stress must be 
considered in the analysis. 

In order to bring out more clearly the concepts and methods we 
consider first a two-dimensional stress field. We start by recalling 
some elementary definitions and properties. The two-dimensional 
stress at a point in the plane is defined by the three components 

(4.1) 

referred to orthogonal axes x and y. The physical significance of 
these components is obtained by considering the plane x, y to repre
sent a slab of unit thickness. The stress components represent the 
forces in the x, y plane, acting per unit area on the sides of an 
infinitesimal element of size dx, dy cut out of the slab. The con.: 
dition that the tangential component U XY be the same on both sides dx 
and dy of the element is a consequence of the fact that the total 
torque resulting from the stresses on the element must be zero. This 
feature of the stress components is referred to as the symmetry 
property. 

However, there are exceptional cases in which this property will 
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y 

A 

L-----~x 

Figure 4.1 Variation of normal stress U aa and tangential stress Ua{J 

with the normal direction. 

not be verified. This occurs if the body force contains a moment per 
unit volume or if adequate representation of the internal stresses 
requires the introduction of couples per unit area. Such cases are 
excluded from the present treatment. 

If we cut a small right-angled triangle OAB out of the slab (Fig. 
4.1), the normal and tangential forces per unit area acting on the side 
AB are found by writing the equation of equilibrium of this element 
in the x and y directions. We derive 

Uaa = U xx cos2 a + U yy sin2 a + U Xy sin 2a 

UafJ = t(uyy - U XX ) sin 2a + U Xy cos 2a 
(4.2) 

The angle a measures the inclination of the normal to AB with the x 
direction. Relations (4.2) yield immediately the stress components 
with respect to axes 1,2, which are rotated clockwise by an angle a 

from the original directions x, y. * The new components (Fig. 4.2) 

(4.3) 

are found by substituting the values a and a + TTj2 in relations (4.2). 
They are 

Uu = U xx cos2 a + U yy sin2 a + U Xy sin 2a 

U22 = U xx sin2 a + U yy cos2 a - U Xy sin 2a 

U12 = l(uyy - uxx ) sin 2a + U Xy cos 2a 

(4.4) 

* For further discussion see, for example, S. Timoshenko, Theory of Elasticity, p. 16, 
McGraw-Hill Book Co., New York, 1934. 
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y 
2 

x 

Figure 4.2 Representation of the same stress field relative to 
the directions x, y and the rotated axes 1,2. 

25 

The last equation shows immediately that there is always a 
direction ex = exl for which the tangential component Ul2 or shear 
stress vanishes. The angle exl is given by 

(4.5) 

The stress components referred to this direction reduce to normal 
components U11 and U22 and are called principal stresses. 

Inversely, by replacing ex by - ex we may express the stresses Uxx , 

etc., in terms of the components U11, etc. We find 

Uxx = U11 cos2 ex + U22 sin2 ex - Ul2 sin 2ex 

U yy = U11 sin2 ex + U22 cos2 ex + Ul2 sin 2ex 

U Xy = !(U11 - U22) sin 2ex + Ul2 cos 2ex 

We consider now an initial stress field 

(4.6) 

(4.7) 

These components define the initial stress at a point P of coordinates 
x, y in the plane (Fig. 4.3). If the plane continuum is deformed, any 
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2 

P(x,y) 

tS12 

• r S11 L, 
Figure 4.3 Representation of the initial stresses.S11' S22' S12 

and the incremental stresses 811, 822, 812. 

point P is displaced to a point P' of coordinates g, Yj, and the stress 
at this point P' acquires a new value defined by the components 

a~~ = 8 11 + 8~~ 
an1/ = 8 22 + 8n1/ 

a~n = 8 12 + 8~n 
(4.8) 

These components are referred to the fixed directions x, y. The com
ponents 8W 8n1/' 8~1/ represent the increment of the total stress at the 
displaced point P' of coordinates g and TJ after deformation. 

We introduce now an important consideration in the whole pro
cedure, namely, that the incremental components 8~~, 8n1/' 8~n are due 
not only to the strain but also to the fact that the initial stress field 
has been rotated by a certain angle when moving from P to P'. In 
other words, if there were no deformation at all, but simply a trans-

----+ 
lation equal to the vector P P' followed by a solid rotation, there 
would be incremental stress components 8~~, 81/1/' 8~n due to this 
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rotation, hence of purely geometric origin. In addition, if the material 
undergoes a strain there is an incremental stress of purely physical 
nature. It is therefore essential to separate the geometry from the 
physics in expressing the incremental stress components. This can be 
accomplished if, instead of referring the stress components to the 
original directions x, y, we refer them to new directions 1,2. These 
new directions are rotated with respect to the original directions by 
an angle e which is equal to the local rotation of the material. This 
angle has been evaluated in section 2 and is given by expressions 
(2.13) and (2.17). Its approximate value to the first order is 

e ~ w = ~ (OV _ OU) 
- 20x oy 

The stress components referred to these rotated axes are 

all = 8 11 + 8 11 

a22 = 8 22 + 8 22 

a12 = 8 12 + 812 

(4.9) 

(4.10) 

The quantities 811,822,812 are the increments of stress referred to 
axes which rotate with the medium. It is possible to express the 
stresses a~~, al1n , a~n in terms of the stresses all, a22' a12 by using the 
transformation formulas 4.6 in which we replace au, a yy , a XY by 
a~~, ann' and a~n' and the angle a by w ;;;;; a. We write 

a~~ = all cos2 w + a22 sin2 w - a12 sin 2w 

al1l1 = all sin2 w + a22 cos2 w + a12 sin 2w 

a~11 = t(all - a22) sin 2w + a12 cos 2w 

(4.11 ) 

We shall assume that the incremental 8tres8e8 and the rotation are 
quantitie8 of the first order. 

To the first order we put 

cos w = cos 2w ;;;;; 1 

sin w = t sin 2w ~ w 
(4.12) 

Substituting expressions (4.8) and (4.10) in equations 4.11 and 
retaining only first order quantities, we find 

8~~ = 811 - 2812W 

81111 = 8 22 + 2812w 

8~n = 812 + (811 - 822 )W 

(4.13) 
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These equations bring out the terms representing that portion of the 
incremental stresses which is due to the rotation alone. The first 
terms S11' S22, and S12 represent the stress due to the deformation and 
depend only on the physical properties of the material. 

5. INCREMENTAL STRESSES IN THREE DIMENSIONS 

We shall extend the preceding definitions to a three-dimensional 
stress field and consider a state of stress represented by the 
components 

(5.1) 

Let us cut out of the medium a small tetrahedron of sides OA, OB, 
00 parallel to the axes x, y, z, and such that the triangular face ABO 
has a unit area (Fig. 5.1). 

z 

n F(n) 

B 

y 

Figure 5.1 Force F(n) acting per unit area on a surface of normal 
direction n in a stress field. 

The orientation of the triangular face ABO is defined by a vector n 
of unit length directed positively outward of the tetrahedron. The 
vector n is called a unit vector. The cartesian components of this 
unit vector are the directional cosines of the direction n. These 
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directional cosines are the cosines of the angle between the positive 
direction of n and the three coordinate axes, i.e., 

cos (n, x), cos (n, y), cos (n, z) (5.2) 

If the stress field (5.1) is acting in the tetrahedral element, from 
the condition of equilibrium of the element we may derive the force 
F(n) acting per unit area on the face ABC. 

The cartesian components of this force are 

a xx cos (n, x) + aXY cos (n, y) + a zx cos (n, z) 

a XY cos (n, x) + a yy cos (n, y) + a yZ cos (n, z) 

a zx cos (n, x) + a yZ cos (n, y) + a zz cos (n, z) 

(5.3) 

Because of the symmetry of the stress system (5.1) we may associate 
with these relations a quadratic form 

cp = a xxx2 + a yy y2 + a zzz
2 + 2aXYxy + 2ayz yz + 2azxzx (5.4) 

If we identify the coordinates x, y, z with the directional cosines (5.2), 
we see that the vector F is parallel to the gradient of cp, i.e., to the 
vector, 

grad cp = (OCP, oCP, OCP) 
aX oy oz (5.5) 

This gradient IS normal to the quadric surface, called the stress 
quadric,* 

cP = const. (5.6) 

If the unit vector n is directed along anyone of the three axes of this 
quadric, the force F(n) is parallel to the vector n, hence normal to the 
face ABC. We derive from this the existence of three principal 
directions of stress, i.e., directions for which the tangential components 
of stress a XY ' a yZ' a zx vanish. The corresponding normal stress 
components axx, a yy , a zz are the principal stresses. 

The preceding equations also lead to expressions for the stress for a 
system of coordinate axes which are different from x, y, z. Let us 
consider a system of rectangular axes 1,2, 3 with its origin at the 
same point as the original system x, y, z. 

* For other properties of the stress quadric see Love's treatise, The Mathematical 
Theory of Elasticity, Fourth Edition, pp. 80-81, Cambridge University Press 
(reprinted by Dover Publications, New York, 1944). 
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The directional cosines of axes 1, 2, 3 relative to x, y, z are 

cos (1, x) cos (1, y) cos (1, z) 

cos (2, x) cos (2, y) cos (2, z) 

cos (3, x) cos (3, y) cos (3, z) 

We denote the stress components referred to the new axes by 

(5.7) 

(5.8) 

The stress component Ull' for instance, may be found by orienting 
the normal direction n of the ,face ABO along axis 1. The force F(I) 
acting on this face is then projected on axis 1.. We find 

Ull = FAl) cos (1, x) + Fy(l) cos (1, y) + Fz(l) cos (1, z) (5.9) 

Substituting the values (5.3) for the components of F(I) yields 

Ull = U xx cos2 (1, x) + U yy cos2 (1, y) + uzz cos2 (1, z) 

+ 2uyZ cos (1, y) cos (1, z) + 2uzx cos (1, z) cos (1, x) 

+ 2uXY cos (1, x) cos (1, y) (5.10) 
! 

The other components ate expressed in the same way; using the 
dummy index rule, we may write 

U IlV = Uti cos (ft, i) cos (v, j) (5.11) 

We put Ulj = Ujl, hence also U IlV = UVIl' Note that these expressions 
yield just as well the stress components (5.1) in terms of the com
ponents (5.8). This amounts to commuting the indices x, y, z with 
1,2,3 in relations (5.10) and (5.11). Relations (5.11) then become 

Uu = u llV cos (i, ft) cos (j, v) 

Explicitly this is written 

U xx = Ull cos2 (x, 1) + U22 cos2 (x, 2) + U33 cos2 (x, 3) 

+ 2U23 cos (x, 2) cos (x, 3) + 2U31 cos (x, 3) cos (x, 1) 

+ 2U12 cos (x, 1) cos (x, 2), 

etc. 

(5.12) 

(5.13) 

We now go back to a three-dimensional deformation. The 
kinematics was analyzed in section 3. A point P originally of co
ordinates x, y, z is transported to a point pi of coordinates g, TJ, ,. 
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The medium is under a state of initial stress. The components of 
initial stress at point Pare 

8 11 8 12 8 31 

8 12 8 22 8 23 

8 31 8 23 8 33 

(5.14) 

At point P'(g, 7], ') after deformation the stresses referred to axes 
parallel to x, y, z become 

a~~ = 8 11 + s~~ 
ann = 8 22 + snn 

a(C = 8 33 + s1;1; 

anc = 8 23 + sn1; 

a1;~ = 8 31 + s1;~ 
a~n = 8 12 + s~n 

(5.15) 

Following the procedure of section 4 for two-dimensional stresses, 
we shall refer the stresses to rectangular axes 1, 2, 3 obtained by 
rotating locally with the material a rectangular system g, 7], , 

originally parallel to x, y, z and with its origin at the displaced point 
P'. The rotation is defined to the first order by the vector w x , W y , W z 

as given by expressions (3.10). As in section 3 where we discussed 
the kinematics of three-dimensional strain, an infinitesimal vector 
dg, d7], d, in the unrotated coordinate system g, 7], , is represented 
by the components de, d7]', d,' in the rotated axes 1, 2, 3. The 
relation between those two vectors is given to the first order by the 
equations 

dg = de - W z d7]' + Wy d,' 

d7] = W z de + d7]' - Wx d,' 

d, = - Wy de + Wx d7]' + d,' 

(5.16) 

These equations are derived from the kinematics of rigid bodies. 
They yield the displacement field for a small solid rotation represented 
by the vector w x , W y , W z • On the other hand, transformation (5.16) 
may also be considered a coordinate transformation from the axes 
1,2,3 to axes g, 7], ,. The change of coordinates is represented by 
the equations 

dg = de' cos (g, 1) + dr/ cos (g, 2) + dr cos (g, 3) 

d7] = de cos (7], 1) + d7]' cos (7], 2) + dr cos (7], 3) (5.17) 

d, = de cos (', 1) + d7]' cos (', 2) + d,' cos (', 3) 
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Comparing relations (5.16) and (5.17), we derive the following first 
order approximation for the directional cosines. 

cos (~, 1) = 1 

cos (T}, 1) = W z cos (T}, 2) = 1 cos (T}, 3) - Wx (5.18) 

cos (~, 1) = -wy cos (~, 2) = Wx cos (~, 3) = 1 

The stress components referred to the locally rotated axes are denoted 
by 

Ull = Sll + 8 11 

U22 = S22 + 8 22 

U33 = S33 + 8 33 

U23 = S23 + 8 23 

U31 = S31 + 8 31 

U12 = S12 + 8 12 

(5.19) 

The quantities 811,822 , etc.,' now designate the stress increments 
relative to the rotated axes. The transformation relations from one 
set of stresses to the other are easily established by applying the 
results obtained above. We use relations (5.12) and (5.13), replacing 
x, y, z by ~, T}, ~ and UXXUXy , etc., by a~~a~l1' etc. We then substitute in 
these relations the approximate values (5.18) for the directional 
cosines, and expressions (5.19) for the stresses Ull, U22' etc. Retain
ing only quantities of the first order in 8 11 , 8 22 , etc., and WX, W y , w z , 

we find 

a~~ = Sll + 8 11 + 2S31W y - 2S12W z 

ann = S22 + 822 + 2S12w z - 2S23W X 

a{{ = S33 + 8 33 + 2S23W X - 2S31 Wy 

an{ = S23 + 8 23 + (S22 - S33)W X - S12W y + S31W z 

a{~ = S31 + 8 31 + (S33 - Sl1)Wy - S23W Z + S12W X 

a~n = S12 + 8 12 + (Sl1 - S22)Wz - S31W X + S23W y 

In abbreviated notation equations 5.20 may be written 

(5.20) 

(5.21) 

In this expression we designate by Sij the initial stress components 
(5.14) with the convention Sij = Sjt (also aij = ajt). Note that the 
subscripts i, j stand for ~, T}, ~ on the left side and for 1, 2, 3 on 
the right side. The quantities Wjj are defined by the elements of the 
matrix (3.21). 

The term Sp,jWiJl + SiJlWjJl in equation 5.21 represents that portion 
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of the incremental stresses due to the rotation alone. The term Sjj 

represents the stress increment due to the deformation and depends 
therefore only on the physical properties of the material. 

6. EQUILIBRIUM EQUATIONS FOR THE STRESS FIELD 
IN TWO DIMENSIONS 

We now establish the equations which must be verified by the 
incremental stress field under the condition of static equilibrium. 

For the sake of clarity we proceed first with the analysis of a two
dimensional field. In the plane x, y we consider a body outlined by a 
contour O. The initial stresses in the body are Sll' S22' S12. If X 
and Yare the components of the body force per unit mass, and if p 

is the mass density of the medium before deformation, the initial 
stress components must satisfy the well-known equilibrium conditions 

8Sll 8S12 ax + 81/ + pX(x, y) = 0 
(6.1) 

8S12 8S22 Y( ) _ 0 ax + 8y + P x, Y -

We have assumed here that the body force per unit mass is a fixed 
field in space, a function only of the coordinates x, y. In practice 
this is generally the case; however, there are exceptions as, for 
instance, in some geophysical problems where the gravity field 
depends also on the deformation itself. For simplicity we exclude 

y 

c 

x 

Figure 6.1 Forces on the boundary 0' of a deformed body. 
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this case for the present. It may, however, be included in the 
equations, and we shall indicate briefly in the next section how this 
may be done. 

A point P of the material originally of coordinates x, y moves to a 
point P' of coordinates g, Y) after deformation (Fig. 6.1). We denote 
by bx and by the x and y components of the force b acting at point P' 
of the boundary per unit area after deformation. We look upon this 
force as that acting on the solid inside the contour 0'. The force on 
a line element ds' of the contour 0' is b ds', where ds' is chosen positive 
in a counterclockwise direction on the contour 0'. With these 
definitions and by considering the equilibrium of a triangular element 
adjacent to the boundary as shown in Figure 6.2, we may write 

bx ds' ~ a~~ dY) - a~n dg 

by ds' = a~n dY) - ann dg 
(6.2) 

Figure 6.2 Boundary forces 
and stresses on a boundary 

element. 

This force is the external force acting 
at the boundary on the solid lying 
inside the contour 0'. The other 
external force acting on this solid is 
the body force. Consider an element 
of the solid of area dS at point x, yand 
of mass density p before deformation. 
After deformation it has moved to a 
point of coordinates g, y), its area has 
become dS', and its new density is 
now p'. Because of the law of con
servation of mass we may write 

p dx dy = p dS = p' dS' (6.3) 

Let us now write the condition of 
equilibrium for the solid inside the contour by stating that the 
resultant of the boundary forces and the body forces acting on the 
solid vanishes. This condition is 

[ bx ds' + Ii X(g, Y))p' dS' = 0 Jc' S' 
(6.4) 

[ by ds' + Ii Y(g, Y))p' dS' = 0 Jc' S' 

The contour integrations are performed counterclockwise. We may 
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change the variables of integration in these integrals to x and y by 
using transformation (2.24); that is, 

(
aU) au d~ = 1 + - dx + - dy ax oy 

dT) = OV dx + (1 + OV) dy ax oy 

(6.5) 

With these expressions, relations (6.2) become 

bx ds' = [a~~ :: - a~n (1 + ::)] dx + [a~~ (1 + :;) - a~n ::] dy 

(6.6) 

byds' = [a~n :~ - ann (1 + ::)1 dx + [a~n (1 + :;) - ann ::] dy 

We substitute these expressions in the equilibrium conditions (6.4), 
also replacing p'dS' by p dx dy according to relations (6.3). By 
applying Gree~'s theorem to the contour integrals, they are trans
formed to surface integrals and equations 6.4 become 

Ii {~ [al;~ (1 + OV) - a~ aU] sax oy nay 

- :y [a~~ :~ - a~n (1 + ::)]. + X(~, T))p} dx dy = 0 
I Is {:x [al;n (1 + :;) - ann ::] 

(6.7) 

- :y [al;n :: - ann (1 + ::)] + Y(~,T))p}dXdY = 0 

Since these relations must be verified for any arbitrary contour 0, 
i.e., for any arbitrary domain of integration S, the integrands must 
vanish. Therefore the equilibrium condition of the stress field 
becomes the differential equations 

oa~~ oa~n a (_ ov _ aU) 
ax + oy + ax a~~ oy - a~n oy 

(6.8) 

o( OV aU) - oy a~n ax - ann ax + Y(~, T))p = 0 
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These equations do not involve any approximation. They include 
the conditions of equilibrium (6.1) for the initial stress since they 
reduce to these equations for U = v = O. Note also that the quantity 
p in these equations is the mass density before deformation, hence is a 
given function of x and y. 

At this point we are interested in introducing stress components 
which depend only on the strain and do not change when we super
impose a solid rotation on the medium. Such stress components 
were introduced in section 4. From equations 4.8 and 4.13 we write 

a~~ = 8 11 + 8 11 - 2812W 

a1/1/ = 8 22 + 8 22 + 2812W 

a~1/ = 812 +. 8 12 + (811 - 8 22 )W 

(6.9) 

The stress components 811,822,812 are the incremental stresses pro
jected on axes which rotate with the material by an angle w defined 
by expression 2.26. The equations 6.9 are approximate to the fir8t 
order. We shall now substitute these values in equations 6.8 and 
take into account the equilibrium conditions (6.1) for the initial stress. 
After these substitutions, keeping only the terms of the first order, 
we find 

8811 8812 
8x + 8y + p[X(g, 1)) - X(x, y)] 

8 8 
- 2 8x (812w) + 8y [(811 - 8dw] 

+ ~(811 8v _ 8
12 

8U) _ ~ (811 8v _ 8
12 

8U) 
8x 8y 8y 8y 8x 8x 

8812 8822 
8x + 8y + p[Y(g,1)) - Y(x, y)] 

=0 
(6.10) 

8 8 
+ 8x [(811 - 8dw] + 2 8y (812W) 

+ ~ (8
12 

8v _ 8
22 

8U) _ ~ (8
12 

8v _ 8
22 

8U) = 0 
8x 8y 8y 8y 8x 8x 

In these equations we may write the incremental body force as 

..::IX = X(g,1)) - X(x, y) 

..::I Y = Y(g,1)) - Y(x, y) 
(6.11) 
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Equations 6.10 may be transformed by making use of identities 
derived from equations 2.26 and 2.27: 

ov 

ov 
Oy = e yy 

OU 
(6.12) 

ox = eXY + w oy = eXY - w 

When we introduce these expressions into equations 6.10, they 
become 

0811 0812 AX 0 S 0 S 
ox + oy + p ~ - ox ( 12w) - oy ( 22W) 

o ,0 
+ ox (Sl1eyy - S12exy) - oy (Sl1eXY - S12exx) = 0 

0812 0822 0 0 
ox + oy + p Ll Y + ox (Suw) + oy (S12W) 

(6.13) 

o 0 
+ ox (S12eyy - S22exy) - oy (S12eXY - S22eXX) = 0 

These equations may be further simplified if we take into account the 
following identities derived from (6.12). 

(6.14) 

Introducing these identities into equations 6.13 and again taking 
into account the equilibrium conditions (6.1) for the initial stress, 
they are transformed to 

0811 0812 ow S ow 
ox + oy + pLlX + pwY(x, y) - 2S12 ox + ( 11 - Sd oy 

OS11 (OS11 OS/2) OS/2 _ 0 
+ ox eyy - oy + ax eXY + oy exr - (6.15) 

0812 0822 Ow S ow 
ox + oy + pLlY - pwX(x, y) + 2S12 Oy + ( 11 - S22) ox 

OS22 (OS22 OS/2) OS/2 _ 0 + oy exx - ox + oy eXY + ax eyy -
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These equations are the equilibrium conditions for the two-dimen
sional stress field expressed in terms of the incremental stresses 
811,822,812' Equations 6.15 were first derived by the author in 
1938.* It was also shown that the various terms have a simple 
physical interpretation, as explained at the end of this section. 

If we again take into account the equilibrium conditions (6.1) of 
the initial stress field, equations 6.15 may be written in an alternative 
and more symmetric form: 

0811 0812 AX 
ox + oy + P LJ + pW Y(x, y) - peX(x, y) 

ow ow 
- 2S12 - + (S11 - S22) -ox . oy 

_ OSll _ OS/2 _ (OSl1 OS/2) _ 0 
ox exx oy eyy oy + ox eXY -

0812 0822 A - + - + PLJY - pwX(x,y) - peY(x,y) 
ox oy 

(6.16) 

OS/2 _ (OS22 + OS/2) e = 0 
ox exx ox oy XY 

We have put e = exx + eyy • 

Some interesting properties of these equations are immediately 
apparent. If there is no body force (X = Y = 0) and if the initial 
state of stress is uniform, i.e., independent of x and y, equations 6.16 
assume the simpler form 

(6.17) 

If the initial stress is hydrostatic, i.e., if 

* In reference 2 at the end of the Preface. 
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equations 6.17 reduce to 

OS11 + OS/2 = 0 
ox oy 

OS/2 + OS22 = 0 
O~l: oy 

(6.18) 

which are the classical conditions of equilibrium for a stress field 
when there is no initial stress. The same equations (6.18) are 
obtained for a solid body rotation, i.e., for 

w = const. (6.19) 

In the solution of specific problems we must be able to express 
certain boundary conditions. Let us therefore turn our attention 
to the force acting at the boundary. Consider a portion AB of the 

B· B 
By 

y 

L-________________________ ~x 

Figure 6.3 Integrated boundary force B on a finite portion 
A' B' of the deformed boundary. 

contour 0 (Fig. 6.3). After deformation it becomes the part of 
the contour 0' designated A' B'. The external force B acting on the 
solid boundary A' B' after deformation has the cartesian components 

fB' fB' Bx = bx ds' = (a~1; dYJ - a~n dg) 
A' A' (6.20) 

These expressions are derived from equations 6.2. The integration 
is performed in the counterclockwise direction along the deformed 
line A' B', and the solid is lying to the left when one moves from A' to 
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B'. By relations (6.6) these integrals may be transformed to line 
integrals along the line AB lying on the original contour before 
deformation. Substituting relations (6.6) in the integrals, we find 

Bx = f: [a~~ :: - a~n (1 + ~:)] dx 

+ f: [a~~ (1 + :;) - a~n :;] dy 

By = LB [a~n :: - ann (1 + ~:)] dx 

+ f: [a~n ( 1 + :;) - ann :;] dy 

(6.21) 

If the line AB is an element of the initial contour of components 
dx, dy, the force dB acting on this element after deformation is 
represented by the components 

dBx = (-a~n + a~~ :: - a~n ~:) dx 

+ (a~~ + a~~ :; - a~n :;) dy 
(6.22) 

dBy = ( -ann + a~n :: - ann ~:) dx 

+ (a~n + a~n :; - ann ~;) dy 

The boundary force may be expressed in terms of the stresses 
referred to the rotated axes by substituting expressions (6.9) into 
equations 6.22. In doing so we retain only the first order terms. 
We also substitute expressions (6.12) for the partial derivatives. We 
find 

dBx = - (812 + 8 12 - 8 2200 - 8 11eXY + 8 12eXX ) dx 

+ (811 + 8 11 - 8 1200 + 8 11eyy - 8 12eXY ) dy 

dBy = - (822 + 8 22 + 8 1200 - 8 12eXY + 8 22eXX ) dx 

+ (812 + 8 12 + 8 1100 + 8 12eyy - 8 22eXY ) dy 

(6.23) 

We note that the differential dx, dy must represent an element of arc 
positive counterclockwise, the solid lying on the left side of the 
element. These expressions may also be given an equivalent form 
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by introducing a unit vector n normal to the original contour and 
chosen positive in a direction away from the solid (Fig. 6.3). We 
have the relations 

-dx = ds cos (n, y) 

dy = ds cos (n, x) 
(6.24) 

where cos (n, x), cos (n, y) are the directional cosines of the direction 
n normal to the original contour and ds is the absolute value of the 
element of arc, 

ds = Vdx2 + dy2 

Furthermore we define a force f of components 

f = .dBx 
x ds 

f = dBy 
y ds 

This is the boundary force per unit initial area of the boundary. 
these definitions we may write the boundary force as 

fx = (Sl1 + Sl1 - S12W + Sl1eyy - S12eXY) cos (n, x) 

+ (S12 + S12 - S22W - Sl1exy + S12exx) cos (n, y) 

fy = (S12 + S12 + Sl1W + S12eyy - S22exy) cos (n, x) 

+ (S22 + S22 + S12W - S12exy + S22eXX) cos (n, y) 

(6.25) 

With 

(6.26) 

It is also possible to introduce incremental boundary forces, i.e., the 
difference between the actual boundary forces after deformation and 
their initial value before deformation. Expressed per unit initial 
area, these incremental boundary forces are 

,dfx = (S11 - S12W + S11eyy - S12exy) cos (n, x) 

+ (S12 - S22W - Sl1eXY + S12eXX) cos (n, y) 

,dfy = (S12 + Snw + S12eyy - S22exy) cos (n, x) 

+ (S22 + S12W - S12eXY + S22exx) cos (n, y) 

(6.27) 

We shall end this section with a few remarks on the significance of 
these results. Let us first look at the incremental body force,dX, ,d Y 
defined by equations 6.11. These expressions represent the change 
in body force per unit mass when we move from the original point 
x, y to the displaced point g, TJ after deformation. If this body force 
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is represented by a fixed field, function only of the coordinates, we 
may linearize expressions (6.11) and write 

LlX = (u ! + v :y) X(x, y) 

Ll Y = (u ~ + v :y) Y(x, y) 

(6.28) 

At the beginning of this section we referred to the possibility that 
the field may depend not only on the fixed coordinates but also on 
the deformation itself. This might occur, for instance, if we were 
interested in the deformation of a large gravitational body such as 
a planet. In this case the configuration of the gravitational field 
would depend on the deformation itself. Additional terms Ll' X, Ll' Y 
must then be added to represent the latter contribution to the 
incremental body force, and we should write 

LlX = (u! + v ~) X(x,y) + Ll'X 

(. 8 8) 
Ll Y = u 8x + v 8y Y(x, y) + Ll' Y 

(6.29) 

These additional terms can be evaluated only by solving the complete 
problem. In many applications when we are dealing with a uniform 
gravity field the incremental body force vanishes altogether. 

Our next remark deals with the physical significance of equations 
6.15. Let us rewrite the first of equations 6.15. 

8s11 8S12 
8x + 8y + pLlX + pwY(x, y) 

8w 8w 
- 2812 8x + (811 - 8d 8y 

8811 _ (8811 8822) 8812 - 0 
+ 8x eyy 8y + 8x eXY + 8y exx -

(6.30) 

Let us look at the terms on the second line. They contain 8w/8x 
and 8w/8y and are different from zero only jf the deformation is 
inhomogeneous. In the original publications they were referred to 
as the curvature terms. * By contrast the terms on the third line are 

* See references 2, 3, and 4 at the end of the Preface. 
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811 811 

Figure 6.4 Physical interpret'l-tion of the "curvature terms." 

different from zero only if the initial stress is inhomogeneous. The 
physical significance of the curvature terms is illustrated by Figure 
6.4. The horizontal resultant of the forces indicated in the figure are 
due to the curvatures and changes of areas of a deformed element. 
Note also that equation 6.30 is an equilibrium condition referred to 
locally rotated axes. This is consistent with the appearance of the 
term pw Y which represents a projection of the body force on rotated 
axes. Equations 6.15 may therefore be considered an intrinsic form 
of the local equilibrium conditions. 

Attention should also be called to the significance of equations 
6.8. They could have been derived exactly by writing the equilib
rium conditions for the stress field in terms of the coordinates g, 7]. 

These conditions are 

(6.31) 

The unknown mass density after deformation is p'. 
We may transform these equations by using the differential 

relations (6.5) and express all partial derivatives o/N, 0/07] in terms 
of a/ax and %y. If we perform this transformation in equations 
6.31, we obtain equations 6.8. This method of derivation was used 
in some of the earlier work, and it further illustrates the significance 
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of the formulas. However, the method used above has the advantage 
of providing at the same time suitable expressions for the boundary 
conditions. 

7. EQUILIBRIUM EQUATIONS FOR THE STRESS 
FIELD IN THREE DIMENSIONS 

The analysis of the equilibrium conditions for the two-dimensional 
field presented above may be extended to the three-dimensional case 
by following a similar procedure. 

We start with a state of initial stress represented by the com-
ponents (5.14). They satisfy the equilibrium equations 

8S11 8S12 8S31 X( ) - 0 ax + 8y + Tz + p X, y, Z -

8S12 8S22 8S23 Y( ) _ 0 ax + By + 8z + p X, y, Z - (7.1) 

8S31 8S23 8S33 Z( ) - 0 ax + 8y + 8z + p X, y, Z -

The components of the body force per unit mass are X, Y, Z, and 
the mass density at the point x, y, z, is p(x, y, z). 

Consider a volume V bounded by a surface S before deformation. 
After deformation this surface becomes S', and it encloses a volume 
V'. The x component Bx of the force acting on the boundary S' is 

Bx = f Is, (a~~ dTJ d~ + a~1/ d~ dg + a~~ dg dTJ) (7.2) 

The surface integral is extended to the boundary after deformation, 
and a~~, a~1/' a~~ are stress components at a point of coordinates g, TJ, ~. 

We remember that the symmetry of stress components implies 
a~~ = a~~, a1/~ = a~1/' and a~1/ = a1/~' We shall therefore pay no atten
tion to the order of the indices and choose it for convenience. The 
variables of integration in equation 7.2 may be changed to the 
original coordinates x, y, z. The two sets of variables are related by 
relations (3.1) 

g=x+u 
TJ=y+v 
~=z+w 

(7.3) 
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By known methods of transformation the integral Bx becomes 

The surface integrals are now extended to the same material boundary 
S before deformation. In this expression [d(7], m/[d(y, z)], etc., are 
the partial Jacobians of the transformation of x, y, z into g, 7], ~. 

For instance, we write 
07] 07] 
oy oz 

o~ o~ 
oy oz 

(7.5) 

These J acobians are the cofactors ofthe determinant of the differential 
transformation (3.3). In order to abbreviate the writing let us put 

The surface integral (7.4) is then written 

Bx = I1 (Axx dy dz + Axy dz dx + Axz dx dy) (7.7) 

The mass density p at a point x, y, z before deformation becomes p' 

after deformation at the displaced point g, 7],~. The x component. 
of the resultant body force acting on the volume V' is 

IIL,X(g, 7], ~)p' dV' = III X(g, 7], ~)p dV (7.8) 

This equation results from the conservation of mass, namely, 

p'dV' = pdV (7.9) 
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The total external force acting in the x direction is the sum of 
expressions (7.7) and (7.8). For equilibrium it must vanish; hence 

IL Au dy dz + Axy dz dx + Axz dx dy 

+ III X(g, Y), ')p dV = 0 (7.10) 

The surface integral is transformed to a volume integral by Green's 
theorem, and equation 7.10 becomes 

fff [8Axx 8Axy 8Axz K( t. Y)] d V = 0 
~ + ~ + ~ +..(~, y), '" p 

vux uy uZ 
(7.11) 

Since this equation must be satisfied for any arbitrary volume V, it 
implies the differential equation 

8Axx 8Axy 8Axz X( t. Y) = 0 
8x + 8y + 8z + s, Y), '" P (7.12) 

There are two other such equations for the y and z directions; they 
are obtained by cyclic permutation of the coordinate axes. 

These equilibrium conditions (7.12) for the stress field contain the 
initial state as a particular case. Putting u = v = w = 0, they 
coincide with the equilibrium equations (7.1) for the initial stress. 

We shall now introduce first order approximations in equations 
7.12. To do this it is convenient to introduce some abbreviated 
notation. We denote the Jacobians by 

M = d(y), ') 
11 d(y,z) 

M _ d(y), ') 
12 - d(z, x) 

M _ d(y),O 
13 - d(x, y) 

M _ d(" g) 
21 - d(y, z) 

M = d(" g) 
22 d(z, x) 

M d(" g) 
23 = d(x, y) (7.13) 

M _ d(g, Y)) 
31 - d(y, z) 

M _ d(g, Y)) 
32 - d(z, x) 

M d(g, Y)) 
33 = d(x, y) 

We also write 

Ali for A xx, A xy, etc. 

aij for a~~, a~ll' etc. (aij = aj;) 
(7.14) 

Relations 7.6 may then be written 

(7.15) 
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The summation is performed for all values of the index k in accord
ance with the dummy index rule explained in section 3. If we 
denote x, y, z by Xl and g, 7], , by gl and the body force X, Y, Z by 
Xl' the equilibrium equations 7.12 may be written 

(7.16) 

We keep only first order terms, and the approximate values for the 
Jacobians are 

Mll 1 + eyy + ezz Ml2 = -eXy - W z Ml3 = -ezx + Wy 

M21 -eXy + W z M22 = 1 + exx + ezz M 23 = -eyZ - Wx 

M31 = -ezx + Wy M32 = -eyZ + Wx M33 = 1 + e xx + e yy 

(7.17) 
In abbreviated notation these relations take the form 

(7.18) 

where elj and Wlj are the matrix elements in equations 3.19 and 3.21. 
We denote by Ojj the Kronecker symbol defined as 

and we put 

Otj = 1 for i = j 

otj = 0 for i =1= j 
(7.19) 

(7.20) 

We also make use of relation (5.21) for the stress components atj 
expressed in terms of the initial stress and the stress increments Slj 

referred to rotated axes. These relations are 

(7.21) 

We now substitute into equation 7.15 the approximate values for 
Mlj and alj as given by expressions (7.18) and (7.21). In doing so we 
drop all terms of order higher than the first, namely, those which are 
squares and products of the quantities Sjj' ejj' and Wlj' We find 

Au = (Slk + Sik + SP.kWIP. + SjP.WkP.)Okj 

+ Slk(eOkj - ekj + Wkj) (7.22) 
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Because of the significance of 8 lei we may write 

8 ile 8 lei = 8ij 

Sjle81cj = Sjj 

SIlleW jll8 lei = SlljWill 

SillW lell8 lej = SillWjll 

(7.23) 

Furthermore, because f1- is a dummy index we may replace it by k, 
and the last two expressions can be written 

S/ljWill = SlejWile 

SIIlWjll = SjleWjle 

(7.24) 

By taking into account identities (7.23) and (7.24), relation (7.22) 
becomes 

Alj = Sjj + 8 jj + SlejWjle + SileWjle + Sije - Silee1cj + SileWlei (7.25) 

Further simplification is obtained if we take into account the property 
of antisymmetry ofthe matrix Wile (equation 3.21). This property is 
expressed by 

Hence 

Taking the last identity into account, we finally obtain 

Substitution of Aij into equation 7.16 yields 

(7.26) 

(7.27) 

(7.28) 

Note that p is the original mass density at the point Xj before defor
mation. Equations 7.29 are the three-dimensional equilibrium 
equations for the incremental stress field 8;j. As in the two-dimen
sional case examined in the previous section, they may be simplified 
by taking into account additional relations and identities. First we 
may take into account the equilibrium conditions (7.1) satisfied by 
the initial stress field. They may also be written 

(7.30) 
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By introducing this condition into equations 7.29 they become 

08·· 0 
~ + ~ [SkjWik + Sjje - SikekJ + p LlXj = 0 
uXj uXj 

(7.31) 

Since Skj = Sjk and ekj = ejk we improve the symmetry of the 
notation by writing this equation as 

08ij 0 S - + - [ jkWik + Sjje - Sikejk] + p LlXj = 0 
OX j OX j 

(7.32) 

We have put 
(7.33) 

Hence LlXj represents the increme~t in body force per unit mass from 
the initial point to the displaced point. Equations 7.32 correspond 
to equations 6.13 for the two-dimensional case. As before, we may 
further simplify these equations by using identities between strain 
and rotation similar to equations 6.14 for the particular case of two 
dimensions. Such relations are derived by starting from the 
identities 

Because of definitions (3.25) these identities may be written 

Let us multiply this equation by olj. Since 

we derive 

eljolj = e 

wljolj = 0 

(elk + Wlk)Olj = ejk + Wjk 

MUltiplying the last equation by Slk' we obtain 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 
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Because k is a dummy index we may also write this relation as 

Sik °oexjk" = Sij ooe - Sik °oWjk 
1 Xj Xj 

(7.39) 

Introducing the last identity in~o equations 7.32, we obtain 

oStj S OWlk oW"k OSjk 
- + "k -- + S"k _,_ + Wik ox" OXj 1 OXj I OXj 1 

oStj OSik + e - - ejk -- + p LlXj = 0 
oXj oXj 

(7.40) 

Finally we again make use of the equilibrium condition (7.30) of the 
initial stress field which may' be written 

oSik 
- - -pXk(X1) 
OXj -

OSI· 
_, = - pXt(x1) 
oXj 

Substituting these expressions, equations 7.40 become* 

OSt" _, + P LI~t - PWtkXk(X1) - peXj(x1) 
oXj 

S 
OWjk S OWjk OSjk + jk -- + tk -- - e"k -- = 0 oXj OXj 1 OXj 

(7.41 ) 

(7.42) 

In two dimensions these- equations reduce to the form (6.16). The 
same remarks may be made here as discussed for the two-dimensional 
case at the end of the previous section. The incremental body force 
may be expressed as 

(7.43) 

where the first term represents a linearizing of the increment of body 
force due to the displacement alone, andLl'Xt is the increment of the 
over-all field due to the deformation of the body as a whole. As 
already stated, the latter part would arise for the gravity field 
generated by a large deforming medium. 

* Equations 7.42 were derived in this particular form by the author in references 3 
and 5 at the end of the Preface. An alternative derivation was given in reference 7. 
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Variation of the Gravitational Field Due to Deformation. In problems 
of planetary and astrophysical dynamics dealing with large gravitational bodies 
we must take into account the term LI'X" which represents the variation of 
the gravitational field due to the deformation itself. The initial gravitational 
potential U satisfies the equation 

V 2 U = 47TGp (7,43a) 

where G is the gravitational constant and p the initial mass density distribution. 
The deformation changes the local mass distribution by the amount 

(7,43b) 

Hence the increment U' of the gravitational potential satisfies the equation 

V2U' = -47TG (OP u, + pe) 
OX, 

and the corresponding incremental field is 

Llx' = _ oU' , ox, 

(7,43c) 

(7,43d) 

Density discontinuities are taken into account by adding at the surfaces of 
discontinuity 'a' mass distribution of surface density 

(7,43e) 

where Un is the displacement normal to the surface and Pl - P2 is the density 
discontinuity in the positive direction of Un' This includes, of course, the free 
surface of a solid medium. These surface distributions of mass appear in 
boundary conditions for the solutions of equation 7,43b and involve dis
continuities of the normal derivatives of the potential. 

We may also distinguish two types of terms III equation 7.42. 
One group 

S OWtk S OWjk 
jk oX

j 
+ Ik OXj 

may be referred to as the curvature terms. 

(7.44) 

Another group 

(7.45) 

depends essentially on the body force and the initial stress gradient' 
and is of a different nature. The significance of the curvature terms 
was discussed in section 6 for two-dimensional strain. A similar 
discussion in three dimensions introduces the twist of an element. * 

* See references 2 and 4 at the end of the Preface and equation 7.49 below. 
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The curvature terms disappear if the initial stress is hydrostatic, 
since in this case 

(7.46) 
and 

(7.4 7) 

The latter expression vanishes because of relation (7.26). The terms 
(7.45), on the other hand, vanish if the initial stress field is uniform. 

Equations 7.16 are equivalent to the equilibrium equations 

~i: + p'(gl)XMI) = 0 (7.48) 

expressed by means of the stress components aij and the displaced 
coordinates gj. These equations are transformed to the form (7.16) 
by changing the independent variables from gj to Xj. This property 
has already been mentioned in connection with equations 6.31 for the 
two-dimensional case. 

Equations 7.42 stand for three distinct equations. We shall write 
the first one explicitly in terms of the cartesian coordinates. This 
first equation obtained by putting i = 1 is* 

(812) +-OZ 

=0 (7.49) 

* This explioit form of the equilibrium equations was derived by the author in 1938 
(see referenoes 2 and 4 in the Prefaoe). 
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The two other equations are obtained by cyclic permutation of 
x, y, Z, 1, 2, 3, and X, Y, Z. The last term in these equations 
represents something peculiar to the three-dimensional case, namely, 
the effect of the twist of an element. 

We shall now turn our attention to the boundary conditions. 
Consider the integral (7.7) expressing the force Bx acting on an area S 
of the deformed body. Equation 7.7 is written for the case where 
S represents the whole surface boundary, but it is of course valid 
where Bx represents the force acting on any portionS ofthe boundary. 
We denote by n x , ny, n z the directional cosines of the normal outward 
direction of the boundary before deformation. Then the surface 
integral (7.7) extended to the initial surface may be written 

Bx = IL (Axxnx +' Axyny + Axznz) dS (7.50) 

or in more general form using the dummy index summation rule 

(7.51) 

The important feature of this formula lies in the interpretation of 
the integrand. If we consider a unit elementary area of the initial 
boundary, then after deformation the x component of the force acting 
on that same material element is 

(7.52) 

The three components of this force are expressed by the general 
formula 

(7.53) 

If we replace Ai; by their first order approximations (7.28), we derive 

(7.54) 

Equations 7.53 and 7.54 may be looked upon as boundary conditions. 
Since Sijnj is the force acting at the boundary in the initially 

stressed but undeformed state, we may also write 

where iJfi represents an incremental boundary force, 

iJfj = (slj + SkjWi/C + Slje - Slkejk)nj 

(7.55) 

(7.56) 
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The x component of the incremental boundary force may be written 
explicitly as 

LJfx = (811 - S12W z + S31W y + Sl1e - Sl1eXX - S12eXY - S31eZX)nX 

+ (812 - S22W Z + S23W y + S12e 

- Sl1exy - S12e yy - S31eYZ)ny 

+ (S31 - S23W z + S33W y + S31e 

- Sl1ezx - S12e yZ - S31eZZ)nZ (7.57) 

The other two components are obtained by cyclic permutation of 
x, y, z and 1, 2, 3. 

Hydrostatic Boundary' Condition. The boundaries of the 
medium may be submerged in a heavy fluid of density PI' The 
hydrostatic stress in this fluid is a function S(x/) of the coordinates. 
Denoting by Xj(x/) the body force per unit mass acting on this fluid 
and assuming that it is in hydrostatic equilibrium, we find that the 
hydrostatic stress satisfies the equation 

(7.58) 

The force acting on an element of boundary of the solid is at all 
instants the same as that acting on the same element of the un
disturbed fluid. We therefore apply equation 7.56 to the undisturbed 
fluid. The incremental stress is 

(7.59) 

The increment of stress in the fluid when moving from the initial 
point to the displaced point is to the first order 

(7.60) 

Hence 

(7.61) 

The initial stress in the fluid is 

(7.62) 
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Substituting these values of 8 1j and 81j into expression (7.56) yields 

LJ/I = (08 Uk + 8e) nl _ 8 oU
j 
nj 

OXk OXI 
(7.63) 

Using the equilibrium condition (7.58) for the fluid, we also write 

(7.64) 

By equating the two values (7.64) and (7.56) for LJ/I we obtain the 
boundary condition at the fluid-solid interface. 

Inserting expressions (7.61) and (7.62) into equations 7.54, we find 

( (8) oUj II = 8 + 8e + oXic Uk n l - 8 oXI nj (7.65) 

This is the total force per unit initial area exerted by the fluid on the 
deformed boundary. It is a vector perpendicular to the deformed 
boundary at the displaced point. When we put 8 = 1, the vector Ii 
becomes the unit normal n; for the deformed surface multiplied by 
the ratio da'lda of areas after and before deformation; that is, 

, da' oUj n l - = (1 + e)nt - - n· 
da OXt 1 

(7.66) 

This expression is obviously identical with those already used at the 
beginning of this section in connection with surface integral 
transformations. 

Curvilinear Coordinates. The equilibrium equations derived in 
this chapter are expressed in cartesian coordinates. Elementary 
procedures for the derivation of similar equations in curvilinear 
coordinates will be developed in Chapter 2 as a particular application 
of variational principles. 



CHAPTER TWO 

Elasticity Theory of a Medium 

under Initial Stress 

1. INTRODUCTION 

This chapter introduces the physics of the material in the form of 
linear relations between the incremental stresses and the strain. 
Such linear relations do not necessarily imply that the material is 
elastic. They are applicable to non-elastic media undergoing an 
incremental deformation in the vicinity of a prestressed condition. 

In addition, we shall impose a restriction on these linear relations 
by assuming that we may define a strain energy potential for the 
incremental deformation. In this sense the incremental deformation 
is not only linear but also elastic. 

More precisely, we consider deformations which are elastic for the 
incremental deformations alone, irrespective of the manner by which 
the state of initial stress has been generated. For example, in 
geophysical applications the state of initial stress in the earth is the 
result of a slow but highly irreversible process of a viscous or plastic 
nature. Rapid deformations, however, may be approximately 
elastic. 

In order to derive appropriate stress-strain relations for the elastic 
material it is convenient to introduce an alternative definition of the 
incremental stresses by referring the stresses to areas before deforma
tion. The reason for the alternative definition * is that the stress 

* This was discussed in earlier works by the author (see references 3, 4, and 5 in the 
Preface). 
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components are conjugate to the strain components. They are 
therefore useful in deriving the expression for the strain energy, the 
properties of the incremental moduli, and vari~tional principles. In 
general, they are more convenient for expressing physical properties 
of materials. 

The alternative definition of the incremental stress is first intro
duced in section 2. Relations are derived between these stress com
ponents and the components Sij of Chapter 1. The two sets of stress 
components differ by terms which depend on the initial stress. The 
stress-strain relations for incremental elastic deformations are derived 
in section 3 for a two-dimensional field, and in section 4 for the three
dimensional field. The two cases are discussed separately in order to 
bring out more clearly the physical significance of the general 
equations. 

A variational principle for incremental deformations is formulated 
in section 5 by the introduction of an incremental strain energy. 
The principle is shown to be equivalent to the equilibrium equations 
for the stress field derived in the preceding chapter. The analysis in 
section 5 follows very closely the author's previous work. * 

An important application of this variational principle is the 
derivation of equilibrium equations in curvilinear coordinates. 
Actually, when formulated as a principle of virtual work, variational 
equations do not require the existence of an elastic potential. They 
involve only the principles of statics and lead to equilibrium 
conditions for the stress field in any kind of continuum. 

The elastic properties of a medium of orthotropic symmetry are the 
subject of a detailed discussion in section 6. A number of physically 
measurable incremental elastic coefficients are introduced. Special 
attention is devoted to one of these coefficients which was introduced 
by the author as the slide modulus. 

In section 7 the properties of an elastic medium isotropic, in finite 
strain, are investigated with reference to small deformations super
posed on an initial state of finite strain. Values of the incremental 
elastic coefficients are derived in terms of the initial finite stress and 
strain. 

The incremental properties of incompressible elastic media are 
analyzed in section 8. The results are applied to the special cases of 

* As in references 3, 4, and 5 of the Preface. 
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isotropic media and rubber elasticity. They involve the remarkable 
property of certain materials to retain their isotropy in a state of 
finite strain for plane incremental deformations. The question of 
incremental properties in second order elasticity is treated in section 9. 
The non-linear stress-strain relations involve five elastic constants. 
Values are derived for the incremental elastic coefficients by means 
of these five elastic constants as linear functions of the initial strain. 

As a specific application of the general theory, section 10 presents 
an analysis of the torsional stiffness of a bar under axial tension. We 
consider first a material which is either isotropic or transverse iso
tropic with the axis of elastic symmetry along the axis of the bar. 
The solution for this case is identical with the result derived by the 
author many years ago. * These results are further extended to the 
case of an orthotropic non-homogeneous bar, under a non-homo
geneous initial stress. The theory leads to a simple solution which 
brings out the particular features due to the presence of initial stress 
and is considerably more general than the result derived in the 
earlier paper mentioned above. 

2. THE INCREMENTAL STRESSES 
REFERRED TO INITIAL AREAS 

The stress components 8 11 , 8 22 , 8 12 considered in Chapter 1 are the 
stresses at point pi referred not only to rotated axes but also to unit 
areas after deformation. See Figure 2.1, which reproduces part of 
Figure 2.3 of Chapter 1, namely, the region around the displaced 
point P'. A square of unit size in the plane x, y, with its sides 
oriented along x and y, becomes the parallelogram P'ABO after 
deformation. In this parallelogram we cut out a square of unit size 
whose sides are oriented along the rotated directions 1 and 2. The 
forces acting on the sides of the unit cube thus defined and projected 
on directions 1 and 2 are the total stress components 

(2.1) 

Instead of considering the forces acting on this unit cube, we may 
consider those acting on the sides of a parallelepiped defined by the 

>I< See reference 6 at the end of the Preface. 
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B 
2 

L 
x 

P' 

Figure 2.1 The total stress field referred to rotated axes 1, 2 in 
the vicinity of the displaced point P'. 
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parallelogram P'ABO (Fig. 2.1). In order to do this let us consider 
the force dF acting on an element de, dr/ (Fig. 2.2). The element 
de ,dr/ is looked upon as an oriented vector with the material lying 
on the left side of the element. The force dF acting on the material 
has components along directions 1 and 2 given by 

dF1 = (811 + S11) dr/ - (812 + sd de 

dF2 = (812 + sd dr/ - (822 + sd de 

2 

t 
11' 

Figure 2.2 The "alternative" stress components referred to initial 
areas and rotated axes. 

(2.2) 
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The coordinates of points A, B, 0, relative to P' as origin are 

f I 

'Y} 

A 1 + 611 612 

B 1 + 611 + 6 12 1 + 622 + 612 (2.3) 

0 612 1 + 622 

We may now evaluate the force 8 11 + t11 on side AB in direction 1. 

It is given by 

8 11 + t11 = f: dF1 (2.4) 

Substituting dF1 from equ!lJtions 2.2 and performing the line 
integration, we derive 

Similarly we define the other components as 

8 12 + t~1 = f: dF2 

8 12 + t~2 = f: dF1 

8 22 + t22 = LC

dF2 

and obtain the expressions 

t11 = Sl1 + (811 + S11)622 - (812 + S12)612 

t~1 = S12 + (812 + 8 12)622 - (822 + 822)612 

t~2 = 8 12 + (812 + 8 12)611 - (811 + 811)612 

t22 = S22 + (822 + 822 )611 - (812 + 8 12)612 

(2.6) 

(2.7) 

These expressions may be simplified if we neglect products such as 
812622' S22612 as quantities of a higher order. Then they become 

t11 = 8 11 + 8 116 22 - 8 126 12 

t;1 = 8 12 + 8 126 22 - 8 22612 

t~2 = 8 12 + 8 126 11 - 8 116 12 

t22 = 8 22 + 8 22611 - 8 126 12 

(2.8) 
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The quantities 
tu t~2 

t~1 t22 
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(2.9) 

may be considered stress components since they represent forces 
acting on an element of unit dimensions before deformation. 

As later considerations will show, the primary reason for intro
ducing the alternative definition of the stress is a physical one. It is 
convenient to use in finding the physical relation between incremental 
stresses and strain and in expressing the strain energy. This is a 
consequence of the fact that, if 8jj is the strain defined in Chapter 1, 

the product t jj8jj is an exact expression for the work done by the 
incremental stresses. In this sense we may say that the variables tjj 
and 8lj are conjugate. The stresses (2.8) also provide in some cases a 
physical meaning for certain equations. 

The striking feature of the representation (2.8) for the stresses is, 
of course, that the components are not symmetric, that is, 

(2.10) 

In fact, we have 

t~1 - t~2 = S12(822 - 811) + (Sl1 - 8 22)812 (2.11) 

The difference between these two stress components is not mysterious; 
it simply expresses the fact that the total torque acting on the 
deformed element P'ABO must be zero. 

For our purpose here it is not the actual components t~2 and t;1 

which are useful, but rather their average, 

t12 = l(t~2 + t;l) (2.12) 

The components of this symmetric part of the stress are 

tl1 = 8 11 + 8 11822 - 8 12812 

t22 = 8 22 + 8 22811 - 8 12812 (2.13) 

t12 = S12 + 1812(811 + 822) - 1(811 + 8 22)812 

As shown in Chapter 1, the strain components 8jj are identical with 
ejj to a first order of approximation. Therefore, to the first order, 
expressions (2.13) may also be written 

tl1 = 811 + 8 11eyy - 8 12eXY 

t22 = S22 + 8 22eXX - 8 12eXY 

t12 = 812 + 1812(exx + eyy ) - 1(811 + 8 22 )eXY 

(2.14) 
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The last expressions are chosen to represent the alternative stress 
system. 

A similar stress system may be considered in three dimensions. 
This is conveniently formulated by considering equation 7.53 
obtained in Chapter 1 for the forces at the boundary. We have 
found the expression 

(2.15) 

representing the force acting on an area originally equal to unity. 
The force!i is represented by its components on the fixed axes x, y, z. 
It is clear that, for a deformation without rotation, relations (2.15) 
yield immediately the nine components of the forces acting on the 
faces of a parallelepiped whic4 is a unit cube oriented along x, y, z 
before deformation. These nine force components are simply the 
expressions Ali in which we put Wlj = O. We write these forces as 

with 

A~j = Slj + Sij + Sije - Slkejk 

Hence the nine incremental force components are 

t~j = slj + Sije - Slkejk 

(2.16) 

(2.17) 

(2.18) 

If there is a rotation, these forces are now referred to directions 1, 2, 3 
which rotate locally with the material as defined in section 5 of 
Chapter 1. The components t;j are in general not symmetric; that is, 

(2.19) 
The difference is 

(2.20) 

The difference is zero if the initial stress is hydrostatic. As in the 
two-dimensional case, the symmetric part of t;j may be chosen as an 
alternative representation of the stress. We define this stress as 

(2.21) 

or 

(2.22) 

In two dimensions these relations become identical with equations 
2.14 obtained above. 
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We may express the equilibrium conditions for the stress field in 
terms of tlJ' Solving equation 2.22 for 8jj and substituting these 
values in the equilibrium equations 7.29 of Chapter 1 we find 

a
8 

[8jj + ttJ + 8kjWlk - tSlkejk + t8jkelk] + pXM,) = 0 (2.23) 
Xj 

An alternative form analogous to equations 7.32 of Chapter 1 is 
obtained by making use of the equilibrium condition of the initial 
stress field. * 

atu a [8 18 18] LlX -a + -a kjWlk - "2 lkejk + "2 jkelk + p I = 0 
Xj Xj 

(2.24) 

Equivalent equations using alternative stresses t;j were obtained by 
Biezeno and Henckyt who considered the equilibrium of a deformed 
infinitesimal element. This equivalence provides a physical 
interpretation of the various terms in equations 2.24. 

3. TWO-DIMENSIONAL RELATIONS BETWEEN STRAIN AND 
INCREMENTAL STRESS 

We consider an elastic continuum in an initial state of stress whose 
components in the x, y plane are 

8 11 8 12 
(3.1) 

8 12 8 22 

The displacements u, v of the medium are also in the x, y plane and 
produce a state of plane strain defined to the first order by the 
components 

(3.2) 

* Equations in the form (2.24) were first derived by the author in references 3, 4, and 
5 at the end of the Preface. 
t C. B. Biezeno and H. Henclry, On a General Theory of Elastic Stability, Proceed
ings of the Royal Academy, Amsterdam, Vol. 31, pp. 569-592, 1928, and Vol. 32, 
pp. 444--456, 1929. 
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The incremental stresses relative to locally rotated axes, as defined 
in section 4 of Chapter 1, are 

811 8 12 

812 822 

(3.3) 

We have shown in Chapter 1, section 2, that, if the deformation is 
small, the strain components (3.2) are identical to the first order with 
components Cij of the deformation referred to rotated axes. This 
means that under the same conditions of small incremental deforma
tions the incremental stress components (3.3) must be functions only 
of the strain components (3.2). It is important to note that this is 
due to the fact that both the incremental stresses and the strain have 
been referred to rotated axes, so that the influence of the rotation on 
the relation between stress and strain has been eliminated. 

For small incremental deformations we may also assume that the 
incremental stress-strain relations are linear. We may write these 
relations as 

8 11 = Bitexx + B~~eyy + 2Biiexy 
8 22 = BMexx + B~~eyy + 2B~~exy 
8 12 = Bgexx + B~~eyy + 2Bgexy 

(3.4) 

We have introduced the factor 2 before coefficients Bit, B~~, and Bn 
The reason will become clearer when we use the "dummy index rule" 
in the next section. 

An important physical property of elastic continua must be 
introduced at this stage, namely, the existence of a strain energy 
potential. Strictly speaking, the existence of the strain energy may 
be derived from thermodynamics and it is a rigorous notion for iso
thermal or adiabatic deformations. In this sense the coefficients 
Bit. Bn etc., appearing in the stress-strain relations (3.4) may be 
either isothermal or adiabatic coefficients. Actually, for many 
problems the use of isothermal coefficients constitutes a satisfactory 
approximation. Further clarification of this point will be found in 
section 4 of Chapter 5. 

In order to introduce the concept of strain energy we must first go 
back to an alternative expression of the stresses. These are the 
stress components t;j introduced in section 2. They are 

(3.5) 
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and they represent the incremental forces, acting on the actual areas 
of an element after deformation. Furthermore, these forces are 
referred to the rotated axes. The total forces are, of course, 

8 11 + tll S12 + t~2 
8 12 + t;l 8 22 + t22 

(3.6) 

Let us now consider a virtual deformation represented by variations 
Oe1l> oe22' oe12 of the strain components. The work done by the 
forces (3.6) on an element of the medium undergoing this virtual 
deformation is 

o V = (811 + tll)oell + (822 + t22 )oe22 

+ (t~2 + t;1 + 28doe12 (3.7) 

It is important to remember here that we are dealing with the energy 
associated with a linear theory. It is a general rule in such cases 
that expressions for the energy must include all second order terms. 
To be correct we must therefore express the virtual work in terms of 
the components etj defined in Chapter 1, including first and second 
order quantities. An immediate simplification may be introduced in 
expression (3.7) since t;i is already of the first order. Therefore, in 
multiplying these quantities, we may replace eij by its first order 
approximation eij' The virtual work then becomes 

o V = tll oexx + t220eyy + (t~2 + t;l)oeXY 

+ 8 11 oell + S220e22 + 28120612 (3.8) 

This expression depends only on the symmetric part of the stress 
components. Writing as before 

(3.9) 

we obtain 

oV = tlloexx + t220eyy + 2t120eXY 

+ 8 11 0611 + S220e22 + 28120e12 (3.10) 

The existence of a strain energy potential is expressed by the 
condition that this expression is an exact differential. The initial 
stress is assumed given at any point, and only tjj depends on the 
strain. The condition that expression (3.10) be an exact differential 
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is expressed by the three relations 

8t11 = 8t22 
8eyy 8exx 

8t11 2 8t12 
8exy = 8exx 

8t22 = 2 8t12 
8exy 8eyy 

Oh. 2 

(3.11) 

Linear relations between the stresses tlj and the strains may be written 

t11 = OHexx + O~~eyy + 20Hexy 

t22 = OMexx + O~~eyy + 20Mexy 

t12 = Ogexx + O~~eyy + 20t~eXy 
These equations must satisfy conditions (3.11); hence 

On = OM 
OH = og 
OM = o~~ 

The stress components tlj are related to 8 1; by equations 2.14: 

tll = 8 11 + Slleyy - S12eXY 

t22 = 8 22 + S22exx - S12eXY 

t12 = 812 + i S 12(eXX + eyy ) - t(Sl1 + S22)eXY 

(3.12) 

(3.13) 

(3.14) 

Substituting in equations 3.12 yields stress-strain relations in the 
form (3.4); that is, 

8 11 = ogexx + (O~~ - Sl1)eyy + (20H + Sdexy 

8 22 = (OM - Sdexx + O~~eyy + (20~~ + S12)eXY 

8 12 = (og - iS12)eXX + (O~~ - iS12)eyy 

+ (20g + iSu + iS22)eXY 

Comparing equations 3.4 and 3.15, we derive 

B11 
11 = On B~~ = on - Sl1 Bn = on + i S 12 

B11 
22 = og - S22 B~~ = O~~ Bg = O~~ + t S 12 

Bll 
12 = og - tS12 B~~ = O~~ - t S 12 Bg = og + iS11 

(3.15) 

(3.16) 

+ i S 22 
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These coefficients do not satisfy the same symmetry relations as do 
equations 3.13, but the following are derived from them: 

Bn + 8 11 = BM + 8 22 

BH - t812 = Bg + t812 

B~~ - t812 = B~~ + t812 

(3.17) 

It is interesting to note that coefficients B become symmetric, i.e., 
will satisfy the symmetry relations of type (3.13) if 

8 11 = 8 22 , 8 12 = 0 

In this case the initial stress is two-dimensionally isotropic. 

4. THREE-DIMENSIONAL RELATIONS 
BETWEEN STRAIN AND INCREMENTAL STRESS 

(3.18) 

In order to deal with the stress-strain relations in three dimensions 
we shall make use of the more compact notation resulting from the 
dummy index summation rule. However, in this particular case it 
is important first to clarify a possible source of confusion connected 
with this notation. 

Let us go back to the two-dimensional case considered in the 
previous section. We may obviously write the three equations 3.12 
in the form 

tll = CHexx + Cneyy + CHexy + cneyX 

t22 = CMexx + C~~eyy + C~~eXy + C~~eyX 
t12 = cgexx + C~~eyy + cgeXY + cgeyX 

t21 = CMexx + C~~eyy + C~~eXy + C~ieyx 

These are the same as equations 3.12 provided that we put 

eXY = eyX t12 = t21 

CH = cn cg = CM 

C~~ = C~~ C~~ = C~~ 

cg = cg = C~~ = c~t 

(4.1) 

(4.2) 

Thus we have not introduced any new coefficients but simply a new 
notation. Because of relations (3.13) and the purely formal ones 



68 Elasticity Theory of a Medium under Initial Stress Oh. 2 

(4.2), the matrix of coefficients in equations 4.1 is symmetric; that is, 
we may write 

Gf/ = Gi/y (4.3) 

This may also be expressed by the equation 

BellY Beij 
(4.4) 

which is the same as equations 3.11. The reader will note that the 
disappearance of the factor 2 from these equations is due specifically 
to the interpretation of the partial derivative. The variable e XY in 
equations 3.11 and 4.4 are not the same when considered from the 
standpoint of partial derivation. In equations 3.11, when we vary 
e XY ' we vary at the same ti~e e yX since the two variables are put equal 
to each other a priori. This is in contrast with equations 4.4 when 
the variables eXY and eyX are considered independent variable8 before 
differentiation and put equal to each other only after the operation 
has been performed. This is the origin of the factor 2 in the earlier 
equations. These points should be carefully kept in mind when 
applying the more general notation. 

Let us now consider a state of three-dimensional stress. The six 
components of the initial stress referred to x, y, z axes are 

Sl1 S12 S13 

Stj = S21 S22 S23 

S31 S32 S33 

(4.5) 

with the condition Sij = Sji' The total stress referred to axes which 
have rotated with the material is 

alj = Slj + 8lj 

where the incremental stress is 

8 11 8 12 8 13 

8lj = 8 21 8 22 8 23 

8 31 832 8 33 

(4.6) 

Again we put 8!j = 8 j i' Finally, the infinitesimal strain components 
referred to the rotated axes are 

exx eXY exz 

eli = eyX eyy eyZ (4.7) 

ezx eZy ezz 
with elj = ejt. 
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Instead of using the stress components 8 jj , we may represent the 
incremental stresses by the alternative components t ij referred to 
initial areas. The relations between the two representations of the 
stress are expressed by equation 2.22. The advantage of the tij 

components lies in the property that, when multiplied by the corre
sponding strain components, they lead to the expression for the work 
done by the stresses on an element of the medium. In other words, 
tij and eij are conjugate variables. 

Generalized to three dimensions, the linear relations (4.1) between 
tij and eij are written 

(4.8) 

with coefficients satisfying the relations 

(4.9) 

The indices in equations 4.8 assume all values 1, 2, 3 and x, y, z. As 
pointed out in section 1, a linear relation like (4.8) may of course be 
assumed to occur under certain conditions for anelastic media. If 
the medium is elastic, the existence of a strain energy potential 
restricts the choice of coefficients. In analogy with equation 3.8 for 
the two-dimensional case, we write for the virtual work of the total 
forces t;j + S Ij on an element of the medium 

(4.10) 

As explained in section 3, in order to ensure that this expression be 
correct to the second order we have used the strain components eij 

defined in terms of first and second order quantities. We have used 
here the actual force t;j + Sij with non-symmetric components. 
However, because of the symmetry of eij' i.e., because 

(4.11 ) 

this virtual work depends only on the symmetric part of t;j, namely, 

( 4.12) 
Hence we may write 

(4.13) 

The existence of a strain energy potential requires that this expression 
be an exact differential, and therefore condition (4.3) must be satisfied; 
that is, coefficients Of! must obey the symmetry relations 

(4.14) 
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We may also use the stresses sl1 and write linear relations between 
these incremental stresses and the strains as 

(4.15) 
with 

Bf/ = B'ft = Bft (4.16) 

In order to compare coefficients Bf/ and 0f/ let us substitute into 
equations 4.8 the value of tl1 in terms of 811 as given by equations 2.22. 
We derive 

(4.17) 

In order to bring out the hidden symmetry of this expression it is 
essential to write it in a modified form as follows. We first write the 
identities 

e = e/l)/lV 

Slkejk = SjvejV 

Sjkelk = SjVelV 

(4.18) 

These relations are based on the property of dummy indices and of 
the symbol 811 ; that is, 

81j = 1 for i = j 

8jj = 0 for i =F j 
(4.19) 

Furthermore, because of this same property of 811, we may put 

ejV = 8/lje/lv 

elv = 8/l te/lv 

With these results the last two of relations (4.18) become 

Slkejk = SIV 8 /lje/l v 

Sjkeik = SjV8 /lle/lV 

Finally we utilize the fact that 

Hence 
Slkejk = !(Stv8 /lj + SI/l 8 Vj)e/l v 

Sjkelk = !(SjV 8 /l1 + Sj/l8Vi )e/lV 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

When we introduce the last values and the first of expressions (4.18) 
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into equation 4.17, it becomes 

811 = 0f/e/1.v - Slj0/1.Ve/1.V 

+ HS!v0/1.} + S!/1.0V} + S}V0/1.i + S}/1.Dv!)e/1.v (4.24) 

Comparing the coefficients in the stress-strain relations (4.15) and 
(4.24), we conclude that 

This yields a relation between the coefficients in the two alternative 
forms (4.8) and (4.15) of the stress-strain relations. Applying 
equations 4.25 to the two-dimensional case yields equations 3.16, 
derived by a direct procedure. 

Other properties of these coefficients may be brought out by 
separating the terms into two parts. We write 

with 

BW/1.V = 0f/ - t(SIJD/1.V + S/1.VOj}) 

+ !(SiV0/1.} + Si/1.0V} + S}yD/1.! + S}/1.0y!) 

BI~)/1.V = t(S/1.VOj} - SIJ0/1.v) 

( 4.26) 

(4.27) 

Because of relations (4.3) for 0f/, it is easily seen that we have the 
symmetry property 

(4.28) 

and the antisymmetry property 

(4.29) 

In general, therefore, we shall have the inequality 

( 4.30) 

We conclude from this that the existence of a potential strain energy 
does not necessarily lead to a symmetric matrix for the coefficients 
Bf/ in the incremental stress-strain relations. The existence of a 
potential strain energy does, however, lead to conditions of a more 
general type to be satisfied by the coefficients. The condition for 
the coefficients is 

(4.31) 
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The coefficients Bf/ will be symmetric if the right side of this equation 
vanishes; i.e., if 

S/l/jij - Sijo/lV = 0 

This can only occur if the initial stress is of the form 

Sij = SOtj 

i.e., if the initial stress is isotropic. 

(4.32) 

( 4.33) 

The properties of the coefficients Bf/ may also be illustrated by 
putting 

Df/ = HSiVO/lj + Si/lOVj + SjV8/li + Sj/lOVi) 

This expression is completely symmetric; that is, 

Df/ = Dj{ = Dry = D:1v 

Equation 4.25 may now be written 

(4.34) 

(4.35) 

(4.36) 

where Zf/ is now a completely symmetric coefficient obeying the 
same relations as those in equations 4.9, 4.14, and 4.35; that is, 

(4.37) 

The value of Bfl may be written 

( 4.38) 

With this value the stress-strain relations (4.15) become 

(4.39) 

Since the volume dilatation is 

(4.40) 

we finally obtain the stress-strain relations in the form 

(4.41) 

The non-symmetric terms have now been reduced to a very simple 
expression which contains only the dilatation e. 

An interesting consequence of this result is the disappearance of the 
non-symmetric terms for an incompressible medium (e = 0). 
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5. VARIATIONAL PRINCIPLES 

Variational procedures* to formulate the linear mechanics of con
tinua under initial stress are appreciably more involved than in the 
corresponding classical problem with a stress-free initial state. In 
the classical problem the treatment calls for the use of linear kine
matics only. In the case of a prestressed medium we must introduce 
the concept of non-linear strain and take into account the second order 
quantities. This will bring into play the expressions obtained 
in Chapter 1 for the strain components eli which are accurate to 
the second order. Expression (3.27) of Chapter 1 for the strain 
components is 

(5.1) 

In order to obtain the potential strain energy for a medium under 
initial stress we must evaluate this energy correctly up to second 
order terms. We shall again make use of the stress system tjj which 
represents forces acting on the deformed faces of an element which is 
originally before deformation a cube of unit size oriented along a 
direction parallel to the coordinate axes. The forces tli are com
ponents projected on the rotated axes. The strain components eli 

are similarly the components along the same axes. Since the total 
forces are tlj + Sii' the virtual work of these forces on the deformed 
element is 

(5.2) 

This expression is the same as equation 4.13, and it includes all 
second order quantities. The assumption of the existence of a strain 
energy potential requires, as we have seen, that relations (4.14) be 
satisfied. The term tljoe jj is then an exact differential. 

Consider now the linear relations (4.8) between ttj and ejj' 

(5.3) 

Let us write 

(5.4) 

* The variational formulation of the problem of incremental deformation was 
introduced by the author in reference 1 at the end of the Preface, and later developed 
in references 3, 4, and 5. 
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Then, taking the differential of this expression, we obtain 

o(tijeij) = Cf/ep.voeij + Cf/eijoep.v 
Since 

we may also write 
o(tijeij) = 2Cf/ep.voeij = 2tijoeij 

Oh. 2 

(5.5) 

(5.6) 

(5.7) 

Introducing this result into equation 5.2, we obtain an exact 
differential. We write 

(5.8) 

This is the strain energy potential per unit initial volume. We write 
explicitly the value of eij as given by equation 5.1, and V becomes 

V = lj;ljjeij + Su[etj + !e!P.wP.j + !ejp.wp.t + !wlp.Wjp.] (5.9) 

From the general principles of mechanics it should be possible to 
show that equilibrium conditions are equivalent to a variational 
principle applied to the total potential energy. Let us therefore 
consider the total strain energy potential of a volume T. This 
volume is defined in terms of the initial geometry before deformation. 
The total strain energy of this body is 

(5.10) 

We shall now evaluate the variation of r for variations OUI of the 
displacement field of the continuum, i.e., for variations OU, OV, ow of 
the three cartesian components of this field. In performing this 
evaluation we recall the definition of eij' wij (equation 3.25, Chapter 1). 

elj = ~ (OU j + OUj) 
2 oXj OXI 

(5.11) 
Wij = ~ (aut _ OUj) 

2 OXj oXt 

Let us first evaluate OV. Taking into account expression (5,7) for 
o(tijeij), we derive 

OV = (tij + Sjj)oe jj 

+ !Sjje!p.owp.j + !Sjjwp.joe!p. 

+ !Sijejp.owp.1 + !Sijwp.joejp. 

+ !SjjWlp.OWjp. + !SjjWjp.owlp. (5.12) 
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We notice that we may exchange indices i and j in these various 
terms because SIj = Sj!; that is, 

Sjjej1low/lj = Sjjej/low/ll 

Sjjw/ljoej/l = Sljw/ljoej/l 

SIjWj/lowj/l = SIjWj/lowj/l 

Therefore the expression for 0 V simplifies to 

( 5.13) 

oV = (tlj + SIj)oelj + Sjiej/low/li + w/ljoej/l + Wj/lowj/l) (5.14) 

From equation 5.11 we obtain the relations 

w/ljoej/l + w//lOWj/l = w/l/o(e/l j + w/lj) 

o 
= W/l/~OU/l 

uXj 

and, finally, changing the dummy indices, 

(5.15) 

o 
SIj(W/liOej/l + W//lOWj/l) = S/cjW//C ~ OUt (5.16) 

uX j 

We also derive 

Slje//low/lj = iSlj (e//l O~j oUIl - ei/l O~/l OUj) (5.17) 

and, by a change of dummy indices, 

Sljej/low/lj = i(S/cje/Cj - S/Cie/Cj) -;,0 OUt (5.18) 
uXj 

Hence we may write 

OV = (tij + So + S/CjWt/e + is/eje/e/ - is/eie/e;) -;,0 OUt (5.19) 
uXj 

Let us now evaluate the variation of the total strain energy potential 
of the volume T. Consider the quantity in parentheses in equation 
5.19. We may put 

At; = tlj + St; + S/ejWt/e + !S/eht - is/eie/ej (5.20) 

If we substitute the value of tij from equation 2.22, we obtain 

At; = 8ij + Sij + Slje + S/ejWt/e - Sj/ee/ej (5.21) 

This is the same expression Ali defined in Chapter 1 by equation 
7.28. The variation 'OV is therefore 

(5.22) 
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The variation of the total strain energy potential of the initial 
volume Tis 

( 5.23) 

By integration by parts this may be written in the equivalent form 

(5.24) 

where the double integral is extended to the boundary S of the 
volume T. The unit vector normal to the boundary and positive 
outward is denoted by n j • The surface integral brings out a quantity 
which we have also encountered previously. By equation 7.53 of 
Chapter 1 we have 

( 5.25) 

This represents the x, y, z components of the force acting on the 
boundary per unit initial area. 

We shall now write a variational equation by expressing that the 
virtual work of all the external forces, i.e., forces II at the boundary 
and body forces XI' is equal to the variation of the strain-energy 
potential of the volume T. The variational equation is 

(5.26) 

In the volume integral, representing the virtual work of the body 
force, the force components X I( gl) are taken at the displaced points 
gl. However, p and dT represent the mass density and the volume 
element before deformation. Whether p dT is expressed before or 
after deformation is, of course, immaterial because of the invariance 
of this quantity which follows from the principle of mass conservation. 
We have already made use of this property in connection with 
equation 7.8 in Chapter l. 

Making use ofthe identity (5.24), we may transform the variational 
equation (5.26) into 
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This equation must be verified for all arbitrary variations of the 
displacement field; hence we must have 

(5.28) 

ft = Ajjnj 

With values Ajj given by equation 5.20, the first equations are 
equivalent to the equilibrium conditions (2.23) in terms of the tjj 

components. With values of AiJ in terms of Stj' i.e., given by expres
sions (5.21), the first equations are identical with the equilibrium 
conditions (7.29) in Chapter 1. The second of equations 5.28 gives 
the boundary conditions. . 

We have therefore established that the variational principle (5.26) 
is equivalent to the equilibrium equations for the stresses. 

The variational principle (5.26) may be formulated in a different 
form by taking into account the condition that the initial stresses 
and initial boundary forces are in a state of equilibrium. Let us 
introduce an incremental strain energy 

( 5.29) 

With this definition we may write 

(5.30) 

Furthermore, by definitions (7.33) and (7.55) of Chapter 1, we also 
write 

(5.31) 

(5.32) 

These equations involve the incremental body force LlX t and the 
incremental boundary force LIft. Substituting expressions (5.30), 
(5.31), and (5.32) into the variational principle (5.26), we obtain 

IIi [StjSe jj + S LI V] dT 

= IIi [Xt(x l ) + LlXdpSut dT + I1 (StJnj + Llft)Sut dS ( 5.33) 

On the other hand, the condition that the initial stress and the 



78 Elasticity Theory of a Medium under Initial Stress Ch. 2 

initial boundary forces are in equilibrium is expressed by the 
variational principle 

(5.34) 

That this is effectively the case is easily shown after integration by 
parts of the integral on the left side. Equation 5.34 then becomes 

(5.35) 

This relation is verified because the initial stress must satisfy the 
equilibrium conditions 

(5.36) 

We now subtract equation 5.34 from equation 5.33 and obtain 

(5.37) 

In this form the variational principle states that the variation of 
incremental strain energy is equal to the virtual work of the incre
mental body forces and the incremental boundary forces. The 
variational principle is thus formulated in incremental form. 

Attention should be called to the significance of the incremental 
energy LI V as defined by equation 5.30. The local increment of 
strain energy is actually V and not LI V. However, the additional 
term Sijeij cancels out of the final equations when the equilibrium 
conditions and the boundary forces in the initial state are taken into 
account, as shown by equation 5.34. 

If we denote by 

(5.38) 

the total increm,ental strain energy, the variational principle (5.37) 
may be written 

SLlr = IIi LlX j p8U j dT + ISs Llfj 8U j dS (5.39) 

Another alternative formulation is obtained if the body force is 
derived from a potential. Then 

(5.40) 
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where U(x z) is a potential function of the coordinates. For exainple, 
U may be a gravitational or centrifugal potential. According to 
equation 7.43 of Chapter 1, 

LlX! = uj °oX! + LI'X! (5.41) 
Xj 

We may put LI' X! = 0 since X! is a point function of the coordinates. 
Hence 

02U 
LlX! = -u·--

1 OXj ox! 

The following incremental body force potential is introduced: 

. 1 02U 
LlU = - --- UtU j 2 ox! oXj 

Then the variation of this quantity is 

02U 
8LlU = -0 0 ujSu! = -LlX!Su! 

x! Xj 

(5.42) 

(5.43) 

(5.44) 

When we use the last relation, the variational principle (5.37) becomes 

(5.45) 

The variational principle in this case t'a,kes the form 

(5.46) 

where 

(5.47) 

is the total incremental potential, i.e., the sum of the incremental 
strain energy and the incremental body force potential of the original 
volume T. 

Equilibrium Equations in Curvilinear Coordinates. The 
variational principle (5.46) has been derived in the context of elasticity 
by assuming the existence of a strain energy. However, this 
assumption is not necessary. It is possible to state the variational 
principle in such a way that it yields the equilibrium equations 
independently of any physical properties of the medium. This is 
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done by applying the principle of virtual work. In the present case 
it takes the form * 

IIi (tjj + Blj)DSij dr = IIi pXMI)DUj dr + IL fjDU! dS (5.48) 

Since the medium is in equilibrium in the initial state of stress, the 
principle also applies in that state. Hence 

IIi BtjDeij dr = IIi pXj(XI)DUj dr + Ii BijnjDUj dB (5.49) 

The difference of the two equations 5.48 and 5.49 is 

IIi (tjjDeij + BjjDT}ij)dr = IIi pLJXjDujdr + ILLJf!DUjdB (5.50) 

In writing this difference we have substituted tuDeij for tjjDSij since it 
does not affect the significant terms, namely, those of the first and 
second order. We have also put 

T}ij = !(ej/Lw/Lj + ej/Lw/L! + w!/LWj/L) (5.51) 

That the variational equation (5.50) is equivalent to the equilibrium 
condition may be verified by following exactly the procedure used 
for equation 5.26. 

The principle of virtual work expressed in the form of equation 
5.50 is of particular interest in deriving the equilibrium equations in 
orthogonal curvilinear coordinates. In these equations the initial 
stress is referred to local orthogonal axes tangent to the coordinate 
lines. The same local axes are used to represent the other variables. 
The body force LJX! and the displacements u j are projected on these 
axes without difficulty. t For the strain and the rotation we must 
take into account the curvature of the coordinate system. The 
differential element ds is written 

ds2 = h12 dq1 + h22 dq2 + h32 dq3 (5.52) 

where hI> h2, h3 are functions of the curvilinear coordinates q1, Q2' Q3' 
When the medium is deformed, the coordinates of a particle become 

ii1 = q1 + a1 
ii2 = q2 + a2 
ii3 = q3 + a3 

(5.53) 

* This form was used by the author as the basis for a non-linear theory of elasticity 
(see reference 5 in the Preface). 
t For further elaboration see p. 492. 
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The displacement, represented by 0:1, 0:2 , O:s, is assumed to be small. 
The first order strain components referred to local axes are then 

1 Llh12 00:1 
en = --- +-

2 h/ OQ1 

e12 = ~ (hI 00:1 + h2 00:2) 
2 h2 OQ2 hI OQ1 

(5.54) 

etc. 
with 

The rotation is 

(5.55) 

Other components of eij and Wij are derived by cyclic permutation 
of indices. The particle displacement U j considered as a first order 
quantity and projected on the local cartesian axes is 

u1 = h10:1 

U2 = h2 0:2 

Us = hsO:s 

(5.56) 

Substitution of these values of eij and.wij in the variational equation 
5.50 yields the differential equations ~f equilibrium of the stress field 
in curvilinear coordinates. 

A detailed derivation of the values in equations 5.54 and 5.55 for 
the strain and rotation components in curvilinear coordinates is given 
by Temple. * An outline of his derivation of the strain components 
follows. 

Expressions (5.54) for the strain components may be obtained by considering 
the value of ds 2 in the deformed state. It becomes 

ds2 = (h12 + Llh12) dij12 + (h22 + Llh22) dij22 + (h32 + Llhl) dij32 (5.56a) 
with 

(5.56b) 

etc. 

* G. Temple, Oartesian Tensor8, p. 84, Methuen & Co. Ltd., London, John Wiley & 
Sons, Ino., New York, 1960. 
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The value of ds2 may be written as a quadratic form in dq,. Dropping terms 
of higher order than a" we find 

ds2 = (h 2 + L1h 2 + 2h 2 Oal) dq 2 
I I I oql I 

2 ( h 2 oal h 2 oa2) d ~ + I Oq2 + 2 oql ql uq2 + etc. 

We introduce the differential lengths along the local coordinates: 

dX I = hI dql 

dX2 = h2 dq2 

dX3 = h3 dq3 

(5.56c) 

(5.56d) 

Using these differentials, we may identify the quadratic form with expression 
(3.12) of Chapter 1 and thus obtain the strain components (5.54). 

The rotation (5.55) may also be derived by application of Stokes' theorem. 
We evaluate the circulation of the displacement u, on a closed contour along 
coordinate lines and divide by the area enclosed. 

6. INCREMENTAL ELASTIC COEFFICIENTS 
FOR AN ORTHOTROPIC MEDIUM 

At this point it is important to clarify the physical significance of 
the incremental coefficients. There are two cases of particular 
interest which readily come to ni~nd. We may assume the unstressed 
medium to be either of orthotropic* or isotropic symmetry in the 
original unstressed condition. 

In this section we shall discuss orthotropic symmetry. The 
medium with isotropic properties will be considered in the next 
section. 

A medium of orthotropic symmetry is such that its elastic properties 
are symmetric with respect to three orthogonal planes. For con
venience we choose the coordinate axes to be oriented along the 
directions of symmetry. 

We also assume that the principal components of the initial stress 
are directed along the planes of elastic symmetry of the medium. 
Then the symmetry of the material is not modified by the initial 
stress, and it applies equally to the incremental deformation. 

* In crystallography the term orthorhombic is used instead of orthotropic for this 
type of symmetry. 
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The state of initial stress is represented by its three principal com
ponents 811,822,833 along the coordinate axes. Since the incre
mental stress-strain relations possess orthotropic symmetry, they 
must necessarily assume the form 

811 = B 11eXX + B 12eyy + B 13eZZ 

822 = B21 exx + B 22eyy + B 23eZZ 

8 33 = B31 exx + B 32eyy + B 33eZZ 

823 = 2Q1e y;, 

8 31 = 2Q2ezx 

8 12 = 2Q3eXY 

(6.1) 

These relations describe a particular mise of the general equations 
4.15 obtained by reducing the number of indices for the coefficients. 

The existence of a strain energy requires the coefficients to satisfy 
relations (4.31), which in this case are simplified to 

B12 - B21 = 8 22 - 8 11 

B 23 - B32 = 8 33 - 8 22 

B31 - B 13 = 8 11 - 8 33 

(6.2) 

The stress-strain relations (6.1) may also be written in a form which 
is more convenient for practical use: 

8 11 = 011eXX + (012 - 8 11 )eyy + (031 - 8 11 )e;,;, 

8 22 = (012 - 8 22 )eXX + 02i~YY + (023 - 8 22 )eZZ 

8 33 = (031 - 8 33 )eXX + (023 - 8 33 )eyy + 033eZZ 

8 23 = 2Q1eyZ 

831 = 2Q2ezx 

8 12 = 2Q3exy 

(6.3) 

The coefficients in these equations automatically satisfy relations 
(6.2). They correspond to the form (4.17) of the general equations. 
In the last three of equations 6.3 the coefficients are only subject to 
a change of notation. Equations 6.3 may be written by means of 
the alternative stress components tij. Applying equations 2.22, we 
find 

t11 = 8 11 + 8 11 (eyy + ezz ) 

t22 = 8 22 + 8 22 (eZ;' + exx ) 

t33 = 8 33 + 833 (eXX + eyy ) 

(6.4) 
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When we substitute equations 6.4, equations 6.3 become 

tll = OlleXX + 012eyy + 031ezz 

t22 = 012exx + 022eyy + 023ezz 

t33 = 031eXX + 023eyy + 033eZZ 

t23 = 2QleyZ 

t31 = 2Q2ezx 

t13 = 2Q3eXY 

Oh. 2 

(6.5) 

These equations correspond to the form (4.8) ofthe general equations 
where the coefficients are 0f/. The six coefficients 

0 11 0 12 0 31 

0 12 0 22 0 23 

0 31 0 23 0 33 

(6.6) 

constitute a symmetric matrix, thereby satisfying the symmetry 
relations (4.14) of the general theory, namely, 

(6.7) 

Note that the stress-strain relations (6.3) contain nine independent 
coefficients which are functions of the initial deformation. 

Let us now examine the physical significance and measurements 
involved in the six elastic coefficiehts (6.6). Denote the original 
coordinates of the medium in the unstressed state by X, Y, Z. Ill
the state of homogeneous initial stress, considered here, they become 

x = A1X 

y = A2 Y 

Z = A3Z 

(6.8) 

The extension ratios A1> A2, A3 represent the lengths acquired by the 
sides of a cube originally of unit dimension oriented along the 
directions of orthotropic symmetry (the same as x, y, z). 

We denote by 
(6.9) 

the strain energy of this deformed cube. The normal forces acting on 
each face of the deformed cube are 

oW i3 =
OA3 

(6.10) 
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and the normal stresses are 

1 oW 
8 aa = "\1"\2 0"\a (6.11) 

A small additional deformation along the same principal direction 
will produce incremental stresses which may be identified with the 
differentials. We write 

(6.12) 

and two analogous expressions for S22 and Saa. Evaluating the 
differentials, we find the first three of relations (6.3). In doing this 
we must take into account the following definitions of the incremental 
strains, 

The elastic coefficients are 

0 11 = ~ 8f1 = ~ 82
W 

. ,.\2,.\a 8"\1 ,.\2,.\a 8"\12 

0
22 

= ~ 8f2 = ~ 82
W 

"\3"\1 8"\2 "\a"\l 8"\20~ 

0 33 = ~ 8fa = ~ 82 
W 

,.\1,.\2 8,.\a ,.\1,.\2 8,.\a2 

0
23 

= -.!:.. 8f2 = 1. 8fa = -.!:.. 8
2
W 

"\1 8"\a "\1 8"\2 "\1 8"\2 8"\3 

o _ -.!:.. 8fa _ -.!:.. 8f1 _ -.!:.. 02 W 
31 - "\2 8"\1 - "\2 8"\a - "\2 8"\a 8"\1 

o _ -.!:.. 8f1 _ -.!:.. 8f2 _ -.!:.. 82W 
12 - "\a 8"\2 - "\3 8"\1 - "\3 8"\1 8"\2 

(6.13) 

(6.14) 

The Slide Modulus and Its Physical Significance. Our next 
discussion will be concerned with the significance of the shear coeffi
cients Qv Q2' Qa. Let us impose a shear displacement parallel to the 
x direction. The displacement components are 

u = yy v=w=o (6.15) 
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This is a plane deformation parallel to the x, y plane (Fig. 6.1). A 
rectangle ABDO in this plane is deformed into the parallelogram 
ABD'O'. In order to produce this deformation we must apply to 
the face 0 D a tangential force which may be evaluated from equations 
6.27 of Chapter 1. When we put S12 = 0 in these equations, they 
become 

LJfx = (811 + Slleyy ) cos (n, x) 

+ (S12 - S22W - SlleXY ) cos (n, y) 

LJfy = (812 + SllW - S22eXY) cos (n, x) 
(6.16) 

+ (822 + S22eXX) cos (n, y) 

These expressions represent the incremental forces acting on a face 

Figure 6.1 Physical significance of the slide modulus L 12• 

ofthe material when the normal direction is defined by the directional 
cosines, cos (n, x) and cos (n, y). For the shear displacement 
(equations 6.15) we may write 

eXY = -w = iy 
exx = eyy = ezz = 0 

eyZ = ezx = 0 

From the stress-strain relations (6.3) we derive 

8 11 = 8 22 = 0 

812 = QaY 

(6.17) 

(6.18) 
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Hence expressions (6.16) become 

where 

LJfx = LJ XY cos (n, y) 

LJfy = LJ/ cos (n, x) 

LJ XY = (Qa + i822 - i811 )y 

LJ/ = (Qa - i822 - i 811)Y 

(6.19) 

(6.20) 

The quantity LJ XY denotes the tangential stress applied to the face OD 
in order to produce the shear displacement defined by the angle y. 
The relation 

LJ XY = L 12y 

introduces a measurable slide modulus 

(6.21) 

(6.22) 

This relation may also be considered an experimental definition for 
Qa. To emphasize the distinction between these two quantities we 
shall refer to Qa as a shear modulus. Note that the quantity LJxY 
defines the vertical stress which is applied to the sides AO and BD. 
From equations 6.20 we derive 

(6.23) 

This equation turns out to express tJhe condition for equilibrium of 
moments in the x, y plane. 

The procedure may be repeated for the other coordinate planes, 
thus relating coefficients Q1 and Q2 to a shear test. The process, 
however, is not unique, and we may define more than three such 
experimental coefficients. Coefficients of the type L12 play an 
important role in applications. They must, however, be suitably 
defined in each specific case by referring to a particular configuration 
such as shown in Figure 6.1. 

An alternative interpretation of the coefficient L12 may be given 
by considering a strip of material initially subject to an axial stress F 
and a uniform hydrostatic pressure Pr (Fig. 6.2). The initial stress 
components here are 

8 11 = F - Pr 

8 22 = -Pr 
(6.24) 

The specimen is immersed in a fluid at pressure Pr while it is pulled 
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by an axial stress F in addition to the hydrostatic stress. This 
state of initial stress is then disturbed by a tangential force Ll xy 
producing a shearing deformation y. The coefficient L12 is theratio 
Llxy/y, Note that in this resolution of the stresses the same force Ll xy 
must also be added on AC and BD in order to balance the moments. 

Figure 6.2 Alternative interpretation of the slide modulus L12 

with a test specimen under hydrostatic pressure Pf' 

The preceding definition of the s~ide modulus L12 refers not only 
to the x, y plane but also to both the x direction and the x, y plane. 
It is not symmetric with respect to subscripts 1 and 2. This is 
illustrated by the interpretation in Figure 6.2, where the shearing 
deformation is in the x, y plane while the force F superimposed on 
the hydrostatic pressure is acting along the x direction. Hence it is 
possible to define two slide moduli for each coordinate plane. They 
are 

L 23 = Q1 + t(833 - 8d L32 = Q1 + t(822 - 8 33) 

L31 = Q2 + t(811 - 8d L 13 = Q2 + t(833 - 8 11 ) (6.25) 

L12 = Q3 + t(822 - 8 11 ) L21 = Q3 + t(811 - 8 22 ) 

Note the relations 
Q1 = t(L23 + L 32 ) 

Q2 = t(L 31 + Ld 

Qa = t(L12 + L 21 ) 

Hence only three of the slide moduli are independent. 

(6.26) 
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7. INCREMENTAL ELASTIC COEFFICIENTS 
FOR AN ISOTROPIC MEDIUM 

89 

We now consider the important case of a medium for which the 
finite stress-strain law is isotropic. By this we mean that the stress 
is related to the finite strain by relations which are independent of 
the orientation of the stress field. From the viewpoint of incremental 
stresses the medium is isotropic in the vicinity of the unstressed 
state, but it will become anisotropic in a state of finite strain con
sidered as the initial state. The coordinate system may be chosen 
to coincide with the principal directions of the initial stress which is 
then represented by its three principal components 8 11 , S22' 8 33 , 

Since the medium is isotropic in finite strain, the principal directions 
of stress define three planes of symmetry for the incremental elastic 
properties. In other words, the incremental stress-strain relations 
must possess orthotropic symmetry. 

In general it is possible to distinguish between three cases for the 
elastic symmetry of a given material. The symmetry may refer to 
properties of finite deformations. It may also apply to small 
deformations of a medium origInally stress free or to small incremental 
deformations in the vicinity of a state of initial stress. The following 
terminology may be used to emphasize the distinction between 
various cases. '~i> 

Finite Isotropy: the finite stress-strain relations are independent 
of the stress orientation. 

Finite Orthotropy: the elastic symmetry is orthotropic in finite 
strain. 

Incremental Orthotropy: the elastic symmetry is orthotropic for 
incremental stresses. 

Induced Orthotropy: the orthotropy is caused by the initial stress. 
Intrinsic Orthotropy: the orthotropy is not induced. 

Related expressions whose meaning follows from these definitions are 
incremental symmetry, incremental anisotropy, intrinsic symmetry, 
etc. 

The case to be discussed in this section is that of finite isotropy 
with induced incremental orthotropy. The incremental stresses are 
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governed by the same equations (6.1 and 6.3) discussed in the pre
ceding section. However, there is one difference. Because of the 
finite isotropy the nine coefficients in these equations cannot be 
chosen arbitrarily. We shall show that the coefficients Ql' Q2' Q3 
are given by important and very simple formulas which, except for 
some special degenerate cases, involve only the finite initial strain 
and the corresponding stresses. 

y 

Figure 7.1 Incremental shear deformation corresponding 
to equations 7.1. 

To show this let us start from coordinates X, Y, Z of the medium 
in the original unstressed state. We shall call this state (a). By 
applying the principal stresses 8 11 , ~~, 8 33 along the coordinate axes 
the medium goes into the state of initial stress denoted as state (b). 
The coordinates x, y, z in state (b) are given by equations 6.8. A 
small incremental shear strain eXY parallel to the x, y plane is now 
superimposed on state (b), and it deforms the medium into state (c) 
(Fig. 7.1). In this state the coordinates of the medium become 

g = x + eXYy 

7J = eXYx + y ,= z 

Substituting the values (6.8) for x, y, and z yields 

g = A1X + A2eXY Y 

7J = Al eXYX + A2 Y 
, = A3Z 

(7.1) 

(7.2) 

These equations represent the total transformation of coordinates 
from state (a) to state (c). In the following analysis we need to 
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consider only the first two of equations 7.2, which represent the 
transformation in the x, y plane. These two equations are equivalent 
to the transformation 

-sin 0] [X] 
cos 0 Y 

(7.3) 

By referring to section 2 of Chapter 1, the reader will notice that this 
represents a solid rotation through an angle 0 in the plane followed 
by a pure deformation. We may find the coefficients bjj and the 
rotation 0 by identifying the four coefficients in the two sets of trans
formations (7.2 and 7.3). Following a procedure identical with the 
solution of equations 2.11 of Chapter 1, we find 

Al - A2 
tan 0 = eXY A A 

1 + 2 

bll = Al cos 0 - eXy A2 sin 0 
b22 = eXy Al sin 0 + A2 cos 0 

2b12 = eXY (AI + A2) cos 0 + 

(7.4) 

Since eXY is assumed to be a small quantity of the first order, 0 is also 
of the same order. Hence, neglecting second order terms, we may 
write 

bu = Al 
b22 = A2 :/> (7.5) 

A12 + A22 
b12 = eXY A A 

1 + 2 

The symmetric matrix bij defines two principal directions of strain. 
We have discussed this in Chapter 1 and have shown that these 
directions are obtained by using equations 2.4 of that chapter. 
Here these equations become 

b cos a = bu cos a + b12 sin a 

b sin a = b12 cos a + b22 sin a 
(7.6) 

where a represents the angle of the principal direction with the x axis 
and b is the principal elongation (Fig. 7.2). Solving equations 7.6 
for a and b yields 

1 2 _ b12 
"2 tan a - b b 

u - 22 (7.7) 
b = bu cos2 a + b22 sin2 a + b12 sin 2a 
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y 

II 

-------+~~~-------L----------x 

Figure 7.2 Resolution of stresses for incremental shear. 

There are two principal directions. Let us denote by I the direc
tion corresponding to the smallest angle ex. Since b12 is of the first 
order, ex is of the same order. Hence to the first order 

b12 ex = ,,-----====-;-
bl1 - b22 

and, because of equations 7.5, t, 
'\1

2 + '\2
2 

ex = eXY \ 2 \ 2 
{\1 - (\2 

(7.8) 

(7.9) 

The elongation in direction r is the value bI of b obtained by sub
stituting this value of ex into the second of equations 7.7. With an 
error of the second order we find 

(7.10) 

Principal direction II makes an angle ex + (7T/2) with the x axis. 
With an error of the second order the elongation in that direction is 

(7.11) 

To the preceding approximation, the principal elongll-tions in state 
(c) are therefore equal to the values '\1> '\2' and'\3 in state (b). They 
are, however, oriented at an angle ex with the principal directions of 
state (b) in the x, y plane. 



Sec. 7 Incremental Elastic Coefficients for an Isotropic Medium 93 

Here we introduce the important assumption of isotropy in finite 
strain. Since these finite stress-strain relations are independent of 
the orientation of the stress, the principal stresses in state (c) must 
(except for second order terms) be equal to the stresses S11 and 8 22 of 
state (b) and must be oriented at an angle a with their direction in 
state (b). This is illustrated in Figure 7.2. 

We may resolve the principal stresses 8 11 and 8 22 oriented along 
directions I and II into x and y components. This may be done by 
using equations 4.6 of Chapter l. We find a shear component 

S12 = t(811 - 8 22) sin 2a 

which to the first order is 

S12 = (811 - 8 22 )a 

Substituting the value (7.9) for IX, we finally obtain 

where Qa is now 

(7.12) 

(7.13) 

(7.14) 

(7.15) 

This expression is the incremental shear coefficient in the last of 
equations 6.3. " 

By repeating the same calculatiol/ for incremental shear strain in 
the other coordinate planes we derive* 

(7.16) 

We have therefore obtained the announced result that for an isotropic 
medium in finite strain the incremental shear coefficients may be 
expressed in terms of the initial stresses and strains. It is interesting 

* These results were obtained by the author as published in two recent papers: 
M. A. Biot, Incremental Elastic Coefficients of an Isotropic Medium in Finite Strain, 
Air Force Office of Scientific Research Technical Report No. 1772, 1961, and Applied 
Scientific Research, A, Vol. 12, pp. 151-167, 1963; Internal Buckling under Initial 
Stress in Finite Elas.ticity, Proceeding8 of the Royal Society, A, Vol. 273, pp. 306-328, 
1963. 
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to note that they do not involve any physical incremental change. 
This is in contrast with the coefficients 0li of equations 6.3. 

However, the last remar~ applies only if the initial stresses are all 
different. If they are not, there arises an indeterminacy. Consider 
the case where 

8 11 = 8 22 

Al = .12 

(7.17) 

Expression (7.15) for Q3 becomes indeterminate. To find its true 
value we introduce a differential increase dAI of Al and write 

d(811 ~ 8 22 ) = 8 11 - 8 22 

.112 - .122 = 2.11 dAI 

dAI 
exx = -x; 

(7.18) 

Substitution in equation 7.15 yields the limiting value for Al = .12, 

(7.19) 

Putting eyy = ezz = ° in equations 6.1 and subtracting the first two 
equations, we obtain 

8 11 - 8 22 = (B"tJ. - B 21 )eXX 

Hence, comparing equations 7.19 and 7.20, we derive 

(7.20) 

(7.21) 

Similarly, by varying .12 or more simply by considerations of 
symmetry, we also derive 

. Because 8 11 = 8 22 , equations 6.2 yield 

B12 = B21 

and hence also 

(7.22) 

(7.23) 

(7.24) 

Moreover, axial symmetry about the z direction implies the relations 

Ql = Q2 = Q (7.25) 
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Therefore the stress-strain relations (6.1) become 

Sl1 2Q3exx + B12(eXx + eyy ) + B 13eZZ 

S22 2Q3eyy + B 12(eXX + eyy ) + B 13eZZ 

B 31 (exx + eyy ) + B 33ezz 

2Qeyz 

8 31 2Qezx 

S12 2Q3exy 

95 

(7.26) 

It is seen that the coefficient Q3 in this case involves the incremental 
properties for extensions in the x and y directions. We note the 
relations 

and the inequality 

B 13 = 0 31 - 8 11 

B31 = 0 31 - 8 33 

(7.27) 

(7.28) 

Equations 7.26 represent a medium with transverse isotropic sym
metry about the z direction. The equations remain invariant for a 
rotation about the z axis. In particular, equations 7.26 are valid for 
finite isotropy when the initial stress is' uniaxial (811 = 8 22 = 0 and 
8 33 i= 0). 

Values of the coefficients BIj as rer~ted to the finite stress-strain 
relations of an isotropic medium will be discussed further in section 7 
of Chapter 5. 

The Method of Tensor Invariants. Expressions (7.15) and (7.16) for the 
incremental moduli of a medium with finite isotropy may be obtained by an 
alternative method which uses the three fundamental invariants of the strain. 
These invariants, usually denoted by II' I 2 , Is, are functions of the finite 
strain components and remain unchanged when the medium undergoes a 
rigid rotation. In a medium of finite isotropy the strain energy is a flllction 
only of these three invariants. Hence it is possible to use this property in 
order to derive the results obtained in this section. The procedure, however, 
turns out to be much more elaborate than the one presented above. In 
addition, the physics of the phenomenon remains obscure and no interpretation 
of the result is obtained. This has been shown in the author's paper* where 
these new results are derived by both methods for the purpose of comparison. 

* M. A. Biot, Incremental Elastic Coefficients of an Isotropic Medium in Finite 
Strain, Air Force Office of Scientific Research Report TN 1772, 1961, and Applied 
Scientific Re8earch, A, Vol. 12, pp. 151-167, 1963. 
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The theory of tensor invariants has also been applied by some authors* to 
an isotropic elastic medium to derive equations which govern small deforma· 
tions superposed on a state of finite strain. The usefulness of this procedure 
is restricted by its elaborate formalism. 

8. INCREMENTAL STRESSES IN INCOMPRESSIBLE 
MEDIA; APPLICATION TO RUBBER ELASTICITY 

The special case of an incompressible elastic medium is of particular 
interest. We shall consider first the orthotropic symmetry with 
coordinate axes lying in the planes of symmetry. A unit cube with 
sides oriented along the x, y, z axes subject to normal stresses 8 11 , 

8 22,833 on its three faces becomes a rectangular parallelepiped whose 
edges acquire lengths AI' A2' A3. 

These extension ratios represent the initial finite strain. The 
difference between this and the more general case considered in 
section 6 arises from the fact that the volume remains constant. In 
other words, the three extension ratios must satisfy the constraint 

(8.1) 

This means that there are only two independent strain variables for 
extensions along the coordinate axes. 

In expressing the strain energy of the original unit cube we may 
consider it a function of any paif,jlof independent variables, Al and A2 
for example. It may be written 

(8.2) 

The normal forces acting on the faces of the solid being denoted by 
f1' f2' f3' conservation of energy requires the following differential 
relation to be satisfied: 

(8.3) 

In this relation the differentials dAll dA2, dA3 are not independent 
but satisfy an equation obtained by differentiating the condition 
(8.1) for constant volume; that is, 

dAl dA2 dA3 -+-+-
Al A2 A3 

o (8.4) 

* A. E. Green, R. S. Rivlin, and R. T. Shield, General Theory of Small Elastic 
Deformations Superposed on Large Elastic Deformations, Proceedings of the Roya,l 
Society, A, Vol. 21, pp. 128-154, 1952. 
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Solving this equation for dA3 and substituting the value in equation 
8.3, we obtain 

dW = (fl - ~: f3) dAl + (f2 - ~: f3) dA2 (8.5) 

Since the differentials dAl and dA2 are now independent, equation 
8.5 implies 

or 
8W 

Adl - A3f3 = Al -
8Al 

8W 
A2f2 - A3f3 = A2 -

8A2 

The normal stresses on each face of the deformed solid are 

1 '~" 8 33 = 'T f3 = A3f3 
1\1 2 

Hence equations 8.7 may be written 

8W 
8 11 -'- 8 33 = Al-

8Al 

8W 
8 22 - 833 = A2 -

8A2 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

These are the finite stress-strain relations of the medium. They lead 
to the important conclusions that an isotropic stress produces no strain 
and that the superposition of an isotropic stress on existing stresses 
generates no incremental deformation. 

The incremental stress-strain relations are obtained by taking 
differentials of the finite stresses. 

d(811 - 8 33 ) = S11 - S33 

d(822 - 8 33 ) = S22 - S33 
(8.10) 
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Differentiating the finite stress-strain relations (S.9), we obtain 

(S.ll) 

Introducing expressions (6.13) for the incremental strains, we derive 

with 

8 11 - 8 33 = a 1 e xx + a 2 e yy 

8 22 - 8 33 = a2exx + a3eyy 

8W 282W 
a1 = '\1 8'\1 +'\1 8'\12 

82 W 
a2 = '\1'\2 8'\1 8'\2 

8W 282W 
a3 = '\2 8'\2 + '\2 8'\22 

(S.12) 

(S.13) 

Equations S.12 are the incremental stress-strain relations. They 
may be written in a more symmetric form by taking into account the 
condition for incompressibility: 

e - exx +')1 eyy + ezz = 0 

Relations (S.12) then become 

We now put 

811 - 8 33 = (a1 - a2)eXX - a2ezz 

8 22 - S33 = (a3 - a2)eyy - a2ezz 

a1 - a2 = A 

a3 - a2 = B 

a2 = 0 

(S.14) 

(S.15) 

(S.16) 

With this notation the stress-strain relations (S.15) take the form 

8 22 - S33 = Beyy - Oezz 

8 33 - 8 11 = Oezz - Aexx 

8 11 - 8 22 = Aexx - Beyy 

(S.17) 

These relations contain three incremental elastic coefficients A, B, 
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and C. To these relations for the normal incremental stresses must 
be added those giving the shear stresses, which are independent of 
compressibility properties and are the same as the last three of 
equations 6.3, that is, 

S23 = 2QleyZ 

S31 = 2Q2ezx (8.18) 
S12 = 2Q3exy 

1'he six equations 8.17 and 8.18 are the complete incremental stress
strain relations for the orthotropic incompressible medium when the 
principal directions of the initial stress are located in the planes of 
elastic symmetry. Comparing with equations 6.1 for the general 
case, we note that because of incompressibility the number of elastic 
coefficients is reduced from nine to six. 

It is also worth noting that for the incompressible orthotropic 
medium considered here the initial stress does not appear explicitly 
jn the stress-strain relations (8.17) and (8.18). They are formally 
identical with those of an initially unstressed medium. This is a 
consequence of the general property discussed in connection with 
equation 4.41, which shows that the initial stress does not appear 
explicitly in the stress-strain relations for an incompressible medium. 

Equations 8.17 for the normal stresses may be written in an 
alternative form by introducing the ~verage three-dimensional stress 
component ':j:> 

S3 = t(Sl1 + S22 + S33) 

Equations 8.17 become 

3(S11 - S3) =2Aexx - Beyy - Cezz 
3(S22 - S3) = -Aexx + 2Beyy - Cezz 
3(S33 - S3) = - Aexr - Beyy + 2Cezz 

(8.19) 

(8.20) 

The expressions in parentheses on the left side represent the incre
mental stress deviator in three dimensions. As pointed out below, it 
is not generally the same as the two-dimensional deviator. 

It is interesting to establish the limiting process by which the 
stress-strain relations (6.3) for a compressible material can be made 
to coincide with those for an incompressible material. We need 
consider only the first three of equations 6.3. We write 

C11 = C~l - 8 11 

C22 = C;2 - 8 22 

C33 = C~3 - 8 33 

(8.21) 
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and these equations become 

Sl1 = O~leXX + 012eyy + 031ezZ - Sl1e 

S22 = 012exx + 0~2eyy + 023ezz - S22e 

8 33 = 031eXX + 023eyy + 0~3eZZ - S33e 

We now substitute: 

30~1 = 3K + A 

30;2 = 3K + B 

30~3 = 3K + 0 

3012 = 3K - A - B 

3023 = 3K - B - 0 

3031 = 3K - 0 - A 

Oh. 2 

(8.22) 

(8.23) 

If we assume that K tends to infinity while e tends to zero in such a 
way that 

lim Ke = S3 
K--> 00 

equations 8.22 become identical with equations 8.20. 

(8.23a) 

Plane Strain. In many applica;w-ons, plane strain for incremental 
deformation is of particular importance. This incremental strain 
may be applied to an initial state which may itself be a state of plane 
strain or a state of triaxial strain. Incremental plane strain in the 
x, y plane corresponds to putting 

(8.24) 

in the preceding results. The condition of incompressibility becomes 

If we let 

equations 8.17 and 8.18 yield 

811 - S22 = 4N exx 

8 12 = 2Qexy 

(8.25) 

(8.26) 

(8.27) 
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These two-dimensional stress-strain relations may be written in 
equivalent form by introducing an additional variable s. 

S11 - S = 2Nex:r; 

S22 - S = 2Neyy (8.28) 

S12 = 2Qexy 

In this case we must consider the condition of incompressibility (8.25) 
as an additional equation. Combining equations 8.28 and 8.25, we 
derive 

(8.29) 

This value of s is then a consequence of equations 8.25 and 8.28. 
Relations (8.28) could, of course, be derived directly from the 

property that the plane strain components depend only on the two
dimensional deviator (Sli - OtiS). The three components of this 
deviator appear on the left side of equations 8.28. It should be 
pointed out that it is generally different from the three-dimensional 
deviator (so - 0IiS3) used in equations 8.20. This can be shown by 
adding the first two of these equations after putting ezz = O. 
Along with the third equation this yields 

6(s - S3) (A - B)ex:r; 

3(S33 - S3) (IJ - A)ex:r; 
'." 

(8.30) 

For A = B we obtain 

S = S3 = S33 (8.31) 

However, if A '# B, equation 8.31 will not be verified. 

The Incompressible Medium in Plane Strain as a Limiting Case. 
rt is of interest to derive equations 8.28 by introducing the condition of incom
pressibility into the general stress-strain relations in two dimensions. Putting 
B22 = BY2 = Bzx = 0 into equations 6.1 and writing Q instead of Qa, we obtain 

811 = B 11B" + B12Byy 

822 = B 21B" + B22Byy 

812 = 2QBxy 

(8.3Ia) 

This is the general form of the incremental stress in a compressible medium 
with two-dimensional orthotropy. The principal stresses are 8 11 and 8 22 with 
principal directions along the coordinate axes. According to equations 6.2, 
we must satisfy the condition 

(8.3Ib) 
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or 

with 

We put 
Bl1 = K + N + P 

B12 = K - N + P 

B21 = K - N 

B22 = K + N 

When we substitute these values into equations 8.31a they become 

811 = N(exx - eyy ) + K(exx + eyy ) 1: P(exx + eyy ) 

822 = N(eyy - exx ) + K(exx + eyy ) 

812 = 2Qexy 
We now put 

exx + eyy = 0 

and make K tend to infinity in such a way that 

lim K(exx + eyy ) = 8 

Equations S.31a become 
K~"" 

811 - 8 = 2Nexx 

822 - 8 = 2Neyy 

812 = 2Qexy 

Ch.2 

(S.31c) 

(S.31d) 

(S.31e) 

(S.3lf) 

(S.31g) 

(S.31h) 

(S.3li) 

Hence in the limiting case equations S.31a become identical with equations 
S.2S. 

-"" Incremental Isotropy. Another particular case of special 
interest occurs when the medium under initial stress is isotropic for 
incremental plane strain. This is expressed by putting 

N=Q=p. 

and the stress-strain relations (8.28) are written 

Sl1 - S = 2p.exx 

S22 - S = 2p.eyy 

S12 = 2p.exy 

(8.32) 

(8.33) 

In the particular x, y plane considered, the medium is then charac
terized by a single incremental shear modulus whose value depends 
on the state of initial strain. 

In the terminology of section 7 this represents incremental isotropy 
in plane strain. It is conceivable that a medium of finite orthotropy 
could exhibit such incremental isotropy for a particular state of initial 
stress. This would then be induced isotropy. 
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A more interesting case, however, is that of a medium of finite 
isotropy which retains incremental isotropy in the x, y plane for all 
values of the initial stress in that plane. The discussion of this case 
and that of rubber elasticity which follows is taken from the author's 

paper. * 
In order to show that there exists a material with such property, 

we consider an incompressible elastic medium isotropic in finite 
strain. Assuming the finite strain to be a state of plane strain, we 
write 

We may write the finite stress-strain law as 

The total differential yields incremental stresses 

or 

dF 
S11 - S22 = dA dA 

dF 
S11 - 822 = ~ dA exx 

'.f' 

Comparing these equations with equations 8.27, we derive 

4N= A dF 
dA 

(8.34) 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

On the other hand, expression (7.15) for the coefficient Q becomes 

Q = IF A4 + 1 
2 A4 _ 1 

Equating Nand Q yields the differential equation 

A dF = 2F A4 + 1 
dA A4 - 1 

(8.39) 

(8.40) 

* M. A. Biot, Surface Instability of Rubber in Compression, Air Force Office of 
Scientific Research Report T.N. 1771, 1961, and Applied Scientific Research, A, Vol. 
12, pp. 168-181, 1963. 
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By integration we find 

F = 8 11 - 8 22 = /Lo (.\2 - ;2) (8.41) 

This turns out to be the finite stress-strain relation for rubber-type 
elasticity. The constant of integration /Lo represents the shear 
modulus in the original unstressed state. 

Rubber Elasticity. These properties also apply to initial triaxial 
strain for rubber-type elasticity. Such a material is incompressible 
and isotropic in finite strain. It was shown by Treloar* that a 
typical expression for the strain energy in rubber-type media is 

(8.42) 

with 
(8.43) 

The coefficient /Lo represents the shear modulus in the unstressed 
original state. In order to apply the general formulas derived above 
we write the strain energy in the form 

W(.\1.\2) = l/Lo (.\12 + .\22 + '\)'\22 - 3) (8.44) 

Applying equations 8.9, we obtai:q the stress-strain relations . )' 
8 22 - 8 33 = /LO(.\22 - .\32) 
8 33 - 811 = /LO(.\3 2 - .\12) (8.45) 
8 11 - 8 22 = /L0(.\12 - .\22) 

For finite plane strain (.\3 = 1), the last equation is identical with 
relation (8.41) derived from the condition that the medium retains 
incremental plane strain isotropy. 

The total differentials of these equations according to the procedure 
followed in the general case yields the incremental stresses (see 
equations 8.11). 

822 - 833 = 2/L0(.\22eyy - .\32ezz) 

8 33 - 8 11 = 2/L0(.\32eZZ - .\1
2exx ) 

8 11 - 8 22 = 2/L0(.\1
2exx - .\22eyy ) 

(8.46) 

* L. R. G. Treloar, Large Elastic Deformation in Rubberlike Materials, in Deformation 
and Flow of Solids, pp. 208-217, Springer, Berlin, 1956 (IUTAM Colloquium, Madrid, 
1955). 



Sec. 8 Incremental Stresses in Incompressible Media 105 

Hence 
A = 2fLoA12 

B = 2fLoA22 (8.4 7) 

° = 2fLoA3
2 

Since the medium is isotropic in finite strain, the incremental shear 
moduli are given by equations 7.15 and 7.16. Combining those 
equations with expressions (8.45) for the finite initial stresses, we 
derive 

Q1 = ifLo(A2
2 + A32) 

Q2 = ifLo(A32 + A12) 

Q3 = ifLo(A1
2 + A22) 

The shear stresses are therefore written 

S23 = fLo(A2 2 + A3
2)eyZ 

S31 = fLo(A3 2 + A12)ezx 

S12 = fLo(A1 2 + A22)eXy 

(8.48) 

(8.49) 

Putting Al = A2 = A3 = 1, we see that the constant fLo represents 
the shear modulus in the original unstressed state, as already stated. 

The six slide moduli defined by equations 6.25 become 

L 23 = L 13 = fLoA3~P= iO 
L31 = L21 = fLoA12 = iA 

L12 = L32 = fLoA22 = iB 

(8.50) 

We consider now an incremental plane strain in the x, y plane. 
Application of relations (8.46) and (8.49) shows that the incremental 
stress-strain relations in the x, y plane are expressed by equations 
8.33 with a shear modulus 

(8.51) 

We may repeat this derivation for the two other coordinate planes. 
In each of these planes the incremental elastic properties are isotropic. 
There will be three elastic moduli dependent on the initial strain and 
characterizing the incremental elasticity in each plane. 

The values of the slide moduli in the x, y plane are L12 and L21> 
obtained in equations 8.50. 

Stress-strain relations represented by equations 8.46 and 8.49 were 
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considered by Green* in 1839, for a medium initially stress-free, with 
reference to an analogy between the transverse elastic waves and the 
propagation of light in a crystal. However, although the presence 
of an initial stress does not affect the form of the stress-strain 
relations, it does influence the propagation through the additional 
terms containing the initial stress which appear in the dynamical 
equations (see Chapter 5). 

Mooney Material. Rubber-like elasticity and the property of 
incremental isotropy are not restricted to materials represented by 
the strain energy (8.42). 

We have shown that, in the particular case of finite plane strain 
for initial deformation, the condition of incremental isotropy in that 
plane implies that the finite stress-strain law is equation 8.41. We 
find that this corresponds to the strain energy (8.42) if we put 

(8.52) 

Now we consider the more gent}ral case of three-dimensional initial 
strain with extension ratios X!, '\2''\3 along the coordinate axes. 
The condition of incompressibility for the initial strain is 

(8.53) 

For the incremental strain it is 

(8.54) 

For an incremental strain restricted to the x, y plane we put ezz = 0 
and condition (8.54) becomes 

(8.55) 

* G. Green, On the Propagation of Light in Crystallized Media, Transactions of the 
Cambridge Philosophical Society, Vol. 7, 1839, or l'rIathematical Papers, London, 1871, 
p. 293. See also A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, 
p. 299, Fourth Edition, Cambridge University Press, 1927 (reprinted by Dover 
Publications, New York, 1944). 
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With this condition, equations 8.17 and 8.18 for the x, y components 

become 
811 - 822 = (A + B)exx 

8 12 = 2Q3eXY 

(8.56) 

As can be seen from equations 8.26 and 8.32, the condition for 
isotropy in the x, y plane is 

(8.57) 

The expressions on each side of this equation may be written in terms 
of a strain energy W().,1 ).,2) function of the two extension ratios ).,1 and 
).,2' Because of the assumption of incompressibility, the third ex
tension ratio ).,3 is a function of ).,1 and ).,2 determined by the condition 
(8.53). Relations (8.13) and (8.16) yield 

(8.58) 

and from relations (7.15) and (8.9) we derive 

(8.59) 

Hence the condition (8.57) for incremental isotropy in the x, y plane 
is a linear partial differential equation for W. A solution of this 
equation is 

(
111) + O2 ).,12 + ).,22 + ).,32 - 3 (8.60) 

with ).,3 = 1/)..1).,2' This expression of the strain energy has been 
proposed by Mooney* to represent the elastic properties of rubber. 
There are two elastic constants, 0 1 and O2 , The term containing 0 1 

* M. Mooney, A Theory of Large Elastic Deformations, Joumul of Applied Physics, 
Vol. 11, pp. 582-592, 1940. 
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is the same as expression (8.42), discussed earlier. 
stress-strain relations (8.56) become 

The incremental 

with 

Sl1 - 8 22 = 4p-aexx 

8 12 = 2p-aexy 

P-a = 0 1("1
2 + "22) + O2 (,,:2 + ,,:2) 

The stress-strain relations (8.61) are equivalent to 

811 - 8 = 2p-aexx 

8 22 - 8 = 2P-aeyy 

8 12 = 2p-aexy 

(8.61) 

(8.62) 

(8.63) 

The property of incremental isotropy is valid in each of the three 
principal planes of the initial strain. The incremental stress-strain 
relations (8.63) in the planes y, z and z, x are obtained from equations 
8.63 by cyclic permutation with the coefficients: 

P-1 = 0 1 ("22 + "a2) + O2 (,,:2 + "~2) 

P-2 = 01("a2 + "12) + O2 ("~2 + ,,:2) 
(8.64) 

t 

By putting "1 = "2 = "a = 1, we o~ain 
P-1 = P-2 = P-a = 2(01 + O2 ) (8.65) 

which represents the shear modulus in the unstressed state. 

9. ELASTIC COEFFICIENTS 
IN SECOND ORDER ELASTICITY 

We now consider an elastic medium of finite isotropy. Let us 
assume the initial strain to be small but let us take into account both 
first and second order terms in the stress-strain relations. 

Because of isotropy the principal directions of stress and strain 
coincide. We denote by 

"1 = 1 + 811 
"2 = 1 + 822 (9.1) 

"a = 1 + 8aa 
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the extension ratios in these principal directions. A cube originally 
of unit size becomes a rectangular parallelepiped with edges of lengths 
AV A2' A3· The forces acting on its faces are denoted by 711' 722, 733. 

These quantities are not stresses in the usual sense, but forces 
referred to unit areas measured in the unstrained state. 

To the second order in the quantities Sjj these forces must be given 
by the expressions 

711 = 2fLs ll + As + DS~l + F(S~2 + S~3) 
+ F' Sll (S22 + S33) + GS22S 33 

722 = 2fLS22 + As + DS~2 + F(S~3 + S~l) 
+ F' S22(S33 + Sll) + GS33Sll 

(9.2) 

733 = 2fLS33 + As + DS~3 + F(S~l + S~2) 
+ F' S33(Sll + S22) + GSll S22 

where 
(9.3) 

The first of equations 9.2 is obtained by writing all linear and quad
ratic terms and imposing the condition that directions 2 and 3 may 
be interchanged. The other two equations are obtained by cyclic 
permutation. 

In addition, because of the existence of a strain energy, the 
expressions must satisfy the relationg'~ 

This requires 

and relations (9.2) become 

711 = 2fLsll + As + DS~l 

8733 8711 

8sll 8S33 

2F = F' 

+ F[S~2 + S~3 + 2sll (S22 + S33)] + GS22S33 

722 = 2fLS22 + As + DS~2 

(9.4) 

(9.5) 

+ F[S~3 + S~l + 2S22 (s33 + Sll)] + GS33Sll (9.6) 
733 = 2fLs33 + As + DS~3 

+ F[S~l + S~2 + 2S33(Sll + S22)] + GSllS 22 
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These equations show that five coefficients are needed to describe 
elastic properties of the first and second order in an isotropic medium. 
The procedure by which they are derived here is the one used by the 
author in the original paper. * The existence of five coefficients for 
this case may also be established from the theory of tensor invariants. t 
The coefficients obtained by this method are different from D, F, G. 
The derivation given here has the advantage of simplicity and 
physical clarity. 

The incremental coefficients are immediately derived by applying 
the methods developed above. We are interested in deriving the 
first order corrections of these coefficients due to the initial strain. 

We denote by all, a22' a33 the stresses, i.e., the forceS'per unit area 
after deformation. The forces defined above are 

T11 = A2 A3 a ll 

T22 = A3A1a22 

T33 = A1A2a33 

In a state of initial stress the stress components are written 

all = 8 11 

a22 = 8 22 

a33 T 833 
.f 

(9.7) 

(9.8) 

If we superimpose small incremental stresses in the same principal 
directions, they may be represented by the differential: 

·Sll = dall 

8 22 = da22 

8 33 = da33 

(9.9) 

We now take the total differentials of equations 9.7, considering 
the quantities to be functions of A1> A2 , A3 • For example, the first 
equation yields 

(A3 dA2 + A2 dA3)all + A2A3 dall 

(hll dA (7Tll dA (hll dA 
oA1 1 + OA2 2 + oA3 3 

(9.10) 

* Published in 1940 (see reference 5 in the Preface). 
t See F. D. Murnaghan, Finite Deformations of an Elastic Solid, American Journal of 
Mathematics, Vol. 59, p. 235, 1937. 
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Using the values (6.13) for the incremental strain and taking into 
account relations (9.8) and (9.9), we derive 

811 + S11(eyy + ezJ 

1 8T22 '\2 8T22 1 8T22 = ---e + ----e + ---e 
'\3 8e11 xx '\3'\1 8e22 yy '\1 8e33 zz 

(9.11) 

833 + S33(eXX + eyy ) 

We recognize here the first three equations of the stress-strain 
relations (6.5). The symmetric matrix on the right side is identical 
with the matrix (6.6) of the coefficients Cij. 

Identification with equations 6.1 yields the coefficients Bij. By 
writing only the constant and first order terms in the initial strain 
we obtain the expressions 

B11 = (2ft + ,\)(1 + e11 - e22 - e33) + 2De11 

+ 2F(e22 + e33) 

B22 = (2ft + ,\)(1 + e22 - e33 - e11) + 2De22 

+ 2F(e33 + ell) 

B33 = (2ft + ,\)(1 + e33 - ell - e22) + 2De33 

+ 2F(e11 + e22) 

B 23 + S22 = B32 + S33 

= '\(1 - ell) + 2F(e22 + e33) + Ge11 

B31 + S33 = B13 + Sll 

= ,\(1 - e22) + 2F(e33 + ell) + Ge22 

B12 + Sll = B21 + S22 

= '\(1 - e33) + 2F(ell + e22) + Ge33 

(9.12) 

(9.13) 

The incremental shear coefficients are derived by applying equations 
7.15 and 7.16. 

(9.14) 
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Cancelling the factor e22 - e33 in numerator and denominator and 
neglecting terms of higher order than the first, we obtain an expres
sion for Ql which is linear in the initial strain. We proceed similarly 
for Q2 and Q3 and obtain 

2Ql = 2t-t + (t-t + A + D - F)(e22 + ed 

+ (A - 2t-t + 2F - G)ell 

2Q2 = 2t-t + (t-t + A + D - F)h3 + ell) 

+ (A - 2t-t + 2F - G)e22 

2Q3 = 2t-t + (t-t + A + D - F)(ell + ed 

+ (A - 2t-t + 2F - G)e33 

(9.15) 

The coefficients given by equations 9.12, 9.13, and 9.15 furnish all 
incremental elastic properties of the medium in terms of the five 
basic coefficients A, 't-t, D, F, G. The coefficients A and t-t are, of 
course, identical with the Lame coefficients of the classical theory of 
elasticity of the first order. Equations 9.12, 9.13, and 9.15 for the 
incremental coefficients are the same as those obtained earlier by the 
author. * 

10. TORSIONAL STIFFNESS OF A BAR 
UNDER AXIAL TENSION 

As an application of the theory of elasticity of a solid under initial 
stress we shall consider the problem of a cylindrical bar of infinite 
length under axial tension. The author has treated this particular 
application of the theory in a paper published in 1939.t The 
treatment here, which constitutes a rigorous solution of the problem, 
is fundamentally the same, but the derivation is simplified and a 
clearer interpretation of the result is given in terms. of the slide 
modulus. Moreover, it will he shown at the end of this section that 
the solution which was first derived for the homogeneous medium of 
isotropic or transverse isotropic symmetry may readily be extended 

* M. A. Biot, Incremental Elastic Coefficients of an Isotropic Medium in Finite 
Strain, Air Force Office of Scientific Research Report T.N. 1772, 1961, and Applied 
Scientific Research, A, Vol. 12, pp. 151-167, 1963. 
t See reference 6 in the Preface. 
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833 

z 

Figure 10.1 Cylindrical bar under axial stress. 

to a non-homogeneous bar of orthotropic properties. We shall 
consider first a homogeneous material with transverse isotropy. 

Homogeneous Bar with Transverse Isotropy. The z axis is 
oriented along the axis of the bar. The cross section is in the x, y 
plane (Fig. 10.1). The initial stress is reduced to the component 

000 

o 0 0 (10.1) 

o 0 8 33 

namely, a z component normal to the cross section. This initial 
stress represents an axial tension when positive, and an axial com
pression when negative. It is assumed that 8 33 is constant; hence it 
is independent of z and uniformly distributed. The more general 
case where 8 33 varies over the cross section will be discussed at the 
end of this section. 

Equations 7.49 of Chapter 1, which express the equilibrium 
conditions of the incremental stress field Sji' become 
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(10.2) 

We denote by 1l, V, W the displacement components of the solid. 
The rotations Wx and Wy are 

_ 1 (OW OV) w -- ---
x 20y OZ 

1 (on OW) w =- ---
y 2 OZ ox 

The strain components are 

ou 
exx = ox 

OV 
eyy = oy 

ow 
ezz = OZ 

1 (OW OV) 
e yZ ="2 oy + oz 

1 (OU OW) 
ezx ="2 oz + ox 

1 (OV on) 
eXY ="2 ox + oy 

(10.3) 

(10.4) 

The incremental forces at the boundary are given by equations 7.56 
of Chapter 1. In the present case they become 

t1jx = 8 11n x + 8 12ny + 831n z + S33W ynZ 

t1jy = 821n x + 8 22ny + 8 23n z - S33wXnz 

t1jz = 831n x + 8 23ny + 833n Z + S33(exx + eyy)nz 

- S33e ZXn X - S33 eYZn y 

(10.5) 

The directional cosines of the unit normal to the boundary directed 
outwardly are n x, ny, n z . 

The next step is to consider the stress-strain relations of the 
material. An elastic bar will generally be anisotropic as a result of 
the manufacturing process, whether it be rolling, extension, or forging. 
Moreover, even if the material is isotropic in the unstressed state, 
anisotropy will be generated by the initial stress itself. Let us there
fore assume that the symmetry of the material is of the same kind as 
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the initial stress, i.e., that properties are invariant under a rotation 
about the axis of the bar. Such elastic symmetry is usually referred 
to as transverse isotropy. The stress-strain relations for this case 
were derived above and are given by equations 7.26. 

In the terminology of section 7 the material may be said to exhibit 
incremental transverse isotropy. This transverse isotropy may be 
induced if the medium has finite isotropy, or it may be intrinsic if the 
anisotropy does not vanish with the initial stress. 

The problem of torsional deformation of the bar is solved by 
showing that a displacement field of the type 

u = -Byz 

v = Bxz (10.6) 

W = w(x, y) 

when substituted in the stress-strain relations (7.26) leads to a 
solution of the field equations (10.2) and can be made to satisfy the 
boundary conditions. Tho quantity B is a constant characteristic 
of the twist. The solution follows the well-known Saint-Venant 
theory for the torsion of an initially unstressed bar. * The displace
ment field (equations 10.6) yields for the strain the values 

= 0 

1 (OW ) 
e yZ ="2 oy + Bx (10.7) 

1 (OW ) ezx ="2 ox - By 

The rotations (10.3) are now 

w = ~ (OW _ BX) 
x 2 oy 

(10.8) 

1 (OW ) 
Wy ="2 ox + By 

* See, for instance, A. E. H. Love, The Mathematical Theory of Ela8ticity, Fourth 
Edition, Chapter XIV, Cambridge University Press (reprinted by Dover Publications, 
New York, 1944). 
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The stresses derived from equations 7.26 become 

8 11 = 8 22 = 8 33 = 8 12 = 0 

8 23 = 2Qeyz = Q (~~ + BX) (10.9) 

8 31 = 2Qe"x = Q (~~ - BY) 

These equations may be simplified by introducing the variables 

t;2 = 8 23 - S33ey" 

t;l = 8 31 - S33ezX 

(10.10) 

The physical significance of these quantities is brought out by verify
ing that they are the same as the alternative stress components given 
by expression (2.18). They are shown in Fig. 10.1 as the forces 
acting in the z direction on the faces of an elementary cube. Using 
equations 10.7 and 10.8, we may also write 

8 23 - S33WX = t;2 + S33 Bx 

8 31 + S33Wy = t;l - S33 By 
(10.11) 

With these results the equilibrium equations (10.2) are reduced to* 

at;l + at;2 = 0 
ax ay (10.12) 

and the stress strain relations (10.9) become 

t;2 = 2Leyz = L (~; + BX) 

t;l = 2Lezx = L (~; - By) 
(10.13) 

with a coefficient 
L = Q - !S33 (10.13a) 

The condition that the surface of the bar be free of stress is fulfilled 
by equating to zero the force components given by expressions (10.5). 
Since n z = O.at the surface, this reduces to the condition 

t~lnX + t;3ny = 0 (10.14) 

to be satisfied on the boundary of the cross section. 

* Equation 10.12 is a particular case of the more general equations derived in section 3 
of Chapter 3. 
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We have now reduced the problem to the solution of equations 
10.12 and 10.13 with the boundary condition (10.14). These 
equations are formally the same as in the classical Saint-Venant 
problem of torsion. They are solved in the same way. Equation 
10.12 is satisfied identically by 

, o.p 
t31 =-oy 

o.p 
ox 

(10.15) 

with .p(x, y) an unknown function over the cross section. Intro
ducing these values in equations 10.13 and eliminating w, we obtain 

02.p + 02.p = _ 2Le 
ox" oy2 (10.16) 

This equation must be solved for .p with the boundary condition 
(10.14). Because of relations (10.15) the boundary condition may 
be written 

.p = const. (10.17) 

on the contour of the cross section. 
The solution up to this point has not referred to the initial stress. 

It appears explicitly if we evaluate the torque over the cross section. 
In order to do this we must introduce the forces t1fx and t1fy acting 
over the cross section. They are obtained by putting nx = ny = 0 
in equations 10.5. We find 

t1fx = t;l - B33ey 
t1fy = t;2 + B33 eX 

(10. 18) 

The moment of these forces about the origin of the coordinates is 

(10.19) 

with surface integrals over the cross section. It can be seen that the 
resultant forces obtained by integrating the distributed forces (10.18) 
over the cross section will vanish if the origin of the coordinates is 
located at the center of gravity of the cross section. If this is the case, 
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the forces acting over the cross section are reduced to a pure torque 

T = Tsv + 833IaB (10.20) 

where Ia is the polar moment of inertia of the cross section with 
respect to its center of gravity and 

Tsv = II (Xt~2 - yt~l) dx dy (10.21) 

The term T sv is identical with the torque derived from the Saint
Venant theory for an isotropic and initially unstressed bar whose shear 
modulus is L. This coefficient L is identical with the slide modul~ts 
defined and discussed in section 6. 

S33+-~'-______ -:-____ LV ____ ~i----+S33 --
Figure 10.2 Physical significance of the slide modulus L = iljz/Y 

under an axial stress Saa. 

Here the coefficient L is derived by considering a thin slice of 
material cut parallel to the axis of the bar (Fig. 10.2). This slice is 
assumed to be under an axial tension 8 33 , While this axial tension is 
maintained we apply a tangential force ,dfz per unit area to the flat 
sides. The slide modulus L is defined as the ratio LJ.fz/Y, where y is 
the shear angle produced by the tangential force. 

As an example let us consider a rod of circular cross section of 
radius a. The Saint-Venant torque is 

Tsv = LIa() (10.22) 

with a polar moment of inertia 

Ia = !7Ta4 

Hence the torque under initial stress is* 

T = (L + 8 33 )Ia() 

(10.23) 

(10.24) 

* If the bar is under compression P = -S33, the torsional stiffness disappears for 
L = P. This is the condition for internal instability discussed in section 3 of 
Chapter 4. It appears here as a torsional buckling. 
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If the value of L is small compared to the axial stress 8 33 , the effect 
of the initial stress on the torsional rigidity will be large. In par
ticular we may visualize a bar resembling a cable made up of thin 
steel wires parallel to the axis and bonded together by a very elastic 
material. The axial stress can then be very large compared to the 
slide modulus L. We may even go to the limit when the rigidity of 
the bonding material goes to zero (L = 0). In this case the torsional 
rigidity is entirely due to the initial stress, and we may write 

T = 8331G() (10.25) 

Finite Isotropy. If the material of the bar is isotropic for finite 
strain, the anisotropy is induced' by the initial axial stress. Then 
the value of Q is obtained by applying equations 7.16. Hence the 
shear modulus is 

(10.26) 

where A3 is the extension ratio under the stress 8 33 along the axis and 
A2 = AI' the transverse extension ratio, the same in all directions 
about the axis. The slide modulus is 

A22 
L = 8 33 A 2 A 2 

3 - 2 
(10.27) 

For a circular cross section the torque (10.24) becomes 

A32 
T = 833 A 2 A 21G() (10.28) 

3 - 2 

Note that the polar moment of inertia (10.23) may be written 

(10.28a) 

where ao denotes the original radius in the unstrained state. 
These formulas lead to a remarkably simple result for rubber-type 

elasticity. The medium is incompressible and we put 

A3 = A 

(10.29) 

Also, the stress 8 33 derived from equations 8.45 is 

8 33 = fLo (A2 - ~) (10.30) 
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Hence 
(10.31) 

This result leads to the remarkable conclusion that, for a circular rod 
with rubber-type elasticity governed by equation 10.30, the torsional 
rigidity is independent of the axial stress. This may be attributed 
to a compensation effect resulting from the decrease in cross section 
when the axial tension is increased. 

Orthotropic and Non-homogeneous Bar. In the foregoing 
analysis we have assumed the material to be transverse isotropic 
around the axis of the bar. The analysis is easily extended to the 
more general case of orthotropy where the axis of the bar is parallel 
to one of the planes of elastic symmetry. We may choose the co
ordinate planes as planes of symmetry. The derivation is entirely 
similar to that for transverse isotropy except that the stress-strain 
relations (10.13) are replaced by 

t~2 = 2L32eyZ 

t~1 = 2L3I ezx 

(10.32) 

The coefficients L32 and L3I are slide moduli corresponding to 
equations 6.25. Their physical significance is analogous to that of 
L illustrated by Figure 10.2. Equation 10.16 is replaced by 

B (1 Bf) B (1 Bf) . 
Bx L32 Bx + By L3I By = -28 (10.33) 

The torque is then given by the same formula (10.20), but Tsv now 
represents the torque in an orthotropic bar in the absence of initial 
stress. The stress-free case is a classical problem. * 

Another generalization of the problem concerns a non -homogeneous 
material where the elastic properties and the initial stress vary over 
the cross section but remain independent of z. Here again the 
previous derivation may be repeated. The first two of equations 
10.2 remain unchanged, but the last one is replaced by 

* Problems of this type have been treated by C. I. Bors, La methode de la fonction 
de tension dans Ie probleme de la torsion des barres anisotropes non.homogenes, 
IUTAM Symposium on Nonhomogeneity in Elasticity and Plasticity (Warsaw 1958), 
pp. 95-100, Pergamon Press, New York, 1959. 
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OS33 OS33 
eyZ oy - ezx ax 

S OWy S oWx 
+ 33 ox - 33 8y = 0 (10.34) 

With definitions (10.10) for t~2 and t~l' this leads to the same equation 
(10.12). Proceeding as above, we express the total torque as 

T = Tsv + e II S33(X2 + y2) dx dy (10.35) 

The stress S33(X, y) is now variable over the cross section and T sv is 
the generalized Saint-Venant torque obtained by solving equation 
10.33 with variable elastic moduli L 32(X, y) and L 31 (X, y). The 
forces over the cross section constitute a pure torque if the origin is 
located so that 

II S33X dx dy = II S33Y dx dy = 0 (10.36) 

Expressions like (10.35) are known in the engineering literature 
where they are derived by the usual approximate methods of 
"strength of materials." They are of considerable importance in 
problems of aero elastic stability of thin supersonic wings in the 
presence of thermal stresses. * In this connection it is of particular 
interest to point out that equation 10.35 is not an approximation but 
a rigorous consequence of the theory of elasticity. 

In section 3 of the next chapter it will be shown that the solution 
presented here for torsional rigidity may be derived as a particular 
case of the general equations for a rod under axial stress. 

The exact results obtained here are closely related to the approxi
mate theory of secondary stresses in twist as originally treated by 
K. Webert by considering the elongation of longitudinal fibers. 
The soundness and accuracy of Weber's theory have been confirmed 
in a recent paper by Goodier and Shaw.t 

* See, for instance, M. A. Biot, Influence of Thermal Stresses on the Aeroelastic 
Stability of Supersonic Wings, Journal of the Aeronautical Sciences, Vol. 24, No.6, 
pp. 418-421, June 1957. 
t K. Weber, Die Lehre der Drehungsfestigkeit, For8chung8arbeiten, Heft 249, Berlin, 
1921. See also S. Timoshenko, Strength of Materials, Part 1, p. 87, D. Van Nostrand 
Company Inc., Princeton, N.J., 1930. 
t J. N. Goodier and W. A. Shaw, Nonlinear Effects in Elastic Torsion of Bars of 
Slender Section, Journal of MechaniCB and PhyBiCB of Solid8, Vol. 10, pp. 35-52, 1962. 



CHAPTER THREE 

Theory of Elastic Stability 

and Its Application to Isotropic Media 

1. INTRODUCTION 

In the preceding chapter, general equations were derived for the 
incremental deformation of an elastic medium in equilibrium under 
initial stress. We now apply these equations to the problem of 
stability of such an equilibrium state. 

Stability is defined here in terms of purely static concepts and is 
restricted to external forces which are derived from a potential 
energy. It has the same significance as in the traditional treatment 
of buckling phenomena. Addition of inertia forces and viscoelastic 
properties in Chapters 5 and 6 clearly illustrates the significance of 
the stability as an immediate natural extension of the purely static 
concept and without any fundamental change of properties. 

Special cases which involve non-conservative boundary forces or 
gyroscopic and Coriolis effects are not considered here. 

There is also an area of practical importance for which the stability 
concept must be extended to include both linear and quadratic terms 
of the incremental deformation, because they are of the same 
magnitude although they may remain small in a physical sense; for 
example, some problems of stability of thin shells and plates whose 
shape before or after deformation is close to a ruled surface. These 
problems must be treated by special methods which are not included 
in the present analysis. However, they lie within the scope of the 
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broader non-linear theories which were developed by the author in 
. earlier papers* and are intimately related to the general mechanics 
of incremental deformations. 

In order to illustrate the physical significance of the stability 
equations they are discussed first in section 2 for plane strain and 
related to the classical equations of buckling of the theory of 
structures. In section 3 new equations are derived for the stability 
of plates and rods. Although they are exact equations, they are of 
the same form as those in the classical approximate theories and they 
have the advantage of providing a simple intuitive interpretation. 

The variational formulation of stability in section 4 presents the 
general theory in terms of a condition of positive definiteness of the 
incremental strain energy. Special attention is given to a paradox 
which arises in connection with the effect of hydrostatic stress on the 
value of the potential energy. The total energy includes that of the 
conservative boundary force. An interesting new form of this 
potential energy is derived for the case where the elastic material is 
in contact with a frictionless rigid boundary in terms of the curvature 
of this boundary. The question of stability in the presence of 
hydrostatic stress often arises. Such questions as the buckling of a 
column while submerged in a fluid under pressure have remained 
obscure because of the lack of a general theory. This fundamental 
theory is developed in section 5. 

The last three sections of this chapter are devoted to applications 
of the stability theory to specific problems for the case where the 
material is incompressible and has the property of isotropy for 
incremental plane strain. Actually the problems are treated for 
rubber-like materials which, in addition to being partially isotropic 
for incremental strains, are also isotropic in finite strain. This 
includes the so-called "Mooney material." However, the results are 
not restricted to materials of finite isotropy. 

Section 6 discusses the problem of surface instability of a homo
geneous half-space under compression and brings out the apparent 
softening of the surface as a function of the compression. 

Section 7 considers the buckling of a thick slab in the complete 
range of thickness-to-Iength ratios and derives the range of validity 
of the classical Euler theory. The variational principle is also 

* See references 4 and 5 in the Preface and a short outline in the Appendix. 
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applied to this case, and it yields an approximate solution which is 
quite accurate for the complete range of thickness-to-Iength ratios. 

With respect to surface instability, an interesting question is the 
influence of non-homogeneity, particularly when the non -homogeneity 
varies in a continuous way. In section 8 this problem is examined 
for a half-space of horizontal surface where the rigidity decreases 
exponentially with depth; the influence of the weight of the material 
is also taken into account. 

The derivations in the last three sections follow closely the 
treatment of the same problems in earlier papers by the author. 

2. PHYSICAL SIGNIFICANCE OF THE 
STABILITY EQUATIONS IN PLANE STRAIN 

As an example of instability in plane strain we consider an elastic 
plate of thickness h and infinite extent. Let the surfaces of this 
plate be the planes y = ± h/2. We first derive some general equations 
for plane strain deformation in the x, y plane (Fig. 2.1). 

« 

) 

Figure 2.1 

y 

p= -811 
~ 

h/2 I~ 
~ 

h/2 r-
~ 

'" ~ 

Plate under initial compression P viewed 
across the thickness. 

x 

We assume a uniform initial compression P = -811 acting along 
the x direction. An initial stress may also be present in the z direc
tion; however, it does not appear explicitly in the plane strain 
analysis. 

By substituting 8 11 = - P, 8 22 = 8 11 = 0 into the equilibrium 
equations 6.17 of Chapter 1, those equations become 
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Ow 
P- = 0 oy 

OS/2 + 0822 _ P ow = 0 
ox oy oX 
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(2.1) 

The physical significance of these equations is brought to light if we 
write them in a different form by introducing the alternative stress 

Figure 2.2 Illustration of the physical significance of equations 2.3. 

compoIients discussed in section 2 of Chapter 2. Following equations 
2.8 and 2.14 of that chapter, we write 

t11 = 8 11 - Peyy 

t22 = 8 22 (2.2) 

t~2 = 8 12 + PeXY 

Taking these relations into account, we may now write equations 2.1 
in the form 

Ot11 + Ot~2 = 0 
ox oy 
Ot~2 + Ot22 = P 02V 
oX oy ox2 

(2.3) 

The significance of the alternative stresses (2.2) is illustrated in 
Figure 2.2. A square element of unit size initially oriented along x 
and y becomes the parallelogram OABO after deformation. The 
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quantity t{2 is the tangential force acting on the side 0 B, while tll and 
t22 are the forces acting on the sides A Band 0 B in directions parallel 
and perpendicular respectively to the side GA. That this is effec
tively the case may be verified by inspecting Figure 2.2 of Chapter 2. 
When 8 22 = 8 12 = 0, the force components tll , t~2' and t22 con
sidered small first order quantities are the same as in Figure 2.2 of 
this section. 

The significance of the stresses (2.2) may also be brought out by 
relating them to the strain. Assuming the plate to be of orthotropic 
symmetry about x and y, equations 6.1 of Chapter 2 for the x, y 
plane become 

Substituting the values (2.2), we obtain 

with 

tll = OlleXX + 012eyy 

t22 = 012eXX + 022eyy 

t~2 = 2Lexy 

L = Q + tP 

(2.4) 

(2.5) 

(2.6) 

The latter coefficient is the slide modulus whose significance was 
discussed in detail in sections 6 and 10 of Chapter 2. 

These results lead to some remarkable and rigorous equations 
which are identical in form with those derived by the classical 
approximations of the buckling theories of thin plates. Integrating 
equations 2.3 across the thickness after multiplying the first one by y, 
we obtain 

o,A 
ox -.AI + mo = ° 

(2.7) 
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The first of equations 2.3 requires an integration by parts. We have 
put 

f

+h/2 

.A = tuY dy 
-h/2 

.AI = t~2 dy 
f

+h/2 

-h/2 

qo = [t22]y = h/2 - [t22]y = - h/2 

mo = [t~2Y]Y=h/2 - [t~2Y]Y= -h/2 

The quantity Va defined as 

1 f+h/2 
va = Ii V dy 

-h/2 

(2.8) 

(2.9) 

represents the vertical displacement averaged over the thickness. 
The sum of the vertical forces applied to the top and bottom and per 
unit initial length is represented by qo. The clockwise moment due 
to the tangential forces t~2 acting on the faces per unit initial length 
is represented by mo. 

Note that equations 2.7 do not involve any approximations or any 
assumption regarding the elastic properties. Elimination of .ff in 
equations 2.7 yields 

(2.10) 

This exact equation is of the same form as that derived from the 
classical but approximate theory of bending of thin plates under 
initial stress. The deflection of the middle plane (at y = 0) which 
appears in the classical equations is replaced here by the average 
deflection Va' The significance of the forces and moments in equations 
2.7 and 2.10 is illustrated in Figure 2.3. 

If the lateral loads and moments are zero, equation 2.10 reduces to 

(2.11) 

This is the familiar form of the equation for the bending moment .A 
as obtained from approximate buckling theories of thin plates. The 
procedure by which the equilibrium conditions (2.7) for the bending 
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moment vii and the resultant shear JV have been derived is suggested 
by the similar method commonly used in the theory of plates initially 

.A' 

t 
r )+-( _Ph,--( h 

Figure 2.3 Forces and moments appearing in equations 2.7 and 2.10. 

stress-free. It was used by Cauchy* and more recently by Mindlint 
in his theory of shear-bending deformation of plates. 

3. SPECIAL EQUATIONS FOR THE STABILITY 
OF RODS AND PLATES 

In the preceding section some special and interesting forms of the 
stability equations were derived for plates in plane strain. Equations 
of this type may be generalized to three-dimensional problems of 
stability of rods and plates. 

Rod under Axial Stress. Consider a rod or arbitrary cross sec
tion with its axis along the z direction. Assume that the state of initial 
stress is reduced to a single component 8 33 along the z direction. 
The equilibrium condition requires that 8 33 be independent of z. 
However, it may vary from point to point over the cross section. 
We may write 

(3.1) 

Such a state of initial stress has already been considered in the 
problem of torsional stiffness of a rod. The equilibrium conditions 

* A. L. Cauchy, Sur l'equilibre et Ie mouvement d'une plaque solide, Exercices de 
mathematique, Vol. 3, Bure Freres; Paris, 1828. 
t R. D. Mindlin, Influence of Rotary Inertia and Shear on Flexural Vibrations of 
Isotropic Plates, Journal of Applied Mechanics, Vol. 18, pp. 31-38, 1951. 



Sec. 3 Special Equations for the Stability of Rods and Plates 129 

for this case are given by equations 10.2 and 10.34 of Chapter 2; 
that is, 

OS11 + OS/2 + OS31 + 8 oWy = 0 
ox oy OZ 33 OZ 

OS/2 + OS22 + OS23 _ 8 oWx = 0 
ox oy OZ 33 OZ 

OS31 OS23 OS33 8 (Ow y owx) -+-+-+ ---ox oy OZ 33 ox oy 

(3.2) 

_ 0833 _ 0833 - 0 
e yZ 8y e zx ox -

Let us introduce some alternative stress components. 
two were used in section 10 of Chapter 2. 

The following 

t~l = S31 - 8 33eZX 

t~2 = S23 - 8 33eyZ 

In addition we also introduce the component 

t33 = S33 + 8 33 (eXX + eyy ) 

(3.3) 

(3.4) 

When these alternative stress components are substituted into 
equations 3.2, they become 

OS11 OS/2 Ot~l 8 02U 
oX + oy + OZ + 33 OZ2 = 0 

OS/2 OS22 Ot~2 8 02V 
oX + oy + OZ + 33 OZ2 = 0 (3.5) 

Ot~l + Ot~2 + Ot33 = 0 
ox oy OZ 

The interest of these equations lies in their physical interpretation. 
Consider a fiber of material along the Z direction (Fig. 3.1). The 
stress components t~l and t~2 are tangential forces per unit area acting 
on the fiber in the Z direction. The component t33 is the increment 
of normal force in the axial direction. These forces are referred to 
unit initial areas. The stress components S11' S12' and S22 are defined 
as usual in classical infinitesimal theories. If the terms containing 
S33 are omitted, the equilibrium equations 3.5 are the same as in the 
classical infinitesimal theory of unstressed media. Hence the effect of 
the initial axial stress in this case is equivalent to a classical problem 
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with the introduction of fictitious body forces 8 33 EPuj8z2 and 
8 33 82vj8z2 acting normally to the fiber and proportional to its 
curvature. If the initial stress is a compression P = -833 , the 
additional curvature terms are similar to those of the usual buckling 
theories. 

833 + t33 

Yl: Ii. 
z 

833 + t33 

Figure 3.1 Illustration of the stress components tS2' tSl' and t33 
acting on an axial fiber of the rod. 

The stress-strain relations for the alternative stresses are of the 
same form as in a material initially stress-free. This can be shown 
as follows. We shall assume that the material is orthotropic for 
incremental deformations and that the coordinate axes coincide with 
the directions of elastic symmetry. The properties are also assumed 
to be independent of z; however, they may depend on x and y. 
Hence in the plane of a cross section the medium may be non-homo
geneous. The incremental stress-strain relations of such a material 
are represented by equations 6.3 of Chapter 2. When we introduce 
the alternative stress components (3.3) and (3.4), the stress-strain 
relations become 

811 = 011ex:!: + 012eyy + 031eZZ 

8 22 = 012exX + 022eyy + 023eZZ 

t33 = 031eXX + 023eyy + 033eZZ 

t~2 = 2L32e yZ 

t~1 = 2L31 ezx 

8 12 = 2Q3eXY 

These equations introduce two slide moduli, 

L32 = Q1 - i833 

L31 = Q2 - i833 

(3.6) 

(3.7) 
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They were defined by equations 6.25 and 10.32 of Chapter 2. Their 
physical significance is quite simple, and as already shown they 
represent the slide rigidity of the fiber under initial axial stress where 
tangential forces are applied at the surface along its axis. (See Fig. 
6.2 and Fig. 10.2 of Chapter 2.) 

The stress-strain relations (3.6) are formally the same as if the 
material were unstressed. The matrix of coefficients is symmetric. 
These equations include the particular case of a material with isotropic 
stress-strain relations for finite deformations. In this case we must 
apply equations 7.15 and 7.16 of Chapter 2. 

Torsional Rigidity. Equations 3.5 and 3.6 lead immediately to 
the solution of the problem of torsional rigidity as derived in section 
10 of Chapter 2. The curvature terms disappear, and the problem 
is formally the same as in classical elasticity theory. 

Variational Principle. Equations 3.5 lead immediately to a variational 
principle for problems of deformation of a rod under axial stress. The 
variational principle is obtained by applying the general equations in section 5 
of Chapter 2 with the following expression for the incremental energy density. 

LI V = t(811exx + 822e yy + t33e zz ) 

+ ts2e yZ + tSl ~zx + 812e xy 

(8U)2 (8V)2 + tS 33 8z + tS 33 8z 

(3.7a) 

The effect of the initial stress is embodied in the last two terms. They are the 
same as for a string under a tension S33' 

Application to Non-elastic Materials. The equilibrium equations 3.5 do , 
not involve any material property and are therefore applicable to non-elastic 
materials including those with plastic properties. The same remark applies to 
equations (3.15) below. 

Plate under Initial Stress. Another particular case of interest is 
that of a plate of constant thickness h. The z axis is chosen normal 
to the faces. It is assumed that an initial state of uniform plane 
stress is present; that is, 

(3.8) 

The remaining stress components 8 1ll 8 22 , 8 12 are constant and are 
parallel to the faces (Fig. 3.2). 
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(b) 

Figure 3.2 (a) Initial stresses in the plate. (b) Incremental 
membrane stresses. 

Equilibrium equations 7.49 of Chapter 1 become 

0811 0812 0831 8 oWz - + - + - + (811 - 22) ~y ox oy OZ u 

8 oWz 8 oWy 8 oWx + 2 12 - - 12 - + 22 - = 0 oy OZ OZ 

0831 + 0823 + 0833 _ 8 oWy 

ox oy OZ 11 ox 

8 oWx 8 (Owx OWy) -_ 0 + 22- + 12 - --oy ox oy 

Let us introduce the composite stress system 

t~3 = 8 23 - 8 22eyZ - 8 12eZX 

t~3 = 8 3 1 - 8 11eZx - 8 12eyZ 

Ch. 3 

(3.9) 

(3.10) 
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and 

(3.11) 

From equations 4.13 and 5.20 of Chapter 1 it can be seen that the 
terms 

8~~ = 811 - 2812W z 

81111 = 822 + 2812W z (3.12) 

represent the incremental stresses referred to the original unrotated 
x, y, z directions. Since ezz is the increment of thickness of a 
membrane of unit initial thickness, it follows that 8~1' 8;2' 8~2 may be 
considered two-dimensional stresses in this membrane. These 
membrane stresses are referred to unrotated axes and to unit length 
of the membrane after deformation. 

The other stress components, t;3 and t~3' are the incremental 
tangential forces acting on the upper surface of the membrane as 
shown in Figure 3.2. 

By substituting the stress components (3.10) and (3.11), the 
eqUilibrium equations 3.9 become 

(3.13) 

We now proceed as in the previous section. For simplicity we assume 
that the faces of the plate are free of stresses; that is, 

h 
t~3 = t;3 = 8 33 = 0 for z = ± 2 

(3.14) 
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We integrate equations 3.13 across the thickness after multiplying 
the first two equations by z. We obtain 

odl11 + Odl12 = % 
ox oy 1 

Odl12 + Odl22 = % 
ox oy 2 

(3.15) 

0% 1 0% 2 S h 02Wa 02W 02W ---ax + ~ + 11 ox2 + 2S12 h ox o~ + S22 h oy2
a 

= 0 

The bending and twisting moments are defined by 

J

+h12 
dI li = S;jZ dz 

-h12 

The total shear forces are 

J

+h12 
%1 t~3 dz 

-h12 

J

+h12 
%2 = t~3 dz 

-h12 

(3.16) 

and 

1 J+h12 
wa = h- W dz 

-h12 

is the normal deflection averaged across the plate thickness. 
If the faces of the plate are not free, we must add terms representing 

distributed moments and normal loads analogous to mo and go in 
equations 2.7. 

Equations 3.15 are identical in form with the classical equations of 
equilibrium of thin plates under initial stress. Again we can see that 
they are exact equations where the moments are suitably defined and 
the middle plane deflection is replaced by the average normal 
deflection. 

The procedure used in this section and in the previous one in order 
to derive equilibrium conditions for bending moments and resultant 
shear is similar to the one introduced by Cauchy* in his treatment of 
the theory of elastic plates without initial stesss. 

* A. L. Cauchy, Sur l'equilibre et Ie mouvemerit d'une plaque solide, Exercices de 
mathematique, Vol. 3, Bure Freres, Paris, 1828. 
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4. VARIATIONAL FORMULATION OF STABILITY 

In section 5 of Chapter 2 a variational principle was derived for 
incremental deformations of an elastic body under initial stress. 
Equation 5.47 of that chapter introduces the total incremental 
potential 

fYJt = IIi (LIV + pLlU) dT (4.1) 

In this expression 

LI V = itljetj + iSjj(ej/LwJLj + ej/Lw/Lj + Wj/LWj/L) (4.2) 

is the incremental strain energy density. The incremental body 
force potential is 

The variational principle (5.46) of Chapter 2 states that the variation 
8fYJt is equal to the virtual work of the incremental boundary forces 
Lljj; that is, 

(4.4) 

Obviously the type of forces applied on the boundary of the volume T 

must have an important influence on stability problems. We shall 
distinguish two fundamental cases in which the right side of equation 
4.4 does or does not vanish. 

Stability for the Case ffA Llj,8uj dA = o. Many stability 

problems involve boundary conditions such that the surface forces or 
the displacements are zero. Sometimes the boundary forces do not 
vanish, but their increments Lljj are either zero or perform no work 
under a virtual displacement 8u i compatible with the constraints. 
Then 

(4.4a) 

It follows from equation 4.4 that any displacement field such that 

(4.5) 

represents a possible equilibrium configuration in the vicinity of a 
state of initial stress. 
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Because #1 is a homogeneous function, any displacement field 
proportional to this equilibrium configuration will satisfy the 
condition 

#1 = 0 (4.6) 

Such a configuration is known as a buckling mode. In a first order 
theory the amplitude of the equilibrium configuration is arbitrary. 
It corresponds to a state of neutral equilibrium. A buckling mode 
may be stable or metastable. It will be metastable if there are other 
displacement fields for which #1 < O. 

As a simple example let us consider the plane strain problem. We 
assume that there are no body forces. Hence we put U = 0 in 
equation 4.1. The general expression (4.2) for plane strain becomes 

LI V = itll exx + it22eyy + t12eXY 

+ Sl1(eXYw + iw2) 

+ Sd - eXYw + iw2) 

+ iS 12(eyy - exx)w (4.7) 

It is recalled that the strain components and the rotation are given by 

1 (OV OU) 
eXY = '2 ox + oy 

ov 
eyy = oy 

w = ~ (OV _ OU) 
2 ox oy 

(4.8) 

where u, v are the displacements in the x, y plane. The alternative 
stress components are assumed to satisfy the elastic stress-strain 
relations (3.12) of Chapter 2. They may be written conveniently in 
the form 

tll = OlleXX + 012exy + 2016eXY 

t22 = 012exx + 022eyy + 2026eXY 

t12 = 016exx + 026eyy + 2066eXY 

(4.9) 

The coefficients are written here in conformity with a standard 
notation. The potential #1 is 

(4.10) 

where the integral is extended to a two-dimensional domain Q. 
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An interesting form of the strain energy is brought out by consider
ing a state of initial stress reduced to a compression P acting in the 
x direction; that is, 

S11 = - P 8 22 = 8 12 = 0 (4.11) 

The expression for the strain energy becomes 

..:::I V = !t11exx + !t22eyy + t12eXY - P(eXYw + !w2) 

Applying equations 2.14 of Chapter 2, we write 

t12 = 812 + !PeXY 

The stress t~2 defined by equations 2.2 is 

t~2 = 812 + PeXY 
Hence 

Substituting this value into..:::l V, we obtain 

..:::IV - 1 1t ' 1p (8v)2 - "2tll exx + "2 22eyy + t12exy -"2 8x 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

For an orthotropic medium satisfying stress-strain relations (2.5) the 
strain energy becomes 

..:::I V = !011e~X + !022e~y + 012eXXeyy + 2Le;y - !P (::r (4.17) 

This brings out the slide modulus L. Application of the variational 
principle using this expression for..:::l V leads directly to the equilibrium 
equations in the form (2.3). The same procedure is applicable for 
the more general stress-strain relations (4.9). 

Incompressible Material. An incompressible material requires 
special attention. The variational formulation in this case must take 
into account the constraint 

e = 0 (4.18) 

When we introduce a Lagrangian multiplier A, the variational 
principle must be replaced by 

s IIi (Ae +..:::IV + p..:::lU) dT = 0 (4.19) 

in which the variations are unconstrained. 
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In order to illustrate the procedure let us again consider plane 
strain in the x, y plane with an initial compressive stress P in the x 
direction. Let the medium be of orthotropic symmetry along the x 

and y directions. The stress-strain relations are given by equations 
8.28 of Chapter 2, namely, 

811 - 8 = 2Nexx 

8 22 - 8 = 2Neyy 

812 = 2QeXY 

(4.20) 

Using equations 2.2 and the condition of incompressibility 

we derive 

e = exx + eyy = 0 

tll = 8 + (2N + P)exx 

t22 = 8 + 2Neyy 

t~2 = 2LeXY 

(4.21) 

(4.22) 

With these values, taking into account relation (4.21), we find that 
the strain energy (4.16) takes the simple form 

.1 V = 2Me~x + 2Le~y - iP (:~f ( 4.23) 

The coefficient 

M = N + iP (4.24) 

has the following physical significance. If we put t22 = 0 and 
exx = - eyy in equations 4.22, we derive 

tll = 4Mexx (4.25) 

Hence 4M is the modulus measuring the incremental force t11 per 
unit initial area for a plane strain elongation in the x direction when 
the material is free to expand laterally in the y direction. It can be 
looked upon as a "tangent modulus" for plane strain and referred to 
areas in the initial state of stress. 

The variational principle (4.19) is now written (with.1U = 0) 

s fin [Ae + 2Me~x + 2Le~y - iP (::fJ dx dy = 0 (4.26) 
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This yields the differential equations 

ail + 4M oexx + 2L oeXY = 0 
ax ax oy 

ail 2L oeXY _ 02V = 0 
oy + ax p ox2 

By putting 
t22 = il 

we derive from relations (4.22) 

t11 = il + 4Mexx 
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(4.27) 

(4.28) 

(4.29) 

Equations 4.27 then become identical with equilibrium equations 2.3. 
Boundary conditions derived from the variational principle are 

found to express the absence of forces or the vanishing of incremental 
forces at the unconstrained boundaries. 

The Effect of Adding Hydrostatic Pressure in the Variational 
Procedure. An apparent contradiction arises in the variational 
procedure if we consider the addition of a hydrostatic pressure to the 
initial stress. In the preceding example we considered the initial 
state of stress (4.11) where the initial stress is reduced to a compres
sion P = - S 11 in the x direction. Let us add a uniform pressure 
Pr to the initial state of stress. We assume for simplicity that 
the medium is homogeneous and of finite isotropy. In this case the 
principal directions of the initial stress remain unchanged. The 
initial stresses become 

where 

S11 = -p - Pr 

S22 = -PI 

S12 = 0 

(4.30) 

(4.31) 

represents the difference of the principal stresses in the initial state. 
Substituting the values (4.30) into expression (4.7), we find 

L1 V = it11 exx + it22eyy + t12exy - P(eXyw + iw2) - Pfw2 (4.32) 

Comparing the two expressions (4.12) and (4.32), we notice that they 
differ by the addition of a term -Pfw2. On the other hand, for 
physical reasons the addition of an over-all hydrostatic pressure 
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should at first sight have no significant effect on the stability problem. 
For a compressible material a possible effect is a physical one due 
entirely to the change of the incremental elastic coefficients. This is 
because of the volume change caused by the increase in pressure. 
Another possible effect is a change of shape of the body in elastic 
anisotropy. However, for an incompressible material no effect 
should be observed. How can we reconcile this statement with the 
presence of a term -Pfw2 in the incremental strain energy (4.32)1 

In order to clarify this point we consider the stresses defined by 
equations 2.14 of Chapter 2. In this case they are 

t11 = 8 11 + Sl1eyy 

t22 = 8 22 + S22eXX (4.33) 

t12 = 812 - !(Sl1 + S22)eXY 
Substituting the initial stress (4.11) before the addition of the 
pressure Pf yields values of tlj which we call t~?; that is, 

t'fl = 8 11 - Peyy 

t~~ = 8 22 (4.34) 

tn = 8 12 + !PeXY 
If instead we substitute the initial stress (4.30) derived by adding the 
pressure Pf' we find 

or 

tll = 8 11 - Peyy - pfeyy 

t22 = 8 22 - pfexx 
t12 = 812 + !PeXY + pfexy 

t11 = t'fl - pfeyy 

(4.35) 

t22 = t~d - pfexx (4.36) 

t12 = t'fd + pfexy 

If we insert these values into the incremental strain energy relation 
(4.32), it becomes 

L1 V = !t'flexx + !t~~eyy + t'fdexy 

- P(eXyw + !w2) - pf(exxeyy - e~y + w2) 

The additional term is represented by the factor 

2 2 OUOV ovBu 
eXXeyy - eXY + w - - - - - -

OX By ox oy 

( 4.37) 

(4.38) 



Sec. 4 Variational Formulation of Stability 141 

This expression has an important geometrical significance. Refer to 
the linear transformation (2.24) of Chapter 1; its determinant 

1 
au 

+ox 
ov 
ox 

au 
oy 

1 ov 
+ oy 

1 + au + ov + au ov _ ov au (4.39) 
ox oy ox oy ox oy 

represents the relative change of volume. We may talk of volumes 
instead of areas if we keep in mind that the plane strain problem is 
obtained by considering the deformation of a slab of unit thickness 
in a direction perpendicular to the x, y plane. The linear terms are 

au ov 
ox + oy = exx + eyy = e (4.40) 

and the second order terms are identical with expression (4.38). 
When applying the variational principle we must integrate the 
expression over a certain area in the x, y plane. This integral must 
represent the second order change of volume of the whole body. It 
follows immediately that, if the boundary constraints are such that 
the total volume remains constant to the second order, this integral 
must vanish and the terms (4.38) may be dropped from the 
incremental strain energy. 

This may be verified as follows. We write the identity 

(4.41 ) 

By integration over the two-dim~nsional domain [J we derive 

= ~ f c (eu - u :~ - v ::) dy 

_ ! I (ev _ u ov _ v OV) dx 
2jc ox oy ( 4.42) 
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The surface integral is thus transformed into a contour integral over 
the boundary. The quantities 

au au 
u- + v- = Llu 

ax oy 

ov ov 
u- + v- = Llv 

ax oy 

(4.43) 

are the second order vector components of the increment of the dis
placement u, v when we move from an initial point x, y to a displaced 
point of coordinates x + u and y + v. We may write 

f'r (au ov _ ov au) dx d 
In ax oy ax oy y 

= ~ 1. (eu - Llu) dy - (ev - Llv) dx 2;c (4.44) 

Consider the particular case where the medium is confined between 
rigid rectangular boundaries parallel to the x and y directions (Fig. 

~(u,v) 

c 

t i 

Figure 4.1 Medium confined within a rigid rectangular 
boundary C with perfect slip at the boundary. 

4.1). Although perfect slip is assumed at the boundary, the dis
placed points remain on the original contour. Hence the vector 
dx, dy is parallel to the vector u, v and the vector Llu, Llv. Therefore 
on the contour (eu - Llu) dy - (ev - Llv) dx is zero and the integral 
(4.44) vanishes. Hence the potential may be written 

( 4.45) 
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where the additional term in expression (4.37) for Ll V has been 
dropped; that is, 

(4.46) 

In this expression P is now the principal stress difference (4.31). It 
is the same as that in equation 4.16 for an initial compression Pin 
the x direction. In particular, expression (4.23) for Ll V in the case 
of an incompressible medium is also valid with the same boundary 
conditions for the more general case of initial stresses (4.30). The 
definition of M in equation 4.24 is also valid provided P represents 
the stress difference. 

We note that in this example the boundary conditions are of a 
special type. Because of the assumption of perfect slip and the fact 
that the boundary is a rigid plane surface, the incremental forces 
and the virtual displacements remain perpendicular. Hence our 
assumption that 

(4.47) 

is verified. 
This simple example points to the important role of the boundary 

condition in stability problems. In particular, we had to take into 
consideration the fact that the boundaries are plane surfaces, 
indicating that the curvature of the boundary must enter into play. 
This will be further analyzed in the more general treatment which 
follows. 

Conservative Boundary Forces. We now turn our attention 
to the case where the right side of equation 4.4 does not vanish. 
The incremental boundary forces may depend linearly on the 
deformation and may be such that 

8{JJJA = - fL Llfj 8u j dA (4.48) 

In this case they are derived from a potential {JJJ A and they are said 
to be conservative. The variational principle (4.4) becomes 

(4.49) 
where 

(4.50) 



144 Theory of Elastic Stability Oh. 3 

and 

&1 = IIi (LlV + pLlU) d'T (4.51) 

This is the total potential of the system, including the potential 
energy contributed by the elastic medium and by the boundary 
forces. Again, buckling modes correspond to neutral equilibrium 
and the buckling configuration satisfies the condition 

(4.52) 

We shall examine a particular case of conservative boundary con
ditions which is of special importance. Here the elastic body is in 
contact with a rigid surface along which it slides without friction. 
It is possible to express the incremental boundary force by considera
tions similar to those of section 7 in Chapter 1 for the boundary 
condition when the body is immersed in a fluid. We denote byS the 
initial normal stress at a certain point of the boundary. After 
deformation this point has slipped along this boundary and the 
normal stress at this point is now S + s. Because the boundary 
force is normal to the surface, the incremental boundary force is the 
same as if the medium were a fluid with hydrostatic stress Sand 
S + s in the initial and deformed state. 

We put 

Sij = sSjj 

Sij = SSjj 
(4.53) 

in equation 7.56 of Chapter 1 and the incremental boundary force 
LJ!t becomes 

GU' 
Ll!t = (s + Se)nt - S GX~ n j . , (4.54) 

The unit normal to the boundary at the initial point is n t . It is 
directed positively in the outward direction from the elastic medium. 
Since Ll!; is zero on any free surface of the elastic body, we may write 

where the surface integral on the right side is extended only to the 
rigid boundary B. We now introduce an important additional con-
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dition for the boundary constraint. We assume that the displace
ments are tangent to the boundary at the initial point. Hence at 
this boundary we must satisfy the conditions 

ntUt = 0 

ntOut = 0 
(4.56) 

This is a linear boundary condition. It is justified by the fact that it 
is the same as that commonly used when solving the linear differential 
equations of the problem. Actually, of course, these linear con
straints obey the exact boundary conditions only if the boundary is 
a plane surface. If the boundary is curved, the displaced point is 
assumed to be in the plane tangent to the surface at the initial point. 
This involves a second order displacement outside the actual 
boundary. 

By inserting conditions (4.56), expression (4.55) is simplified to 

IL iJftout dA = - IL S ::: njout dA ( 4.57) 

By further transformation of this expression we shall show that it is 
an exact differential under conditions (4.56). Consider the function 
F(xv x2 , x3 ) defined in such a way that the boundary is given by the 
equation 

We put 

4> = ± [(OF)2 + (oF)2 + (OF)21-% oXl oX2 oX3 

The normal vector is then 
of 

nt = 4>-OXt 

(4.58) 

(4.59) 

(4.60) 

The sign in the definition of 4> is chosen to correspond to the outward 
direction of n t . Inserting the value (4.60) for n t into the first of 
equations 4.56, we obtain 

Hence 
of 
-u· = 0 
OXj J 

(4.61) 

(4.62) 
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Equation 4.61 is verified everywhere on the surface B. Therefore 
the gradient of rI>(oFfoxJuj is normal to this surface, and we may 
also write 

(4.63) 

or 

(4.64) 

By virtue of equations 4.60 and 4.62 this relation is simplified to 

oUj o2F 
n· - SUI = -rI> -- u.Su! 

1 ox! OXj ox! 1 
(4.65) 

The right side of equation 4.65 is now an exact differential. By 
introducing this quantity into equation 4.57 we derive 

II ..:1fiSU j dA = - Sfi1B 

with 

1 Ii o2F fi1B = - -2 Sri> ~ U!Uj dA 
B UX j uXj 

The variational principle (4.49) then becomes 

S(fi1~ + fi1B) = 0 

(4.66) 

(4.67) 

(4.68) 

The boundary forces in this case are represented by fi1 B and are 
therefore conservative. 

An interesting consequence of equation 4.67 is the particular form 
of the surface energy fi1 B where the boundary is constituted by plane 
faces. The intersections of these planes are lines of infinite curvature, 
and in the limit the surface integrals degenerate into line integrals 
along these edges. However, as illustrated in the example of 
Figure 4.1 by considering displacements which vanish on these 
edges, the value of fi1 B will also vanish. 

Illustration of Conservative Boundary Forces. The signifi
cance of the preceding results is brought out more clearly by dis
cussing some trivial examples. Consider a cylinder of a homogeneous 
isotropic elastic material, shown in cross section in Figure 4.2. It is 
confined in a cylindrical cavity of radius a, under a uniform pressure 
Pf' Perfect slip is assumed at the interface between the cylinder and 
the surrounding material. This system is obviously in neutral 
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equilibrium since the cylinder is free to undergo a rigid rotation 
about its axis. 

y 

Figure 4.2 Elastic material confined in a cylindrical 
cavity of radius a under a uniform pressure PI and 

with perfect slip at the boundary. 

In a linear theory such a rotation is represented by the displacement 
field. 

u = -wy 

V = wx 
(4.69) 

The displacement is tangent to the interface and satisfies the boundary 
conditions of the linear theory. We now apply the variational 
principle to this displacement. Expression (4.2) for L1 V is reduced to 

or 
L1 V = -Pfw2 

Since L1 U = 0, the value (4.1) of f7}J t is 

(4.70) 

(4.71) 

f7}Jt = -pfw27Ta2 (4.72) 

The volume integral in this case is applied to a unit thickness and 
becomes a surface integral in the x, y plane extended to the area 7Ta2 

of the cross section of the cylinder. 
We must also evaluate the value (4.67) of f7}JB' The equation of 

the boundary is 

F(x, y) = x2 + y2 - a2 = 0 (4.73) 
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Hence (with S = - PI) 

(4.74) 

The surface integral f!iJ B reduces in this case to a line integral over 
the circle of perimeter 27Ta; hence 

c 

A A' (4.75) 

Adding expressions (4.72) and (4.75), 
we find 

(4.76) 

This result verifies the variational prin
ciple (4.68). The equilibrium is effec
tively neutral. 

Another interpretation of this result 
is obtained by writing 

(4.77) 

Y As shown by equation 2.33 of Chapter 
~ x 1, the linear rotation field (4.69) is asso-

~-/0El~~~~B~' ~~ ciated with a second order change of 

radius iw2a. The value (4.77) of f!iJ, 
Figure 4.3 Stability of an obviously represents the work done by 
extensible rod between curved the second order expansion against the 

surfaces. pressure PI' An actual rigid rotation 
does not contain such an expansion, 

but this requires a non-linear second order constraint to be verified. 
The term f!iJB compensates for this effect without having to introduce 
non-linear boundary conditions. 

As a second illustration we shall discuss the stability problem 
illustrated in Figure 4.3. A rod constituted of two telescoping parts 
and an inner spring 0 is mounted so that it presses without friction 
against two curved surfaces at points A and B. A lateral translation 
of the rod brings its axis to the line A' B'. The displacement AA' 
and BB' are perpendicular to the axis AB as required by the linear 
constraint. Because of the curvature of the boundary, points A' and 
B' violate the actual boundary condition by a second order distance. 
Since the rod undergoes a rigid translation, the value of f!iJ, is zero. 
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The stability in this case is controlled entirely by the boundary 
condition. We shall assume the boundary at B to be defined by a 
parabola 

F(x, y) = y - ax2 = ° (4.78) 

We write the displacement as 

AA' = BB' = u (4.79) 

At point B we find 

1 o2F 
- ~ --- uju. = au2 

2 oXj OXj J 
(4.80) 

On the other hand, the surface integral 

fLSdA =-p (4.81) 

·represents the concentrated normal compression acting on the 
boundary due to the spring in the rod. Hence 

g;B = Pau2 (4.82) 

It is seen that g; B represents the work done by the compressive 
force P when point B is maintained along the actual curved surface 
and undergoes the vertical second order displacement y = au2 along 
the parabola. The value (4.82) of g;B must, of course, be multiplied 
by a factor 2 to take into account the equal contribution at point A. 
If a > 0, the value g; B is positive and the system is stable. The 
system is stable or unstable under translational displacements 
depending on the sign of a. If a < 0, then g; B < ° and the system is 
unstable. This corresponds to a convex boundary. In a more com
plete analysis we must also consider possible rotation of the rod. In 
this case neutral equilibrium will arise as in the previous example if 
the radius of curvature ofthe boundary is equal to lAB, and stability 
will depend on whether it is larger or smaller than this value. 

Stability Problems with Non-conservative Boundary Forces. 
When the surface integral (4.48) is not an exact differential, the 
boundary forces are said to be non-conservative. Then it is generally 
not possible to derive stability criteria based on purely static con
siderations or the sign of a potential function. Usually it will be 
necessary to consider the dynamics of the systems and the actual 
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solutions of the equations of motion. Individual cases will require 
special treatment. Problems of this type will not be discussed here. 

Remarks on the Validity of the Stability Criterion. It should 
be kept in mind that the present theory is a linearized theory valid 
only if the displacement gradients remain sufficiently small. There 
are problems where the non-linear terms become important although 
in a physical sense the deformations and rotations remain small. 
Such is the case, for instance, in problems of buckling of thin shells* 
and in a category of phenomena generally referred to as "oil canning." 
Such problems have to be treated as special cases, and suitable non
linear theoriest have to be used. In a mathematical sense the 
deformation may always be assumed arbitrarily small in order to 
ensure the validity of the linearized equations. However, such a 
procedure does not guarantee the practical value of the results. 

Another theoretical difficulty arises if the linearized equations have 
singular solutions such that the magnitude of the strain is infinite at 
these points. At such points the assumption of small displacement 
gradients breaks down. Therefore conclusions based on this assump
tion do not strictly apply. A similar situation arises in the classical 
linear theory of elasticity as illustrated by the occurrence of infinite 
stress concentrations in sharp corners. However, the difficulty is 
rather academic and has not affected the usefulness of the results, 
because the physical assumption of elastic behavior also breaks down 
in this case. Local plastic behavior and the presence of damping in 
the case of dynamic phenomena set a limit on the magnitude of the 
physical variables in the region of the mathematical singularity. In 
practice it has been possible to introduce suitable "corrections" 
based on physical considerations. 

5. STABILITY IN THE PRESENCE OF HYDROSTATIC STRESS 

In many problems, particularly in the field of geophysics, we are 
dealing with conditions in which the initial stress is partly hydrostatic. 

* Th. von Karman and H. S. Tsien, The Buckling of Thin Cylindrical Shells under 
Axial Compression, Journal of Aeronautical Sciences, Vol. 8, pp. 303-312, 1941. 
t Non-linear three-dimensional equations suitable for the solutions of such problems 
have been derived by the author. They are closely related to the linearized theory 
for incremental stresses. This is briefly discussed in the Appendix. 



Sec. 5 Stability in the Presence of Hydrostatic Stress 151 

In other types of problems the solid is in contact with a fluid in hydro
static equilibrium. As will now be shown, it is possible in such 
cases to express the equilibrium condition in alternative forms which 
provide new physical insights and also lead to simplified methods of 
solution. 

Consider a fluid of distributed density PI in equilibrium under the 
action of a body force field X I derived from a potential U. The body 
force is 

au 
X I = -

ax! 
(5.1) 

The hydrostatic stress S in the fluid satisfies the equilibrium condition 

as au 
- - Pf·- = 0 
ax! aXI 

(5.2) 

Multiplying this equation by dX I with the summation convention 
yields immediately 

dS - PldU = 0 (5.3) 

This result shows that equipotential surfaces are surfaces of constant 
fluid pressure. Hence we may write 

S = S(U) (5.4) 
and 

d 
dUS(U) = PI (5.5) 

Therefore the equipotential surfaces are also surfaces of constant 
fluid density. Let us introduce a solid into the fluid. At any point 
in the solid we may consider the hydrostatic stress S and the density 
PI which were present at that point before the introduction of the 
solid. The fields S and PI are thereby defined throughout the solid, 
although they do not exist physically in that region. 

The actual mass density of the solid is denoted by p. The initial 
stress field S Ij in the solid is assumed to be quite general, and it 
results from the simultaneous application of the body force X! and 
arbitrary boundary forces part of which are the fluid pressures. 

We now define, inside the solid two fictitious fields, a "residual 
density" 

p' = P - PI (5.6) 
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and a "residual initial stress" 

S~j = StJ - SOli (5.7) 

The equilibrium condition of the initial stress in the solid is 

oStj _ P oU = 0 
oXj oXj 

(5.8) 

Combining equations 5.2 and 5.8 yields 

oS~i _ p' oU = 0 
oXj OXj 

(5.9) 

Hence the residual stress satisfies equilibrium conditions for a solid with 
residual densities. 

Equations 7.42 of Chapter 1 which express the equilibrium 
conditions of incremental stresses in the solid are 

S OWlk S OWjk OSlk - 0 - ;k-- + !k-- - ejk-- -
ox; ox; OXj 

(5.10) 

The incremental body force LlX j in these equations will be linearized 
according to equation 5.42 of Chapter 2 by writing 

02U oX; 
LlX j = - ---u; = -u· 

oX t ox; ox!' 
(5.11) 

When we insert this expression into equation 5.10 along with the 
residual density (5.6) and the residual stresses (5.7), the equilibrium 
condition becomes 

OSj' 
-'+.%+@"=O oX

j 
j ! 

The terms are written in two groups. One group is 

By using equations 5.1, 5.2, and 5.11 it may also be written 

02U oS oUj oS 
@"j = -Pf--- u· + e- ---

OXj ox;' ox! ox! ox; 

(5.12) 

(5.13) 

(5.14) 
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The other terms are 

0;: , 02U 'X' X .'#'j = -P ---u· - pWj' . - pe f oXj OXj 1 1 1 

S ' OWik S' OWjk OS;k 
- jk OXj + ik OXj - ejk oXj 

(5.15) 

The terms .'Fj are the same as those for a solid of residual density p' 
and under the residual initial stress S;}. The terms fS'" on the other 
hand, are due to the presence of the fluid. They may be transformed 
into an equivalent form which brings out a new and interesting 
physical interpretation. This may be shown as follows. 

We further transform the value (5.14) of fS', by using equations 5.1, 
5.2, and 5.11. The terms fS'j become 

(5.16) 

or 

(5.17) 

Obviously this may also be written 

o OPt 
fS't = OX, (PtUjXJ - Xj OXt Uj - PteXt (5.18) 

With this result the eqUilibrium equations 5.12 are now 

oSij + .'Ft + ~ (p.,u.X.) - X. OPt u. - p.,eXt = 0 
oXj OXj J 1 1 1 OXt 1 J 

(5.19) 

Let us examine the significance of the new terms. We may write 

OPt OPt 
-Xj ox, Uj = -ntX on un (5.20) 

where n t denotes the unit normal to the equipotential surface. The 
factors X, oPt/on, and Un on the right side of equation 5.20 are the 
projections of the three vectors Xi' op/OX i , and Ut on this normal 
direction. Hence the term (5.20) represents a buoyancy force 
arising from the displacement and the density gradient. The other 
term, PteX t, represents a buoyancy effect arising from the change of 
volume. The term 

(5.21) 
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is the change of hydrostatic stress associated with the particle 
displacement in the hydrostatic field S. 

If we put 
s;, = stj - 8tj..dS (5.22) 

the equilibrium equations become 

os;, oPI 
~ - X'!:l u, - PleXt + ff t = 0 (5.23) 
uX; uX t 

We must also consider the boundary conditions. The incremental 
boundary forces as given by equations 7.56 of Chapter 1 are 

(5.24) 

Here again it is possible to introduce "residual" components. Let us 
imagine a "rigid" hydrostatic stress field which is a function of fixed 
coordinates and equal to S8tj. It remains unchanged when any point 
of the solid moves through it. In this case the incremental stress stj 
at this moving point is due only to the particle displacement in this 
field. With the definition (5.21) for ..dS, it is given by 

stj = ..dS8tj (5.25) 

The incremental boundary force ..dfih ) due to such a hydrostatic field 
is obtained by substituting this value of stj and the value Sij = S8tj 
into equation 5.24. We obtain 

..df1h
) = (..dS8tj + S8k;wtk + S8tje - S8 tke'k)n, 

A ~ui 
= (£.JS + Se)nt - S ~ n; 

uX t 
(5.26) 

This result is also identical with expression (7.63) of Chapter 1, 
obtained for the boundary condition in the presence of a fluid. 

The difference between the values (5.24) and (5.26) represents a 
residual boundary force ..df;. It is written 

..df; = ..dft - ..df~h) 

(5.27) 

If we compare this expression with equation 5.24, we see that it is 
obtained by substituting the residual stress fields s;; and S;; into the 
general formula as if the hydrostatic stress component did not exist. 

The residual boundary force ..df; is the force acting at the boundary 
in excess of that due to the fluid pressure at the displaced point. 
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Application of Modified Equilibrium Equations 5.19. In 
order to give more substance to the presentation we have assumed 
the actual presence of a fluid. In fact this is not necessary, and the 
separation of the initial stress into hydrostatic and residual com
ponents may be entirely arbitrary and fictitious. However, we shall 
not pursue further this more general viewpoint. Instead we shall 
call attention to three particular cases of special importance (a, b, c, 
below) which may also serve as an illustration ofthe usefulness ofthe 
separation of the initial stress into hydrostatic and residual 
components. 

(a) Compressible Solid with P = PI' If the initial density of the 
solid is constant along equipotential lines, a fluid of the same mass 
density is in equilibrium in the body force field. Hence we may put 

P = PI ( 5.28) 

The fluid may be fictitious or real. The total initial stress may be 
separated into a residual stress S;} and a hydrostatic component SOtj 
which represents the stress in a fluid with the same density 
distribution as the solid. The residual density vanishes: 

p' = 0 ( 5.29) 

Equilibrium equations 5.19 become 

oStj 0 op - + - (pu.x.) - X·-u· - peXt ox} oXt J J J oXt J 

S ' OWtI.: S' OW}k OS;k - 0 - }k -!;l- + tk -!;l- - elk !;lx. -
uX} uX} U J 

(5.30) 

The last three terms depend only on the residual initial stress. 
The physical significance of the other terms containing the body 

force results from our previous discussion. (See equations 5.20 and 
5.21.) 

(b) Incompressible Solid with P = PI' This is case (a) with the 
additional condition of incompressibility 

e = 0 (5.31) 

Here the form (5.23) for the equilibrium equations is of special 
interest. They become 

os;} _ X. op u. _ S~k OWtk + S~k OW}k _ e'k OS;k = 0 
ox} J oXt J J ox} lOX} J ox, 

(5.32) 
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Several important features are exhibited by this case. Putting 

(5.33) 

we derive from equation 5.22 the property 

(5.34) 

This means that the three-dimensional stress deviator discussed in 
section 8 of Chapter 2 is the same for the stresses S;j and su. Hence 
the stress-strain relations of the material may be written by replacing 
the actual stresses Su by S;j. 

On the other hand, the modified equilibrium equations 5.32 are 
the same as for a medium under the action of initial residual stresses 
S;j represented by the terms :Ft with the addition of a small body 
force -Xj (8p/8x t)uj proportional to the displacement. Further
more, the boundary condition is expressed by means of a boundary 
force (5.27) expressed by means of the residual stresses alone, as if 
the hydrostatic stress were not present, and it is equal to the force 
acting on the boundary in excess of the forces generated by the fluid 
at the displaced point. 

This result may be interpreted by stating that the solid behaves as 
an analog model in which the hydrostatic stress may be ignored. The 
model is obtained by assuming that the only incremental and initial 
stresses acting in the body are the residual stresses S;j and S;j. An 
additional body force must be introduced in the model. This body 
force is proportional to the local displacement. 

Similarly, for the boundary condition at a fluid-solid interface, we 
have pointed out that it may be formulated by ignoring the 
hydrostatic stress. 

As we can see, the effect of the hydrostatic field in the model is 
represented entirely by the buoyancy term - X j(8p/8x t )uj. We have 
already discussed the significance of this term through equation 5.20. 
It acts like an elastic force proportional to the displacement directed 
normally to the equipotential surfaces with a local "spring constant" 
proportional to the product of the body force magnitude and the 
density gradient. It may be stabilizing or destabilizing, depending 
on the sign of the spring constant. If the body is made up of regions 
of constant density separated by surfaces of density discontinuity 
along equipotential surfaces, the analog model is further simplified. 
In this case the restoring forces are localized at these surfaces. They 
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act normally to the surface and their magnitude per unit area is 
proportional to the normal displacement of the surface and to the 
density discontinuity. A free surface may be treated as a density 
discontinuity. We shall examine these points in more detail in 
section 5 of Chapter 5 dealing with internal gravity waves in a fluid 
and in Chapter 6 (p. 475). An example of this analog model is also 
provided by the stability problem of a non-homogeneous half-space 
analyzed in section 8 of this chapter. 

(c) incompressible Solid of Uniform Density Submerged in a Fluid 
of the Same Density. This is case (b) with the additional condition 

P = Pi = const. (5.35) 

Here the analog restoring force disappears and equilibrium equations 
5.32 are the same as if the body force did not exist. Therefore the 
stability problem is formulated by ignoring completely the presence 
of the fluid and the hydrostatic component. 

Modified Variational Principle. The separation of the initial 
stress into hydrostatic and residual parts leads to an interesting form 
of the variational principle. In order to show this let us consider the 
alternative stress components given by equation 2.22 of Chapter 2. 

tij = Sij + Sjje - !(Sikejk + Sjkeik) 

Replacing the initial stress by 

Eij = S;j + SOtj 

we find 

The components 

(5.36) 

(5.37) 

(5.38) 

tlJ> = stj + S;je - !(S;kejk + S;keik) (5.39) 

contain only the terms due to the residual initial stress. Introducing 
expression (5.37) and (5.38) into the strain energy ((2) yields 

L! V = L!'V + ~ (5.40) 
with 

L!'V = !tl?eij + !S;j(efjLwjLj + ejjLwjLt + WtjLWjjL) 

~ = !Se2 + !S(2eijwij + wtjwtj - etjeiJ) 

The latter expression may be simplified to 

~ = ~S (e2 _ aUf OUj) 
2 oXj oX t 

(5.41) 

(5.42) 
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It represents the product of S and the second order increment of 
volume. The total incremental potential (4.1) becomes 

&t = JJi (LI'V + fJ£ + p LI U) dT (5.43) 

By introducing the residual density (5.6) this expression becomes 

&t = JJi (LI'V + p'LI U + fJ£ + PI LI U) dT (5.44) 

The term LI I V + p' LI U corresponds to a medium of residual density 
p' under the residual initial stress S;j. With the value (5.44) for &1' 
the general variational principle (4.4) becomes 

8 JJi (LI'V + p' LlU) dT + 8 JJi (fJ£ + PI LI U) dT 

= J L LlfJ8u t dA (5.45) 

The differential equations derived from this principle are the equilib
rium conditions (5.12) where rS'tis written in the particular form (5.14). 

We shall now derive an equivalent principle which corresponds to 
the alternative form (5.19) of the equilibrium equations. 

This can be done by using the identity 

(5.46) 

In this identity S is an arbitrary function of the coordinates and Bu t 

is an arbitrary variation. If we identify S with the initial fluid 
stress, we derive from equations 5.1 and 5.2 

08 
- = -pIXj oXt 

028 02U op __ = PI __ _ X_I 
oXt OXj oX t oXj j oX j 

Substituting these values into the identity (5.46), we obtain 

_ ~ (8 oU j Bu
t
) 

oX j oX t 

8(fJ£ + PI LI U - OJI) 

(5.47) 

(5.48) 
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where 

(5.49) 

We recognize in equation 5.48 the stress increment LlS defined by 
equation 5.21. When we integrate equation 5.48 over the volume T, 

we obtain 

o IIi (~ + pfLlU - t&') dT 

= IL [(LlS + Se)nt - S ~~: nJ] OUt dA (5.50) 

The factor in the surface integral on the right side is simply the vector 
Llflh ) defined by relation (5.26). Hence 

(5.51) 

When we substitute the last result into equation 5.45, the variational 
principle becomes 

(5.52) 

where Llf; is the residual boundary force defined by equation 5.27. 
The variational principle (5.52) is in a form corresponding to 

equilibrium equations 5.19. In the potential energy on the left side 
of equation 5.52 the terms Ll' V and p' Ll U contain the residual density 
and the residual initial stress. The effect of the hydrostatic com
ponent of the initial stress is represented in the term t&'. According 
to its definition 5.49, it is made up oftwo terms representing the work 
of the buoyancy forces discussed previously. 

6. SURFACE INSTABILITY 

The existence of surface instability for the homogeneous half-space 
was derived by the author* in the context of incremental theories of 

* M. A. Biot, Stability Problems of Inhomogeneous Viscoelastic Media, Non· 
homogeneity in Elasticity and Plasticity (IUTAM Symposium, Warsaw, 1958), pp. 
311-321, Pergamon Press, New York, 1959; Folding of a Layered Viscoelastic 
Medium Derived from an Exact Stability Theory of a Continuum under Initial 
Stress, Quarterly of Applied Mathematic8, Vol. XVII, No.2, pp. 185-204, 1959. 
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elasticity and viscoelasticity. In a later development* the elastic 
properties of an isotropic medium in finite strain were introduced 
explicitly. 

Consider a rubber-like medium in a state of initial stress such that 
in the x direction the stress is a compression 

P = -811 

while in the y direction the stress is zero, 

8 22 = 0 

(6.1) 

(6.2) 

The material is incompressible and the extension ratios satisfy the 
condition of constant volume 

"-1"-2"-3 = 1 (6.3) 

Extensions along x and yare measured by "-1 and "-2' The finite 
stress-strain relations (8.45) of Chapter 2 become in this case 

-833 = 11-0("-22 - "-3
2

) 

8 33 + P = 11-0("-32 - "-1
2

) 

- P = 11-0("-12 - "-22) 

(6.4) 

The coefficient 11-0 is the shear modulus in the unstressed state. This 
initial state of stress is possible in a half-space whose free surface 
coincides with the coordinate plane y = O. 

We shall apply the general theory to the problem of stability of 
the free surface under the initial compression P and consider the 
incremental deformations in the x, y plane (Fig. 6.1). For such 
incremental plane strain in the x, y plane, we have seen that the 
material retains its isotropy under initial stress. The incremental 
stresses are given by equations 8.33 and 8.51 of Chapter 2; that is, 

with 

811 - 8 = 211-exx 

8 22 - 8 = 211-eyy 

8 12 = 211-exy 

(6.5) 

(6.6) 

* M. A. Biot, Surface Instability of Rubber in Compression, Air Force Office of 
Scientific Research Report T.N. 1771, 1961, and Applied Scientific Research, A, Vol. 
12, pp. 168-182, 1963. 
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To these equations we must add the condition of incompressibility 

(6.7) 

The equilibrium conditions for the incremental stress field are 
equations 2.1. 

OSl1 + OS/2 _ P ow = 0 
ox oy oy 

OS/2 + OS22 _ P ow = 0 
ox oy ox 

(6.8) 

y 

x p= -811 

Figure 6.1 Elastic half-space under initial compressive stress P. 

The condition (6.7) for incompressibility is satisfied by putting 

ocp 
- oy u= 

ocp 
v =-ox 

(6.9) 

Eliminating the stress components sij between equations 6.5 and 6.8, 
we obtain two equations with two unknowns sand cpo 

os _ ( + P) ~ ((j2CP + 02cp) _ 0 
ox f1- 2 oy ox2 oy2-

os + ( _ P) ~ ((PCP + 02cp) _ 0 
oy f1- 2 ox ox2 oy2-

(6.10) 

These equations imply that cp satisfies the equation 

(6.11 ) 
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or, by factorization, 

( 
82 8

2
) [( P) 8

2
4> ( P) 82

4>] 
8x2 + 8y2 fL -"2 8x2 + fL +"2 8y2 = 0 (6.12) 

We are looking for a solution which is sinusoidal along the x direction 
and vanishes at infinite depth (y = - (0). Such a solution is 

4> = ~ (OlelY + 02ekIY ) sin lx 

8 = 02PkeklY cos lx 

The constants 0 1 and O2 are undetermined. We have put 

k = J~ ~ ~ = ~: 
P '\22 - '\12 

, = 2fL = '\22 + '\12 

We conclude that 

Therefore k is real and also satisfies the same inequality, 

o < k < 1 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

The boundary condition at the surface will now be considered. 
The x and y components of the forces applied at the surface are given 
by equations 6.27 of Chapter 1. In the present case they become 

11Jx = 8 12 + PeXY = (2Q + P)eXY 

11Jy = 8 22 = 8 + 2fLeyy 

The condition that the surface be free of forces requires that 

11Jx = 11Jy = 0 

(6.17) 

(6.18) 

at y = o. Introducing solution (6.13) into this boundary condition 
(6.18) and eliminating the constants 0 1 , O2 , we obtain the 
characteristic equation 

(1 + ')2k - 1 = 0 

When we rationalize this equation, it becomes 

,3 + 2,2 _ 2 = 0 

This cubic has only one real root, 

, = 0.839 

(6.19) 

(6.20) 

(6.21) 
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For this value of , the surface is unstable. Since the characteristic 
equation is independent of l, all wavelengths are equally unstable. 
This means that the half-space remains in neutral equilibrium for 
plane deformations such that the free boundary becomes an arbitrary 
cylindrical surface. At instability, the value of k is 

k = 0.295 (6.22) 

When introduced in the term ek1y of the general solution (6.13), it 
measures the depth to which the surface deformation is felt inside the 
body. This depth is about three times larger than for the initially 
unstressed medium. By equations 6.14 the parameter' is related to 
the extension ratios '\1 and '\2 which determine the state of initial 
strain. 

We shall consider two particular cases. In the first we put 

'\a = 1 

1 
'\2 =-

'\1 

(6.23) 

This is the case where the finite initial strain is applied to a material 
whose extension is restrained in the direction perpendicular to the 
x, y plane. Hence 

(6.24) 

The extension ratio corresponding to instability for this case is 

'\1 = 0.544 (6.25) 

and the compressive stress is 

P = 3.08fLo (6.26) 

In the other case the initial stress is applied by allowing the material 
to expand freely in the lateral direction. Hence we put 

Sa = 0 
( 6.27) 

The value of , is then 

(6.28) 
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and the extension ratio for which instability appears is 

'\1 = 0.444 

The corresponding compressive stress is 

P = 2.05f-to 

Oh. 3 

(6.29) 

(6.30) 

To state that the surface is unstable amounts to saying that the 
apparent surface rigidity must vanish at the critical load. It is of 
interest to investigate how this apparent rigidity varies as a function 
of the initial stress. More specifically, we may consider plane initial 
strain, '\3 = 1, for which the critical values are given by equations 
6.25 and 6.26. Let us apply a sinusoidally distributed normal load. 
The boundary conditions (6.18) must be replaced by 

,dfx = 0 
(6.31) 

,dfy = qo cos Ix 

The problem is solved by substituting solution (6.13) into the 
boundary conditions (6.31). We obtain two equations which 
determine the constants 0 1 and 02' 

The surface deflection at y = 0 is written 

v = V cos Ix (6.32) 

The relation between the surface load qo and the deflection V is 
found to be 

(6.33) 

with 

(6.34) 

When the medium is not under initial stress, i.e., for P = , = 0, the 
true value of ffJ is unity, and the deflection is given by 

(6.35) 

The effect of the initial strain on the surface deflection amounts to 
replacing the shear modulus f-to ofthe unstressed state by an "effective 
modulus" f-tffJ. Note that the incremental modulus in the present 
case ('\3 = 1) is 

(6.36) 
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It is a minimum for Al = 1. On the other hand, the factor g; tends 
to zero as we approach the critical state. The increase of incremental 
modulus fL is measured by fLifLo, while the effective surface rigidity is 
measured by fLg;ifLo' Values of these factors were given in the 
author's paper* and are shown in Table 1 as a function of the 
extension ratio Al of the initial strain. 

Table 1 
Variation of incremental modulus /L and 
"effective surface rigidity" /Lg; as a function 
of the extension ratio Al of the initial strain 
for the case A3 = 1 

Al /LI/Lo p.g;1/Lo 

2.00 2.125 2.275 
1.50 1.347 1.518 
1.20 1.067 1.193 
1.00 1.000 1.000 
0.90 1.022 0.893 
0.80 1.101 0.758 
0.70 1.266 0.567 
0.60 1.569 0.262 
0.544 1.838 0 

The values in the table include the case Al > 1 for which the initial 
stress is a tension. As the tension decreases, going over into an 
increasing compression, there is a continuous drop in surface rigidity. 
It vanishes at the critical value Al = 0.544 for which g; = O. 

Mooney Material. The results of this section have been derived 
for a material of rubber-like elasticity satisfying the finite stress-strain 
relations (6.4). However, they are immediately applicable to 
materials of a more general type such as the Mooney material whose 
incremental deformation was analyzed in section 8 of Chapter 2. 
For this material the incremental stress-strain relations (6.5) remain 
valid with a value of the incremental shear modulus fL given by 

fL = 01(AI2 + A22) + O2 (A~2 + A:2) (6.37) 

* M. A. Biot, Surface Instability of Rubber in Compression, Air Force Office of 
Scientific Research Report T.N. 1771, 1961, and Applied Scientific Research, A, 
Vol. 12, pp. 168-182, 1963. 
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where 0 1 and O2 are two elastic constants. The value of ~ is given 
by the same equation (6.14) with the value (6.37) for {t. 

7. BUCKLING OF A THICK SLAB 

A solution based on elasticity theory for the stability of a thick 
slab under axial compression was derived by the author in 1938.* 

This solution leads immediately to the characteristic equation (7.12) 

for the particular case of an incompressible medium. The results are 
also a particular case of the more general problem of instability of a 

thickness 

slab embedded in an infinite medium 
which was analyzed t in the context of 
the viscoelasticity theory and leads to 
the same characteristic equation (7.12). 

More recently the author developed a 
more detailed analysis based on these 
results:j: by introducing explicitly the 
finite deformation properties of the me
dium. The material presented here is a 
shortened version of this paper, and the 
reader is referred to it for further data 
such as plots of the stress distribution 
over the cross section during buckling. 
An elastic slab oflength 20 and thick
ness ho is shown in the unstressed state 
in Figure 7.1. The width in the 
direction perpendicular to the figure is 
infinite. This slab is then compressed 
to a length 2 and a thickness h by a 

Figure 7.1 Elastic slab in compressive stress P acting along its 
the original unstressed state. 
The slab is viewed across the axis (Fig. 7.2). The compression is 

thickness. exerted by two rigid frictionless blocks 
a and b (Fig. 7.1). Over-all slippage 

between the slab and the blocks is prevented by pinning the slab to 
the blocks at points A and B on the axis. 

* See reference 2 of the Preface. 
t See references * on p. 159. 
t M. A. Biot, Exact Theory of Buckling of a Thick Slab, Air Force Office of Scientific 
Research Report T.N. 1770, 1961, and Applied Scientific Research, A, Vol. 12, 
pp. 182-198, 1963. 
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p 

--t---l--+-Y 

A 

x 

Figure 7.2 Elastic slab in the initial state of compression and in 
the buckled state, viewed across the thiclmess. 

167 

The material of the slab is assumed to satisfy stress-strain relations 
(6.4) which are typical of a rubber-like solid. In the initial state of 
finite strain the slab may be restrained in a direction perpendicular 
to the plane x, Y of the figure. In this case A3 = 1. The compression 
is then 

(7.1) 

and the incremental modulus in the x, y plane is 

(7.2) 

The extension ratio Al (AI < 1) measures the finite compressive strain 
along the axis. The length and thickness of the slab in the 
compressed state are, respectively, 

(7.3) 

On the other hand, the slab may be free to expand perpendicularly 
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to the x, y plane. In this case 8 33 = 0 and the only initial stress 
component is the compressive stress P given by 

(7.4) 

The corresponding incremental modulus is 

fL = tfLo (A12 + :J (7.5) 

The length and width of the plate in the compressed state are 

ho 
h=~ (7.6) 

It is also possible to consider a state of partial restraint inter
mediate between those considered above with a suitable value of the 
initial stress component 8 33 , In this case the value of fL is given by 
equation 6.6. 

Let us now consider a plane strain perturbation from the initial 
state. This incremental deformation is assumed to be parallel to 
the x, y plane. 

The equations for this incremental deformation are the same as in 
the previous section. We must satisfy equations 6.10. The solution 
of the equations which are to be considered here and which correspond 
to buckling is 

cP = ~ (01 cosh Iy + O2 cosh kIy) sin Ix 

8 = 02Pk sinh kly cos Ix 
(7.7) 

where 0 1 and O2 are undetermined constants. It is readily seen that 
the frictionless constraints imposed at the rigid blocks are satisfied 
if we put I = 27T/!£'. Note that for this solution the points of attach
ment A and B do not remain on the y axis during buckling, but this 
does not give rise to any difficulty since we can always superimpose 
an arbitrary translation. As before, we put 

(7.8) 
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Figure 7.3 Value of ~ as a function of y under buckling conditions 
as determined by the characteristic equation (7.12). 

The next step is to satisfy the boundary conditions at the free 
surfaces of the slab. This implies 

L1fx = L1fy = 0 (7.9) 

at y = ±h/2. Because of the symmetry of solution (7.7) it is 
sufficient to satisfy this condition at one of the faces, for example, 
y = h/2. The expressions for L1fx and L1fy are given by equations 
6.17. Substituting solution (7.7) into the boundary conditions (7.9), 
we obtain 

with 

201 cosh y + O2 (1 + k2
) cosh ky = 0 

0 1 (1 + P) sinh y + 202k sinh ky = 0 

7Th 
y = ilh =

.f£' 

We derive the characteristic equation 

4k tanh ky - (1 + P)2 tanh y = 0 

(7.10) 

(7.11) 

(7.12) 

This is a relation between' and y. It represents in non-dimensional 
form the relation between the buckling load P and the length .f£' of 
the slab. 

A plot of , versus y is shown in Figure 7.3. The parameter y is 
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Thickness 

o 
'Y=1 'Y=2 'Y=3 

Figure 7.4 Slab slenderness in the state of initial compression 
illustrating the significance of y for y = 1, 2, 3. 

Oh. 3 

inversely proportional to the slab slenderness in the state of initial 
compression. Its significance is illustrated in Figure 7.4. As y tends 
to infinity, the value of, approaches the asymptotic value 

, = 0.839 (7.13) 

A physical interpretation of this asymptotic behavior is obtained by 
substituting y = 00 in the characteristc equation (7.12). It becomes 

4k - (1 + P)2 = 0 (7.14) 

or 
(7.15) 

which coincides with condition (6.19) for surface instability. The 
real root, of this equation is the asymptotic value (7.13). This 
means that for a very short slab the buckling degenerates into a 
surface instability. At the other extreme we have a very slender 
slab which is represented by the behavior of the curve, , versus y, 
in the vicinity of y = O. The approximate relationship in this case 
is obtained by expanding the hyperbolic functions of equation 7.12 
in power series of y. Limiting the expression to the third power, we 
write 

tanh ky = ky - tk3Y3 

tanh y = y - ir3 
(7.16) 
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Substituting these approximate values into equation 7.12, we obtain 

2y2 
, = 3 + y2 

To the first order in y2 the buckling load is given by 

, = iY2 
or 

(7.17) 

(7.18) 

(7.19) 

Let us show that this value coincides with the Euler buckling load 
obtained from thin plate theory. The equation for the transversal 
deflection v of an elastic plate of thickness h under an axial 
compressive stress P is 

E h3 d2v 
1 _ y 2 ' 12 dx2 + Phv = 0 (7.20) 

Young's modulus is represented by E, and Poisson's ratio by y. In 
an incompressible material the elastic coefficient is 

Substituting a sinusoidal deflection 

v = V cos lx 

into equation 7.20, we find for the buckling load 

P = tpJ2h2 

which coincides with the value (7.19). 

(7.21) 

(7.22) 

(7.23) 

This approximate value of, given by equation 7.18 is plotted in 
Figure 7.5 and compared with the exact value. It can be seen that it 
constitutes a good approximation in the range 

o < y < 0.3 (7.24) 

We conclude that the Euler theory of buckling yields a satisfactory 
value of the buckling load in the range 

2 h > 10 (7.25) 

For this conclusion to be valid the material must, of course, retain its 
elastic properties under the applied initial compression. 
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An int-eresting analogy appears when we consider the behavior of 
the slab as a function of the buckling wavelength. At large wave
lengths the buckling is represented by a plate bending and, as the 
wavelength decreases, the buckling degenerates into a surface 
instability. Similarly the vibration of a plate which is represented 
by bending waves at large wavelength degenerates into Rayleigh 
waves propagating at the surface when the wavelength becomes 
small relative to the plate thickness. 

0.4 

I / 
1// V 

0.3 

0.1 ? 
../ 
V 

0.2 0.4 0.6 0.8 1.0 

Figure 7.5 Portion of the graph of Figure 7.3 near the origin 
and comparison with the Euler theory. Solid curve, exact value; 

broken curve, , = iy2 (Euler theory). 

The problem may also be solved by use of the variational principles 
discussed in section 4. The strain energy per unit volume given by 
equation 4.23 is 

Ll V = 2Me~x + 2Le~y - lP (!:r (7.26) 

In the present case the elastic coefficients are 

Hence 
M =,." + iP 

L =,." + lP 

The potential energy of a length .P of the slab is 

f7J, = rg> dx J +h/2 Ll V dy 
Jo -h/2 

(7.27) 

(7.28) 

(7.29) 
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It corresponds to equation 4.10. Since the rigid boundaries are 
plane frictionless surfaces, the variational principle reduces to putting 
equal to zero the variation of f!jJ". In evaluating f?JJ" we introduce 
the approximate displacement 

U = ulY sin lx 

v = Vo cos lx 
(7.30) 

An additional assumption is also introduced when performing the 
integration in equation 7.29. We note that the term 2Le;y in 
expression (7.26) is equal to t~2eXy where t~2 is a shearing stress which 
vanishes at the free surfaces of the plate. On the other hand, the 
approximation (7.30) yields ~ constant value of t~2 over the cross 
section. This does not actually occur in the exact solution. There
fore it is more accurate to average out the integral by assuming t~2 to 
be constant in the interval 

-!Kh < y < !Kh (7.31) 

and zero outside. 
between the limits 
given by 

This amounts to integrating the term 2Le;y 
± Kh/2. With this procedure the value of f!jJ" is 

2f?JJ" _ l.MPh3u 2 + l.LhK(u _ lv )2 _ l.phPv 2 2-6 I 2 I 0 2 0 (7.32) 

The condition for buckling is obtained by writing that the. value of 
f?JJ" is stationary; that is, 

or 

af?JJ" = 0 
aUI 

!MPh2UI + LK(u l - lvo) = 0 

LK(ul - lvo) + Plvo = 0 

Elimination of U I and Vo yields the characteristic equation 

!Ph2M(1- :L) = P 

(7.33) 

(7.34) 

(7.35) 

By introducing the variables' and y defined by equations 7.8 and 
7.11 and the values (7.28) for Land M, the buckling condition (7.35) 
becomes 

1 
(7.36) 
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If we choose the value K = 0.91, this equation yields a curve which 
cannot be distinguished from the exact one when plotted in 
Figure 7.3. 

The results are also applicable to the more general case of a Mooney 

material and for.a slab with arbitrary extension ratios Al and .4.2 along 
the x and y directions. In this material the incremental shear 
modulus !1- takes the value (6.37) and the value of , is given by 
equation 6.14. 

8. INSTABILITY OF A NON-HOMOGENEOUS HALF-SPACE 

The previous examples have been restricted to homogeneous 
materials and a uniform initial stress field. 

We now consider a ·problem of stability in a medium which is 
continuously inhomogeneous and in which the initial stress is not 
uniform. The problem considered here was treated by the author 

y 

Figure 8.1 Non-homogeneous elastic half-space. The initial stress 
is the hydrostatic pressure pgy and a horizontal compression P. 

for the more general case of the viscoelastic medium. * The half
space is limited by a free surface which is a horizontal plane located 
at y = O. It is under the action of a uniform gravity field, and the 
material is incompressible and of uniform mass density p. In order 
to conform with the treatment of the problem in the paper cited 
above, the y axis is oriented positively downward (Fig. 8.1). Con
sider the stresses in the x, y plane (Fig. 8.1). We shall assume that 
the initial stress field in this plane is 

* M. A. Biot, Instability of a Continuously Inhomogeneous Viscoelastic Half-Space 
under Initial Stress, Journal of the Franklin Institute, Vol. 270, No.3, pp. 190-201, 
1960. 
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8 11 = -P(y) - pgy 

8 22 = -pgy 

8 12 = 0 

The gravity acceleration is denoted by g, and we have put 
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(8.1) 

(8.2) 

The field is composed of two parts, a term pgy increasing linearly 
with depth, and a horizontal compression Po exp ( - ay) decreasing 
exponentially with depth. 

A stress 8 33 may act normally to the figure, but it will not play any 
role in the problem considered since we shall assume the incremental 
deformation to be a plane strain in the x, y plane. 

Let us show how such a state of initial stress may be generated by 
a finite homogeneous deformation of the elastic medium. We put 

(8.3) 

in the stress-strain relations (8.45) of Chapter 2 for a rubber-like 
medium. The quantity fLos is the shear modulus of the unstressed 
material at the surface. Such a medium is incompressible, isotropic, 
and elastically non-homogeneous. Its rigidity decreases exponen
tially with depth with a gradual change from solid to liquid properties. 

The finite stress-strain relations (8.45) of Chapter 2 become 

8 22 - 8 33 = fLose-aY(A22 - A32) 

8 33 - 8 11 = fLose-aY(A32 - A12) 

8 11 - 8 22 = fLose-aY(AI2 - A22) 

(8.4) 

The uniform extension ratios AI' A2, A3 which represent the homo
geneous deformation are measured along the coordinate axes and are 
independent of the location. They satisfy the condition of 
inc om pressi bility 

(8.5) 

In addition we must satisfy the initial condition of equilibrium in the 
gravity field; that is, 

(8.6) 
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Equations 8.1 and 8.6 are satisfied by the initial stress field (8.4) if we 
put 

(8.7) 

This equation represents the horizontal compression at the surface. 
The value of the stress 8 33 is not relevant here. It is given by either 
of the first two of equations (8.4). 

In order to analyze the stability we apply equations 6.16 of 
Chapter 1 for an incremental strain in the x, y plane. In the present 
case they become 

0811 0812 pOw (OP ) ox + oy + pgw - oy + oy + pg eXY = 0 
(8.8) 

0812 0822 pOw 0 -+-- -+pge = ox oy ox yy 

In writing these equations we must take into account the condition 
of incompressibility, 

(8.9) 

The incremental stress-strain relations are given by equations 6.5: 

811 - 8 = 2p.exx 

822 - 8 = 2p.eyy 

8 12 = 2p.eXY 

(8.10) 

However, in this case the incremental modulus (6.6) is written 

(8.11) 

Hence it also decreases exponentially with depth. 
The boundary conditions at the free surface are the same as 

equations 6.18; that is, we must have 

(8.12) 

for y = o. 
We have thus formulated the problem mathematically. The 

equations to be solved are 8.8, 8.9, and 8.10, with the boundary 
conditions (8.12) at the surface and the additional condition that the 
solution vanish at infinite depth. 

Before deriving such a solution it is useful to transform the 
equations following the general method of section 5. We are dealing 
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here with a stability problem in the presence of a hydrostatic stress 
field. It was shown that in such a case the problem may be re
formulated into an equivalent one by an analog model in which the 
hydrostatic stress has been eliminated. The procedure is readily 
applied to the present case by putting 

Equations 8.8 become 

8~1 = 811 + pgv 

8~2 = 8 22 + pgv 

8' = 8 + pgv 

08~1 0812 ow oP 
ox + oy - P oy + oy eXY 

0812 08~2 P ow = 0 
ox + oy - ox 

(8.13) 

o 
(8.14) 

The stress-strain relations (8.10) are transformed into an identical 
form, 

8~1 - 8' = 2ftexx 

8~2 - 8' = 2fteyy 

812 = 2fteXY 

(8.15) 

However, the boundary conditions (8.12) at the surface are changed 
to 

(8.16) 

It can be seen that the equations are now those ofthe same medium 
free of gravity 8tre88e8 and subject to an initial horizontal compression 
P(y). The influence of gravity has been replaced by the application 
at the surface of a normal force pgv acting in a direction opposite to 
the displacement and proportional to the local change of altitude. 
In order to solve these equations we first satisfy the condition of 
incompressibility (8.9) by putting as before 

ocp 
u= --

oy 

ocp 
v=-

ox 

(8.17) 
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We further particularize the solution by looking for deformations 
which are sinusoidal along x. We therefore put 

rp = cp(y) sin 1x 

8' = Pof(y)e- ay cos 1x 
(8.18) 

Substitution of these expressions into equations 8.14 and 8.15 yields 
two ordinary differential equations for the unknown functions cp and 
f; that is, 

~ 1 + , (cp'" _ cp'12 _ acp" - acpP) + if = 0 
2 , 

1 1 - '( 12 " 1 1 '1 f' ,-/' - -- cp - cp) + - acp - + aJ = 0 2 , , 

(8.19) 

The primes represent derivatives with respect to y, and we have put 

,= P = Po 
21-'- 21-'-s (8.20) 

I-'-s = tl-'-os('\ 2 + ,\22) 

Referring to equations 8.7 and 8.11, we note that I-'-s represents the 
incremental modulus at the free surface and that we may also write 

Solutions of equations 8.19 are of the form 

cp = CI e/Jl ay + C2 e/J2 ay 

f = Cae/Jl aY + C4e/J2 ay 

(8.21 ) 

(8.22) 

Substitution ofthese expressions in equations 8.19 yields a character
istic equation for the values of fJI and fJ2: 

[fJ(fJ2 - ( 2) - (fJ2 + (2)](fJ - 1) + k202( 02 - fJ2) 

where 

p=I-, 
1 + , 
1 

8 =-
a 

2fJ02 
+--=0 1 + , (8.23) 

(8.24) 
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There are two roots, fJl and fJ2' for fJ which have negative real parts. 
These two roots are used in the exponents of the solution (8.22). 
This ensures that the solution vanishes at infinite depth. 

Equation 8.23 is of the fourth degree in fJ. However, it can easily 
be transformed into a quadratic equation in fJ(fJ - 1). For example, 
we may write 

, = 04 
- 02[2fJ(fJ - 1) - 1] + [fJ(fJ - 1)]2 

04 - 02 - [fJ(fJ - 1)]2 
(8.25) 

Solving this quadratic equation for fJ(fJ - 1) and again a second 
quadratic equation for fJ, we find 

(8.26) 

The four constants in solution (8.22) are not arbitrary. The relations 
among them are found by substitution of the solution in the 
differential- equations 8.19. This leaves only two of the constants 
arbitrary, and they may be eliminated by substitution of solution 
(8.22) into boundary conditions (8.16) at the free surface. This 
leads to the following condition for surface buckling: 

202[02 - fJlfJ2 - G(fJl + fJ2)] 
1 + , = fJ12fJ22 _ 04 + 02(fJl + fJ2)(fJl + fJ2 _ 2G) (8.27) 

The parameter 

G = pg 
Poa 

represents the influence of gravity in non-dimensional form. 

(8.28) 

Equation 8.27 may be considered a relation between' and () where G 
plays the role of a parameter. This relationship is plotted in Figure 
8.2 for several values of G. The variable 0 is inversely proportional 
to the wavelength of the surface deformation. It represents a 
dimensionless wave number. It is seen that, for a given value of G, 
, goes through a minimum. This minimum determines the com
pression under which the surface will buckle. The value Od of (), at 
which this minimum occurs, determines the buckling wavelength; 
that is, 

(8.29) 
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Figure 8.2 The stability variable ~ as a function of the dimensionless 
wave number S and the gravity parameter G. 

The value of ad as a function of G is found to be approximately given 
by the expression 

ad = 2.2G% (8.30) 

The buckling wavelength tends to infinity for G ~ 0; that is, for 
vanishing gravity forces. 

Attention is called to the fact that in the range 

(8.31 ) 

the roots f31 and f32 are complex so that solution 8.22 is an oscillatory 
function of depth for the range of values represented by the diagram 
of Figure 8.2. For example, at the critical buckling load and for 
G = 1/250 the roots are 

f31} = _ 0.010 ± 0.072i 
f32 

(8.32) 

Another point of interest is the existence of a vertical asymptote for 
the curves in Figure 8.2. The abscissa a of the asymptote is a 
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function of G. More detailed discussion of these points will be found 
in the reference cited. * 

A limiting case of interest is the asymptotic value of , corresponding 
to 0 = 00, that is, at infinitely small wavelength. By putting 0 = 00 

in equation 8.27, we find that this asymptotic value must satisfy the 
equation 

(8.33) 

whose real root is 

, = 0.839 (8.34) 

Equation 8.33 coincides with the characteristic equation (6.20) 
already derived for the homogeneous half-space without gravity. 
This ~esult becomes evident when we consider the fact that for 
vanishing wavelength the material must behave like a homogeneous 
medium. In addition, for vanishing dimensions the gravity forces 
obey a scaling factor which renders them negligible relative to the 
elastic stre,sses. The roots f31 and f32 for this case become 

f31 = 
l 
a 

kl 
(8.35) 

{32 = a 

With these values solution (8.22) contains the same exponential 
factors as those in equations 6.13 obtained for the surface instability 
of the homogeneous gravity-free half-space. 

The results are also applicable to the non-homogeneous half-space 
constituted by a Mooney material, provided the two elastic constants 
0 1 and O2 describing this material are proportional to the same 
exponential factor e - a

y
• In this case the incremental shear coefficient 

given by equation 6.37 is also proportional to this exponential factor. 

* M. A. Biot, Instability of a Continuously Inhomogeneous Viscoelastic Half-Space 
under Initial Stress, Journal of the Franklin Institute, Vol. 270, No.3, pp. 190-201, 
1960. 



CHAPTER FOUR 

Elastic Stability 

of Anisotropic Media 

1. INTRODUCTION 

In the preceding chapter the applications of the theory of elastic 
stability were restricted to isotropic media. More specifically they 
were restricted to materials which retain the property of isotropy for 
incremental plane strain superposed on a state of initial stress. 

We now consider problems of elastic stability for anisotropic media. 
The property of anisotropy referred to here means that (1) the medium 
may be anisotropic in the stress-free state, i.e. it may possess intrinsic 
anisotropy; (2) it may also be isotropic for finite deformations and 
may exhibit an induced anisotropy for incremental deformations in 
the vicinity of a state of initial stress. Problems of stability of 
anisotropic media require an analysis which is more elaborate than 
that for isotropic media considered in Chapter 3, because of the 
appearance in this case of new features related to the phenomenon of 
internal instability. 

The problems treated in this chapter are restricted to incompressible 
materials. This provides drastic simplifications of the algebra 
without altering the essential features of the results. 

In order to familiarize the reader with some significant mechanical 
properties of anisotropic media we shall examine in some detail in 
section 2 an anisotropic laminated medium. In particular, we derive 
the properties of a medium made by the superposition of thin layers 
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of two materials alternately soft and hard. This provides an 
interesting interpretation of the elastic coefficients for anisotropic 
media and particularly for the incremental coefficients in the presence 
of initial stress. 

The important problem of internal instability is treated in section 3. 
There are two physically distinct cases: internal instability of the 
first kind, and internal instability of the second kind. From the 
mathematical viewpoint internal instability is due to the hyperbolic 
or mixed hyperbolic-elliptic nature of the equations for the 
incremental field beyond certain critical values of the initial stress. 

The physical significance of internal instability is brought to light 
by applying the variational principles derived in earlier chapters and 
by analyzing the properties of the incremental strain energy. 

The phenomenon of surface instability for the anisotropic medium 
is analyzed in section 4. A numerical table provides a key solution. 
For an isotropic medium with induced anisotropy this table yields 
immediately the condition for surface instability if the finite 
stress-strain law for the material is known. 

The effect of gravity on the surface instability is also discussed. 
Results for this case are derived quite simply by adding an elastic 
surface force in accordance with the concept of the analog model as 
explained in sections 5 and 8 of Chapter 3. 

As a basis for the solution of a large class of problems, section 5 
derives six distinct matrix coefficients which are fundamental in the 
mechanics of a plate under initial stress. These coefficients provide 
the relations between the surface displacements of the plate and the 
incremental normal and tangential loads applied to these surfaces. 
They constitute the key to the mechanics of plates and multilayered 
media. 

These results are applied in section 6 to the problem of buckling of 
a free and embedded plate with anisotropic properties. The par
ticular case of rubber-like materials is also considered. Numerical 
solutions provide a description of the buckling phenomenon in the 
complete range of wavelength-to-thickness ratios. The range from 
large wavelengths, where Euler's theory is applicable, down to the 
smaller wavelengths, where the phenomenon degenerates into a 
surface instability, is covered. In the case of the embedded layer 
the buckling at small wavelengths degenerates into an interfacial 
instability. 
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The phenomena which emerge from this analysis are in complete 
analogy with those of wave propagation in elastic media. Internal 
instability is analogous to body waves; surface instability and 
interfacial instability are analogous to Rayleigh and Stoneley waves. 

As in the case of wave propagation, a clear understanding of these 
features is necessary before more complex problems of elastic 
stability of heterogeneous systems can be solved. 

An example of more complex stability problems is provided by 
analysis of multilayered media under initial stress in section 7. A 
very concise formulation of the problem is provided by using the six 
basic coefficients for a plate derived in section 5. The problem may 
be formulated by applying a variational principle to a single quadratic 
function of the interfacial displacements. These results lead to 
recurrence equations and a matrix multiplication procedure which are 
well suited for numerical calculations when a large number of layers 
is involved. The buckling problem is also solved for a rubber-like 
medium composed of alternate layers of two materials of different 
rigidity. The solution is remarkably simple. It is verified that, 
when the wavelength is large enough compared to the thickness of 
the layers, the buckling coincides with the phenomenon of internal 
instability of a continuous anisotropic medium derived in section 3. 

2. A LAMINATED MEDIUM AS AN EXAMPLE 

OF ANISOTROPY 

A good illustration of some of the properties of anisotropic media 
is provided by analyzing a laminated medium. Such a medium is 
obtained by superposition of thin adhering layers which are alter
nately hard and soft. The hard and soft materials occupy, respec
tively, fractions (Xl and (X2 of the total thickness. Within certain 
limits such a medium behaves like an elastic continuum with aniso
tropic properties, although the individual layers may be isotropic. 

For simplicity let us assume first that the materials are incom
pressible and free of initial stress. In addition, we shall restrict the 
discussion to plane strain. With the y axis perpendicular to the plane 
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of the lamination, the stress-strain relations of the hard material are 
written 

8 11 - 8 = 2N1 eXX 

8 22 - 8 = 2N1eyy 

812 = 2Q1eXY 

For the soft material we write 

8 11 - 8 = 2N2eXX 

8 22 - 8 = 2N2e yy 

812 = 2Q2exy 

(2.1) 

(2.2) 

When a uniform shear stress 8 12 is applied, the total average shear 
strain is 

(2.3) 

Since (Xl and (X2 represent fractions of the unit thickness of the 
composite medium, we note the property 

(2.4) 

Next we consider a uniform strain without shear. The components 
exx and eyy and the normal stress 8 22 are the same in both media. 
However, the stress component 811 takes values 8iV and 8l1> in the 
hard and soft materials, respectively. Taking into account the 
condition of incompressibility 

(2.5} 

and substracting from each other the first two of equations 2.1 and 
2.2, we find 

8iV - 822 = 4N 1exx 

8i1l - 822 = 4N 2exx 

The total stress 8 11 for the composite material is 

From equations 2.4, 2.6, and 2.7 we derive 

(2.6) 

(2.7) 

(2.8) 
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Relations (2.3) and (2.8) involve the two coefficients 

N = N1rY.1 + N2rY.2 

Ok. 4 

(2.9) 

These expressions yield the two elastic moduli of the laminated 
medium. We may also write 

S11 - 8 22 = 4N exx 

S12 = 2Qexy 

(2.10) 

As already pointed out in section 8 of Chapter 2, if we assume that 
condition (2.5) corresponding to incompressibility is satisfied, then 
equations 2.10 are equivalent to 

8 11 - 8 = 2Nexx 

8 22 - 8 = 2Neyy 

8 12 = 2Qexy 

(2.11) 

If the laminations are comprised of isotropic materials, we write 

N1 = Q1 = 11-1 

N2 = Q2 = 11-2 
(2.12) 

where 11-1 and 11-2 are the characteristic shear moduli of each material. 
The composite moduli become 

1 
Q=--

Using relation (2.4), we derive 

N _ Q = rY.1rY.2(11-1 - 11-2)2 
rY.111-2 + rY.211-1 

Therefore if 11-1 i= 11-2 the coefficients satisfy the inequality 

N>Q 

(2.13) 

(2.14) 

(2.15) 

and the composite medium is anisotropic. An important property 
of the elastic coefficients is brought out by rotating the coordinate 
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axes through an angle of 45 degrees. The new stress components 
are denoted by S~l' S~2' S~2' Applying relations (4.4) of Chapter 1 
(putting a = 1'/4), we find 

(2.16) 

The strain components are interchanged in the same way, as can 
readily be shown by transforming the coordinates in the quadratic 
form of equation 2.3 in Chapter 1. The new strain components are 

(2.17) 

Equations 2.16 and 2.17 are, of course, also a consequence of the 
well-known properties of Mohr's circle. * 

Relations (2.10) are transformed into 

S~l - S~2 = 4Qe~x 
S~2 = 2Ne~y 

(2.18) 

Therefore a rotation of 45 degrees interchanges the elastic coefficients. 
This is illustrated in Figure 2.1. Imagine a pile of cards oriented 

along x (Fig. 2.1a). This medium is easily deformed in shear by 
sliding the cards in a direction parallel to x while it is relatively rigid 
when stretched along the x and y directions. This motion is repre
sented by a coefficient Q which is small in comparison with N. If we 
now orient these cards at an angle of 45 degrees with x (Fig. 2.1b), 
the medium will be easily deformed by stretching in the x and y 
directions since a sliding motion of the cards is involved again. On 
the other hand, the shearing rigidity along x is now high. This 
corresponds to an interchange of coefficients Nand Q . Note that the 
orthotropic symmetry of the medium about the x and y axes is 
retained. 

Until now we have assumed that there is no initial stress. Let us 
now consider a laminated medium under initial stress, with principal 
directions oriented along x and y. Along the laminations the 
principal stresses in the hard and soft materials are designated by Sw. 
* See S. Timoshenko, Theory of Elasticity, p. 17, McGraw-Hill Book Company, Inc., 
New York, 1934. 
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) 

( 

(b) 

Figure 2.1 Illustration of the interchange of normal and shear 
rigidities by a 45-degree rotation of the medium. 

Ck. 4 

and 811), respectively. The average initial stress in the x direction 
is therefore 

811 = 8iVa I + 8i2ia2 (2.19) 

In the y direction normal to the laminations the initial stress com
ponent 8 22 is constant throughout. We may define quantities 

P = 8 22 - 8 11 

PI = 8 22 - 8W 
P2 = 822 - 8i1> 

(2.20) 

In the particular case where 8 22 = 0 these quantities represent com
pressive stresses in a direction parallel to the layers. From equations 
2.4, 2.19, and 2.20 we derive 

(2.21 ) 

In the present case the incremental stress-strain relations under 
initial stress are formally the same as equations 2.1 and 2.2 for the 
medium initially free of stress. In evaluating the composite coeffi
cient N we may follow exactly the procedure used above; then it is 
given by the same expression as the first of equations 2.9. 

(2.22) 
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However, in doing so we must make use implicitly of an important 
property of the incompressible medium, namely, that the strain 
component eyy is the same in both materials .. Hence after deformation 
the hard and soft layers occupy the same fractions a1 and a2 of the 
total thickness. Otherwise equation 2.7 will not remain valid if an 
initial stress is present. 

Evaluation of the composite shear coefficient under initial stress 
requires a modification of the procedure. The reason is that the 
stress component 8 12 is not the same in each layer. We must replace 
8 12 by the tangential stress acting on the surface of a deformed layer. 
This tangential stress as expressed by equation 2.5 of Chapter 3 reads 

(2.23) 

where 

L = Q + tP (2.24) 

The tangential stress t~2 was also analyzed in detail in section 6 of 
Chapter 2, 'Where it is designated by LlXY' It was shown that the 
slide modulus L is given by the expression (2.24), where P = 8 22 -811 , 

Since t~2 is the same throughout the composite medium, the following 
relations are valid in the hard and soft materials, respectively: 

t~2 = 2L1eW 
t~2 = 2L2e~~ 

The slide moduli of these materials are 

Ll = Q1 + tPl 

L2 = Q2 + tP2 

The average shear strain of the laminated medium is 

or 

This defines a composite slide modulus 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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The value of Q for the laminated medium is then given by 

Q = L - tP 

Oh. 4 

(2.30) 

Obvious generalizations of expressions (2.22) and (2.29) for laminated 
media composed of more than two types of materials are 

t 

N = 2 NtfXj 

~=i~ L L j 

(2.31) 

The elastic coefficients of each material are N j and L j , and the layer 
occupies a fraction at of a given thickness. The choice of this 
averaging thickness is left somewhat arbitrary, and it will depend on 
the particular features which are to be emphasized by the smoothing
out process. 

In the more general case of a compressible material we write the 
stress-strain relations in the form of equations 2.5 of Chapter 3. 

tll = G 11 exx + G l2eyy 

t22 = Gl2eXX + G22eyy 

t~2 = 2Lexy 

(2.32) 

The composite slide modulus L is given by the same expression (2.29) 
as before. 

Derivation of the composite coefficients Gjj requires a special 
procedure because the strain component eyy is not the same in each 
layer. However, exx and t22 remain the same in both materials. The 
normal stresses in the hard material are written 

til; = al exx + bleW 

t22 = bleXX + CleW 

For the soft material we write 

ti1' = a2exx + b2e~2J 
t22 = b2eXX + c2e~~ 

(2.33) 

(2.34) 

For convenience the coefficients Gtj of equations 2.32 have been 
written as a, b, c with subscripts 1 and 2 referring to the hard and 
soft materials, respectively. The average strain eyy is 

(2.35) 
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and the average stress is 

(2.36) 

Eliminating the four variables tW., t<B, e~1J, and e~2J from the six 
equations 2.33, 2.34, 2.35, and 2.36, we find two equations of the 
form (2.32) with the composite coefficients 

al a2(bl - b2)2 
alaI + a2a2 - -=--=-=----="-

alc2 + a 2cI 

al bl c 2 + a2b2cI 
al c2 + a2cI 

(2.37) 

The incremental stresses in the laminated medium are obtained by 
inserting these values of the coefficients in equations 2.32. 

The derivation of the coefficients (2.37) is entirely similar to that 
used by Postma* and later by Helbigt in the theory of acoustic 
propagation in a laminated medium which is composed of layers of 
isotropic materials and is initially stress-free. For this case the 
coefficients were originally derived by Bruggemann.t 

Validity of Representation by a Continuous Medium. 
Attention should be called to the limitations of this approximate 
representation of a laminated medium by a continuous medium of 
anisotropic properties. The assumptions required for the averaging 
process to be valid imply that the rigidity contrast of the layers is not 
too large, and that the layer thickness remains sufficiently small with 
respect to the wavelength of the deformation field. The validity of 
the approximation will depend on the type of problem considered 
and will have to be examined for each one. However, where the 
assumption is only partially valid and requires additional refinements, 
it will generally provide useful insight into some of the basic features 
of the problem. 

* G. W. Postma, Wave Propagation in a Stratified Medium, Geophysics, Vol. 20, 
No.4, pp. 780-806, 1955. 
t K. Helbig, Elastische Wellen in anisotropen Medien, Gerlands Beitrage zur Geophysik, 
Vol. 67, pp. 256-288, Leipzig, 1958. 
t D. A. G. Bruggemann, Berechnung der verschiedenen physikalischen Konstanten 
von heterogenen Substanzen (part 3), Die elastische Konstanten der quasiisotropen 
Mischkorper aus isotropen Substanzen, Annalen der Physik, Vol. 29, pp. 160-178, 
1937. 
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3. INTERNAL INSTABILITY 

In this section we consider a type of instability which may occur 
in a medium of infinite extent or in a finite region confined between 
rigid boundaries. The existence of such internal buckling is implicit 
in the theory of acoustic propagation under initial stress derived by 
the author in 1940.* The existence and the nature of this phenom
enon were brought out more clearly in a later detailed analysis and 
discussion. t 

The elastic medium is assumed to be incompressible, homogeneous, 
and of orthotropic symmetry. The coordinate axes are oriented 
along the directions of elastic symmetry. The principal initial 
stresses S11, S22, S33 are also oriented along the same directions. 
Incremental stresses corresponding to plane strain in the x, y plane 
satisfy the equilibrium equations 

OS11 + 0812 _ P ow = 0 
ox oy oy 

0812 + 0822 _ P ow = 0 
ox oy ox 

(3.1) 

where 
(3.2) 

These equations are derived by putting 8 12 = 0 in equations 6.17 of 
Chapter 1. The stress-strain relations are 

811 - 8 = 2Nexx 

822 - 8 = 2Neyy (3.3) 

8 12 = 2QeXY 

To these equations we must add the condition of incompressibility 

exx + eyy = 0 (3.4) 

These equations were derived and discussed in section 8 of Chapter 2. 
Equation 3.4 is satisfied by writing the displacement as 

o~ u =--oy 
v = o~ (3.5) oX 

where ~ is a function of x and y. 

* See reference 7 in the Preface. 
t M. A. Biot, Internal Buckling under Initial Stress in Finite Elasticity, Proceeding8 
of the Royal Society, A, Vol. 273, pp. 306-328, 1963. 
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Expressing the strain components in terms of 4> and substituting 
the values (3.3) of the stresses into the equilibrium conditions (3.1), 
we obtain 

08 0 [( P) 0
2

4> ( P) 024>J --- 2N-Q+- -+ Q+- - =0 
ox oy 2 ox2 2 oy2 

08 0 [( P) 0
2

4> ( P) 024>J -+- 2N-Q- -+ Q-- - =0 
oy ox 2 oy2 2 ox2 

(3.6) 

Elimination of 8 in these two equations leads to a single equation for 4>, 

( P) 0
4

4> 0
4

4> ( P) 0
4

4> 
Q - 2' ox4 + 2(2N - Q) "ox2 oy2 + Q + 2" oy4 = 0 (3.7) 

For an isotropic medium (N = Q) free of initial stress (P = 0) we 
obtain the well-known biharmonic equation 

(3.8) 

The occurrence of internal buckling is closely related to the existence 
of hyperbolic solutions of equation 3.7. Let us put 

4> = cp(x - gy) 

Substitution in equation 3.7 yields 

with 
g4 + 2me + k2 = 0 

2N - Q 
m = Q + iP 

k2 = Q - iP 
Q + iP 

The roots e of equation 3.10 are 

g1
2 = -m + Vm2 

- k2 

g22 = -m - Vm2 - k2 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

A solution ofthe hyperbolic type (3.9) is possible if there exists a real 
root g; that is, if either g12 or g22 or both are positive. This occurs in 
the following cases: 

Case 1. m > 0, k2 < o. The root g12 is positive and gl is real. 
Case 2. m < 0, m2 > k2 > O. Both g12 and g22 are positive. 

Hence gl and g2 are real. 
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These two cases correspond to two types of phenomena. We shall 
call them instability of the first and second kind. In the discussion it 
is advantageous to use the coefficients 

L = Q + lP 
M = N + lP 

(3.13) 

The significance of the slide modulus L and the coefficient M has 
been discussed previously (sections 6 and 10 of Chapter 2 and section 
4 of Chapter 3). With these coefficients we write 

2M - L 
m= L 

p=L-P 
L 

and the characteristic equation 3.10 becomes 

Lg4 + 2(2M - L)e + L - P = 0 

(3.14) 

(3.15) 

The two cases of instability are then determined by the equivalent 
conditions discussed hereafter. 

It should be noted that there is a third case, m < 0, k2 < 0, for 
which the root gl is real. By definition we shall also consider this 
case to represent an internal instability of the first kind because 
there is only one real root. However, physically the phenomenon 
will be overshadowed by case 2 which will generally occur first as an 
incipient instability of the second kind. We shall therefore omit 
this third case in the present discussion. 

Internal Instability of the First Kind. This type of instability 
occurs for 

m> 0 p < 0 (3.16) 

(For the reason stated above we exclude the case m < 0, P < 0.) 
In terms of the coefficients Land M the condition for instability of 
the first kind is written 

2M> L (3.17) 

Let us denote by gl the positive value of the root g. With positive 
determination for the radicals its value is 

gl = J -m + vm2 - k2 (3.18) 
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The two real roots are then ± ~1' Note that the two other roots ± ~2 
are pure imaginary. We may write a general solution of equation 
3.7 in the form 

rp = CPl(X - ~lY) + CP2(X + ~lY) 
+ CPa (x - ~2Y) + CPa(x + ~2Y) (3.19) 

where CPa is an analytic function of the complex argument. Such a 
solution is of the mixed elliptic-hyperbolic type. 

Another physical interpretation of this case is obtained by 
considering a particular type of solution: 

rp = - iO[ cos l(x - ~Y) + cos l(x + ~Y)] 
or 

rp = -0 cos 1x cos ~ly 

with an arbitrary constant O. For 

~ = ~1 

(3.20) 

(3.21) 

(3.22) 

this expression is a solution of equation 3.7. Another way of stating 
this is to substitute solution (3.21) into equation 3.7. This yields 
the characteristic equation (3.15). It may be written in the form 

p = L~4 + 2(2M - L)e + L (3.23) 

When this equation is satisfied, a solution rp exists with an arbitrary 
amplitude factor O. In the discussion which follows we shall denote 
by ~ a positive real variable. Hence, if it satisfies equation 3.23, it 
is identical with the positive root ~1' 

The displacements corresponding to solution (3.21) are 

U = - :~ = -Ol~ cos 1x sin l~y 

v = ~~ = 01 sin 1x cos ~ly 
(3.24) 

They result from an interference pattern of sinusoidal solutions along 
the two characteristic directions. This pattern is formally analogous 
to a pattern of standing acoustic waves in a rectangular domain. 
The wavelengths along these two coordinate axes are 

2 = 21T 
x 1 

21T 
2y = zg 

(3.25) 
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Figure 3.1 Diagram for internal instability of the first kind. 
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Hence the parameter g may also be interpreted as the ratio of these 
two wavelengths: 

g = !£'x 
!£'y 

(3.26) 

In the general case the coefficients Land M are functions of the 
initial stress P. Hence the characteristic equation 3.23 is really an 

Figure 3.2 Metastableconfiguration with nz = 1, ny = 1. 

implicit relation between g and P. In order to simplify the discus
sion let us assume for the time being that the coefficients Land M 
are independent of P. Then equation 3.23 and the inequalities 
(3.17) show that P is an increasing function of g. This is illustrated 
schematically in Figure 3.1. 
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Consider now a medium confined rigidly and without friction 
between rectangular boundaries of sides hx and hy (Fig. 3.2). The 
solution (3.21) fits these boundaries provided that we put 

where nx and ny are integers. The value of g may be written 

g = nyhx 
nxhy 

(3.27) 

(3.28) 

The normal displacements of the solution (3.24), as well as the 
tangential stress, vanish at the boundaries. This corresponds to 
rigid and perfectly lubricated boundaries. 

Let us choose two particular integers, 

(3.29) 

The value of g is then 

go = Nyhx 
NXhy 

(3.30) 

From the diagram of Figure 3.1 we derive the stress Po for which 
the solution (3.24) is possible. It represents an internal buckling of a 
rigidly confined medium. The displacement field of arbitrary ampli
tude is an equilibrium configuration under the initial stress Po. 
However, it is a metastable solution. This is readily seen by choosing 
values of nx and ny such that 

(3.31) 

There are an infinite number of solutions which satisfy this inequality, 
all of them corresponding to values of P smaller than Po. Hence in 
the range of values 

(3.32) 

there are an infinite number of configurations which are hyper
critically unstable under the initial compression Po. Three of these 
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Figure 3.3 Metastable configuration with nx = 5, ny ,= 1. 
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configurations are illustrated in Figures 3.2, 3.3, and 3.4. They 
correspond to 

nx = I ny = I 

nx = 5 ny = I (3.33) 

nx = 5 ny = 2 

Of all these possible modes of internal buckling under compression 
Po, which one is the most unstable1 As shown by the diagram of 

Phy Phy 
_.~--------------------------m~ 

Figure 3.4 Metastable configuration with nx = 5, ny = 2. 

Figure 3.1, the most unstable mode corresponds to a vanishingly 
small value of g, because at g = 0 the difference between the critical 
load P = L and the actual compression Po is maximum. This 
corresponds to the configuration 

(3.34) 

It has a vanishing wavelength. Therefore, theoretically, such a 
m.ode of vanishing wavelength will appear as soon as the compression 
P reaches the value L. 
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This conclusion may seem paradoxical, but there are inherent 
limitations in the validity of the theory for very small wavelengths. 
It is, of course, not valid in the atomic scale. Then non-linearity 
also enters into play. The result therefore indicates that the buckling 
wavelength will tend to be the smallest compatible with the 
small-scale physics of the medium. 

The last remark is of particular significance when the theory is applied to a 
thinly laminated medium. The results indicate that the buckling tends to 
occur with the shortest possible wavelength compatible with the small scale 
geometry of the layers and their rigidity contrast. The buckling wavelength 
is then governed by additional factors such as the layer thickness, which 
cause a departure from the behavior of the continuous model derived in 
section 2. An evaluation of this effect in the absence of any confinement 
(hy = co) is given in the last part of this chapter (see Fig. 7.5). The continuous 
model is useful because it provides a foundation for more elaborate theories 
and brings out some of the most significant features. An exact solution may, 
of course, be obtained by applying the general theory of stability of section 7 
for multilayered media. The problem has been further investigated in a 
recent paper by the author as mentioned at the end of section 6 in Chapter 6. 

The general conclusions of the theory remain valid when the 
coefficients L(P) and M(P) are functions of P. Starting from 
P = 0, if we increase the compression gradually there comes a 
moment when P = L(P). At this point internal instability makes 
its appearance. 

A characteristic property of internal instability is brought out by 
considering a medium which is isotropic in finite strain. For this 
case the coefficient Q is determined by equation 7.15 of Chapter 
2. Its value is 

(3.35) 

where '\1 and '\2 are the extension ratios of the finite initial strain in 
the x and y directions. Hence 

(3.36) 

This expression shows that it is not possible in this case to satisfy 
the condition 

P~L (3.37) 
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Figure 3.5 Diagram for internal instability of the second kind. 

Hence internal instability of the first kind is not possible in a medium 
which is isotropic for finite deformations. 

We now analyze the second case of internal instability. 

Internal Instability of the Second Kind. This case occurs 
when 

m < 0 (3.38) 

These conditions may be written in the equivalent form 

2M < L 
4M 

L> P > L (L - M~ (3.39) 

If the coefficients M and L are constant, the value of P as a function 
of g is given by equation 3.23. The plot is shown schematically in 
Figure 3.5. Because 2M - L < 0, the value of P goes through a 
minimum. This minimum value is 

4M 
P min = L (L - M) 

and the corresponding abscissa gd is 

gd = JL -L2M 

If P > P min' there is a region of instability in the range 

g2 < g < gl 
as indicated in the diagram of Figure 3.5. 

(3.40) 

(3.41) 

(3.42) 
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Incipient instability occurs for 

P = Pmin (3.43) 

and the corresponding slope of the two characteristic directions is 
given by 

(3.44) 

At this point the characteristic equation (3.23) has a double root. 
Hence incipient instability is determined by the equation 

or 

m 2 - P = 0 

P = 4M (L _ M) 
L 

In terms of the coefficients Nand Q this equation is written 

4N(N - Q) + iP2 = 0 

(3.45) 

(3.46) 

(3.4 7) 

In order to illustrate the significance of this result let us consider the 
particular case 

M= 0 (3.48) 

Here 

P min = 0 (3.49) 

Instability occurs as soon as a small compression is applied and the 
characteristic directions are oriented at an angle of 45 degrees with 
the direction of P. A medium with these properties is exemplified 
by a stack of thin layers, as studied in section 2. The layers are 
oriented at an angle of 45 degrees with the x direction and slide easily 
over each other. As shown in Figure 3.6a a direction of slip under 
the compression obviously exists along the directions of the layers. 
The other direction of slip is perpendicular to the layers as shown in 
Figure 3.6b; it will occur if the layers have "perfect flexibility." 
This type of instability is obviously closely related to the phenomenon 
of "shear failure" and the appearance of "slip lines" in plasticity. 
Application of the theory to plasticity will be discussed in section 6 
of Chapter 6. 

It should be noted that P is defined by equation 3.2 as the difference 
of the principal-stresses and may represent a tension in the y direction 
as well as a compression along x. 
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If the coefficients Land M are functions of P, condition (3.47) for 
incipient instability remains valid, but it is now an intrinsic equation 
for P. An example of such a case is a medium which is isotropic in 
finite strain. Assume the value of P to be 

1 ,V 
P = 2fLo 1 + ,\,4 (3.50) 

where .\ is the extension ratio in the direction of P and in finite plane 

(a) (b) 

Figure 3.6 Illustration of internal instability of the second kind. 

strain. Applying equations 8.38 and 8.39 of Chapter 2, we find the 
coefficients 

4.\4 
N = (,V + I? fLo (3.51) 

Q = fLo 

The finite stress-strain relation (3.50) is shown schematically in 
Figure 3.7. The incipient buckling condition (3.47) becomes 

1 
.\2 + .\2 = 4 (3.52) 
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One root 

Al = J 2 + Va = 1. 93 

corresponds to an extension. The other 

1 
A2 = Al = 0.517 

203 

(3.53) 

(3.54) 

corresponds to a compression. These two roots represent the same 
phenomenon, and they correspond to an interchange of the x and y 
directions. Because of isotropy the compression P may be applied 

P 
2J.1O 

+1 

O-r------~~-----------

-1 

Figure 3.7 Finite stress-strain relation (3.50). 

in the direction of x or y. The inclination of the characteristics is 
obtained by noting that gd = ± A. Their direction lies at an angle 
of about 27 degrees with the extension axis. 

Variational Analysis of Internal Instability. A variational 
formulation of this phenomenon is particularly illuminating and 
brings out more clearly the physical mechanism involved. This is 
readily accomplished by applying expression (4.23) of Chapter 3, 
namely, 

(3.55) 

When 8 22 = 0 the initial stress is reduced to a uniaxial compression 
P, and this expression of LI V represents the incremental strain energy 
per unit area inside the rectangular contour of Figures 3.2, 3.3, and 
3.4. 
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However, we may use equation 3.55 for the more general case, 
where P denotes the stress difference (3.2), in order to evaluate the 
total incremental potential energy of the elastic medium inside the 
contour. This can be seen by going back to the discussion of section 
4 in Chapter 3. The rigid frictionless and rectangular boundaries 
illustrated in Figure 4.1 of that chapter provide exactly the same 
boundary condition as that in the present discussion of internal 
instability. It was shown that in that case the total incremental 
strain energy potential f?lJ is obtained by substituting the stress 
difference (3.2) for the value of P and integrating expression (3.55) 
for L1 V over the rectangular area. This integral is 

J
hY/2 Jhz/2 

f?lJ = dy L1 V dx 
-hy /2 -hz /2 

(3.56) 

Substituting the sinusoidal displacement fields (3.24) into L1 V, we 
derive 

(3.57) 

By putting f?lJ = 0 we obtain the characteristic equation (3.23) for 
internal buckling. The incremental potential energy f?lJ is negative 
when 

(3.58) 

When this inequality is satisfied, more strain energy is available in 
the uniform initial compression than is required to initiate an internal 
mode of buckling. This is the explanation for the occurrence of 
internal instability. 

4. SURFACE INSTABILITY OF THE 
ANISOTROPIC HALF-SPACE 

As in the preceding section, the medium is assumed to be incom
pressible and homogeneous of orthotropic symmetry. The coordinate 
axes are directed along the planes of symmetry. The solid occupies 
the region y < 0 and has a free surface at y = 0 (Fig. 4.1). The 
finite initial strain is homogeneous, and the initial streAS in the x, y 
plane is represented by the constant values 

8 11 = -P 
(4.1) 
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This corresponds to a uniform compression P in the direction parallel 
to the free surface. We shall investigate the stability of this free 
surface in the state of initial stress. A stress 8 33 may act in a 
direction perpendicular to the x, y plane, but it does not appear 
explicitly in the theory. The material presented in this section was 
originally developed in a recent paper by the author. * 

Figure 4.1 Anisotropic half-space under initial compressive stress P. 

The equations to be solved are the same as in the previous section. 
There are two unknowns 8 and ~ which must satisfy equations 3.6. 
Hence 

08 0 [( P) fj2~ ( P) 02~] --- 2N-Q+- -+ Q+- - =0 ox oy 2 ox2 2 oy2 
(4.2) 

08 + ~ [(2N _ Q _ P) 02~ + (Q _ P) 02~] = 0 
oy ox 2 oy2 2 ox2 

Elimination of 8 yields equation 3.7. With the use of coefficients 
(3.11) it is written 

(4.3) 

* M. A. Biot, Surface Instability in Finite Anisotropic Elasticity under Initial Stress, 
Proceedings of the Royal Society, A, Vol. 273, pp. 329-339, 1963. 
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We shall use a solution of the type 

4>P = f(ly) sin lx 

s = F(ly) cos lx 

Oh. 4 

(4.4) 

Substitution of 4> into equation 4.3 leads to the ordinary differential 
equation 

1"" - 2m!" + Pf = 0 (4.5) 

The primes denote differentiation with respect to the argument ly. 
Substitution of sand 4> into equations 4.2 yields F in terms of f. 

F(ly) = (2N - Q + ~) I' - (Q + ~) f'" (4.6) 

All other variables may now be expressed by 
displacement field is 

means of f. The 

U = - 04> = - ~ I' sin lx oy 1 

v = 04> = ~ f cos lx ox 1 

(4.7) 

Similarly, from equations 3.3, the stresses are also expressed in 
terms of f. 

Actually in order to introduce the surface boundary condition we 
need to evaluate the forces acting on a deformed boundary. Con
sider the half-space lying below the plane AB of ordinate y (Fig. 4.2a). 
Before deformation the plane AB is free of stress since the initial 
stress P is parallel to the x direction. After deformation the surface 
AB is deformed into a corrugated shape with sinusoidal amplitude 
and forces are acting on this surface (Fig. 4.2b). The x and y com
ponents of these forces per unit initial area are given by equations 
-6.27 of Chapter l. They are 

LJfx = S12 + PeXY 

LJfy = S22 

We may express these quantities by means of f and write 

~ LJfx = - (f + !") sin lx 

1 L LJfy = [(2m + 1)1' - !"'] cos lx 

(4.8) 

(4.9) 
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x 

Figure 4.2 Forces acting internally on a deformed surface 
AB of the medium. 

Let us represent the displacements as 

and the forces (4.8) by 

u = U(ly) sin lx 

v = V(ly) cos lx 

t1fx = -r(ly) sin lx 

t1fy = q(ly) cos lx 

207 

(4.10) 

(4.11) 

Comparing equations 4.10 and 4.11 with equations 4.7 and 4.9, we 
derive 

and 

lU(ly) = -1' 
lV(ly) = f 

2. -r(ly) = - f - 1" 
L 

1 
- q(ly) = (2m + 1)1' - 1'" 
L 

(4.12) 

(4.13) 

Using these general results, we shall first solve the problem of finding 
the surface deformation of the half-space under normal and tangential 
forces applied to the surface. Let us go back to the differential 
equation 4.5. Its solutions are of the type f= exp (fJly) where fJ 
satisfies the characteristic equation 

(4.14) 
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With g = if3, this is identical with equation 3.10 used in the discussion 
of internal instability. The general solution of equation 4.5 is 

4 

f = 2: 0ie13I !Y 
i=l 

where f3i are the four roots of equation 4.14. 

( 4.15) 

In order to solve the problem of the half-space we must take into 
account the boundary conditions. Since we are interested in the 
surface instability, we must consider only the solutions which vanish 
at y = - 00. Such solutions will decay exponentially with depth. 
In order to satisfy the boundary condition at the surface (y = 0) 
there must be two independent solutions of this type. Therefore we 
must exclude all cases where at least one of the roots f3i is pure 
imaginary. There are two such cases to be excluded, namely, 

Case 1: m > 0 with k2 < 0 

Case 2: m < 0 with m 2 - k 2 > 0 
(4.16) 

From results obtained in the preceding section it can be seen that 
these two cases entail precisely the conditions required for the occur
rence of internal instability. If we restrict ourselves to pure surface 
instability, the parameters must lie outside the range of internal 
instability. Therefore we must assume the conditions 

m > 0 with k2 > 0 

or 

m < 0 with m 2 
- k 2 < 0 

This is equivalent to either of the following conditions. 

2M > L with P < L 
or 

2M < L with P < 4: (L - M) 

( 4.17) 

(4.18) 

Under these conditions the roots f3i of equation 4.14 are either real or 
complex conjugates. Their real part is different from zero, and it is 
always possible to choose two roots so that their real part is positive. 
We designate these two roots by 

f31 = Jm + Vm2 - k2 
(4.19) 
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The solution (4.15) becomes 

f = 01efJllY + 02efJ2ly (4.20) 

The next step is to introduce the boundary condition at the surface. 
The values of the displacements and forces at the surface are denoted 
by 

U(O) = U 

V(O) = V 

T(O) = T 

q(O) = q 
(4.21) 

Substituting solution (4.20) into equations 4.12 and 4.13 and putting 
y = 0, we derive 

and 
T 

L 

lU = -Od]1 - 02f32 

lV = 01 + O2 

~ = 01f31(1 + (322) + 02f32(1 + (31 2) 

In deriving the last equation account is taken of the relation 

2m = f312 + f322 

(4.22) 

( 4.23) 

( 4.24) 

Solving equations 4.22 for 01 and O2 and substituting these values 
into equations 4.23, we derive 

T 
lL = (f31 + (32) U + (f31f32 - 1) V 

( 4.25) 
q 

lL = (f31f32 - 1) U + f31f32(f31 + (32) V 

We may express the product f31f32 and the sum f31 + f32 in terms of 
m and k. Properties of the roots ofthe characteristic equation (4.14) 
produce the relations 

f312f322 = P 

f31 2 + f322 = 2m 

In the absence of internal instability, P is positive. 
therefore write the real quantity 

= JQ - lP = JL - P 
k Q + lP L 

( 4.26) 

We may 

(4.27) 
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and choose for k the positive value of the square root. The roots f31 
and f32 have been selected in such a way that they are either real and 
positive or complex conjugate with a positive real part. Hence 
without ambiguity in sign the first of equations 4.26 becomes 

(4.28) 

This resuit combined with the second of equations 4.26 leads to 

(4.29) 

Since k2 > 0 and m2 
- P < 0, we conclude that Iml < k. There

fore m + k is positive. Since f31 + f32 is also positive, we may write 

( 4.30) 

where the square root is chosen as a positive quantity. 
Substituting from relations (4.28) and (4.30) into equations 4.25, 

we obtain 

~L = V2(m + k) U + (k - 1) V 

/i = (k - I)U + kv'2(m + k) V 

(4.31) 

These equations yield the normal and tangential displacements of the 
surface under the action of arbitrary surface forces. 

Consider first the case when there is no initial stress, i.e., P = o. 
Here 

k = 1 L=Q 
2N 

m+k=7[ 

and equations 4.31 become 

T = 2lv'NQ U 

q = 2lVNQ V 

(4.32) 

(4.33) 

and there is no coupling between normal and tangential displacements. 
Moreover for an isotropic medium where 

p.=N=Q (4.34) 

we find 

T = 2lp.U 
(4.35) 

q = 2lp. V 
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This result shows that the surface of the anisotropic half-space free 
of initial stress behaves as if it were isotropic with an effective 
modulus 

(4.36) 

In the presence of initial stress this is no longer true and the two 
displacements must then be derived by equations 4.31, which contain 
a coupling term. 

Instability of the free surface will arise when a non-vanishing 
solution of equations 4.31 exists for 

q=r=O ( 4.37) 

Hence the characteristic equation for surface instability is obtained 
by putting equal to zero the determinant of equations 4.31. This 
yields 

or 

By putting 

I 
V2(m + k) k - 1 I = 0 

k - 1 kV 2(m + k) 

p ,= -2Q 

2k(m + 1) + k2 - 1 = 0 

)
1 - , 

k= --
1+' 

m= 
2(N/Q) - 1 

1 + , 

equation 4.39 takes the form 

(4.38) 

( 4.39) 

(4.40) 

( 4.41) 

The numerical relations between N /Q and , required for surface 
instability are shown in Table 1. The roots f11 and f12 of the unstable 
solution may be either real or complex. They will be complex if 

( 4.42) 
or 

( 4.43) 

When combined with equation 4.41, this inequality shows that the 
roots will be complex in the range 

N o < Q < 0.8 
( 4.44) 

o < , < 0.8 
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Table 1 

Critical value of ~ = P/(2Q) 
for surface instability accord-
ing to equation 4.41 

N/Q ~ 

0 0 
0.20 0.02 
0.40 0.10 
0.60 0.30 
0.70 0.48 
0.80 0.80 
1.00 0.84 
1.51 0.90 
2.45 0.95 
4.37 0.98 
6.50 0.99 

00 1.00 

In this range the solution is oscillatory with an exponential decay of 
amplitude with depth. In the limiting case, where N/Q = ~ = 0.8, 
the roots f31 and f32 are equal and real. 

How to determine the finite strain for which surface instability 
occurs is illustrated by an example of an incompressible medium 
isotropic in finite strain. We assume a finite plane strain of extension 
ratio A. The compression P and the incremental elastic coefficients 
are expressed by equations 8.35, 8.38, and 8.39 of Chapter 2. 

P = -811 = - F(A) 

N A dF,\4 - 1 
Q = 2F d'\ ,\4 + 1 

1 _ ,\4 

~ = 1 + ,\4 

( 4.45) 

We plot a curve of ordinate N/Q and abscissa ~ as a parametric 
function of A. It intersects the curve represented in Table 1 at a 
point corresponding to surface instability. This case will be 
discussed further in the last paragraph of this section. 

The isotropic case N = Q was analyzed in Chapter 3. Putting N/Q = 1 
in equation 4.41 yields after rationalization 

~3 + 2~2 - 2 = 0 (4.45a) 
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This equation has the real root' = 0.84. It is identical with equation 6.20 
of Chapter 3. An alternative form of the characteristic equation for this case 
is obtained by putting m = 1/(1 + ') into equation 4.39, which becomes 

k(2 + ') - , = 0 

Multiplying by (1 - k), we derive 

(4.45b) 

(1 + ')2k - 1 = 0 (4.45c) 

which is the same as equation 6.19 of Chapter 3. Note that the roots f31 and 
f32 for this case become 

(4.45d) 

Deflection under Surface Loads and Gravity Forces. Let us 
derive the surface deflection V under the action of a normal load, 
while the half-space is initially stressed by a horizontal compression 
P parallel to the surface. The tangential force is assumed to be 
zero; hence we must solve equations 4.31 after putting T = O. We 
obtain 

with 

V = q 
2lcpVNQ 

2k(m + 1) + k2 - 1 

V2(m + k) 

(4.46) 

(4.47) 

In the absence of initial stress we find cp = 1, and the deflection is 
the same as that given by equations 4.33 for the initially stress-free 
medium. The effect of the initial stress is represented by an ampli
fication factor IJcp. When instability is reached, we see from equation 
4.39 that cp = 0 and the surface deflection V becomes infinite. We 
note that the amplification factor is independent of the wavelength. 
Using a Fourier representation of the surface load distribution, we 
conclude that the shape of the surface deflection is the same as for a 
medium initially stress-free and isotropic. Only the magnitude of 
the deflection is affected by the initial stress. 

Again we examine the isotropic case N = Q, for which m = 1/(1 + ') and 
equation 4.47 becomes 

(4.47a) 
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We also verify the identity 

(4.47b) 

by squaring both sides of the equation. Substituting expression (4.4 7b) into 
equation 4.47a and multiplying numerator and denominator by 1 - k, we 
obtain 

1 
rp= ~ [k(1 + ~)2 - 1] (4.47c) 

This is the value of rp which was previously derived for an isotropic medium. 
It coincides with equation 6.34 of Chapter 3. 

Additional significant features are brought into this problem by 
introducing gravity forces. We assume the half-space to lie below 
a horizontal surface, under the action of a uniform gravity field of 
acceleration (J. The medium is of uniform mass density p. As 
already shown in section 8 of Chapter 3, the problem is readily solved 
by using the solution for the gravity-free problem and adding vertical 
forces at the surfaces proportional to the normal displacements. In 
the present case this amounts to replacing q by q - p(J V in equation 
4.46, 

Solving for V yields 

q - pgV 

V = 2lrpVNQ 

V - q 
- 2lrpv NQ + p(J 

Instability of the surface will occur when 

2lrpYNQ + p(J = 0 

(4.48) 

(4.49) 

(4.50) 

This requires that rp be negative. Since rp = 0 corresponds to 
instability when gravity is absent, the presence of gravity increases 
the critical value of the initial compression. As expected, gravity 
has a stabilizing effect. 

When the initial stress is such that rp = 0, the surface deflection 
becomes 

q 
V=-

p(J 
(4.51) 

This shows that the apparent elastic rigidity of the solid vanishes at 
this point and the surface behaves like a fluid of the same density as 
the solid. The load applied to the surface will be supported entirely 
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by the buoyancy of the medium as if it were floating. We must 
assume, of course, that the deformation of the surface is of sufficiently 
gentle slope that the linearized theory remains applicable. 

Another interesting feature of the instability is the dependence of 
equation 4.50 on the wavelength. Suppose the initial stress P is 
higher than the value Po required for instability in the gravity-free 
case. Then cp is negative and we write 

, 
cp = -cp 

For small values of l, hence for large wavelengths, the left side of 
equation 4.50 is positive and the surface is stable. Consider the 
wavelength !l' for which equation 4.50 is satisfied 

!l' = 27T = 47TCP'VNQ 
l pg 

(4.52) 

For all wavelengths larger than this value the surface is stable. On 
the other hand, for a given initial compression P > Po the surface is 
unstable in the range of wavelengths between zero and a cut-off 
value given by equation 4.52. This cut-off wavelength depends on 
the magnitude of the initial stress. 

Simplified Criterion fOJ,' Surface Instability in the Case of 
Finite Isotropy. Equation 4.41 for surface instability is applicable 
to an incompressible medium which is isotropic in finite strain. This 
has already been pointed out for the case where the initial deforma
tion is a state of plane strain. For this condition the values of N/Q 
and, are given by equations 4.45. It is of interest to point out that 
for a medium of finite isotropy the stability criterion (4.41) may be 
expressed in a simpler form which is applicable to the general case of 
triaxial initial strain. We choose the x, z axes to be parallel to the 
surface of the half-space. Stresses 8 11 = - P and 8 33 are applied, 
respectively, in the x and z directions, and the corresponding exten
sion ratios are denoted by Al and A3 . No stress is applied in the y 
direction, which is normal to the surface. In this direction the 
extension ratio A2 is determined by the condition of incompressibility; 
hence 

(4.53) 
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For finite isotropy the value of Q is given by equation 3.35 in terms 
of the extension ratios Al and A2 • Hence we may write 

P A22 - Al2 
, = 2Q = A22 + Al2 (4.54) 

With this value of " equation 4.41 becomes 

4N = P G: - 1) (4.55) 

We may introduce explicitly the finite stress-strain relation by writing 

We consider Sl1 to be a function of Al and A3 • The coefficient N is 
given by 

4N = Al OSl1 (4.57) 
OAI 

The derivation of this expression is the same as for equation 8.38 of 
Chapter 2. With this value of N, equation 4.55 becomes 

A OSl1 = (1 _ A2) S 
I OAI Al 11 

(4.58) 

This form of the stability criterion brings in explicitly the finite 
stress-strain law Sl1(AI , A3 ) plotted for A3 = const. and the "tangent 
modulus" represented by the slope OSl1/0AI' 

Another form of the stability criterion (4.55) is 

where 

4M = P A2 
Al 

M = N + lP 

(4.59) 

(4.60) 

is an elastic coefficient previously discussed and defined by equation 
4.24 of Chapter 3. 

5. GENERAL EQUATIONS FOR A PLATE 
UNDER INITIAL STRESS 

In this section we develop the plane strain analysis for a plate of 
uniform thickness h subject to a compression P parallel to the plane 
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faces (Fig. 5.1). The deformation is in the x, y plane, with the initial 
stress acting in the x direction and the boundaries located at y = ± h/2. 

The elastic medium is incompressible and orthotropic with axes of 
elastic symmetry along x and y. It obeys the stress-strain relations 
(3.3). 

y 

p y =h/2 

y =-h/2 

Figure 5.1 Single plate under an initial compression P viewed 
across the thickness h. 

x 

We shall evaluate the forces which must be applied to the 
boundaries in order to produce two types of deformations. One 
type, represented in Figure 5.2a, is antisymmetric and corresponds 
to a bending. The other, represented in Figure 5.2b, is symmetric. 
In each case we shall consider that the deformation is sinusoidal in 
the x direction. The material presented in this section is taken from 
a recent paper by the author. * 

Displacements and incremental forces associated with these two 
types of deformation are easily derived by applying equations 4.12 
and 4.13. The displacements are given by 

lU(ly) = -I' 
lV(ly) = f 

and the incremental forces by 

1 
- r(ly) = -f - /" 
L 

~ q(ly) (2m + 1)1' - /'" 

(5.1) 

(5.2) 

* M. A. Biot, Theory of Stability of Multilayered Continua in Finite Anisotropic 
Elasticity, Journal oj the Franklin Institute, Vol. 276, No.2, pp. 128.153, 1963. 
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(a) x 

x 

Figure 5.2 Antisymmetric (a) and symmetric 
(b) deformation of a plate. 

The function f is the general solution (4.15) 

4 

f = .L Oje(JjlY 

j=l 

Ok. 4 

(5.3) 

We shall assume that the initial stress lies outside the range of 
internal instability. Then, as shown in the preceding section, if 
internal instability is excluded, the roots fJj of the characteristic 
equation (4.5) are either real or complex conjugates and are given by 
equations 4.19. 

The solution f corresponding to the antisymmetric deformation of 
Figure 5.2a is 

(5.4) 

When fJ1 and fJ2 are real, we choose their positive value. When they 
are complex conjugate, we choose values with positive real parts and 
also complex conjugate values for the constants 0 1 and O2 , We put 

U(llh) = Ua 

V(llh) = Va 

T(llh) = Ta 

q(llh) = qa 

(5.5) 
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These are the displacements and incremental forces at the top 
surface Y = ih. At the bottom surface Y = -ih they are 

U(-ilh) = -Ua 
V ( - ilh) =7 Va 

T( -ilh) = T a 

q(-ilh) = -qa 

(5.6) 

Attention should be called to the significance of T and q at the lower 
boundary. According to expression (4.11) and Figure 4.2, they 
represent forces acting on the medium lying below the boundary. 
Hence they must be changed in sign in order to represent forces 
acting on the plate at the bottom surface. 

We substitute the value (5.4) of f into equations 5.1 and 5.2 and 
put y = ih. This yields the values (5.5) of Ua, Va' T a, and qa in 
terms of the two unknown constants 0 1 and O2 , Elimination of 
these two constants from the four equations 5.5 yields 

;L = all U a + a l2 Va 

iL = a l2 Ua + a 22 Va 

(5.7) 

In the evaluation of the coefficients we use the value of m given by 
equation 4.24. The coefficients of equations 5.7 are 

with 

The parameter 

a 
_ fJl

2 
- fJ2

2 

11-
Zl - Z2 

fJl
2

Z2- fJ2 2zl 
a l2 = - 1 

Zl - Z2 

Zl = fJl tanh fJlY 

Z2 = fJ2 tanh fJ2Y 

Y = ilh 

(5.8) 

(5.9) 

(5.10) 

(introduced in section 7 of Chapter 3) plays an important role in the 
applications. Its value in terms of the wavelength !l' of the 
deformation is 

(5.11) 
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The same analysis can be carried out for the symmetric deformation 
in Figure 5.2b. In this case we choose for f the value 

f = 0 1 sinh f31 ly + O2 sinh f32 ly 

We write the displacements and forces at the upper face as 

U(ilh) = Us 

V(ilh) = Vs 

T(ilh) = Ts 

q(ilh) = qs 

At the bottom face they are 

U( -ilh) = Us 

V(-ilh) = -Vs 

T( -ilh) = - Ts 
q( -ilh) = qs 

Proceeding as above, we find 

l1 = bll Us + b12 Vs 

b - f3 2f3 2 ZI - Z2 
12 - 1 2 f3 2Z f3 2Z 1 2 - 2 1 

f31
2

f32
2 

b22 = bll --
Z1Z2 

1 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16 ) 

General plane strain deformation is easily obtained by superposition 
of the symmetric and antisymmetric solutions. We denote by T1> ql' 

U1 , VI the forces and displacements at the upper face of the plate, 
and by T2' q2' U 2, V 2 the values of the same quantities at the lower 
face (Fig. 5.3). Adding equations 5.5 and 5.13, we may write the 
values at the top side 

U 1 = Ua + Us 

VI = Va + Vs 
( 5.17) 
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Similarly adding equations 5.6 and 5.14, we obtain 

We derive 

Ua = 1(U1 - U2 ) 

Va = 1(V1 + V2 ) 

U2 = - Ua + Us 

V2 = Va - Vs 

Us = 1(U1 + U2 ) 

Vs = 1(V1 - V2 ) 

221 

(5.18) 

(5.19) 

These displacements are substituted into equations 5.7 and 5.15, and 

Figure 5.3 Forces and displacements at the top and bottom 
faces of a plate in the general case. 

the resulting expressions for T a' qa' T s, qs are in turn substituted into 
equations 5.17 and 5.18. We finally obtain 

m 
A1 A2 -A4 

AIU] L[ A, Aa -A5 Aa lV1 

A4 A5 -AI A2 1U2 

-A5 -Aa A2 -Aa 1V2 

The six distinct elements in this matrix are 

A1 = l(all + bll ) 

A2 = 1(a12 + bd 
Aa = 1(a22 + b22 ) 

A4 = l(all - bu ) 

A5 = 1(a12 - bd 
Aa = 1(a22 - b22 ) 

(5.20) 

(5.21) 

It is possible to write the matrix equation (5.20) in more compact 
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form by introducing a quadratic expression which is proportional to 
the incremental strain energy. It may be written 

1= all Ua2 + 2a12UaVa + a22Va.2 

+ bll Us2 + 2b I2 Us Vs + b22 Vs2 (5.22) 

When we introduce the values (5.19), this becomes 

1= iA1(U12 + U22) - A 4U IU2 
+ iA 3(V12 + V22) + A6 VI V2 (5.23) 

+ A 2(U I VI - U2 V2) + A 5(U1 V2 - U2 VI) 

With this definition the matrix equation 5.20 is identical with the 
relations 

(5.24) 

Limiting Cases. There are a number of limiting cases of 
practical interest in which the matrix elements of equation 5.20 are 
considerably simplified. One such case is found by putting 

y = co (5.25) 

According to the definition (5.11) of y, this amounts to either a 
vanishing wavelength or an infinite thickness. Hence the result 
must coincide with the equations already derived for the half-space 
in section 4. Since the initial stress is assumed to be outside the 
range of internal instability, the real parts of f3I and f32 are not zero 
and have been chosen positive. Hence for y = co we may write the 
limiting values 

y --+ 00 
(5.26) 

Z2 = f32 lim tanh f32Y = f32 
y --+ 00 

Introducing these values in coefficients (5.8) and (5.16) and taking 
into account expressions (4.28) and (4.30) for f31f32 and f31 + f32' we 
derive 

all = bll = f31 + f32 = V2(m + k) 
aI2 = b12 = f31f32 - 1 = k - 1 

a22 = b22 = f31f32(f31 + (32) = kV 2(m + k) 

(5.27) 
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Hence 

A4 = A5 = A6 = 0 
(5.28) 

In this case the coupling terms between the upper and lower surfaces 
disappear. Equations 5.20 become 

o 
o 

(5.29) 

The matrix elements ali have the values (5.27). The first two of 
equations 5.29 coincide with relations (4.25) obtained earlier for the 
lower half-space. The last two of equations 5.29 correspond to the 
upper half-space where the medium lies above the free surface. 

By returning to the derivation in section 4, it is easy to verify that 
for the upper half-space there is a change of sign of an and a22• 
When the medium of the half-space occupies the region y > 0, the 
condition that the solution vanish at y = 00 requires the roots f31' f32 
to have negative real parts. This amounts to a change in sign of f31 
and f32 in equations 4.25. Hence we must reverse the sign of an and 
a22 while that of a12 remains unchanged. 

Another limiting case occurs when the characteristic equation 4.14 
has double roots. Then 

1 
m 2 _ p = - [4N(N - Q) + IP2] = 0 

L 
The roots become 

(5.30) 

(5.31) 

According to the inequalities (4.17) the absence of internal 
instability requires m > 0; hence f3 is a real quantity. 

According to equation 5.30 double roots cannot occur if N > Q. 
Hence, referring to the inequality (2.15), we conclude that double 
roots generally will not occur in a laminated medium for a com
pression parallel to the layers. When f31 = f32' coefficients (5.8) and 
(5.16) become indeterminate of the form 0/0. Their limiting value 
is obtained by putting 

(5.32) 
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and making e vanishingly small. We expand the hyperbolic 
functions to the first power of e. After we cancel the common 
factors and put e = 0, coefficients (5.8) become 

. 4f3 cosh 2 f3y 
a = --:--;--,.-:::------''--0--::--

11 sinh 2f3y + 2f3y 

a = f32 sinh 2f3y - 2f3y _ 1 
12 sinh 2f3y + 2f3y 

4f33 sinh 2 f3y 
a22 = --:si-n';-h--=2:-;;f3,--y-+----'-:2:-Of3:--y 

Coefficients (5.16) for the symmetric case become 

b = 4f3 sinh 2 f3y 
11 sinh 2f3y - 2f3y 

b
12 

= f32 sinh 2f3y + 2f3y _ 1 
sinh 2f3y - 2f3y 

b 
_ 4f33 cosh 2 f3y 

22 - sinh 2f3y - 2f3y 

(5.33) 

(5.34) 

For an isotropic medium N = Q, and expression (5.30) will vanish 
only if P = 0. The existence of double roots in this case requires 
the medium to be initially stress-free. The roots become 

f31 = f32 = f3 = 1 (5.35) 

By substituting f3 = 1, expressions (5.33) are further simplified to 

4 cosh2y 
a = --:---c,-----'----

11 sinh 2y + 2y 

4y 
(5.36) 

sinh 2y + 2y 

4 sinh2 y 
a = --:--::--::,------'-:-

22 sinh 2y + 2y 

and expressions (5.34) become 

b 
_ 4 sinh2 y 

11 - sinh 2y - 2y 

b12 = 4y 
sinh 2y - 2y 

(5.37) 

b 
_ 4 cosh2 Y 

22 - sinh 2y - 2y 
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Coefficients (5.36) and (5.37) could have been derived directly from 
the classical theory of elasticity for an incompressible isotropic 
medium free of initial stress. This requires the solution of the 
biharmonic equaiJon 3.8. 

We note that, for the isotropic medium under initial stress, putting 
N = Q in equations 4.40 yields 

1 
m = 1 + ~ 

and the roots (4.19) take the values 

{31 = 1 

{32 = k 

(5.38) 

(5.39) 

They check with the general solution (6.13) derived in Chapter 3 for 
the isotropic case. 

Triaxial Initial Stress. Until now in this section and the 
previous one we have restricted ourselves to a state of initial stress 
defined by the components Sl1 = - P and S22 = 0 in the x, y plane. 

'L 
x 

Figure 5.4 Triaxial initial stress in a plate of thickness h. A third 
component S33 may be present in a direction perpendicular to the figure. 

A third component S33 perpendicular to the x, y plane mayor may 
not be present and does not appear explicitly in the problem. 

Let us examine the case where S22 is not zero. The initial stress 
may be triaxial. In the x, y plane there are two components Sl1 
andS22 ofthe initial stress (Fig. 5.4). Hence there is an initial stress 
S22 acting on the top and lower faces of the plate. 

Obviously such an initial state of stress may be obtained by 
superposing upon the preceding example a hydrostatic stress S22. 
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Physically this is obtained by immersion of the whole system in a 
fluid under a pressure PI = -S22' Since the medium is incom
pressible, nothing is substantially changed. A similar situation was 
discussed in section 6 of Ohapter 2 in connection with the definition 
of certain elastic coefficients. This property must, of course, appear 
in the formulation. That it does so may be shown as follows. 

We consider first the equilibrium equations (3.1). As shown by 
equation 3.2, they are not affected if we define Pas 

(5.40) 

The only other formal difference must appear in the boundary 
condition. We consider again the incremental forces LJfx and LJfy 
acting on the deformed surface AB of Figure 4.2b. The present case 
differs by the fact that a stress 8 22 acts initially on the surface AB. 
When we apply equations 6.27 of Ohapter 1 the incremental forces 
become 

LJfx = 8 12 - S22W - 8 u eXY 

LJfy = 8 22 + 8 22eXX 

(5.41) 

These expressions are the x and y components of the incremental 
force acting on the deformed surface AB per unit initial area. With 
the value (5.40) for P they are written 

where 

LJfx = LJ'fx - 8 22 :~ 
LJfy = LJ'fy + 8 22eXX 

LJ'fx = 8 12 + PeXY 

LJ'fy = 8 22 

(5.42) 

(5.43) 

The significance of this result is brought out by noting that the 
term 822eXX is the incremental force due to the change of area, while 
-822 (8vj8x) represents the incremental x component due to the 
change of slope of the surface. Hence it is easy to see that LJ'fx and 
LJ'fy represent the force per unit area after deformation in directions 
which are tangent and normal to the deformed surface AB (Fig. 5.5). 

The right sides of equations 4.8 and 5.43 are formally identical. 
We put 

LJ'fx = T sin lx 

LJ'fy = q cos lx 
(5.44) 
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B 
A 

Figure 5.5 Interpretation of the incremental forces ,111% and ,111" as 
normal and tangential stresses on the deformed surface AB (see Fig. 4.2). 

Hence all equations in section 4 and in the earlier part of this 
section are applicable if we replace P by the stress difference (5.40), 
provided we interpret T and q as representing the stress increments in 
directions tahgential and normal to the deformed surface. 

6. BUCKLING OF A FREE AND EMBEDDED PLATE; 
INTERFACIAL INSTABILITY 

The results of the preceding section will now be discussed for a 
plate under initial compressive stress P. Consider equations 5.7 

T 
lL = all U + a12 V 

q 
lL = a12U + a22 V 

(6.1) 

for the antisymmetric deformation. The coefficients aij in these 
equations are those of equations 5.8. We have omitted the sUbscript 
a. It is a flexure-type deformation due to the action of normal and 
tangential forces acting at the upper and lower faces and distributed 
sinusoidally (Fig. 6.1). The tangential and normal forces acting at 
the top are T sin lx and q cos lx. On the bottom surface they are 
reversed. At top and bottom the tangential displacements are, 
respectively, U sin Ix and - U sin lx, the vertical displacements are 
the same and are equal to V cos lx. We shall make use of solution 
(6.1) to derive the buckling condition of a plate stress-free on both 
faces, or embedded in a medium of infinite extent. The solutions 
presented here were derived in a recent paper by the author.* 

* M. A. Biot, Stability of Multilayered Continua Including the Effect of Gravity and 
Viscoelasticity, Journal of the Franklin Institute, Vol. 276, No.3, pp. 231-252, 1963. 
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Figure 6.1 Antisymmetric bending deformation of a plate under 
an initial compressive stress P. 

Ok. 4 

Buckling of a Free Plate. Let us assume that only a normal 
force is applied to the faces of the plate. Putting T = 0 in equations 
6.1 and eliminating U, we derive 

(6.2) 

This equation yields the deflection of a plate under initial stress due 
to the application of a normal load. 

The coefficient in this equation is evaluated by substituting the 
expressions (5.8) for ajj' In this evaluation an important simplifica
tion results from the cancellation of the common factor Zl - Z2 in 
numerator and denominator. We find 

(f31 2 + 1 )2Z2 - (f322 + 1 )2Z1 
f312 - f32 2 (6.3) 

If the plate is free of surface forces, we must put q = O. Then we 
obtain the buckling condition 

(f31 2 + 1)2z2 - (f322 + 1)2Z1 = 0 (6.4) 
We recall that 

Zl = f31 tanh f31Y 

Z2= f32 tanh f32Y 

Y = ilh 

(6.5) 

where h is the plate thickness and !l' = 27T/l is the buckling wave
length. For a given value of N /Q equation 6.4 is a relation between 
the variables Y and 

(6.6) 
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The solution of equation 6.4 is therefore represented by a family of 
curves in the y, , plane with N/Q as parameter. These curves are 
plotted in Figure 6.2 for the three values 

N 
Q = 1,3,10 (6.7) 

The solution for N /Q = 1 was derived in Chapter 3 for isotropic 
media, and it coincides with the curve in Figure 7.3 of that chapter. 
These plots bring out some basic properties of buckling phenomena 
in plates. Anyone curve may be divided into three portions. 

(a) In a range of small values of y, that is, for large wavelengths 
the curve is a parabola. This corresponds to buckling by pure 
bending, and we shall show that here the critical load is given by the 
classical Euler formula. 

(b) There is an intermediate range of wavelengths represented by 
the rising and approximately straight portion of the curve where the 
buckling is influenced by the shear rigidity of the plate. 

(c) Finally for large values of y, that is, for small wavelength the 
curve tends to a horizontal asymptote. This means that the buckling 
degenerates into a surface instability. 

The range of wavelengths for which these three types of instability 
occur depends on the value of N/Q, and hence on the degree of 

1 

3 4 

Figure 6.2 Stability parameter ~ as a function of y for the buckling 
of an anisotropic plate plotted for three values of N/Q. 
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anisotropy. It can be seen that for increasing values of N/Q the 
transition from bending to shear buckling occurs at increasingly 
larger wavelengths. 

The behavior of the buckling deformation as a function of the 
wavelength is entirely analogous to that of flexural vibrations of a 
plate which degenerate into surface Rayleigh waves for decreasing 
wavelengths. 

Let us examine more closely the nature of the solution in the 
extreme ranges of wavelengths. For small values of f31Y and f32Y we 
may replace the hyperbolic functions in equations 6.5 by their power 
series. Retaining only the terms in Y and y3, we write 

Zl = f312y - lf314y3 

Z2 = f32 2y - lf324y 3 

Substituting these values in equation 6.4, we derive 

P - 1 + i(P + m)y2 = 0 

With the values (4.40) for k and m, this becomes 

Again using the assumption that y is small, we finally write 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

This equation represents an approximation for the curves of Figure 
6.2 near the origin. The portion near the origin is replotted on an 
enlarged scale in Figure 6.3 along with the parabolic approximation 
(6.11). When we substitute the value (4.40) for ~, equation 6.11 
takes the form 

P = 4N l2k
2 

12 
(6.12) 

This is the critical load obtained from the classical Euler theory of 
buckling, as formulated by the equation for the deflection w of a thin 
plate under the compressive axial stress P; that is, 

(6.13) 
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Figure 6.3 Stability parameter ~ of Figure 6.2 in the range of larger 
wavelengths (y small). The approximate value obtained from the 

Euler Theory (equation 6.11) is shown by dotted lines. 

The elastic modulus used in the equation is 4N. When P is small, 
it is the same as the modulus 4M whose significance is discussed in 
Chapter 3 and illustrated by equation 4.25 of that chapter. 

Comparison of the exact curves with the approximate value (6.11), 
also plotted in Figure 6.3, shows that the Euler theory is valid above 
a certain limiting wavelength which increases with the value of N/Q. 
The range of validity of the Euler theory is determined by the 
inequality 

y J~ < 0.3 (6.14) 

For the isotropic case it coincides with condition (7.24) of Chapter 3. 
For large values of y the hyperbolic tangents in expressions (6.5) 

are replaced by unity. We may write 

Zl= f31 

Z2 = f32 
(6.15) 

We insert these values in equation 6.4, cancelling the factor (f31 - (32) 
and taking int'o account the values (4.26) and (4.28) for m and k. 
We derive the relation 

2k(m + 1) + k2 
- 1 = 0 (6.16) 
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It is identical with equation 4.39 which expresses the condition for 
surface instability of·the half-space. This result shows that for very 
small wavelengths the value of ~ is represented by a horizontal 
asymptote which corresponds to surface instability. 

A remark is in order here regarding the case where the initial stress 
lies in the range of internal instability. For simplicity we consider 
internal instability of the first kind. In this case the inequalities 
(3.16) must be satisfied. They are 

m> 0 k2 = 1 - ~ < 0 
1 + ~ 

(6.17) 

Hence the absolute value of ~ is larger than unity. The root f31 here 
is real while f32 is pure imaginary. We put 

f32 = ig (6.18) 
Equation 6.4 becomes 

(1 - e)2f31 tanh f31Y + (f31 2 + 1)2g tan gy = 0 (6.19) 

The solution of this equation has an infinite number of branches 
which are all located above the value ~ = 1 and below the value 
~ = - 1. These branches correspond to the phenomenon of internal 
instability discussed in section 3 for a rigidly confined medium. 
Equation 6.19 represents the same phenomenon for the slightly more 
complicated case of a plate with free faces. Such branches have 
also been plotted in a paper dealing with the closely related problem 
of an embedded layer. * 

Multiple Branch Solution; Instability under Axial Tension. Let us 
replace equation 6.19 by the simpler one 

tan gy = 0 (6.19a) 

The branch solutions of this equation are 

gy = n1T (6.19b) 

where n is an integer. They are analogous to the solution of equation 6.19· 
Since g is real, they must correspond to an internal buckling. The value of g 
also satisfies condition (3.23). With the variable ~ = P/(2Q), an equivalent 
form of this condition is 

r = 1 + 2(2N/Q - l)g2 + e 
.. 1 - e (6.19c) 

* See M. A. Biot and H. Ode, On the Folding of a Viscoelastic Medium with Adhering 
Layer under Compressive Initial Stress, Quarterly of Applied Mathematics, Vol. XIX, 
No.4, pp. 351-355, 1962. 
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Substitution of g = n7T/Y in this equation yields a plot of ~ versus y with an 
infinite number of branches represented schematically in Fig. 6.3a. An 
interesting aspect of this solution is the possibility of instability for negative 
values of~. This corresponds to a plate under axial tension. As illustrated 
in Fig. 6.3b a shear instability is possible in this case. The occurrence of 
instability under tension may also be inferred from the discussion of internal 
buckling in section 3. This can be seen by superposing an isotropic tension 
equal to the compressive stress P. The instability is unaffected, but the initial 
compression is replaced by a tension in the perpendicular direction. 

o 27r 

l=-lr-~~r------r-----

Figure 6.3a Branch solutions for internal instability. 

Figure 6.3b Shear instability of an anisotropic plate 
under axial tension. 

Buckling of an Embedded Plate. We now consider the plate 
to be embedded in an infinite medium as shown in Figure 6.4. As 
before, we assume incompressibility and incremental orthotropy with 
planes of symmetry parallel to the plate and to the plane of the 
figure. The incremental elastic coefficients of the plate and the 
embedding medium are designated by N, Q and N 1, Ql, respectively. 
The state of initial stress may be triaxial. There may be a stress S22 

acting uniformly throughout the medium in a direction normal to 
the plate. The principal stress components parallel to the plate are 
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designated by 8 11 in the plate, and by 8W_ in the embedding medium. 
The corresponding stress differences are 

P1 = 8 22 - 8W 

P = 8 22 - 8 11 

(6.20) 

A third component 8 33 of initial stress may also be present in the 
direction normal to the figure; it does not appear explicitly. 

Figure 6.4 Plate and embedding medium under initial stress. 

In order to establish the stability equations of this system let us 
consider the stresses in the upper half-space at the interface. They 
are given by the last two of equations 5.29. Omitting the subscript 
2 and replacing au by a;j, we write 

'T = L1l( -a~1U + a~2 V) 

q = L1l(a~2U - a;2 V) 

The slide modulus L1 is 

(6.21 ) 

(6.22) 

and the coefficients a;j are given by equations 5.27 for the half-space. 
They are 

a~l = v'2(m1 + k1 ) 

a~2 = kl - 1 

a;2 = kl V 2(ml + k1) 

(6.23) 
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The subscript 1 refers to values for the embedding medium, where 
ml and kl are functions of N 1 , Qv and Pl' For the upper face of the 
plate the stress is determined by equations 6.1. Coefficients ajj are 
given by equations 5.8 and are functions of N, Q, and P. 

In the case of perfect adherence betwe~n the two media the stresses 
T, q and the displacements U, V at the interface are the same. 
Equating the value of T and q of relations 6.1 and 6.21 yields the 
two equations 

(Lan + Lla~dU + (Lci12 - Lla~2)V = 0 
(6.24) 

(La12 - Lla~2)U + (La22 + Lla~2)V = 0 

The buckling condition is obtained by putting equal to zero the 
determinant 

(6.25) 

The numerical solution of the problem is considerably simplified if 
we introduce two assumptions. We put 

(6.26) 

This means either that the initial stress is zero in the embedding 
medium or that in the plane of the figure the initial stress is isotropic. 
If this is not so, the assumption PI = 0 is an adequate approximation 
when the initial stress of the embedding medium is small. The 
other simplification is to assume perfect slip at the interface. As 
shown elsewhere, * the influence of interfacial adherence for the single 
embedded layer is not significant. (A case of perfect adherence is 
analyzed in the next paragraph.) 

With these two assumptions the normal stress for the upper 
half-space is obtained by applying equation 4.33. 

q = -2lQeffV (6.27) 

with 

The "effective" modulus Qecr is that of an isotropic medium with the 
same apparent surface rigidity as given by equation 4.36. The sign 

* See M. A. Biot and H. Ode, On the Folding of a Viscoelastic Medium with Adhering 
Layer under Compressive Initial Stress, Quarterly of Applied Mathematics, Vol. XIX, 
No.4, pp. 351-355, 1962. 
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of q has been changed because equation 4.33 refers to the lower 
half-space. On the other hand, for T = 0 the stress q in the layer 
is given by equation 6.2. We must remember that the two values of 
q represent the stress at the displaced point. If the surfaces at the 
interface are allowed to slip, the values of q in equations 6.2 and 6.27 
are not exactly equal because they represent the normal interfacial 
stress at different points. However, the relative displacement is of 
the first order and therefore the values of q differ only by a second 
order quantity. Hence, neglecting the second order differences, we 
equate the values (6.2) and (6.27) and obtain 

2Qeff + alla22 - a~2 = 0 
L all 

(6.28) 

When we introduce expression (6.3) and write the slide modulus in 
the form 

L = Q + tP = Q(l + ') (6.29) 

the buckling condition (6.28) becomes 

Qeff = 1-(1 + Y) (f322 + 1)2Z1 - (f31 2 + 1)2z2 
Q 2 '" f312 - f322 (6.30) 

On the right side is a function ofthe parameters N, Q, P of the plate 
and the variable y. For given values of Qerr/Q and N/Q equation 
6.30 constitutes a relation between , = P/(2Q) and y. This is 
plotted in Figure 6.5 for the values 

Qeff 1 
Q = 100 

N 
Q = 1,3,10 

(6.31) 

The curves show that' goes through a minimum value which depends 
on the two parameters Qerr/Q and N /Q. We may write this minimum 
value 

'mIn = F(Qerr/Q, N/Q) (6.32) 

In order to find the buckling condition under finite strain we must 
evaluate " QefrlQ, and N /Q as functions of the finite extension ratios. 
Buckling will occur as soon as the horizontal drawn through the 
value of 'intersects the corresponding curve in Figure 6.5. This will 



Sec. 6 Buckling of a Free and Embedded Plate 

0.15 1--\\-+--t---74---+----,I 

t 
t 0.10 1------f'.--t-----+-----7L-+------l 

0.05 t---+--t---+---+-----1 

O~-~--L--~--~-~ 
o 0.1 0.2 0.3 0.4 0.5 

'Y-

Figure 6.5 Stability parameter, as a function of y for the 
embedded anisotropic plate. 
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happen first when ~rnin as given by equation 6.32 IS equal to ~. 

Therefore the buckling condition is 

P 
2Q = F(QeffIQ, NIQ) (6.33) 

The wavelength of the buckling is given by the value of y which 
corresponds to ~rn!n' 

Buckling of an Embedded Layer in Rubber-like Materials. 
The stability problem of an embedded layer becomes particularly 
simple for isotropic materials obeying the finite stress-strain relations 
(8.45) of Chapter 2. This problem was solved in a recent paper. * 
Perfect adherence is assumed at the interface between the layer and 
the embedding medium. The system is in a state of finite triaxial 
homogeneous strain, and two of the principal directions of strain are 
parallel to the layer. The initial stresses are the same as in Figure 
6.4. The finite extension ratios ..\1 and ..\2 are in the plane of the 
figure, and ..\1 represents the extension in the direction of the layer. 
The third extension ..\3 is normal to the figure and is determined by 

* M. A. Biot, Continuum Theory of Stability of an Embedded Layer in Finite 
Elasticity under Initial Stress, Quarterly Journal of Mechanics and Applied Mathe
matics, Vol. 27, Part 1, pp. 19-22, 1964. 
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the condition of incompressibility. The finite stress-strain relations 
yield 

P = S22 - Sl1 = fLo(>\22 - ,.\12) 

PI = 8 22 - Sw. = fLOl("\22 - ,.\1
2

) 
(6.34) 

The coefficient fLo is the shear modulus of the layer in the original 
unstressed state and fLOI is its value for the embedding medium. 

In the plane of Figure 6.4 the material is isotropic for incremental 
deformations. The incremental elastic coefficients are given by 
equation 8.51 of Chapter 2; they are 

N = Q = ifLo("\12 + ,.\22) 

Nl = Ql = ifLol("\12 + ,.\22) 
(6.35) 

Considerable simplification of this problem results from the relation 

Ll Ql + iPI fLOI 

L Q + iP fLo 

By introducing the rigidity ratio 

n = fLOI 
fLo 

we may write the general buckling condition (6.25) as: 

(a11a22 - a~2) + n(a22a~1 + a11a~2 + 2aI2a~2) 
+ n2(a~la~2 - a~~) = 0 

(6.36) 

(6.37) 

(6.38) 

Another simplification is due to the fact that the values of ~, k, and 
m are the same in both media, namely, 

P PI "\22 - "\1 2 

~ = 2Q = 2Ql = "\22 + "\12 

k )1 - ~. "\1 
= 1 + ~ = "\2 

1 
m=--

1 + ~ 

(6.39) 

Hence the values of a;; are obtained from equations 6.23 by sub
stituting k and m for kl and mv respectively. We write 

a~1 = 1 + k 

a~2 = k - 1 

a~2 = k(1 + k) 

(6.40) 
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The coefficients aij for the layer are obtained from expressions (5.8). 

For this case we must introduce the values f3l = 1 and f32 =k given 
by equations 5.39. Hence 

with 

1 - k2 

all = --
Zl - Z2 

a12 = 
2Z2 - (1 + k2)Zl 

Zl - Z2 

a22 = all Zl Z2 

Zl = tanh y 

Z2 = k tanh ky 

7Th 
Y = ilh =

.f/! 
(2 = wavelength) 

(6.41) 

(6.42) 

Values of the expressions in parentheses in the buckling condition 
(6.38) mliLY also be written. 

alla22 - a~2 = 1 [4Z2 - (1 + P)2Zl] 
Zl - Z2 

a~la22 + alla~2 + 2a12a~2 = (6.43) 
1 - k 
-- [(I + k)2Z1Z2 - 4Z2 + 2(1 + P)Zl + k(1 + k)2] 
Zl - Z2 . 

a~la;2 - a~~ = k(1 + k)2 - (1 - k)2 

The buckling condition (6.38) may be considered a relation between 
the variables " y, and n. The stability parameter' as a function of 
y is plotted in Figure 6.6 for five values of the rigidity ratio n. It is 
recalled that y is defined by equations 6.5 and is proportional to the 
layer thickness h divided by the buckling wavelength 2. 

The following limiting cases of equation 6.38 are of interest. 

Case n = O. This case, where the rigidity of the embedding 
medium vanishes, coincides with the problem of buckling of a plate 
with free surfaces. By putting n = 0 in equation 6.38 it becomes 

(6.44) 

Reference to expressions (6.43) shows that this condition is equivalent 
to 

(6.45) 
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Figure 6.6 Stability parameter ~ as a function of y for five values of the 
rigidity ratio n = fLOl/fLo for an embedded layer of rubber-like material. 

This is the same as the buckling condition (7.12) obtained in Ohapter 
3 for a thick slab. The solution is plotted in Figure 7.3 of that 
chapter. 

Oase n = 00. In this case the rigidity of the layer vanishes, and 
we are left with the problem of surface instability of a half-space 
represented by one side of the embedding medium. Equation 6.38 
becomes 

or 

k3 + k 2 + 3k - 1 = 0 

We multiply this equation by k - 1 and obtain 

(P + 1)2 - 4k = 0 
It may be written 

(6.46) 

(6.47) 

(6.48) 

(6.49) 

This equation coincides with the condition (4.45c) for the surface 
instability of isotropic materials. It was also derived as equation 
6.19 of Ohapter 3. 

Another limiting case is shown by the plot in Figure 6.6 where the 
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curves tend toward horizontal asymptotes for y = 00. This will 
now be discussed in more detail. 

Interfacial Instability. The case y = 00 corresponds to that of 
a vanishing wavelength. Since y is proportional to the ratio oflayer 
thickness to wavelength 2, this case also corresponds to that of a 
layer of infinite thickness. Hence it represents the problem of 
stability at an interface of two adhering half-spaces. For y = 00 

the values (6.40) and (6.41) become 

a~l = all = 1 + k 

a~2 = a12 = k - 1 

a~2 = a22 = k(k + 1) 

(6.50) 

With these values the buckling condition (6.38) assumes the simple 
form 

k(~)2 = (~)2 
1-k l+n 

(6.51) 

From this equation the critical value of , required for interfacial 
instability has been evaluated as a function of the rigidity ratio n of 
the two media. Numerical values are shown in Table 2. These 
values of , represent horizontal asymptotes for the curves in Figure 
6.6 when y tends to infinity. 

Table 2 

Critical value of ~ fo~ interfacial 
instability as a function of the rig
idity ratio n for rubber-like media 

n = ""'01/""'0 ~ 

0 0.839 
0.2 0.924 
0.4 0.973 
0.6 0.994 
0.8 0.999 
1.0 1.000 

For n = 0 Table 2 yields the numerical value (6.21) of Chapter 3 
derived as the critical value for surface instability. For n = 1 the 
discontinuity vanishes and no interfacial instability is possible. This 
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is in accordance with the corresponding value , = 1 in the table, 
since it implies .:\2 = 00 and can never be attained. 

Interfacial Instability in the General Case. The phenomenon 
of elastic instability at an interface is quite general and is mathe
matically analogous to Stoneley wave propagation at the interface 
of two elastic solids. The condition of instability for the general 
case, including anisotropic media, has exactly the same form as 
equation 6.25 except that now the coefficients atj and a;j are the 
expressions (5.27) and (6.23) for the lower and upper half-spaces. 
Interfacial instability was discussed in more detail by the author in 
a recent paper.* Values in Table 2 are taken from that paper. 

Bending of a Beam Resting on an Elastic Half-Space. The problems 
treated in this section are closely related to the theory, originally developed 
by the author, t of bending of a beam resting on an elastic half-space. For 
the two-dimensional problem of a plate, with initial axial stress, resting on an 
elastic half-space, the beam theory yields a simple solution. Except in the 
range of very short wavelengths the beam theory should provide close agree
ment with an exact solution derived by treating the plate as a continuous 
medium. This point is illustrated in the discussion of the similar problem of 
the embedded viscoelastic plate in Chapter 6 (section 8). The solution of the 
three-dimensional problem of bending of a beam, with initial axial stress, 
resting on an elastic half-space, requires a treatment which differs from that 
for the two-dimensional analysis. The equation for the deflection w of the 
beam is written 

(6.51a) 

The x coordinate is measured along the axis of the beam (Fig. 6.7). The 
parameters for the beam are: Young's modulus E b , the compressive initial 
stress P, the area A, and moment of inertia I of the cross section. It is 
assumed that the beam is pressed against the half-space by its own weight or 
the weight it carries. The load per unit length carried by the beam is q(x). 

The reaction of the elastic half-space is represented by a modulus k whose 
value is 

E 
k = 0(1 _ ,,2) lbrp(lb) (6.51b) 

where E and " are Young's modulus and Poisson's ratio for the half-space, 

* M. A. Biot, Interfacial Instability in Finite ·Elasticity under Initial Stress, Proceed
ings of the Royal Society, A, Vol. 273, pp. 340-344, 1963. 
t M. A. Biot, Bending of an Infinite Beam on an Elastic Foundation, Journal of 
Applied Mechanics (Transactions ASME), Vol. 59, pp. AI-A7, 1937. 
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respectively. The width of the beam at the surface of contact with the half
space is 2b. The value of k is valid for a sinusoidal load and deflection 

q = qo sin lx W = Wo sin lx (6.51c) 

which define the wavelength parameter l. The coefficient C depends slightly 
on the transverse rigidity of the beam over the width 2b at the area of contact 

PA~ Xv 
Figure 6.7 Beam resting on an elastic half-space. 

with the half-space. The value of C lies between the limits C = 1 and 
C = 1.13. Tabulated values of the function ifJ(lb) are given in the author's 
paper.* . Additional numerical results have also been derived in a recent 
paper by Lekkerkerker.t Deflection of the beam under a concentrated load 
may be evaluated by the Fourier analysis procedure used in the cited references. 

7. STABILITY THEORY OF MULTILAYERED 
MEDIA INCLUDING THE EFFECT OF GRAVITY 

We consider here a system of n layers of different materials and 
retain the assumption ofincompressibility.t The orthotropic elastic 
properties of each layer are such that the directions of elastic sym
metry are the same for all layers and parallel to the principal directions 
of the initial stress. The layers are also parallel to one of the planes 
of elastic symmetry. Under these conditions the equations for the 
stability of the system of layers are derived immediately from the 
results obtained in section 5. The layers represented in Figure 7.1 
are numbered from 1 to n starting at the top. 

* M. A. Biot, Bending of an Infinite Beam on an Elastic Foundation, Journal of 
Applied Mechanics (Transactions ASME), Vol. 59, pp. AI-A7, 1937. 
t J. G. Lekkerkerker, Bending of an Infinite Beam Resting on an Elastic Half-Space, 
Proceeding8 Koninklijke Akademie van Wetenschappen (Amsterdam), Ser. B, Vol. 63, 
pp. 484-497, 1960. 
t The results presented in this section were obtained in a recent paper (M. A. Biot, 
Stability of Multilayered Continua Inchiding the Effect of Gravity and Viscoelasticity, 
Journal of the Franklin Institute, Vol. 276, No.3, pp. 231-252, 1963). 
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We consider first the case where the stack of layers is free at the 
top and bottom surfaces and assume that there is perfect adherence 
at the interfaces. In the jth layer we denote the elastic coefficients 
by N i, Qj and the initial compressive stress by Pi. We denote by 
Ui , Vi the displacements at the top of the jth layer and by Uj+l> 
Vj+1 the displacements at the bottom of the same layer. The 
quadratic form (5.23) for this layer is written (no summation) 

I j = iiA1(Ul + UJ+1) - iA 4 Ui Uj+1 

+ iiA 3(Vl + VJ+d + jA 6 Vi Vj+1 

+ iA 2(Ui Vi - Uj+1 Vj+1) + j A5(Uj V j +1 - Uj+1 Vi) (7.1) 

1 

~ P j -+-- j 

n 

Figure 7.1 Multilayered medium with free end faces. 

The coefficients jAl> jA2' etc., are functions of the following 
parameters: 

(a) The two elastic coefficients N j and Qi of the jth layer. 
(b) The compressive stress P j in the jth layer. 
(c) The variable Yj = ihjl, where hj is the thickness ofthejth layer. 

The slide modulus of the jth layer is 

(7.2) 

By equations 5.24 the stress at the bottom of this layer is 

-lL.~ 
J 8Uj+1 

(7.3) 

q -lL.~ i+1 = J 8Vj +1 
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while the stress at the top of the (j + 1 )th layer is 

(7.4) 

Equating the stresses (7.3) and (7.4) yields the two recurrence 
equations 

(7.5) 

These equations relate the six displacements at three successive 
interfaces. The stress-free boundary condition at the top and 
bottom surfaces are written 

811 = 0 
8U1 

~=O 
8Un +1 

811 = 0 
8V1 

~=O 
8Vn +1 

(7.6) 

There are 2(n - 1) equations (7.5), i.e., two for each interface. 
The addition of the boundary conditions (7.6) yields a system of 
2n + 2 equations for the 2n + 2 unknown U j and Vj' 

Equating to zero the determinant of this system yields the 
characteristic equation for instability. The system (7.5) does not 
contain more than six variables in each equation. This feature 
makes the formulation very suitable for numerical solutions with 
automatic computers. 

If the system of layers is embedded in two semi-infinite media 
(Fig. 7.2a), the initial stress may include a component S22 normal to 
the layers. The initial stress component parallel to the layer may 
be different in each layer. Its value in the jth layer is denoted by 
Seri. In this case the equations for each layer remain the same 
provided P j is put equal to the stress difference: 

(7.7) 
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822 

~ OJ 8 11 ~ ~ Pj E 

(a) (b) 

Figure 7.2 Multilayered medium: (a) between two semi-infinite 
media, (b) lying on top of a semi-infinite medium. 

The boundary condition at the top interface becomes 

L all L' 'u ' V 1au
1 

= (-a11 1 + a12 1) 

L1 :~~ = L'(a~2U1 - a~2 VI) 

and at the bottom interface 

Ok. 4 

(7.8) 

(7.9) 

In these equations the aij represent the coefficients (5.27) for the 
lower half-space, while the a;j are the values of the same expressions 
for the upper half-space. The slide moduli in upper and lower 
half-spaces are, respectively, L' and L. 

If the top surface is free (Fig. 7.2b), the boundary conditions are 
obtained by putting L' = 0 in equations 7.8. 

The recurrence equations and the boundary conditions for anyone 
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of the three cases which we have just discussed may be written in 
very compact form by introducing the composite quadratic form 

n 

J = LI, + L Lij + L'Iu (7.10) 
j= 1 

In this expression Iu and I, are quadratic forms representing the 
upper and lower half-spaces. They are defined as follows 

Iu = ia~lU12 - a~2UIVl + ia~2V12 
I, = iall U;;+l + a12Un +1 Vn +1 + ia22 V;; +1 

(7.11) 

Equations 7.5 and the boundary conditions (7.8) and (7.9) are then 
written very simply as 

o (7.12) 

with j = 1, 2, ... , n + l. 
The particular cases of a free surface at the top or at the top and 

bottom of the layers are obtained by putting L' = 0 or L' = L = 0 
in the expression for J. 

The generality and simplicity of equations 7.12 are a consequence 
of the fact that they embody a variational principle for the total 
incremental strain energy of the layered system under initial stress. 
The variational principle is 

8J = 0 (7.13) 

The particular case of buckling of a sandwich plate composed of a 
soft core between two sheets has been discussed by Goodier* as an 
application of the stability theory of continuous media. 

Solution by Matrix Multiplication. Instead of using the re
currence equations 7.5, it is possible to follow a procedure similar to 
that proposed by Thomsont and further developed by Haskellt for 

* J. N. Goodier, Cylindrical Buckling of Sandwich Plates, Journal of Applied 
Mechanics, Vol. 13, pp. A253-A260, 1946. 
t W. T. Thomson, Transmission of Elastic Waves through a Stratified Solid Medium, 
Journal of Applied Physics, Vol. 21, pp. 89-93, 1950. 
+ N. A. Haskell, Dispersion of Surface Waves in Multilayered Media, Bulletin of the 
Seismological Society of America, Vol. 43, pp. 17-34, 1953. 
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the numerical evaluation of wave dispersion in layered media. This 
is done by rewriting equations 5.20 in the form 

[ T, 1 [ T'l ql -.4t q2 

lUI lU2 

lVI lV2 

(7.14) 

The matrix .4t is 
BI B2 LB5 LB6 

Ba B4 - LB6 LB7 

.4t= 1 
LBe 

1 
LBg BI -Ba (7.15) 

1 
- LBg 

1 
L B IO -B2 B4 

The components Bi of this matrix may be written in terms of the 
coefficients aij and bij given by expressions (5.8) and (5.16) for the 
particular layer considered. They are 

LI = (a12 - bd2 
- (all - bll )(a22 - bd 

BI = ~ [(ar2 - br2) - (all + bll )(a22 - bd] 

2 
B2 = Lf (allbl2 - a l2bll ) 

2 
Ba = Lf (a12b22 - a22b12 ) 

B4 = ~ [(a22 + bd(all - bll ) - (ar2 - br2)] 

B5 = ~ [ar2bll - a llbr2 - allbll (a22 - bd] 

2 
B6 = Lf [-aI2bI2(aI2 - b12) + alla22bI2 - a12bllb22] 

B7 = ~ [a22b22(all - bll) + a22br2 - ar2b22] 

2 
Be = - Lf (a22 - bd 

2 
Bg = - Lf (a12 - bd 

2 
B IO = Lf (all - bll ) 

(7.16) 
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Equation 7.14 relates values of stresses and displa.cements at two 
successive interfaces. For the jth layer we write 

(7.17) 

For adhering layers the stresses and displacements are continuous at 
the interfaces. Hence by a process of matrix multiplications it is 
possible to express a relation between the variables at the lower and 
upper boundaries of the layered system. We derive 

(7.18) 

n 
The product TI .Aj of the n matrices .Aj is a 4 x 4 matrix. If the 

j= 1 

system oflayers is free at top and bottom, we put 7'1 = q1 = 7'n+ 1 = 
qn+l = 0-, and equations 7.18 reduce to a homogeneous system with 
two unknowns Un + 1 and Vn + 1 • A 2 x 2 system also results if the 
layers lie on top of a half-space. Then we express 7' n+ 1 and qn + 1 in 
terms of the displacement Un + 1 and V n + 1 at the top of the half-space. 
If the layers are embedded on top and bottom, we express 7'1 and ql 

in terms of U1 and VI' In this case equations 7.18 constitute a 
4 x 4 system which is immediately reducible to a 2 x 2 system. In 
any event the characteristic equation is obtained by equating to zero 
the determinant of the resulting 2 x 2 system of equations. 

In the numerical procedure the final 2 x 2 determinant may be 
plotted against the value of any chosen parameter as, for example, 
the wavelength. Points where the curve crosses the abscissa are 
solutions of the characteristic equation. These roots may be 
evaluated by standard programming techniques. 

When using this procedure, it is important to keep in mind that 
for wavelengths which are sufficiently small relative to the thickness 
of a particular layer the top and bottom faces become decoupled. 
In this case the coefficients aij and bij tend to become equal, and 
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singular properties of the vi! matrix result. The difficulty is avoided 
by considering the particular layer to behave as a half-space. 

Either the recurrence equations 7.5 or the matrix multiplication 
process may conven~ently be used for the programming with 
automatic computers when a large number of layers is involved. 

A numerical procedure for solving the recurrence equations will 
be discussed in the last paragraph of this section. 

Inclusion of Gravity Forces. We now introduce into the 
analysis the effect of gravity. It is assumed that the layers lie 
horizontally in a uniform gravity field of acceleration g and that the 
density p is uniform in each layer. 

From the general considerations of Chapter 3 regarding the stability 
problem in the presence of a gravity field it is readily concluded that 
its effect is obtained from the gravity-free case by adding elastic 
forces at the interface which are proportional to the vertical displace
ment and the density difference between the layers. This may be 
verified independently as follows. The initial stress in a particular 
layer may be written 

8 11 = - P + pgy + 0 

8 22 = pgy + 0 
(7.19) 

where 0 is a constant, y is the vertical coordinate, p is the constant 
density of the layer, and 

has a constant value in the layer. 
The force components LJ.'fx, LJ.'fy defined in section 5 

evaluated for this case. Applying equation 5.43, we write 

LJ.'fx = 8 12 + PeXY 

LJ.'fy = 822 

(7.20) 

may be 

(7.21) 

As we have seen, LJ.'fx and LJ.'fy represent the normal and tangential 
incremental stresses on a deformed surface originally horizontal. On 
the other hand, we have shown in section 8. of Chapter 3 that the 
stress increments 811 in the heavy medium are immediately derived 
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when we know the stresses 8;i for the gravity-free case. We may 
write 

8 11 = 8~1 + pgv 

8 22 = 8;2 + pgv 

8 12 = 8~2 

(7.22) 

These relations are the same as equations 8.13 of Chapter 3 except 
that we have changed the sign ofthe term pgv because the orientation 
of the y axis has been reversed. Substitution of these values of 81j 

into relations 7.21 yields 

LJ'fx = 8~2 + PeXY 

LJ 'fy = 8;2 + pgv 
(7.23) 

Therefore, introducing the stresses T and q evaluated for the gravity
free case, we may write 

LJ'fx = T sin Ix 

LJ'fy = (q + pg V) cos Ix 
(7.24) 

If we compare this result with equations 5.44, we see that the effect 
of gravity is taken into account by introducing the normal stress 

q = q + pgV (7.25) 

Hence the stresses at the top "and bottom of a layer corresponding to 
equations 5.24 are now 

81 
T2 = -IL--

8U2 

81 
q2 = -IL- + pgV2 8V2 

(7.26) 

In applying these results to a multilayered system we denote by Pi 
the density of the jth layer. In each layer the initial stress is 
represented by the stress difference 

(7.27) 

It may vary from one layer to the other but is constant in each layer, 
whereas the vertical stress component 8 22 varies with depth in piece
wise linear segments. Proceeding as for equations 7.3 and 7.4 and 
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expressing the continuity of the stress 7', q at an interface, we find 
the recurrence equations 

(7.28) a 1 
aV

j
+1 (Ljl j + Li+l1i+l) + Y (Pi+l - Pj)yVj +1 = 0 

This result shows that the effect of gravity is to add a normal elastic 
force per unit area at the interface equal to (Pi+l - Pj)yVi+l' It is 
consistent with the general procedure discussed in section 5 of 
Chapter 3. Note that the boundary condition at a free boundary is 
written 

q = q + pyV = 0 (7.29) 

Equations 7.12 may be extended to include gravity by writing 

where 

a 
- (..? + ~) = 0 
aVj 

(7.30) 

These equations apply to layers embedded between two half-spaces. 
The densities of the upper and lower half-spaces are denoted by Po 

and Pn+l> respectively. 
Again we note that equations 7.30 imply the variational principle 

o(..? + ~) = 0 (7.31) 

where ~ is a quantity proportional to the incremental potential of 
the gravity forces. 

Finally it is possible to extend to this case the process of matrix 
multiplication represented by equation 7.18. This is accomplished 
by substituting ql - py VIand q2 - py V 2 for ql and q2 in equation 
7.14. The result is 

(7.32) 
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with the matrix 

Bl 

Os 

.AI'= 
1 
LBa 

1 
- - Bg 

L 

and the additional coefficients 

Os = Bs - il Bg 

pg B 
0 4 = B4 + lL 10 

pg B 
0 6 = B6 + lL 2 

B2 

0 4 

1 
LBg 

1 
L B 10 

LB5 LO~ 

- L06 L07 

Bl -O~ 

-B2 O~ 

0; = Bs + il Bg 

O~ = B1 - il B 10 

0 6
' B pg B = 6 - lL 2 
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(7.33) 

(7.34) 

These coefficients are the only ones which contain the gravity 
parameter pg/lL. 

As before the stresses Ti and qi are continuous at the interfaces, and 
the characteristic equation is obtained by a process of matrix 
multiplication. We write 

[ :: 1 = Ii.Al'j [ :::: 1 
lUI j~1 lUn + 1 

lV1 lVn + 1 

(7.35) 

The matrices.Al'j play the same role as uKj in equation 7.18, and the 
numerical programming may be carried out in identical fashion. 

Perfect adherence between layers was assumed in the preceding 
analysis. If the possibility of perfect lubrication is introduced, the 
condition T = 0 must be verified at the interface. This additional 
condition makes it possible to eliminate all tangential displacement 
components Uj from the problem. The procedure was illustrated in 
section 6 in the example of the single layer. In this case the 
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Figure 7.3 Elastic layers of equal thickness h and alternate rigidities 
/ho and /hOi under initial stress. The number of layers is infinite. 

recurrence equations are reduced to relations between values of the 
normal displacements Vj at three successive interfaces. Equations 
7.14 and 7.32 are replaced by relations which involve only two 
variables qj and V j or qj and Vj' The matrices corresponding to vft 
and';v become 2 x 2 matrices. We shall not spell out the details of 
the procedure in this case. It is a straightforward application of the 
methods outlined in the preceding analysis. 

Buckling of a Multilayered Periodic Medium. As an example 
we shall consider a multilayered medium constituted of an infinite 
number of layers of equal thickness h as shown in Figure 7.3. The 
effect of gravity is not included. The layers are constituted of two 
rubber-like materials which alternate and are repeated periodically. 
The initial stresses in these materials are given by the stress-strain 
relations (6.34): 

P = S22 - S11 = /ho(A22 - A12) 

PI = S22 - seN = /h01(A22 - A12) 
(7.36) 

The initial extension ratios in the plane of the figure are Al and A2 • 

The value Al is measured in the direction of the layers. The materials 
are assumed to be incompressible, /ho and /hOI being the elastic 
coefficients of the two materials. 

The buckling is assumed to occur in a mode such that all interfaces 
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h 

h 

h 

Figure 7.4 Buckling mode of the infinite multilayered system. The 
"effective" compressions in each layer at buckling are P = S22 - Sl1 

and PI = S22 - SW. 
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are deformed with the same normal amplitude as shown in Figure 
7.4. The problem has been solved in a recent paper by the author.* 

The buckling condition is obtained by expressing the fact that the 
stresses are continuous at any interface. It is expressed by equations 
identical in form with equations 6.24. The coefficients aij represent 
the layer of rigidity {to. However, the coefficients a;j in this case are 
not given by expressions (6.23) but are those of another layer of the 
same thickness h and rigidity {t01' The values of , and yare the 
same for both layers, and therefore the coefficients aij and a;j are 
the same. Their values are (see equation 6.41) 

1 - P 

2Z2 - (1 + P)Z1 

Z1 - Z2 

where the variables are defined by equations 6.39 and 6.42. 

(7.37) 

In addition, relation (6.36) is also valid for this case. Hence 

L1 = {t01 = n 

L {to 
(7.38) 

* M. A. Biot, Theory of Stability of Periodic Multilayered Continua, Quarterly Journal 
of Mechanics and Applied Mathematics, Vol. 17, Part II, pp. 217-224, 1964. 
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Figure 7.5 Stability diagram for the multilayered medium of Figure 
7.4. Valuesof~ = (,\22 - '\12)/(>.'22 + ,\12) as afunctionofy = 7Th/!l' 

(!l' = wavelength) and the rigidity ratio n = fL01/fLo' 

With the values (7.37) and (7.38) the buckling condition (6.25) takes 
the remarkably simple form 

(7.39) 

This equation has been solved numerically, and the stability par
ameter , is plotted in Figure 7.5 as a function of the wavelength 
variable y for five values of the rigidity ratio n. We recall that by 
equations 6.39 and 6.42 the variables in this plot are defined as 
, = P/(2Q) = P 1/(2Q1) = ('\22 - ,\12)/(,\22 + ,\12) and y = 7Tk/!l', 
where !l' is the wavelength. 

Two limiting cases are of interest. For y = 00, corresponding to 
a small wavelength, we put Z1 = 1 and Z2 = k. Equation 7.39 
becomes 

(~)2 = (~)2k 
l+n l-k 

(7.40) 

which is the same as equation 6.51. Hence, at vanishing wave
lengths, , tends toward asymptotic values given by Table 2 and the 
buckling degenerates into an interfacial instability. 
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The other limiting case, obtained by putting y = 0, is of particular 
interest. Here the wavelength is large compared with the thickness 
of the layers. For this case we put Zl ~ Y and Z2 = k2y, and 
equation 7.39 becomes 

e-=~r = k
2 

l+n 
(7.41) 

or 
2 1 

(7.42) -=n+-
~ n 

This gives the values of ~ on the vertical axis in Figure 7.5. Now we 
should expect the medium to behave like an anisotropic continuum 
equivalent to the laminated medium. The buckling in this case 
should coincide with the internal instability analyzed in section 3. 
That this is effectively so is easily shown as follows. 

The slide moduli of the materials composing the layers are 

L = Q(1 + ~) 
Ll = Ql(1 + ~) 

(7.43) 

where Q and Ql have the values (6.35). Applying equation 2.29 for 
the average slide modulus Lav of the composite material, we obtain 

2 
Lav = 1 1 = 2( 1 + 

-+-
L Ll 

(7.44) 

The average value of the effective compressive stress is 

(7.45) 

According to the result of section 3 internal instability appears when 

Hence 
2(1 + ~)QQl = ~(Q + Ql)2 

From the values (6.35) for Q and Ql we derive 

and equation 7.47 becomes 

Ql = fLOl = n 
Q fLo 

2 1 
-=n+
~ n 

(7.46) 

(7.4 7) 

(7.48) 

(7.49) 
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This condition is the same as that expressed by the limiting equation 
7.42. It shows that the buckling of a multilayered medium is 
identical with the internal instability of a continuum if the layers are 
sufficiently thin relative to the wavelength. 

For wavelengths gradually decreasing in magnitude the value of ~ 
increases. This is due to the finite thickness of the laminations and 
the influence of the bending stiffness of the more rigid layers. 

Iteration Process for the Numerical Solution of the Recur
rence Equations. The pair of equations (7.5) are linear relations 
between six variables. These variables are the three tangential dis
placements U j, Ul+l' U j+ 2 and the three normal displacements Vj' 
Vl+l' VI+2 at three successive interfaces. Relations of the same type 
are also obtained when gravity forces are included as shown by the 
pair of equations (7.28). In general such recurrence equations are 
typical of the mechanics of multilayered media and are obtained in a 
large variety of problems of dynamics and stability treated here and in 
the following chapters. The recurrence equations provide an alter
native method of numerical solution which may be more convenient 
than the matrix multiplication method outlined above. The 
numerical procedure is straightforward and elementary and does 
not need to be spelled out in detail. 

Consider for example the pair ofrecurrence equations (7.5). They 
may be solved for two of the six variables and written 

U I + 2 = c:p(U j, VI' Uj+ 1 , Vl+l) 

V i +2 = tP(U j, Vj' Ul+l' V j+ 1 ) 

(7.50) 

The right side represents linear functions of the four displacements 
at the top face of layers i and i + I. The coefficients in these 
functions depend on the parameters of these two layers. 

We start with the top layer. If the top surface is free the dis
placements U1> V1> U2, V2 satisfy the first two of equations (7.6) and 
we derive U 2' V 2 in terms of U 1> V l' If the top surface adheres to a 
half space we proceed similarly by using the two equations (7.8). 
Substituting U1 , VI' U2, V2 into equations (7.50) we derive U3 and V3 
as linear functions of U 1 and V l' By repeating this procedure we 
obtain the displacements Un' Vn, Un+ 1 , Vn+ 1 of the bottom layer as 
functions of U1> VI' We then substitute these values Un' Vn, Un+ 1 , 

Vn + 1 either in equations (7.9) or in the last two of equations (7.6) 
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depending on the boundary conditions at the lower face. Hence we 
finally obtain two linear equations for Uland VI whose determinant 
must vanish. The value of this determinant and characteristic 
roots for any parameter may be evaluated numerically by standard 
programming. 

The method is of course quite general and is applicable to equations 
(7.28) and other recurrence equations of the same type. 



CHAPTER FIVE 

Dynamics of Elastic Media 

under Initial Stress 

1. INTRODUCTION 

Until now we have neglected all dynamical effects, thus restricting 
the foregoing results to deformations where the inertia forces are not 
significant. 

In this chapter we develop the dynamics of continuous elastic 
media under initial stress. We deal with vibrations and wave 
propagation in such media and with~troblems of dynamic instability. 

This general dynamical theory was developed by the author in 
1940* and applied to problems of propagation of elastic waves in the 
presence of initial stress. 

The property of elasticity refers only to incremental deformations. 
The state of initial stress mayor may not be associated with any 
finite strain elasticity and may be due to any other physical cause. 

The presence of an initial stress tends to modify the effective 
rigidity of the medium. In general, a tension tends to increase the 
rigidity, whereas a compression tends to decrease it. This is reflected 
in the dynamics ofthe medium and is associated with a corresponding 
increase or decrease of frequency of oscillation and wave velocity. 

The general equations governing the dynamics of the elastic 
medium under initial stress and the corresponding variational 

* See reference 7 at the end of the Preface. 

260 
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principles are derived in section 2. In the Lagrangian form with 
generalized coordinates they are the same as the classical equations 
for a conservative system perturbed from equilibrium with the 
difference, however, that beyond a certain range for the initial 
stress the potential energy is not positive definite. In this case the 
system becomes unstable and exhibits characteristic values with 
exponentially increasing amplitudes. 

In section 3 the theory is applied to the evaluation of the effect of 
gravity on Rayleigh waves. Some of the results are discussed in the 
context of geophysics. 

The influence of initial stress on the propagation of body waves is 
examined in section 4. Some fundamental properties due specifically 
to the initial stress are brought out. In particular it is shown that 
the effect of the initial stress cannot be represented by a change in 
elastic coefficients. Internal instability is shown to correspond to 
the vanishing of the velocity of propagation of a transverse wave. 
Complete equations for acoustic propagation in an isotropic elastic 
medium with first order corrections for the effect of initial stress are 
readily obtained by combining the dynamical equations with values 
of the elastic coefficients derived in section 9 of Chapter 2. Special 
attention is given to the distinction between adiabatic and isothermal 
deformations and the relation between the corresponding elastic 
coefficients in the presence of initial stress. 

The general theory is applicable to an elastic medium with 
vanishing rigidity. This leads to the dynamics of a fluid under 
initial stress or the theory of acoustic-gravity waves developed in 
section 5. The equations of motion are derived in two different 
forms referred to as unmodified and modified. The former are 
obtained immediately by introducing hydrostatic stresses in the 
equations of the general theory. The latter are obtained by a simple 
transformation, leading to a form where the terms incorporating the 
effect of the initial stress may be interpreted as buoyancy forces. 
For an incompressible fluid, surface and internal gravity waves may 
be analyzed by using an analog model which is stress-free in the 
initial state. This provides a conceptually very useful model for the 
understanding of the properties of gravity waves. 

Variational principles for acoustic-gravity waves may also be 
formulated in corresponding dual form denoted as modified and un
modified principles. They are discussed in section 6. The dual 
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form corresponds to two different ways of expressing the potential 
energy of the fluid in terms of the volume change or in terms of 
buoyancy forces. The formulation by means of generalized co
ordinates and Lagrangian equations follows immediately from the 
variational principle. An important feature of the theory which 
distinguishes it from the classical dynamics of a fluid free of initial 
stress is the presence of a surface integral in addition to the volume 
integral in the expression for the total potential energy. 

The important problem of wave propagation in elastic plates under 
initial stress is treated in section 7. In the stability analysis of 
plates in Chapter 4 we assumed for simplicity that the material is 
incompressible. In wave propagation problems such an assumption 
is inadequate, and the problem must be treated for the completely 
general case of a compressible material. However, it is sufficient to 
derive the six coefficients aij and blj describing the antisymmetric and 
symmetric deformation of a plate in response to exciting forces 
applied to the surface. Once these key coefficients are obtained, a 
large variety of problems are immediately solved by applying exactly 
the same formulas as in the corresponding stability problem treated 
in Chapter 4 for incompressible media. The complete solution of the 
problem of wave propagation in multilayered elastic media under 
initial stress is included. The solutions apply to phenomena in 
several categories. By putting the frequency equal to zero they 
generalize to compressible media theories of internal, surface, and 
interfacial instability, and the theory of buckling of thick plates, and 
multilayers. The solutions also represent dynamic instability when 
the characteristic exponent is real and the amplitudes are proportional 
to an increasing exponential of time. 

2. DYNAMICAL EQUATIONS FOR AN ELASTIC 

MEDIUM UNDER INITIAL STRESS 

From d'Alembert's principle it is well known that static equations 
may be formally generalized to dynamics by including the inertia 
forces as part of the body forces. By this procedure the static 
equations derived in the preceding chapters may be readily extended 
to dynamics. 
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Let us go back to the static equilibrium equations 7.29 of Chapter 1. 
They are 

We should remember the significance of the body force Xj(gl)' A 
particle ofthe solid initially at point x, y, z is displaced to a point of 
coordinates 

In abbreviated notation, 

g=X+u 

7]=Y+v 
~=z+w 

(2.2) 

(2.3) 

The body force per unit mass at the initial point X t is denoted by 
Xt(xl). At the displaced point it becomes Xt(gl)' 

Assume the medium to be in static equilibrium in the initial state 
of stress. The following equilibrium equations are satisfied: 

oSIJ 
~ + pXt(xl) = 0 
uXj 

(2.4) 

If the particle has acquired an acceleration in its displaced position, 
this acceleration is 

(2.5) 

This introduces the time variable t. To apply d'Alembert's principle 
we must replace Xj(gl) by XMI) - a j in the static equations (2.1). 
We derive the dynamical equations 

8 ~~ 
oX

j 
(Sij + 8 jj + SkjWlk + Sue - Sjkejk) + pXj(gl) = p ot2 (2.6) 

By taking into account the initial equilibrium condition (2.4) and 
putting 

(2.7) 

equations 2.6 become 

8 82uj 
oX

j 
(8jj + SkjWlk + SlJe - Sjkejk) + p LlX; = P 8t2 (2.8) 
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The left side of this equation may be transformed by following 
exactly the same procedure as in Chapter 1, writing equations 2.8 in 
the alternative form 

OWjk S OW;k 08 jk (PUj 

+ 8k; ox; + jk ox; - e;k ox; = p ot2 (2.9) 

Except for the inertial term on the right side, they are the same as 
equations 7.42 of Chapter 1. 

Boundary conditions for dynamical problems are, of course, not 
affected and are the same as for static equilibrium. 

In two dimensions the dynamical equations (2.9) are written 

OSII OS/2 A Y 
ox + oy + P<.JX + pw (x, y) - peX(x, y) 

ow Ow 
- 2812 ox + (811 - 8 22) oy 

0811 0812 (0811 (812) _ 02U - ax en - oy eyy - Ty + ox eXY - P ot2 
(2.10) 

OS/2 0822 
OX + oy + P LI Y - pwX(x, y) - peY(x, y) 

ow ow 
+ 2812 oy + (811 - 8 22 ) ox 

0822 8812 (0822 (812) _ 82v 
- By eyy - ox exx - ox + By eXY - P ot2 

Variational Principle. A variational principle for the dynamical 
equations 2.9 is readily obtained as follows. 

The previously derived principle for the static case is expressed by 
equation 5.37 of Chapter 2 and is written 

(2.11) 

with 

(2.12) 

The triple integrals are extended to the volume T of the elastic 
medium, and the surface integral is extended to its boundary A. 
The incremental boundary force per unit initial area is LIft. 
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By d'Alembert's principle we replace XMz) by Xt(gz) - at. This 
is equivalent to replacing LlXt by LlXt - aj in equation 2.11. Hence 
we write 

IIi (8LI V + pajSut ) dT 

= IIi LlXtpSUt dT + IL LlftSUt dA 

(2.13) 

This is the variational principle corresponding to the dynamical 
equations (2.9). In the variational process the acceleration is con
sidered to be a fixed field whereas the virtual displacements are 
arbitrary. * 

Equation 2.13 expresses the variational principle in its most 
general form. It may be simplified by considering the particular 
case where the externally applied forces are conservative. These forces 
include the body force field and the forces applied at the boundary. 

Let the body force be derived from a potential U; that is, 

au 
X.= --, aX

t 

By linearizing the incremental body force LlXt we write 

a2 u 
---u· aXt aXj J 

Hence 

If we put 

the variational principle (2.13) becomes 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

* Applications of the variational principle (2.13) to the dynamics of plates have been 
discussed by G. Herrmann, The Influence of Initial Stress on the Dynamic Behaviour 
of Elastic and Viscoelastic Plates, Publications of the International Association for 
Bridge and Structural Engineering, Vol. 16, pp. 275-294, ZUrich, 1956. 



266 Dynamics of Elastic Media under Initial Stress Ok. 5 

On the left side we recognize the quantity already defined as f!lJ~ by 
equation 5.47 of Chapter 2: 

f!lJ~ = IIi (LI V + p LI U) dr (2.19) 

With this definition the variational equation 2.18 is written 

(2.20) 

A further simplification is obtained by considering conservative 
boundary forces, already discussed in section 4 of Chapter 3. A 
trivial case is obtained if the boundary is composed of free surfaces 
and surfaces on which the displacement U t is zero. Then either LIft 
or SU t vanishes on the boundary and equation 2.20 is simplified to 

(2.21) 

Another example of conservative boundary forces corresponds to the 
case where the non-free boundaries are in contact with rigid friction
less surfaces. It was shown in section 4 of Chapter 3 that in this case 
the surface integral on the right side of equation 2.20 becomes 

(2.22) 

where f!lJ B is 

(2.23) 

The surface integral is extended to the rigid boundary B. In this 
expression S is the normal initial stress at the boundary at the initial 
point Xi' The other factors in the integrand have been defined by 
equations 4.58 and 4.59 of Chapter 3. The value of f!lJB depends 
essentially on the curvature of the boundary. With the definition 

f!lJ = f!lJ ~ + f!lJ B 

the variational principle (2.20) becomes 

(2.24) 

(2.25) 

In general, when the boundary forces are conservative it is possible 
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to write the surface integral (2.22) as an exact differential of a 
function f!jJ B of the boundary displacements. The same variational 
principle (2.25) is therefore applicable to this more general case with 
a suitable expression for f!jJ B representing the potential of the 
boundary forces. 

Analog Model for an Incompressible Medium. In section 5 of Chapter 3 
it was shown that for an incompressible medium the influence of the body force 
may usually be taken into account by considering an analog model in which 
the initial body force field has been replaced by "buoyancy forces" depending 
on the local particle displacements. This analog model is valid for dynamical 
problems provided that we add the inertia forces. For example, in equations 
5.32 of Chapter 3 we simply add the inertia term p(82u,)/(8t2 ) to the right side 
of the equations. All equations are readily extended to dynamics by this 
procedure, and there is no need to rewrite them here. A detailed application 
of the analog model concept including the corresponding variational principle 
will be developed in the context of acoustic-gravity waves in a fluid (sections 5 
and 6 of this chapter). It is also applied to the problem of Rayleigh waves in 
the next section. 

Generalized Coordinates and Lagrangian Equations. From 
the results above it is possible to derive equations which are identical 
in form with those of the classical theory of conservative systems in 
Lagrangian mechanics. This can be shown by expressing the 
displacement field in terms of generalized coordinates q,. We write 

(2.26) 

where ulj(x, y, z) are fixed configuration fields. The actual field may 
always be approximated to any desired accuracy by an arbitrarily 
large number of generalized coordinates. With the notation 

the acceleration field is 

d2q .. 
dt2 = q (2.27) 

(2.28) 

The displacement is varied by applying variations to the generalized 
coordinates qj; that is, 

(2.29) 

Hence we may write 

(2.30) 



268 Dynamics of Elastic Media under Initial Stress Ok. 5 

where 

(2.31) 

On the other hand, the potential energy f?IJ of equation 2.24 is 
quadratic and homogeneous in the displacements. Expressed by 
mea,ns of generalized coordinates, it takes the form 

(2.32) 
with 

(2.33) 

Substitution of expressions (2.30) and (2.32) into the variational 
principle (2.25) yields 

aljqjSqj + mljqjSqj = 0 

Since the variations Sqj are arbitrary, equation 2.34 implies 

ajjqj + mljqj = 0 

(2.34) 

(2.35) 

These differential equations govern the time dependence of the 
generalized coordinates and completely describe the dynamics of the 
system. They may be formulated in a number of equivalent ways. 
By introducing the kinetic energy 

or 1 ff'( .. d 1 .. 
.'f ="2 J1 pUjUj T = Zmjjqjqj (2.36) 

the differential equations 2.35 may be written in the classical 
Lagrangian form, 

of?IJ +!!:.. (o/T) = 0 
oqj dt oqj 

(2.37) 

Anotheruseful formalism is obtained by writing the time deriva
tive as 

We also introduce the quadratic form, 

T = ~ IIi pUjUj dT = -!mljqjqj 

and a corresponding operational expression, 

.r = p2T 

(2.38) 

(2.39) 

(2.40) 
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Considering p as an algebraic quantity, we write the variational 
principle 

8([JjJ + #) = 0 (2.41) 
This yields the equations 

f)[JjJ + p2 8T = 0 
8qt 8qt 

(2.42) 

Since p2 = d2 jdt2, they are identical with the dynamical equations 
2.35. 

From the Lagrangian equations 2.37, it also follows that the 
dynamical system obeys Hamilton's principle expressed in the form 

(2.43) 

with vanishing variations of qj at the origin and terminal point of the 
dynamical path. 

Normal Modes of Oscillation and Instability. The variational 
principle and the corresponding Lagrangian equations lead to a very 
general formulation of the dynamics of instability and oscillations of 
elastic systems under initial stress. 

Consider the differential equations 2.35 for the generalized 
coordinates qt. They admit solutions of the type 

(2.44) 

where p is an algebraic coefficient to be determined. We substitute 
these values into equations 2.35. For simplicity we write qt instead 
of q:, and we obtain 

ajjqj + p2mjjqj = 0 (2.45) 

The characteristic values p2 are the roots of the equation obtained by 
putting equal to zero the determinant of the linear homogeneous 
system (2.45). A fundamental property of equations 2.45 results 
from the fact that the quadratic form (2.39) is always positive definite, 

T > 0 (2.46) 

It is a well-known result that in such a case all the characteristic roots 
p2 are real. The existence of only real characteristic roots depends 
essentially on two properties: that the matrices [au] and emu] are 
symmetric and that at least one of the associated quadratic forms (in 
this case T) is positive definite. 
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Proof that the Characteristic Values p2 are real. Assume a complex 
solution 

satisfying the equations 
(2.46b) 

We write ,\ instead of p2. These equations are also satisfied by the complex 
conjugate solution 

(2.46c) 
Hence we have the equations 

a"jq/ + '\*m"jq/ = 0 (2.46d) 

where ,\* is the complex conjugate of'\. Multiply equations 2.46b by q,,* 
and 2.46d by q" and subtract the two results. Taking into account that 
a"j = aj" and m"j = mj" we obtain 

(,\ - '\*)m"jq"q/ = 0 

Since m"j = mj". the quadratic form in this expression is 

m"jq"qj* = m"j(Ct"Ctj + {3,,{3j) 

Because T > 0 it follows that 

m"j(Ct"Ctj + {3,,{3j) > 0 

Hence equation 2.46e implies 
,\ = ,\* 

and ,\ must be real. 

(2.46e) 

(2.46f) 

(2.46g) 

(2.46h) 

Consider a characteristic root p2 and the corresponding amplitudes 
qj. Because equations 2.45 are homogeneous, these amplitudes con
tain a common factor which may be chosen arbitrarily. Multiplying 
equations 2.45 by qt, we obtain 

(2.47) 
Hence 

(2.48) 

The root p2 is positive or negative depending on the sign of (!JJ. 

Positive roots p2 yield a real positive value for p. This requires 

(!JJ < 0 (2.49) 

As already pointed out, this inequality corresponds to elastic in
stability. The solution is a buckling mode, and all amplitudes are 
proportional to a real and increasing exponential of time exp (pt). 
For a root p2 which is negative we put 

p = ia (2.50) 
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The solution yields a natural mode of oscillation where all amplitudes 
are in phase and proportional to the factor exp (iat). For such a 
solution, equation 2.48 requires the condition 

f!J1 > 0 (2.51) 

Hence for an amplitude distribution represented by an oscillatory 
mode the potential f!J1 is positive. 

In general, the elastic system will contain an infinite sequence of 
natural modes, some of which are unstable and some oscillatory. * 

The properties of these modes which have been derived in terms of 
generalized coordinates may of course be expressed in terms of the 
displacement field of the continuum. Consider for instance a par
ticular mode of displacement field U j and its characteristic root p. 
All amplitudes are proportional to a factor exp (pt) and satisfy the 
boundary conditions. The acceleration is 

(2.52) 

In the variational principle (2.25) the exponential time factor cancels 
out. We may write it in terms of a time-independent displacement 
field U j which represents the amplitude distribution of the medium in 
a particular mode: 

(2.53) 

Hence, by defining T as 

(2.54) 

the variational principle is written 

(2.55) 

The variational principle (2.55) also can be formulated in an equiv
alent form as follows. Consider the bound extremum condition that 
the variation of f!J1 vanishes; that is, 

8f!J1 = 0 (2.56) 

* For a discussion of the mathematical validity of the stability criterion (2.51) the 
reader is referred to the remarks in the last paragraph of section 4 in Chapter 3. 
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for amplitudes Ui which in addition to obeying the boundary 
condition also satisfy the constraint 

T = const. (2.57) 

It is well known that the solution of this variational problem is 
obtained by writing the variational equation 

S&1 + AST = 0 (2.58) 

with a Lagrangian multiplier A and with variations SUi which are 
free of the constraint (2.57). This result is identical with the 
variational principle (2.55) where p2 plays the role of a Lagrangian 
multiplier. 

Equivalence of Group Velocity and Energy Flux. The variational prin
ciple in the form (2.56) has been used by the author to prove a fundamental 
theorem in wave-guide propagation. This refers to a sinusoidal wave train prop
agating in an elastic medium. The properties of the medium are independent of 
x, which represents the direction of propagation of a particular mode of the wave
guide. The state of initial stress is also independent of x. The medium may be 
non-homogeneous along the y and z directions. The amplitude field of the wave 
may be written in the form V,(y, z) exp (ilx - iat), and the group velocity is 
defined as daldl. It was shown by the author* that this group velocity is 
equal to the energy flux across a plane perpendicular to the direction x of 
propagation. This property was derived for an elastic system in the most 
general case of anisotropy whether or not in an initial state of stress. It 
applies to a large variety of phenomena such as Rayleigh and Stoneley waves, 
waves in plates, gravity waves, and waves in layered and non-homogeneous 
media. 

3. THE INFLUENCE OF GRAVITY ON RAYLEIGH WAVES 

The dynamical equations of the preceding section will now be 
applied to surface waves in an elastic medium. It was shown by 
Rayleigh that elastic waves may propagate along the surface of 
elastic bodies. The amplitude of such waves decreases exponentially 
with depth. The simplest example is given by waves propagating 
along the surface of an elastic half-space with isotropic elasticity. 
It is clear that the weight of the solid must influence the propagation. 

* M. A. Biot, General Theorems on the Equivalence of Group Velocity and Energy 
Transport, The Physical Review, Vol. 105, No.4, pp. 1129-1137, 1957. (The paper 
also discusses electromagnetic waves.) 
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The effect must depend on the relative magnitude of the gravity 
force and the rigidity. In fact, we can imagine cases where the 
materials considered have decreasing rigidity. In the limit we reach 
the case of a liquid in which the rigidity is zero and the surface waves 
such as ocean waves are due entirely to gravity. Rayleigh did not 
consider the influence of gravity on surface waves. The theory of 
this effect was first developed by Bromwich. * 

x 

y 

Figure 3.1 Elastic half-space subject to a gravity field. 

Application ofthe general dynamical equations 2.9 to this problem 
was described by the author in a paper published in 1940.t The 
resulting equations were shown to be equivalent to those of Bromwich. 
The problem is treated in two dimensions. The surface of the half
space is located at y = 0, and the y axis is directed vertically down
ward. The components of the body force are therefore (Fig. 3.1) 

X = ° 
Y=g 

(3.1) 

where g is the acceleration of gravity. We shall assume that the 
initial stress due to gravity is hydrostatic. In practice this is a good 
assumption. The main interest of this problem lies in its geophysical 
applications. The initial stress in this case is produced by a slow 
process of creep where all shear stresses tend to become small or 
vanish after long periods of time. The state of initial stress is 

Sl1 = S22 = S (3.2) 

* T . .T. l' A. Bromwich, On the Influence of Gravity on Elastic Waves and in Particular 
on the Vibrations'of an Elastic Globe, ProceedinY8 oj the London Mathematical Society, 
Vol. 30, pp. 98-120, 1898. 
t See reference 7 at the end of the Preface. 
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The stress S is a function of the depth. 
The material is also assumed to be homogeneous of mass density p. 

We shall furthermore restrict the analysis by assuming that the 
material is incompressible. The latter assumption simplifies the 
treatment, but it does not alter the nature of the conclusions. 

Equations 2.4 expressing the equilibrium conditions of the initial 
stress become 

8S = 0 
8x 

8S 
8y+pg=0 

(3.3) 

Taking into account relations (3.2) and (3.3) as well as the condition 
of incompressibility (e = 0), we find that the dynamical equations 
2.10 for the two-dimensional problem reduce to 

8s11 8S12 8S 82u 
8x + 8y + pwg - 8y eXY = P 8t2 

8S12 8S22 8S 82v 
8x + 8y - 8y eyy = p 8t2 

From equations 3.3 we may substitute 

8S 
pg = --

8y 

Furthermore we have the identities 

8v 
eyy =-

8y 

Hence equations 3.4 become 

8 8812 82u 
8x (811 + pgv) + 8y = P 8t2 

8812 8 82v 
8x + 8y (822 + pgv) = P 8t2 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Additional equations are furnished by the stress-strain relations. 
As pointed out in section 4 of Chapter 2, when the initial stress is 
hydrostatic, the incremental stress-strain relations are formally the 
same as in a medium initially stress-free. In the present case the 
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medium is also assumed to be isotropic and incompressible. Hence 
the stress-strain relations are 

8 11 - 8 = 2j1-exx 

8 22 - 8 = 2j1-eyy 

8 12 = 2j1-eXY 

where j1- is the shear modulus and 8 = t(811 + 8 22), 

(3.8) 

Finally we must consider the boundary conditions and express the 
fact that the surface at y = 0 is unstressed. We go back to equations 
6.26 of Chapter 1 for the force components per unit initial area at the 
boundary. Expressing that these boundary forces vanish at y = 0, 
we derive the two conditions 

8 12 + 8 12 - 8 22W '- 8 11eXY + 8 12eXX = 0 

8 22 + 8 22 + 8 12w - 8 12eXY + 8 22eXX =. 0 
(3.9) 

Since the initial stress due to gravity also vanishes at the boundary, 
we may put 

8 11 = 8 22 = 8 12 = 0 

Then the boundary conditions at y = 0 reduce to 

(3.10) 

(3.11) 

We must solve equations 3.7 after substituting the values of the 
stresses (3.8). The two equations thus obtained contain three 
unknowns u, v, 8, and the additional equation is furnished by the 
condition of incompressibility e = O. 

The problem may be transformed into an equivalent one by 
introducing the fictitious stresses 

8 11 + pgv = 8~1 

8 22 + pgv = 8~2 

812 = 8~2 

The dynamical equations 3.7 become 

08~1 08~2 02U 

oX + oy = P ot2 

08~2 08~2 02V 

oX + oy = P ot2 

(3.12) 

(3.13) 
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and the stress-strain relations (3.8) are now written 

with 
, 1(' , ) 8 = 2" 811 + 822 = 8 + pgv 

The boundary conditions (3.11) become 

8~2 = pgv 

8~2 = 0 

Ok. 5 

(3.14) 

(3.15) 

(3.16) 

The interesting point about this transformation is that the alternative 
equations 3.13 and 3.14 are the same as the classical equations for an 
initially unstressed medium. The only difference lies in the boundary 
condition (3.16). In the transformed problem the boundary is no 
longer stress-free, and we must introduce a normal force at the surface 
proportional to the deflection. 

The reader will recognize here the same fictitious stress introduced 
in section 5 of Chapter 3 and discussed in the general context of 
stability problems. For an incompressible medium we have shown 
that it leads to an analog model. The same transformation was also 
applied to the problem of stability of a non-homogeneous elastic half
space treated in section 8 of Chapter 3. The general validity of the 
analog model for dynamical phenomena was discussed in the 
preceding section. 

This alternative formulation with the fictitious stresses possesses an 
intuitive character. The boundary force represents a buoyancy 
effect. It is interesting to note that this intuitive form results 
rigorously from the general theory. The stress 8' may be interpreted 
physically as the hydrostatic stress increment due to the waves at a 
fixed point x, y, while 8 is the hydrostatic stress increment at a point 
originally of coordinates x, y but displaced with the material to the 
point of coordinates x + u, y + v. 

The dynamical equations 3.13 and the boundary conditions (3.16) 
coincide with those used by Bromwich. In order to solve the 
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dynamical equations we substitute the values (3.14) of the stress into 
equations 3.13, and we obtain 

2 oS' 02U 
ft V U + ox = P ot2 

oS' 02V 
ft y

2
V + oy = P ot2 

(3.17) 

where 

02 02 

y2 = ox2 + oy2 (3.18) 

In deriving these equations we have taken into account the condition 
of incompressibility, namely, 

OU OV 
e=-+-=O 

ox oy 
(3.19) 

Since we are interested in surface waves, we must consider solutions 
which vanish exponentially with depth. A solution of this type 
which also satisfies the condition (3.19) for incompressibility is 

with 

U = (A1e- IY + Ore- ry ) sin (lx - at) 

v = (A1e- IY + Ole- ry ) cos (lx - at) 

8' = Aa2 pe- IY cos (lx - at) 

r = 1\11 - 32 

a2p 
32 =-12ft 

(3.20) 

(3.21) 

The constants A and 0 remain to be determined from the boundary 
conditions (3.16). These boundary conditions may also be written 

OV 
8' + 2ft - = pgv 

oy 

OV+01t=0 
ox oy 

(3.22) 

Introducing the solution (3.20) into these conditions, we obtain 

(2ft12 - a2 p + p(1)A + (2ftlr + pgl)O = 0 

2l2A + (p + r2)O = 0 
(3.23) 
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Elimination of A and 0 yields the characteristic equation 

(2 - 32 )2 - pgl? = 4Vl - 32 

fJ-l 
(3.24) 

When equations 3.23 and 3.24 are satisfied, the solution (3.20) 
represents a surface wave. The phase velocity Vn of the surface 
wave is obtained from the condition 

lx - at = const. (3.25) 

or 

dx a 
Vn = - =-

dt l 

On the other hand, the velocity of the "shear wave" is known to be 

Vs = J~ (3.26) 

This is the velocity of propagation of pure transverse waves, also 
called rotational waves, The dimensionless parameter 3 turns out 
to be the ratio ofthe surface wave velocity to that ofthe shear wave: 

(3.27) 

Equation 3.24 yields the velocity of the surface wave as a function of 
the dimensionless parameter pg I fJ-l. This parameter represents the 
influence of gravity. 

The condition that the wavelength be vanishingly small is l = 00. 

It is identical with the case of zero gravity, g = 0, when equation 
3.24 becomes 

It has a real root 

3 = 0.955 

The corresponding surface wave velocity is 

Vn = 0. 955vs 

(3.28) 

(3.29) 

(3.30) 

which is the value found by Rayleigh for an incompressible material. 
Let us now go to the other extreme and consider a material of zero 
rigidity; then we are dealing with a fluid. This corresponds to 
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putting JL = 0 in equation 3.24. To evaluate this limiting case we 
first multiply the equation by JL2. The value of Vn derived from 
this equation becomes 

In terms of the wavelength 

we may write 

2 = 217 
1 

(3.31) 

(3.32) 

(3.33) 

This is the well-known velocity of pure gravity surface waves in an 
incompressible fluid. We derive a useful physical interpretation of 
the gravity parameter from the relation 

p(J = (12.)2 
JLl Vs 

(3.34) 

It turns out to be the squared ratio of pure gravity to shear wave 
velocity of the same wavelength 2. 

We may solve equation 3.24 for lJ as a function of p(J/JLl. The 
result is plotted in Figure 3.2. Starting with 2 = 0 and the corre
sponding Rayleigh wave velocity (equation 3.30), we see that the 
velocity increases with the wavelength until we reach the point of 
abscissa 

p(J (~Vf8) 2 = I 
JLl = 

(3.35) 

and ordinate 

(3.36) 

Beyond this point the root lJ becomes complex. 
The physical significance of this result is easily understood. The 

effect of gravity is to increase the surface wave velocity to the point 
where it exceeds the shear wave velocity. When this occurs, the 
surface wave cannot propagate unattenuated because it will generate 
shear waves at the surface which will radiate downward and dissipate 
the energy ofthe surface wave. We may visualize such an attenuated 
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Figure 3.2 The influence of gravity on Rayleigh wave velocity. 
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surface wave in a jelly-type material. In such a material the shear 
wave velocity is very low. It is easily exceeded by the gravity wave 
velocity, and attenuation will take place. On the other hand, if we 
decrease the rigidity to the limiting value f.t = 0 we are dealing with a 
liquid. Then the surface wave becomes a pure gravity wave with 
no attenuation. A more detailed analytical discussion of these 
phenomena appears in the paper cited. * 

It is of interest to evaluate the order of magnitude of the gravity 
correction for seismic waves. The correction depends entirely on 
the ratio vtfvs and becomes significant when its value approaches 
unity. Usual seismic shear wave velocities are of the order of 
Vs = 4 kilometers per second. Applying equation 3.33, we find that 
gravity wave velocities vf of this magnitude require wavelengths of 
about 10,000 kilometers. For such wavelengths the gravity correc
tion is important. However, at such large wavelengths the waves 
correspond to modes of oscillations of the earth, and a correct theory 
should take into account the spherical geometry and the variation of 
the gravity field due to the deformation itself. 

For usual seismic waves of shorter wavelengths the gravity cor
rection will be small. An exception to this must be made for prop
agation in materials of very low rigidity such as mud where the 

* See reference 7 at the end of the Preface. 
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gravity wave and shear wave velocities may be of comparable 
magnitudes for observed seismic frequencies. 

4. SOME FUNDAMENTAL PROPERTIES OF ACOUSTIC 
PROPAGATION UNDER INITIAL STRESS 

We shall consider a homogeneous medium in a state of initial stress. 
The material is either isotropic in finite strain or anisotropic with 
orthotropic symmetry. The principal directions of initial stress are 
chosen to coincide with the directions of elastic symmetry and the 
coordinate axes. The state of initial stress is therefore defined by 
principal components 8 11 , 8 22, 8 33 , 

Let us restrict the analysis to plane strain disturbances with dis
placements in the x, y plane. In this case the third principal stress 
8 33 perpendicular to the x, y plane does not enter explicitly into the 
propagation equations. Its influence is included indirectly in the 
density and in the values of the incremental elastic coefficients which 
appear in the two-dimensional stress-strain relations. 

We shall also assume the initial stress to be homogeneous. Hence 
there is no body force and the dynamical equations 2.10 for plane 
strain propagation become 

os 11 0812 OW 02U 

OX + oy + (811 - 8 22 ) oy = P ot2 

0812 0822 oW 02V 

OX + oy + (811 - 8 22) ox = p ot2 

(4.1) 

The two-dimensional stress-strain relations for orthotropic symmetry 
are given by equations 2.4 of Chapter 3: 

811 = B11 exx + B 12eyy 

822 = B 21eXX + B 22eyy 

8 12 = 2QeXY 

(4.2) 

Existence of an elastic strain energy requires that these coefficients 
satisfy relations (6.2) of Chapter 2. In the present case these 
relations reduce to 

B12 - B21 = 8 22 - 8 11 

In order to simplify the writing, we put 

8 22 - 8 11 = P 

(4.3) 

(4.4) 
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Substituting the stresses (4.2) into the dynamical equations 4.1, we 
derive 

82u 82v 82u 82u 
Bu 8x2 + (B12 + Q - iP) 8x 8y + (Q + iP) 8y2 = P 8t2 

82v 82u 82v 82v 
B22 8y2 + (B21 + Q + iP) 8x 8y + (Q - iP) 8x2 = P 8t2 

(4.5) 

Let us now consider plane waves propagating in the medium. The 
analysis of a plane longitudinal wave propagating in the x or y 
direction does not disclose any behavior which is essentially different 
from that of an unstressed medium. For example, let us consider a 
longitudinal wave propagating in the x direction, 

u = Uo cos (lx - at) (4.6) 
Equations 4.5 become 

82u 82u 
Bu 8x2 = P 8t2 (4.7) 

Similarly a longitudinal wave propagating in the y direction is 
governed by the equation 

82v 82v 
B22 8y2 = P 8t2 (4.8) 

These equations have the same form as those for the unstressed 
medium. The initial stress influences the propagation only through 
its effect on the magnitudes of the elastic coefficients B u , B22 and 
the density p. 

Quite different 
transverse waves. 
represented by 

conclusions are obtained when we consider 
Such a wave propagating in the x direction is 

u=o 
v = Vo cos (lx - at) 

(4.9) 

This satisfies identically the first of equations 4.5, while the second 
equation reduces to . 

(4.10) 

The velocity ofthis wave is obtained by substituting expression (4.9) 
into equation 4.10 and deriving the value of all. The velocity 
Vx = all is given by 

V 2 _ Q - iP 
x - p (4.11) 
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The same calculation may be carried out for the transverse wave 

U = U o cos (ly - at) 

V = 0 
(4.12) 

propagating in the y direction. The velocity Vy ofthis wave is given 
by 

V 2 - Q + !P 
y -

p 
(4.13) 

Comparing equations 4.11 and 4.13, we note that the velocities V" 
and Vy are different although the elastic coefficient involved is the 
same in both expressions. We derive the relation 

( 4.14) 

This equation expresses a property of the wave propagation which is 
independent of the elastic coefficients and depends only on the initial 
stress and the density. Our results also bring out the important fact 
that acoustic propagation under initial stress is fundamentally 
different from the stress-free case and cannot be represented by simply 
introducing into the classical theory stress-dependent elastic coef
ficients. These properties were first derived and discussed by the 
author in a paper published in 1940. * 

When S22 = 0, positive values of P represent a compression in the 
x direction. As P increases, the velocity Vx given by equation 4.11 
will usually decrease and will vanish for 

Q -!P = L - P = 0 (4.15) 

This is the condition for internal buckling discussed in Chapter 4. 
When the compression P approaches the value of the slide modulus 
L, the effective transverse rigidity of the medium tends to vanish, the 
velocity drops to zero when P = L, and internal buckling is incipient. 

For a medium which is isotropic in finite strain we have shown that 
the coefficient Q may be expressed in terms of the initial stress and 
the extension ratios along the principal directions of initial strain. 
We denote by Al and A2 the finite extension ratios in the x and y 

* See reference 7 at the end of the Preface. 
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directions in the state of initial stress; then application of equation 
7.15 of Chapter 2 yields 

(4.16) 

With this value of Q the velocities Vx and Vy are given by 

(4.17) 

In this case the velocities along the x and y directions cannot be 
made to vanish. This statement is in accordance with the property, 
discussed in Chapter 4, that the condition P = L which corresponds 
to an internal instability of the first kind cannot occur in an isotropic 
medium. 

Another point of interest is brought out as a consequence of 
equations 4.17. We derive 

(4.18) 

This result is interpreted as follows. Consider a pair of points on the 
x axis and another pair on the y axis. Assume these points to be 
equidistant in the stress-free medium. Equation 4.18 means that 
after deformation the transit time of the shear waves between the 
two points on the x axis remains equal to the transit time between 
the two points on the y axis. 

A remark should be made here with respect to internal instability 
of the second kind. This type of instability may occur in an isotropic 
medium of a special nature, as already discussed in Chapter 4. In 
this case we have shown that unstable characteristic solutions appear 
as slip lines which do not lie along principal directions. Hence 
vanishing of wave velocity in directions other than those of the 
principal stresses may be expected. However, we shall not pursue 
the analysis any further. 

Acoustic Propagation in Second Order Elasticity . We shall 
include here some briefremarks regarding the theory of acoustic waves 
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in second order elasticity. The extension ratios in the principal 
directions of initial strain are written 

Al = 1 + e11 

A2 = 1 + e22 

A3 = 1 + eS3 

(4.19) 

where e11, e22' and e33 are small quantities. In an isotropic medium 
the corresponding principal stresses including only first and second 
order terms in e11' e22' and e33 are expressed by equations 9.6 in 
Chapter 2. The relationship involves five elastic coefficients A, {t, 
D, F, G. For a medium initially stress-free the elastic coefficients 
are reduced to A and {t. Under initial stress the medium becomes 
orthotropic. The modified elastic coefficients were derived in section 
9 of Chapter 2 by adding to A and {t correction terms of the first order 
in the initial strain. For example, Q is given by 

2Q = 2{t + ({t + A + D - F)(e11 + ed 
+ (A - 2{t + 2F - G)e33 (4.20) 

If Po is the density in the stress-free state, its value in the state of 
initial stress is 

with 

Po P=--
1 + e 

(4.21) 

(4.22) 

Finally from equations 9.6 of Chapter 2 we derive to the first order 

(4.23) 

Substitution ofthe values (4.20), (4.21), and (4.23) into equation 4.11 
yields the first order correction of the transverse wave velocity due 
to the state of initial stress. 

The other elastic coefficients B 11 , B12 , etc., are given by equations 
9.12 and 9.13 of Chapter 2. For example, 

B11 = (2{t + A)(l + ell - e22 - e33) 

+ 2De11 + 2F(e22 + e33) (4.24) 

B12 = A(l - e33) + 2F(e11 + e22) + Ge33 - 8 11 

etc. 
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General equations for acoustic propagation, with the first order 
correction due to the initial stress in an isotropic elastic medium, are 
obtained by substituting the values (4.20), (4.21), (4.23), and (4.24) 
into the dynamical equations 4.5. Although the procedure is 
described here for the particular case of plane strain in order to 
simplify the writing, the three-dimensional equations are similarly 
obtained without difficulty. 

Because the state of initial stress usually corresponds to an iso
thermal deformation, the incremental coefficients expressed by 
equations 4.24 will also correspond to isothermal deformations. 
However, acoustic propagation is generally associated with adiabatic 
deformations, and a more complete treatment requires the intro
duction of adiabatic coefficients. They are obtained by adding to 
expressions (4.24) small correction terms which will now be evaluated. 

Relation between Adiabatic and Isothermal Coefficients. 
The procedure is best explained by starting with the discussion of a 
non-isotropic material and without the restrictive assumption that 
the initial strain is small. 

Consider an orthotropic elastic medium in a state of initial stress 
at an absolute temperature T r• The principal initial stresses are 
assumed to be oriented along the axes of elastic symmetry which are 
also chosen as coordinate axes x, y, z. For simplicity and without 
loss of generality, we assume incremental deformation in the x, y 
plane only. The incremental stresses for isotherm~l deformations 
are given by equations 4.2. If we increase the absolute temperature 
by a small amount 8, it becomes T = T r + 8 and the incremental 
stresses may be written 

8 11 = B 11eXX + B 12eyy - fi1 8 

8 22 = B 21eXX + B 22eyy - fi2 8 

8 12 = 2Qexy 

(4.25) 

Because of the elastic symmetry the temperature does not affect the 
shear stress component 8 12, A fourth equation relates the entropy 
to the strain and the temperature. The increment of entropy per 
unit initial volume is written in linearized form 

(4.26) 

The coefficients in this expression are derived from thermodynamic 
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considerations. We denote by c the heat capacity per unit volume 
for zero incremental strain. Hence when we put 

equation 4.26 becomes 

Therefore 

cO 
9 = - = f30 

Tr 

f3= 
c 

Tr 

(4.27) 

(4.28) 

(4.29) 

The other coefficients are obtained by using the following relations 
derived from classical thermodynamics 

8s11 89 
8() 8exx 

8S22 89 
(4.30) 

7iO 8eyy 

Hence 

(4.31) 

and the increment of entropy (4.26) becomes 

(4.32) 

Relations (4.30) may be derived as follows. We assume a deformation 
without shear (eZy = 0). For an element of unit volume in the initial state of 
stress, conservation of energy is expressed by the equation 

dU = tll dezz + t22 deyy + dh (4.32a) 

In this equation U is the internal energy and h the heat absorbed, and tll and 
t22 are written 

t22 = 822 + S22ezz 
(4.32b) 

Equations 4.32b represent the forces per unit initial area defined previously 
by equations 2.14 of Chapter 2. The entropy 9 is also written: 

Hence 

d9 = dh 
T 

dU = tll dezz + t22 deyy + T d9 

The differential of the free energy is 

d(U - 9T) = tll dezz + t22 deyy - 9 dT 

(4.32c) 

(4.32d) 

(4.32e) 
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Since this is an exact differential, it implies the conditions 

8t22 85 
8T = - 8eyy 

Ok. 5 

(4.32f) 

By taking into account relations (4.32b) and the definition T = Tr + (j we 
derive equations 4.30. 

For adiabatic deformations the increment of entropy is zero. 
Putting 5 = 0 in equation 4.32, we obtain the temperature as a 
function of the strain 

() = - f31 Tr exx - f32 Tr eyy 
c c 

(4.33) 

Substitution of this temperature into equations 4.25 yields the 
adiabatic stress-strain relations 

8 11 = Bl1eXX + B12eyy 

8 22 = B21eXX + B22eyy 

The incremental adiabatic coefficients are 

B- B a 2 Tr 
11 = 11 + 1"1 -

C 

B- B a 2 Tr 
22 = 22 + 1"2 -

C 

(4.34) 

(4.35) 

The coefficient Q for the shear stress remains the same for isothermal 
or adiabatic deformations. 

Values of f31 and f32 may be obtained experimentally by measuring 
the thermal dilatation under constant stress and using equations 4.25. 
The value of c is then obtained indirectly from equation 4.32 by 
measuring the specific heat under the same condition of constant 
stress. 

These values may also be derived analytically if the entropy is 
known as a function of the deformation and the temperature. This 
can be shown by considering a cube of unit size in the unstressed 
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state. The material is assumed to be orthotropic with the faces of 
the cube oriented along the coordinate axes and the planes of elastic 
symmetry. Under an initial stress, under forces applied normally to 
its faces, the cube becomes a parallelepiped of dimensions equal to the 
extension ratios A1> A2 , Aa. The entropy S of this element of the 
material is expressed as a function of the extension ratios and 
the temperature. We write 

( 4.36) 

Let Vo denote the volume of the element in a state of initial stress. 
The entropy of a unit volume in this initial state is then s/vo, and 
the incremental entropy is written 

1 (0 S 0 5 0 5 0 5 ) 
£I = Vo oA1 dA1 + oA2 dA2 + oAa dAa + oT dT 

By taking into account the relations 

dA1 
exx = -x;:-

() = dT 

dA2 
e yy = ~ 

1\2 

Vo = A1A2Aa 

and comparing equations 4.32 and 4.37, we derive 

1 oS 
f31 =-

Aa A20A1 

f32 = _1_ oS 
AaA10A2 

c 1 as 
Tr = A1A2Aa oT 

( 4.37) 

( 4.38) 

(4.39) 

Isotropy and Second Order Elasticity. When the elastic medium is 
isotropic in finite strain, expressions (4.39) remain applicable. The 
property of isotropy appears only in the fact that S is a function 
where the variables A1> A2 , Aa are interchangeable. 

Let us consider the case where the initial strain is small and is 
represented by the quantities 811' 822, 8aa of equations 4.19. To the 
first order in the initial strain the incremental elastic coefficients are 
given by equations 4.20 and 4.24. If the initial strain is isothermal, 
the incremental coefficients derived from these equations are also 
isothermal. In order to obtain the coefficients for adiabatic incre
mental deformations we must use equations 4.35. The correction 
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terms in these equations may also be expressed by linearization with 
respect to the small initial strains. For example, if we know the 
theoretical expression for the entropy the coefficients (4.39) may be 
evaluated to the first order in ell, e22' e33' Because of the isotropy 
of the medium they are of the form 

f31 = f30 + aeu + b(e22 + e33) 

f32 = f30 + ae22 + b(e33 + ell) 

C = Co + C1e 

( 4.40) 

By substituting these values into expressions (4.35) we obtain the 
adiabatic coefficients. They may again be simplified by retaining 
only the linear terms with the initial strain. 

We note that f30 is the common value of f31 and f32 in the original 
stress-free state, while Co is the specific heat per unit volume in the 
same state. In practice the terms containing the initial strain in 
expressions (4.40) will be very small and will usually be negligible. 
The adiabatic correction terms will then coincide with those of the 
stress-free medium. 

Adiabatic Coefficients in the General Case. In the most 
general case of anisotropy the incremental stresses are given by 
equations 4.15 of Chapter 2. They are written 

(4.41 ) 

The coefficients Bfl may correspond to either isothermal or adiabatic 
deformation. Let us assume that equation 4.41 corresponds to 
isothermal deformations. For adiabatic deformations we write 

(4.42) 

The relations between the isothermal and adiabatic coefficients Bfl 
and iJrl in this general case are derived by following exactly the same 
procedure as in the foregoing analysis. With an increment e of the 
temperature the stresses (4.41) become 

(4.43) 

This defines the coefficients f3ij. The increment of entropy per unit 
volume is found to be 

( 4.44) 
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Combining equations 4.43 and 4.44 with ~ = 0, we derive for the 
adiabatic coefficients the expressions 

B-/LV B/LV + f1 f1 Tr 
Ii = If if /LV

C 
( 4.45) 

where c is again the specific heat per unit volume under zero strain in 
the initial state of stress. 

Application to Stress Measurement and Earthquake Prediction. 
The theory of elasticity of a medium under initial stress predicts the influence 
of the state of stress on the velocity of propagation of elastic waves. This 
suggests the possible development of new methods of measuring stresses in a 
solid. In this connection the theory has recently been given a renewed im
portance by the suggestion that it may be used to predict the occurrence of 
earthquakes. Variations of stress in the earth should be associated with 
changes in the velocity of seismic waves. Observation of these changes should 
give an indication of critical variations of tectonic stresses. Of particular 
importance in this connection is the variation of velocity of transverse-type 
waves under horizontal tension or compression, as pointed out in 1940 by the 
author* and emphasized again in a recent paper. t Detailed prediction of the 
influence of stress on wave propagation in stratified geological structures can 
be derived by application of the more elaborate theory developed in section 7 
of this chapter. 

5. THEORY OF ACOUSTIC-GRAVITY WAVES IN A FLUID 

In usual acoustical theory the propagation of elastic waves in a 
fluid is analyzed by neglecting the initial stress. 

In a gas, of course, an initial stress is always present and is repre
sented by the gas pressure in the undisturbed state. When the initial 
pressure is uniform, the existence of initial stress does not give rise 
to any difficulty and may be neglected. 

If the initial pressure is not uniform the problem is not so simple, 
as, for example, when the fluid in the undisturbed state is in equilib
rium under the action of a body force such as gravity. That the 
effect of initial stress should produce phenomena which are quite 
different from those of classical acoustics is immediately evident if we 

* See reference 7 at the end of the Preface. 
t M. A. Biot, Internal Buckling under Initial Stress in Finite Elasticity. Proceeding8 
oj the Royal Society, A, Vol. 273, pp. 306-328, 1963. 
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consider surface gravity waves in an incompressible fluid. In this 
case the propagation is dispersive. It is due entirely to the initial 
stress itself, and not to any elastic property of the fluid. More com
plex behavior arises when the propagation results from the simul
taneous action of the initial stress and the compressibility. An 
example of such behavior is provided by the propagation of pressure 
waves in the atmosphere. In this case the gas is initially in equilib
rium under the action of gravity. The initial pressure and density 
are functions of the altitude. For large wavelengths the influence of 
gravity on the propagation becomes very important and must be 
introduced into the theory. 

It is known that in the ocean internal gravity waves also occur 
because of density differences at various depths. 

In the past these problems have been discussed almost exclusively 
from the standpoint of Euler's equations of fluid dynamics which 
describe the motion by means of the velocity field. 

The classical literature on this subject originated in the late 
nineteenth century. The theory of gravity waves in heterogeneous 
liquids is associated with the names of Love, Burnside, Rayleigh, 
Lamb, and others. * General equations for small motions of a gas 
about a state of equilibrium in any constant field of force have been 
derived by Lamb.t Extensive application and development of these 
theories in the context of oceanography and meteorology are due to 
Bjerknes+ and Eckart.§ 

The present treatment starts from an entirely different viewpoint 
and, by introducing zero rigidity, considers the fluid as a particular 
case of an elastic continuum under initial stress. Aside from bringing 
the theory into the unifying framework of the theory of elasticity it 
presents many advantages by providing a better understanding of 
the physical nature of these phenomena and removing many of the 
obscurities inherent in the traditional treatment by Euler's equations. 
A detailed discussion based on this viewpoint has been given in some 

* Classical references will be found in Lamb's treatise (p. 378), Hydrodynamics, 
Cambridge University Press, 1932 (reprinted by Dover Publications, New York, 
1945). 
t See Lamb's treatise, p. 554. 
tV. Bjerknes et al., Physikalische Hydrodynamik, J.~Springer, Berlin, 1933. 
§ C. Eckart, Hydrodynamics of Oceans and Atmospheres, Pergamon Press, New York, 
1960. 
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recent papers by the author, * with particular emphasis on some 
new variational principles. The latter will be presented in the next 
section. 

Unmodified Equations for Acoustic-Gravity Waves. In the 
particular case of a fluid the initial and incremental stresses are 
hydrostatic. They are written 

Sij = SOl} 

8ij = 80jj 
(5.1) 

where Sand s are the negative initial and incremental pressures. 
With these values equations 2.9 are considerably simplified. They 
become 

os oS - + pLlX! - peX! - pw!.X. - e!·
ox! J 1 'ox} 

(5.2) 

These equations are further simplified by taking into account the 
equilibrium condition for the initial stress, 

Hence 
OUjoS 
ox! ox} 

We shall refer to these equations as the unmodified equations. 

(5.3) 

(5.4) 

It is of interest to show that equations 5.4 may be derived by a more direct 
procedure. Consider the particle of fluid initially at point Xt and displaced 
to the point gt = Xt + Ut. The dynamical equations in terms of the coordi
nates gt are written 

8~t (8 + 8) + p'XMt) = p' 8;t~t (5.4a) 

These are exact equations valid for finite deformations. Attention is called 
to the significance of the variables. At the initial point Xt the stress, the mass 

* M. A. Biot, Generalized Theory of Internal Gravity Waves, U.S. Air Force Office 
of Scientific Research Report, 1962; General Fluid-Displacement Equations for 
Acoustic-Gravity Waves, The Physics of Fluid8, Vol. 6, No.5, pp. 621-626, 1963; 
Variational Principles for Acoustic-Gravity Waves, The PhY8ics of Fluid8, Vol. 6, 
No.6, pp. 772--778, 1963; Acoustic-Gravity Waves as a Particular Case of the 
Theory of Elasticity under Initial Stress, The Physic8 of Fluid8, Vol. 6, No.6, pp. 
778-780, 1963. 
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density, and the body force are, respectively, S, p, and X,(x,). At the 
displaced point g, they become S + 8, p', and XM,). 

We wish to transform equations 5.4a by introducing x, as independent 
variables. An equivalent form of the equations is 

aXj a S 'X t ' a2u, ag, aXj ( + 8) + p ,(~,) = p 8i2 

The derivatives ax,lag, are evaluated by solving the equations 

tag, 
d~,=-dx, ax, 

We find 

(5.4b) 

(5.4c) 

(5.4d) 

The Jacobian J is the determinant of equations 5.4c. The cofactors MIJ have 
been discussed and are given by equations 7.13 of Chapter 1. From equations 
5.4d we derive 

aX j 1 
ag, = yMtj (5.4e) 

The density satisfies the relation 

p = Jp' (5.4f) 

By using relations (5.4e) and (5.4f), equations 5.4b are transformed into 

a a2u, 
M/j aXj (S + 8) + pXMrl = p 7fi2 (5.4g) 

These are still exact equations. They may be simplified by keeping only the 
first order terms. To this approximation Mij is given by expression (7.18) of 
Chapter 1. 

" Ouj Mtj = (1 + e)o,j - -;;-
uX, 

(5.4h) 

By substituting this value into equations 5.4g, keeping only first order terms 
and taking into account the initial equilibrium condition (5.3), we derive 

08 as Ouj as a2u, + p LlX, + e - - - - = P "t2 (5.4i) ax, ax, ax, ax, u 

where 

LlX, = XM,) - X,(X,) 

This result coincides with equations 5.4. 

(5.4j) 

Equations 5.4 simply express Newton's law of motion and do not 
involve the thermodynamics of the fluid. If we assume that the 
volume changes are either adiabatic or isothermal, they will depend 
only on the pressure variation. Linearizing the pressure-volume 
relation in the vicinity of the initial state, we write 

8 = Ae (5.5) 
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This value substituted in equations 5.4 yields the propagation 
equations 

o oS OUj oS 02U j - ("\e) + e- - -- + pLlXj = p- (5.6) 
oXi oXi oX j OXj ot2 

The coefficient ,.\ is either the adiabatic or the isothermal bulk 
modulus. Both"\ and p will depend on the local nature of the fluid 
and the local value of the initial pressure and temperature. 
Boundary conditions at a free surface are expressed by the equation 

s="\e=O (5.7) 

If the initial pressure is uniform, the value of S is a constant 
(Xj = 0). In this case equations 5.6 take the classical form for the 
acoustics of a fluid, 

o 02U j 

ox! ("\e) = p ot2 (5.8) 

The initial stress does not appear in these equations. 
Ooriolis Acceleration. In many geophysical problems the Coriolis 

acceleration must be taken into account. With the additional 
Coriolis term in the acceleration, equations 5.4 are written 

os oS ou, oS (02U j OUt) -+e----+pLlX.=p -+2,Qj'oX i oX i oX j oXj t ot2 J ot 

In these equations ,Qij are the elements of the matrix 

(5.9) 

(5.10) 

and ,Qx, ,Qy, ,Qz are the components of angular velocity of the frame 
of reference. 

Unmodified Equations for a Fluid in a Constant Gravity 
Field. Consider a constant gravity field of acceleration g. With a 
vertical z axis positive upward the body force components are 

Xj = (0,0, -g) (5.11) 

From the equilibrium condition (5.3) the initial stress gradient is 
found to be 

oS 
- = -pX; = (0,0, pg) 
ox! 

(5.12) 
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Surfaces of constant density are horizontal planes; hence 

p = p(z) 

The displacement components are designated by 

U 1 = (u, v, w) 

In this case equations 5.4 become 

08 OW 02U 
OX - pg ox = P ot2 

08 OW 02V 
oy - pg oy = P ot2 

08 OW 02W 
oZ - pg oz + pge = p ot2 

The incremental hydrostatic stress is 

8 = '\e =,\ - + - + -(
OU OV OW) 
OX oy oz 

Ok. 5 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

These equations govern the propagation of acoustic-gravity waves in 
a compressible fluid with horizontal stratification and a constant 
gravity field. 

In the form (5.15) the equations for a constant gravity field were 
derived by the author* for a continuum of isotropic properties under 
initial hydrostatic stress. 

An extensive discussion of acoustic-gravity waves based on 
equations 5.15 has been given in a recent paper by Tolstoy.t 

Further Linearization of the Unmodified Equations. Atten
tion should be called to the validity of equations 5.4 for finite dis
placements. Their validity can be seen from their derivation, which 
requires that only the gradients of the displacements be small. 

For a non-uniform body force field the equations contain a term 
LlX i which is an explicit function of the displacement. It mayor may 
not be linear. For a constant gravity field this term disappears and 
the equations become linear. 

* See reference 7 at the end of the Preface. 
t I. Tolstoy, The Theory of Waves in Stratified Fluids Including the Effects of 
Gravity and Rotation, Reviews of Modern PhysiCB, Vol. 35, No.1, pp. 207-230, 1963. 
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Equations 5.4 do not contain explicitly the body force potential. 
A more restricted form of the equations is obtained by introducing 
explicitly this potential and by linearizing the incremental body 
force LlX j in terms of the components of displacements. With a 
potential U the body force becomes 

oU 
Xj =-

oX j 

In addition we assume that LlX j may be linearized as follows, 

( 5.17) 

oXj 02U 
LlX j = - u· = - -- u· (5.18) oXj J oXj oX j J 

In principle, for a non-uniform field the linearization (5.18) restricts 
the magnitude of the displacement U j • However, for the large 
majority of problems the linearization will be valid. With expression 
(5.18) for LlX j the dynamical equations 5.4 become 

os oS oUj oS 02 U 02Uj 
oXj + e oX j - oX j oX

j 
- p oX j oX

j 
Uj = P ot2 (5.19) 

Modified Equations for Acoustic-Gravity Waves. The 
linearized equations 5.19 may be further transformed into an equiv
alent form which provides additional insight into the physics of the 
problem. The transformation is a particular case of the more 
general one discussed in section 5 of Chapter 3 for the stability of a 
solid in the presence of hydrostatic stress. Using the equilibrium 
condition (5.3), we write 

oS oU 
oXj = p oX j 

With this value, equation 5.19 becomes 

08 oU OU; oU 02U 02Uj 
OX j + pe OX j - P ox. ox. - p ox. ox. U; = P ot2 

'J 'J 

Let us introduce a variable 8' defined by the relation 

, oU 
8 = 8 + pu·

J ox; 

(5.20) 

(5.21) 

(5.22) 

Substitution of 8 into equations 5.21 yields the following result, 
which we shall refer to as the modified equations. 

(5.23) 
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Comparison with equations 5.23 of Chapter 3 for the more general 
case of a solid in the presence of hydrostatic stress shows that these 
equations lead immediately to the same result by putting .fFt = 0 
and Sjj = Sajj' The physical interpretation of the various terms in 
equations 5.23 were discussed in section 5 of Chapter 3. The 
variable s' defined by equation 5.22 may be written 

, X 88 
S = S + pUj j = S - Uj-

8xj 
(5.24) 

This expression shows that s' represents the stress increment at a 
fixed point in space. 

Interpretation of the other terms is obtained by taking into account 
equations 5.20. By evaluating second derivatives of 8 the following 
relation is derived: 

or 

8U 8p 8U 8p 
8xj 8xt = 8xt 8xj 

8p 8p 
X j - = X t -

8xt 8xj 

(5.25) 

(5.26) 

This result expresses the parallelism of the body force and the 
density gradient. They are both perpendicular to the equipotential 
surfaces. 

We denote by n t the unit vector normal to the equipotential 
surface, and by X, 8p18n, and Un the algebraic components of Xt, 
8pl8xt, and Ut along this normal direction. We may write 

8p ( 8p) -peXt - UjXj 8x
t 

= -nt peX + unX 8n (5.27) 

These terms represent the buoyancy force acting on the fluid particle. 
The first term, peX, is the buoyancy force due to the change of 
volume of the particle. The second term, unX (8pI8n), is due to the 
density gradient and is proportional to the normal displacement. 

If we take into account equation 5.26 we may express the buoyancy 
force (5.27) in the form 

8p 8 
-peXt - u.x·- = -Xt - (pu.) 

J J 8xt 8xj J 
(5.28) 
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With this result the modified equations 5.23 become 

os' 0 02U! 
ox! - X! oX

f 
(pUj) = P ot2 (5.29) 

The intuitive significance of equations 5.23 and 5.29 is readily 
evident because the left-hand side represents the force acting on a 
fluid particle as the sum of the stress gradient os'lox! and the 
buoyancy force. 

Modified Equations for a Fluid in a Constant Gravity Field. As an 
example copsider equations 5.15 for the constant gravity field. By 
substituting 

they become* 
s = s' + pgw 

oS' 02U 
oX = P ot2 

oS' 02V 
Oy = P ot2 

os' op 02W 
OZ + pge + g oz w = P ot2 

(5.30) 

(5.31) 

They constitute a particular case of the more general equations 5.23. 

Relation to Euler's Equations of Fluid Dynamics. In the particular 
form (5.29) the propagation equations are closely related to the classical result 
obtained from Euler's equations of motion of a fluid. These equations are 

BPI - - + pXt = pat (5.31a) 
BXt 

where P" p, and at are the fluid pressure, density, and acceleration at a fixed 
point. The time derivatives of these equations are 

B (BPI) Bp Bp Bat 
- BXt at + X t Bt = Bt al + Pat (5.3Ib) 

Assuming small values of BPI/Bt, Bp/Bt, and ai' we may write to the first order 

B (BPI) Bp B2VI 
- BXI at + XI at = p 7ii2 (5.31c) 

where VI denotes the fluid velocity. By introducing the condition of 
. conservation of mass 

(5.31d) 

* A result equivalent to equations 5.31 but slightly different in form was also derived 
by A. Eliassen and E. Kleinschmitt in Handbuch der Physik, Vol. 48 (Geophysics II), 
p. 52, J. Springer, Berlin, 1957. 
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equations 5.31c become 

a (apt) 
ax, at (5.31e) 

They are of the same form as equations 5.29, where 8' plays the role of - apt/at 
and the displacement u, becomes the velocity v,. Equations 5.29 and 5.31e 
become identical if we divide equation 5.29 by the time increment LIt and 
consider its limit for infinitesimal values of 8' and u,. The time derivative of 
the pressure on a fluid particle is 

Dpt apt apt m = at + v, ax, (5.3lf) 

Comparing with equation 5.24, we see that - DPt/ Dt plays the role of the 
incremental stress 8 on the fluid particle. 

Gravity Waves in a Liquid. Analog Model. For a liquid 
behaving as an incompressible fluid we put e = O. Equations 5.23 
are simplified to 

os' op 02U1 
ox! - Xj ox! u j = P ot2 

To this we must add the condition for incompressibility 

e = 0 

(5.32) 

(5.33) 

The four equations 5.32 and 5.33 are now the propagation equations. 
They contain four unknowns, s' and U!. 

An important feature brought out by these equations is that they 
are identical with the propagation equation for a medium initially 
stress-free provided we add a body force proportional to the displace
ment as represented by the term - Xj (opJox!)uj • We have discussed 
the physical interpretation of this term as a buoyancy force. It may 
be looked upon as representing a positive or negative elastic force 
acting on a fluid particle normally to the equipotential surfaces and 
proportional to the distance of the displaced particle from this surface. 
By applying such elastic forces to the fluid particles a fictitious 
medium is obtained which plays the role of an analog model for 
internal gravity waves. It is obviously a particular case of the 
analog model discussed previously for the incompressible elastic 
solid (section 5, Chapter 3, and section 3 of this chapter). 

The stress of a fluid particle in the analog model is s'. However, it 
is not the stress of the particle in the actual fluid. The actual stress 
is S + s, and the stress increment s is related to s' by relation (5.24); 
that is, 

(5.34) 
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The boundary condition s = 0 at a free surface is replaced in the 
analog model by the condition 

s' = pUjXj (5.35) 

The elastic forces in the model are body forces per unit volume. This 
assumes that the density distribution is continuous. At a surface of 
discontinuity for the density these volume forces are replaced by 
forces per unit area. This can be shown by considering the discon
tinuity as the limiting case of a rapidly varying density and integrating 
the term - Xj (op/oxj)uj along the normal nj across the discontinuity. 
The procedure is illustrated below for the particular case of a constant 
gravity field. (See also page 475.) 

Liquid in a Constant Gravity Field. The significant features 
of the analog model are well illustrated by consid.ering the particular 
case of an incompressible fluid in a constant gravity field. The 
equations for this case are obtained by putting e = 0 in equations 
5.31. They become 

oS' 02U 
oX = P ot2 

oS' 02V 
oy=Pot2 

os' op 02W 
oZ + g oz W = P ot2 

ou+ov+ow=O 
ox oy oz 

(5.36) 

They are a particular case of the more general form (equations 5.32 
and 5.33). The boundary condition (5.35) at the free surface becomes 

s' = -pgw (5.37) 

Equations 5.36 and 5.37 are the same as those for an incompressible 
fluid free of initial stress with the addition of a vertical body force 
g (dp/dz)w distributed inside the fluid and a pressure pgw at the 
surface. The fluid pressure in this analog model is zero in the initial 
state of equilibrium, and it becomes - s' when the fluid is in motion. 

The distributed vertical body force g (dp/dz)w is equivalent to an 
elastic force proportional to the vertical displacement. The z axis is 
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positive upward. For a stabilizing density gradient, dpJdz is 
negative, and the force acts in a direction opposite to the displace
ment and behaves like an elastic restoring force. When dpJdz is 
positive, the body force is destabilizing and acts like an elastic 
repulsion away from the equilibrium point of the particle. 

The boundary condition (5.37) represents a pressure pgw applied 
to the boundary of the model and proportional to the vertical dis
placement. If the fluid lies below the free surface, this surface 
pressure acts in a direction opposite to the displacement like an 
elastic restoring force. If the fluid lies above the free surface, the 
situation is reversed and the surface pressure is destabilizing; in 
practice this condition, which corresponds to what is known as 
Taylor instability, may be produced by accelerating the fluid. 

Of particular interest is the case where the density p(z) is a discon
tinuous function of z. The elastic body force of the model then 
becomes a force per unit area applied to the surface of discontinuity. 
Its magnitude is obtained by considering a density p which is 
continuous but changes very rapidly across a horizontal layer of 
vanishing thickness e. By integrating the body force across the 
layer its magnitude per unit area is found to be 

(5.38) 

where P2 and Pl are the densities above and below the discontinuity. 
If Pl > P2' this force is stabilizing and acts in a direction opposite 
to w. 

Note that the boundary condition (5.37) may be considered as a 
particular case of equation 5.38 by imagining a fluid of zero density 
lying on top of the original fluid while the boundary is replaced by a 
thin layer across which the density drops to zero. Expressions 
(5.37) and (5.38) become identical by putting Pl = P and P2 = O. 

The nature of internal gravity waves is further illustrated by 
assuming a two-dimensional fluid motion parallel to the vertical 
x, z plane. Hence the last equation (5.36) is satisfied by putting 
v = 0 and 

u= 
_ 8cp 

8z 
8cp 

w=-
8x 

(5.39) 
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where ~ is an unknown function of x and z. Eliminating 8' and 
introducing ~ into the remaining equations, we obtain 

(5.40) 

We have put 

(5.41) 

For a simple harmonic wave propagating in the x direction we put 

~ = ei(lx-(f.t)f(z) (5.42) 

Substitution of this expression into equation 5.40 leads to a Sturm
Liouville equation for f, 

(5.43) 

We denote by 

v = ~ (5.44) 
l 

the phase velocity of the waves in the x direction. The boundary 
condition (5.37) at the free surface is 

In terms of f it becomes 

8' = -pgw 

g df 
V2f = dz 

Equation 5.43 is also written 

For an exponential density distribution 

we find 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

In this case equation 5.47 has constant coefficients and elementary 
solutions. 
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Note the physical significance of (Xc' When it is a real quantity it 
represents the angular frequency of a particle of fluid oscillating 
under the action of the local restoring force wg (dp/dz). Equations 
5.40 and 5.47 coincide with classical results. 

Discontinuous Displacements Associated with a Density Discon
tinuity. It is known that discontinuities of the displacements arise for 
acoustic propagation in a fluid with density discontinuities. This can be seen 
by considering the classical equations for the simpler case of a fluid initially 
stress-free. For waves of circular frequency a they are written 

08 
- = -a2 pu, (5.49a) ox, 

where u, is the fluid displacement and 8 is the negative pressure. From this 
equation we derive 

(5.49b) 

Hence 

(5.49c) 

The left side of this equation is the vector product of the velocity and the 
density gradient. On the right side is a quantity proportional to the rotation 
vector. At a surface of density discontinuity the "density gradient becomes 
infinite. If the velocity is not perpendicular to the surface of discontinuity, 
equations 5.49c show that the rotation becomes infinite. The rotation vector 
is tangent to the surface of discontinuity. Hence the tangential component 
of the displacement is discontinuous as we move across the surface. 

The question of the validity of the derivation of the equations of motion 
arises here since we have assumed that the displacement gradients are small. 
However, the difficulty may be circumvented by considering the discontinuity 
surface as a boundary for .the fluids lying on each side. By expressing the 
boundary forces acting on each fluid we find that the discontinuity is equivalent 
to surface forces proportional to the displacement and normal to the surface 
·of discontinuity. This is exactly the same result as obtained from the 

. dynamical equations by a limiting process and illustrated by equation 5.38. 

6. VARIATIONAL PRINCIPLES FOR 
ACOUSTIC-GRAVITY WAVES 

Variational principles for the dynamics of an elastic continuum 
under initial stress have been discussed in section 2. They are, of 
course, immediately applicable to the particular case of a fluid. 

Instead of proceeding from these general results there is some 
advantage in deriving variational principles for acoustic-gravity 
waves in a more direct fashion. 
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The analysis leads to variational principles of two essentially 
different types which are distinguished as follows. 

(a) Unmodified Variational Principle. This principle is the same 
as the previously derived principle for the theory of elasticity of a 
continuum under initial stress. It is readily applicable to a fluid 
by introducing hydrostatic stress components. The potential energy 
is expressed in terms of stress and strain. 

(b ) Modified Variational Principle. This principle emphasizes the 
particular properties of the fluid by introducing explicitly the 
buoyancy force. 

It will be shown that these two principles are equivalent. They 
correspond to the two forms (5.19) and (5.23) of the dynamical 
equations. 

These variational principles were developed and discussed in 
recent work by the author. * We shall first derive the modified form 
of the principle. 

The Modified Variational Principle. Let us consider the 
volume integral 

if/, = IIi (!se + peujXj + !Xj :~t UtUj ) dr (6.1) 

That this expression leads to a variational principle can be inferred 
if we note the physical significance of the terms appearing in the 
integrand. We can show that they represent the incremental 
potential energy of a fluid under initial stress. 

The term 
(6.2) 

is the elastic energy due to the change of volume e. The bulk 
modulus is defined by equation 5.5. Referring to expression (5.27) 
for the buoyancy force on a fluid particle, we may write the work 
done against this buoyancy force as 

, X IX ap X IX ap 2 
peuj j +"2 j -a UtUj = pettn +"2 -a Un 

Xi n 
(6.3) 

In this expression X, Un' and ap/on represent, as before, the algebraic 

* M. A. Biot, Generalized Theory of Internal Gravity Waves, U.S. Air Force Office of 
Scientific Research Report, 1962; Variational Principles for Acoustic-Gravity Waves, 
The Physics of Fluids, Vol. 6, No.6, pp. 772-778, 1963. 
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components of Xj' u;, and op/ox; along an oriented axis normal to 
the equipotential surface. 

With the values (6.2) and (6.3), expression (6.1) is written 

"Irt = IIi (!'\e2 + peunX + !X :~ Un
2

) dT (6.4) 

It is readily verified that "Ir t leads to a variational principle for 
acoustic-gravity waves by evaluating its variation for arbitrary 
displacement Uj. By the usual integration by parts we obtain 

8"1rt = IL (8 + pUjXj)n j8uj dA 

-IIi (::j + O~t (pujXj) - peXj - Xj ::! Uj)8U! dT (6.5) 

The bracket in the volume integral is identical with the left side of 
the dynamical equations 5.23. By writing a; for the acceleration 
o2utfot2 of the particle and inserting the value (5.24) for 8', we can 
write these dynamical equations 

If this equation is verified, the variational equation (6.5) becomes 

8"1rt + IIi paj8u j dT = IL (8 + pujXj)n j8uj dA (6.7) 

This result represents a variational principle for the dynamics of the 
fluid in the vicinity of equilibrium. Since it leads to the modified 
equations 5.23, we shall refer to it as the modified variational principle. 

Potential Energy of the Free Surface in the Modified 
Principle. The surface integral of equation 6.7 is extended to the 
entire fluid boundary A. It may be simplified by introducing 
boundary conditions and constraints. We shall assume that the 
condition of zero pressure is verified at the free surface; that is, 

8 = e = 0 (6.8) 

In addition, the displacement field U; is so chosen as to satisfy the 
linear condition that it be tangent to the surface at a rigid boundary; 
that is, 

(6.9) 
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With these conditions the variational principle (6.7) takes the 
simpler form 

8"irt + IIi pa l 8uI d'T = II puj X jn l 8uI dA (6.10) 

where the surface integral is extended only to the free surface F of 
the fluid. This surface integral acquires an interesting interpretation 
when we note that it represents an exact differential. Note that n l 

is the unit normal to the"boundary pointing outward. Since the free 
surface is an equipotential surface, the body force X I is normal to 
this surface. Hence we may write 

(6.11) 

where X and Un are the algebraic projection of the body force and 
the displacement on a direction normal to the free surface and 
pointing outward. By introducing 

as a "potential energy of the free surface" and 

& = "irt + "irF 

(6.12) 

(6.13) 

as a total potential energy, the variational principle (6.10) becomes 

8& + III pa l 8u! d'T = 0 (6.14) 

With the value (6.13) for & this result represents another form ofthe 
modified variational principle. 

Fluid in a Constant Gravity Field. Let us consider a uniform 
gravity field of acceleration g. The z axis is chosen positive upward, 
and w denotes the vertical displacement of the fluid. The body 
force is 

X! = (0,0, -g) 

Expressions (6.1) and (6.12) become 

"irt = IIi (ise - pgew - ig 7z w2
) d'T 

"irF = ipg II WF
2 dA 

(6.15) 

(6.16) 
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where Wp is the vertical displacement at the free surface. We 
recognize in the terms pgew and ig (dp/dz)w2 expressions for the 
work of the vertical buoyancy force. 

Applying the variational principle (6.14) with the particular values 
(6.16) leads immediately to the dynamical equations 5.15 for a 
constant gravity field. 

The expression for 1f't in equations 6.16 was also used by Tolstoy* 
to derive the equations of motion by means of a Lagrangian density 
for the case of a constant gravity field. 

Stability. The static stability of the fluid is determined by the condition 
that the total potential energy (6.13) be positive definite. This is expressed 
by the conditions 

iYF = - ~ IIFPXUn2dA > 0 

iY, = IIi (!Ae2 + pXeun + !X :~ U n2
) dT > 0 

(6.16a) 

The first inequality requires that 

x < 0 (6.16b) 

at the free surface. Hence at this surface the body force must be directed 
inward. The opposite case corresponds to the so-called "Taylor instability" 
which may occur when the body force is generated by an acceleration field. 

The second inequality (6.16a) is satisfied when the quadratic expression in 
the two variables e and Un is positive definite. This requires 

AX ~ - p2X2 > 0 (6.16c) 

If we assume the axis n, normal to the equipotential surface, and the body force 
to be oriented in the same direction, X is positive, and the condition becomes 

a pX 
an (log p) > --X (6.16d) 

The derivative (a/an) log p is the rate of change oflog p in the direction of the 
body force. Hence stability requires that p be increasing in that direction. 
In addition, the rate of increase must be sufficiently large to satisfy the 
inequality (6.16d). For a constant gravity field this result yields the 
well-known stability condition of a horizontally stratified gas. 

Another interpretation of this result is obtained by considering the condition 
of neutral equilibrium. We assume that a fluid particle is displaced while the 
total stress field of the fluid remains undisturbed. This means that the stress 

* I. Tolstoy, The Theory of Waves in Stratified Fluids Including the Effect of Gravity 
and Rotation, Reviews of Modern Physics, Vol. 35, No.1, pp. 207-230, 1963. 
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increment 8' at a fixed point is zero. Using expression (5.24) with components 
of Uj and Xj along the normal direction and substituting 8 = Ae, we write 

8' = Ae + punX = 0 (6.16e) 

The buoyancy force (5.28) on the displaced particle must also vanish; that is 

peX + unX :~ = 0 (6.16f) 

Eliminating e and Un between equations 6.16e and 6.16f, we obtain 

A op _ p2X = 0 (6.16g) 
On 

This result is also obtained when the inequality (6.16c) is replaced by an 
equality. 

Variational Principle for Gravity Waves in a Liquid. In this 
case the fluid is incompressible, and we must satisfy the constraint 

e = 0 (6.17) 

The expression (6.1) for 11/', is considerably simplified by putting 
e = O. It becomes 

(6.18) 

The surface potential energy 11/' F remains the same. 
This result could have been derived immediately from the analog 

model discussed in section 5 for a non-homogeneous liquid under 
initial stress. In this case 11/', represents the potential energy of the 
distributed buoyancy forces, and 11/' F that of the surface forces acting 
in the model. 

The variational formulation must take care of the constraint (6.17) 
for incompressibility. This can be accomplished in two ways. 

This constraint can be introduced in the displacement field itself 
by choosing the unknown variables in such a way that the condition 
e = 0 is automatically satisfied. This will be illustrated in the 
example represented by equations 6.24 discussed below. 

Another procedure is to free the variational process of the con
straint by introducing a Lagrangian multiplier A. The variational 
principle is then 

o IIi (tXj ::1 u!uj + Ae) dr + IIi pa!ou! dr 

-to ILpxun
2 dA o (6.19) 
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The variations OUt are now free of the constraint of incompressibility. 
We derive the differential equations 

oA op - - + Xj - Uj + pat = 0 (6.20) oX t oX t 

They are identical with the dynamical equations 5.32 provided we 
put 

A = s' (6.21) 

This result provides a physical interpretation of the Lagrangian 
multiplier as the fictitious stress in the analog model. This inter
pretation is also in agreement with the boundary condition derived 
from equations 6.19. 

Liquid in a Constant Gravity Field. As an illustration we con
sider a horizontally stratified liquid in a uniform gravity field. As 
before, we orient the z axis along the vertical and positively upward. 
The potential energy of the distributed buoyancy forces is 

il'"t = -!g IIi d; w2 dT (6.22) 

where w is the vertical displacement. The potential energy of the 
surface is 

il'"F = !pg IL wi dA (6.23) 

The problem was analyzed at the end of section 5 for a liquid on top 
of a horizontal rigid base. A displacement field in the x, z plane 
satisfying the condition of incompressibility (e = 0) is given by 
equations 5.39 and 5.42. It may be written 

U = -1' sin lx etat 

w = If cos lx eta! 

V = 0 

where f is a function of z only. We have put 

l' = df 
dz 

(6.24) 

(6.25) 

While f is an arbitrary function of z, the displacement field (6.24) 
always satisfies the condition of incompressibility 

ou+ow=O ox OZ (6.26) 
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This field represents standing waves. They may be considered to 
result from two wave trains propagating in opposite directions. In 
formulating the variational problem the common exponential factor 
may be dropped. We find 

if/', = - ~ JX dx cos2 lx f g12 ~: J2 dz (6.27) 

The integral along x will be evaluated over one wavelength 2. 
Putting 

we find 

if/', = 12 JZ12pa;c2J2 dz 

Similarly the surface potential energy is 

(6.28) 

(6.29) 

if/' F = 12 pgZ2IF2 (6.30) 

where IF is the value of I at the free surface. The dynamical term 
in the variational principle is 

(6.31) 

When we drop the exponential time factor, equation 6.31 becomes 

(6.32) 

With the values (6.24) and by integration over one wavelength 
along x we find 

JJipalSUldT = -l2a;2S fp(f'2 + 12J2)dz (6.33) 

The variational principle (6.14) is 

Sif/', + Sif/'F + JJipalSUldT = 0 (6.34) 

Substituting the values (6.29), (6.30), and (6.33), we find 

S JZ[l2p(a;c2 - a;2)J2 - a;2pf'2] dz + S(pg12/F2) = 0 (6.35) 
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Except for the condition f = w = 0 at the rigid bottom, arbitrary 
variations are applied to f. This equation is immediately recognized 
as the variational principle for. the Sturm-Liouville equation 

(6.36) 

In addition, it also yields the boundary condition at the surface 

(6.37) 

These results are identical with the differential equation 5.43 and the 
boundary condition (5.46) obtained by a different method. 

The Unmodified Variational Principle. Other forms of the 
variational principles may, of course, be obtained by using the 
general variational equations discussed in section 2 of this chapter 
for the dynamics of an elastic continuum and applying them to the 
special case of a fluid. 

Let us go back to the variational equation 2.13 for the elastic 
continuum. It is written 

S III L1V dT + IIi patSu! dT 

= IIi L1XtpSu i dT + IL L1ftSUt dA (6.38) 

The term L1 V is defined by equation 2.12. Let us evaluate this term 
for a fluid. A similar derivation was obtained in section 5 of Chapter 
3 in the discussion of the variational principles for the stability of an 
elastic solid in the presence of hydrostatic stress. The value of ttj is 
given by equation 5.36 of Chapter 3: 

tij = Sij + Sije - t(Stkejk + Sjketk) 

The stresses being isotropic, we must substitute 

s!j = sStJ 

Stj = SStj 
Hence 

(6.39) 

(6.40) 

(6.41 ) 

With the values (6.40) and (6.41), expression (2.12) for L1 V becomes 

(6.42) 
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The last term is easily simplified. Hence 

A V_I IS ( 2 OU i OUj) 
"-I - 2se + 2 e - aX. aX. 

, I 

We recognize here the quantity 

PIt = !S (e2 _ aUt aU,) 
OXj oXt 

defined by equation 5.42 of Chapter 3. 
We may write 

Ll V = !se + PIt 
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(6.43) 

(6.44) 

(6.45) 

With this value of Ll V the variational principle (6.38) takes the form 

8 IIi (!se + PIt) dr + IIi pat8u; dr 

= IIi LlX;p8ut dr + II Llft8U t dA (6.46) 

The usual procedure of integration by parts applied to the volume 
integrals yields the differential equations 

_ ~ _ ~ (Se) + ~ (s OUj) + pat = pLlXt OX; OX; OXj oXt 
(6.47) 

or 
as as aUf as - + pLlX; + e- - -- = pat 

OX; OXt oX i OXf 
(6.48) 

This result coincides with the dynamical equations 5.6. This 
particular form of the equations therefore corresponds to the 
variational principle (6.46). 

A more restricted form of this principle is derived by introducing 
the body force potential U and by linearizing the body force increment 
LlX i . The procedure is the same as in the derivation of equations 
5.19. According to equation 5.18, we write LlXt as 

02U 
LlXt = - --u· oXt oX j J 

(6.49) 

Here we encounter again the incremental body force potential Ll U 
defined by equation 4.3 of Chapter 3. It is written 

1 02U 
L1 U = - -- utuf (6.50) 

2 ox; oXj 
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Hence 
(6.51 ) 

By substituting this value into equation 6.46 it becomes 

a IIi (tse + ~ + pLlU) dr + IIi pataUt dr 

= I L Llftaut dA (6.52) 

This result will be referred to as the unmodified variational principle. 
It leads directly to the dynamical equations 5.19. Note that it 
corresponds to the linearized form of the unmodified equations of 
propagation. 

Comparing with equation 2.18, we note that the variational 
principle (6.52) is in a form corresponding to that for the elastic solid. 
The term ~ in the expression of the elastic energy Ll V represents the 
product of the initial stress S by the second order volume change. 
This can be shown by expanding the Jacobian of U t with respect to Xt. 

The second order term of this Jacobian is the factor multiplying S in 
the expression (6.44) of ~. 

This representation of the energy is quite different from the one 
appearing for the modified principle (equation 6.7), where "Irt is 
expressed by means of buoyancy forces. 

We must also consider the value of the incremental boundary force 
Llft for this case. This was derived in Chapter 3 and given by 
equation 4.54 of that chapter: 

(6.53) 

where n t is the unit outward normal to the boundary at the initial 
point. 

Rigid Boundary Potential of the Unmodified Principle. Let 
us go back to equation 2.19 for the general case of an elastic 
continuum. It defines &t as 

&t = IIi (LlV + pLlU) dr (6.54) 
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For a fluid we have shown that Ll V is reduced to expression (6.45). 
Hence g;~ becomes 

g;~ = IIi (lse + [Je + pLlU) dT 

The variational principle (6.52) may be written 

This relation is identical in form with equation 2.20. 

(6.55) 

(6.56) 

As already pointed out in section 4 of Chapter 3 and again in 
section 2 of this chapter, special attention must be paid to the 
significance of the integral on the right side of equation 6.56. 

Let us briefly recall the results previously derived for the elastic 
continuum. The boundary of the fluid is composed of free surfaces 
F and rigid boundaries B. At a free surface the initial and 
incremental stresses are zero; that is, 

(6.57) 

On the other hand, at the rigid boundary we assume that the 
displacements are tangent to the boundary at the initial point, 

(6.58) 

The initial stress S at this point is, of course, normal to the boundary. 
The reason for adopting this boundary condition is that it coincides 
with the linear boundary conditions generally imposed when solving 
the linear differential equations of the problem. As pointed out in 
previous discussions, for a curved surface this violates the actual 
boundary condition by a second order error. It was shown that the 
surface integral on the right side of equation 6.56 does not vanish 
and can be expressed by means of the curvature of the rigid boundary. 
This result was obtained as follows. 

By relations (6.53) we write 

IL LlflSUj dA = IL [(8 + Se)nl - S ~:: n;] SUI dA (6.59) 

Under the boundary conditions (6.57) and (6.58) this expression is 
simplified to 

(6.60) 
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where the surface integral is now restricted to the rigid boundary B. 
By equations 4.66 of Chapter 3 we have shown that the surface 
integral (6.60) is an exact differential 

J' f s °oUj 
njOut dA = io J' f s~ 00

2 
Fo UiUj dA JB Xi JB Xi Xj (6.61) 

The function F(Xl' X2, x3 ) defines the rigid boundary by the equation 

and 

~ = ± [(OF)2 + (OF)2 + (OF)2]-Y. oXl oX2 oX3 

The ± sign is so chosen that 

of 
n i =~oX i 

(6.62) 

(6.63) 

(6.64) 

represents a unit normal vector oriented outward from the fluid. 
Hence by putting 

(lJJB = - ~ J'f s~ 02F u·u· dA 
2 JB ox! oXj I J 

(6.65) 

the variational principle (6.56) becomes 

(6.66) 

Finally we may define a total potential energy of the fluid as 

(6.67) 

and write the variational principle 

It is exactly of the same form as equation 6.14. However, the 
definition of (lJJ is different. 

Equivalence of the Modified and Unmodified Variational 
Principles. It can be shown that there is a rigorous equivalence 
between the modified principle (6.7) and the unmodified principle 
(6.52). They both imply the existence of a body force potential and 
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the linearization of the incremental body force. A direct verification 
of this equivalence is obtained by going back to equation 5.48 of 
Chapter 3. It may be written 

(6.69) 

with 

(6.70) 

We substitute the value 

as ax. = - pXj (6.7l) 
1 

into equation 6.69 and rearrange the terms. It becomes 

a 
8qlf - - (pX.U .8u,) ax, 1 1 

We now add the expression 
a 

8(tse) + pat8ut - <> (s8u,) 
UX t 

(6.72) 

(6.73) 

to both sides of equation 6.72 and integrate over the volume T of the 
fluid. Taking into account the value (6.53) for ,,1/1, we obtain 

8 IIi ase + PJ + pJU) dT + IIi pat8u, dT - IL J/,8u, dA 

= 8 IIi (tse + qlf) dT + IIi pal 8u! dT (6.74) 

- IL (s + pXjuj)nt8uI dA 

Note that expression (6.1) is 

iYt = IIi (lse + qlf) dT (6.75) 

By equating to zero the right side of equation 6.74 we obtain the 
variational principle (6.7). Equating to zero the left side, we obtain 
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the variational principle (6.52). Hence we have established the 
equivalence of these two principles. 

Lagrangian Equations and Generalized Coordinates. Both 
the modified variational principle (6.14) and the unmodified principle 
(6.68) are expressed by the single equation 

However, the value of (!/J has a dual representation. In the modified 
principle we put 

For the unmodified principle we use 

(6.78) 

In both cases the potential energy includes a surface integral. 
For the modified principle the surface integral is if/ F, and it is ex
tended to the free surface. For the unmodified principle the surface 
integral is (!/JB' and it is extended to the rigid boundary and depends 
on its curvature. 

We have also noted the difference between the volume energies (!/Jt 

andif/t. The first is expressed in terms of the stress and the volume 
change, whereas the second introduces the energy of the buoyancy 
force. 

The variational principle (6.76) leads immediately to the treatment 
of acoustic-gravity waves by Lagrangian equations and generalized 
coordinates. We represent the displacement field as 

(6.79) 

The generalized coordinates qj are the unknown amplitudes of fixed 
configuration fields ulJ functions of the space coordinates. The 
fields U jj are assumed to satisfy the required kinematic constraints of 
being tangent to the rigid boundaries. 

Note that for an incompressible liquid the configurations are 
chosen to satisfy the additional constraint of being divergence-free. 

We proceed exactly as in the discussion at the end of section 2. 
The value of (!/J is the quadratic form 

(6.80) 
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and the kinetic energy is 

f7 = ~ IIi pUt7it dT 

or 
f7 = tmljqt(L 

The Lagrangian equations are 

auqj + mt/lj =. 0 
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(6.81) 

(6.82) 

(6.83) 

For the value (6.80) of f!jJ we may use either of the definitions (6.77) 
or (6.78). Equations 6.83 are the same as those of the classical 
theory of oscillations of a conservative system. They lead readily 
to the application of normal coordinate methods as developed for the 
analysis of transient wave propagation due to a pulse excitation. * 

Hamilton's principle as expressed by equation 2.43 is also applicable 
in the same form for the particular case of a fluid. 

Inclusion of Coriolis Forces in the Equations with Generalized 
Coordinates. Equations (6.83) for the generalized coordinates q, may be 
extended to include the Coriolis forces by applying the variational principle 
6.76. We must replace the acceleration aj by the value which was used in 
equation 5.9. This value is 

(6.83a) 

The angular velocity of the frame of reference is represented by ilk~' With 
the value (6.79) for Uk we derive 

(6.83b) 

Substitution of this expression into the variational principle (6.76) yields the 
dynamical equations 

(6.83c) 

The coefficients 

(6.83d) 

are due to the Coriolis forces. The definition (5.10) of ilk" shows that 

(6.83e) 

This implies 
(6.83f) 

* M. A. Biot and I. Tolstoy, Formulation of Wave Propagation in Infinite Media by 
Normal Coordinates with an Application to Diffraction, The Journal of the Acoustical 
Society of America, Vol. 29, No.3, pp. 381-391, 1957. 
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Hence the coefficients eli are skew-symmetric. The other coefficients, all and 
mil' are symmetric: 

ali = all mil = mJI (6.83g) 

They are the same as in equations 6.83. 

Curvilinear Coordinates. The foregoing equations for aCbustic
gravity waves have been derived in cartesian coordinates. However, 
they are easily obtained in orthogonal curvilinear coordinates. For 
the modified equations (5.23) the procedure is particularly simple 
since all the terms in the equations are expressed by scalars, vectors, 
and the scalar products of vectors. The volume change e is a scalar 
quantity which appears as such and through its gradient. This 
volume change in curvilinear coordinates is obtained by using 
expressions (5.54) of Chapter 2 for the strain components. The 
unmodified equations in curvilinear coordinates may be derived from 
the modified form. They may also be obtained directly from the 
variational principle using expression (6.42) for L1 V after introducing 
the values (5.54) and (5.55) of Chapter 2 for the strain and the 
rotation in curvilinear coordinates. 

7. DYNAMICS OF ELASTIC PLATES AND 
MULTILAYERED MEDIA UNDER INITIAL STRESS 

In the preceding chapters we have treated static problems of plate 
mechanics by introducing the simplifying assumption that the 
material is incompressible. In this section we consider problems of 
vibrations and wave propagation in elastic plates and multilayered 
media under initial stress. In dynamical problems it is essential to 
take into account the compressibility of the material. It will be 
shown that the general solutions for this case can be derived in 
relatively simple form by the same procedure as in the analysis of the 
stability problems in Chapter 4. These solutions were presented in a 
recent paper.* 

Consider the elastic plate illustrated in Figure 5.1 of Chapter 4. 
The x and y axes are in the plane of the figure. The thickness of the 
plate is denoted by h, and the faces are located in the planes y = ± hJ2. 

* M. A. Biot, Continuum Dynamics of Elastic Plates and Multilayered Solids under 
Initial Stress, Journal of Mathematics and Mechanics, Vol. 12, No.6, pp. 793-8lO, 
1963. 
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The initial stress is a uniform compression P = -S11 acting along 
the x direction. 

An initial stress component 8 33 perpendicular to the plane of the 
figure may be present. However, it does not appear explicitly in 
the equations. 

We shall solve the problem of vibrations for two-dimensional 
incremental deformations in the x, y plane. 

The dynamical equations 4.1 for two-dimensional deformations 
applied to the case under discussion become 

os 11 0812 OW 02U 
oX +-- P oy = P ot2 oy 

0812 0822 oW 02V 
(7.1) 

-+ P ox = P ot2 ox oy 

The mass density of the plate is denoted by p. It is recalled that u 
and v are the displacement components in the x, y plane and w is the 
rotation: 

1 (OV OU) w='2 ox- oy (7.2) 

Equations 7.1 are also derived from equations 2.1 of Chapter 3 by 
adding the inertia terms on the right side. The stress-strain relations 
as given by equations 8.31a of Chapter 2 are 

811 = B 11eXX + B 12eyy 

8 22 = B 21e XX + B 22eyy 

8 12 = 2Qexy 

The coefficients must satisfy the condition 

B12 = B21 + p 

which is required for the existence of a potential energy. 
The strain components were defined as 

OV 
eyy = oy 

1 (8V OU) 
eXY ="2 ox + oy 

(7.3) 

(7.4) 

(7.5) 

The stress-strain relations (7.3) correspond to a material orthotropic 
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under initial stress. The orthotropy may be intrinsic, or it may be 
induced by the state of initial stress. 

It should be kept in mind that· the elastic properties represented by 
the stress-strain relations (7.3) refer only to incremental deformations. 
The initial stress, on the other hand, does not have to be associated 
with an elastic finite strain and may result from any other physical 
cause. 

Vibrations of the plate and propagating waves are represented by 
solutions proportional to the exponential factor exp (iat). All 
equations may be written by omitting this factor. The dynamical 
equations 7.1 then become 

0811 0812 P Ow 2 0 
ox + oy '- oy + a pu = 

OS/2 OS22 pOw 2 0 -+-- -+apv= 
OX oy OX 

(7.6) 

By substituting expression (7.2), (7.3), and (7.5) into equations 7.6 
we derive 

02V 
+ (B12 + Q - lP) ox oy + a2pu = 0 

02V 02V 
B22 oy2 + (Q - lP) OX2 

(7.7) 

These are the two equations which must be satisfied by the displace
ments u and v. 

We shall seek solutions which are sinusoidal along x. They are of 
the type 

u = U(ly) sin lx 

v = V(ly) cos lx 
(7.8) 

In order to introduce the boundary conditions into the problem we 
also require an expression for the forces acting on a deformed surface 
which is initially a plane perpendicular to the y axis. The x and y 
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('l r::::::~ 
t q. 

(b) 

Figure 7.1 Antisymmetric (a) and symmetric (b) oscillations of a 
plate under normal and tangential surface excitations. 

components of these forces are expressed by equations 4.8 of Chapter 
4. They are 

L1fx = 812 + PeXY 

L1fy = 822 
(7.9) 

The significance of these quantities was discussed in section 4 of 
Chapter 4 and illustrated in Figure 4.2 of that chapter. The force 
components (7.9) corresponding to the sinusoidal solution (7.8) are 
written 

L1fx = T(ly) sin lx 

L1fy = q(ly) cos lx 
(7.10) 

In deriving these solutions we shall follow exactly the same procedure 
as in section 5 of Chapter 4 by considering separately the symmetric 
and the antisymmetric case. 

Antisymmetric Case. The deformation of the plate in this case 
is represented in Figure 7.1a. Both faces of the plate remain equi
distant, and the deformation is of the flexural type. By substituting 
expressions (7.8) into equations 7.7 we find two ordinary simultaneous 
differential equations for U(ly) and V(ly). The general solution of 
these equations for antisymmetric deformations is 

U(ly) = 0 1 sinh fJlly + O2 sinh fJ2ly 

V(ly) = O{ cosh fJ1ly + O~ cosh fJ2ly 
(7.11) 
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The values of f31 and f32 are obtained from the roots ofthe characteristic 
equation 

with 

k2 - ~ (L _ P _ a
2p

) 
- LB22 ZZ 

We have put 
a2 p 

!J = Bll - 12 

L = Q + lP 

(7.12) 

(7.13) 

(7.14) 

The quantity L is the slide modulus, also discussed previously. In 
deriving these results we have also taken into account the value (7.4) 
for B 12. 

The values of f312 and f322 are 

f312 = m + v'm2 - k2 

f322 = m - v'm2 - k2 
(7.15) 

The signs of f31 and f32 may be chosen arbitrarily in such a way that 
they possess no negative real part. 

The constants of integration 0; are given in terms of O! by the 
relation 

(7.16) 

Hence the solution (7.11) contains only two independent constants 
0 1 and O2 , Substitution of the values (7.8) with solution (7.11) into 
expressions (7.9) yields T(ly) and q(ly) defined by equations 7.10. 
Their value for y = h/2 is 

To, = T(llh) 

qa = q(llh) 
(7.17) 

These quantities represent the tangential and normal forces applied 
at the top face of the plate. The tangential and normal displace
ments at the top face are similarly defined as 

Ua = UWh) 

Va = V(llh) 
(7.18) 
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Equations 7.17 and 7.18 contain the two constants of integration 0 1 

and O2 , Their elimination in these two equations yields the relations 

(7.19) 

They represent forced oscillations of the flexural type at a given 
frequency ex under the action of sinusoidally distributed tangential 
and normal forces Ta and qa (Fig. 7.1a). 

The expressions for the coefficients au are simplified by putting 

_ Ilh _ 7Th 
1'-2 - 2 

ZI = f3I tanh f3I'Y 

Z2 = f32 tanh f32'Y 

(7.20) 

The parameter I' is the same as defined previously in terms of the 
wavelength 2 measured along the plate. The coefficients in equa
tions 7.19 are written 

with 

all = Q(f322 - f3I 2) ~ 
Aa 

a22 = B 22(f322 - f3I 2)ZIZ2 ~ 
a 

aI2 = [(Q + B2I(322)ZI - (Q + B2If3I2)Z2J ~ 

(7.21) 

a 

(7.22) 

When deriving these expressions, considerable simplification is 
obtained by cancellation of common factors in numerators and 
denominators. In order to bring out these common factors it is 
necessary to use the relation 

Q(B2I + L)2 
B22 = (Q _ Lf3I2)(Q - L(322) (7.23) 

This relation may be verified by substituting the values f3I2 + f32 2 = 

2m and f3I 2f322 = k2 which are consequences of the characteristic 
equation 7.12. 
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When the exciting force is normal to the plate, the deflection Va is 
obtained by putting Ta = 0 in equations 7.19. Elimination of Ua 

yields 
2 qa = alla22 - a12 V 

lL all a 
(7.24) 

Using the values (7.21) for ali' we find 

alla22 - a~2 R1z2 - R2z1 
all = Q(f312 - f322) 

(7.25) 

with 
R _ (Q + B 21 f31 2)2 

1 - Q _ Lf312 

R _ (Q + B 21 f322)2 
2 - Q _ Lf322 

(7.26) 

Equation 7.25 is derived after cancellation of the common factor 
Aa in the numerator and the denominator. This again requires the 
use of expression (7.23) for B22. 

Note that the exciting force qa in this case represents a normal 
traction at the top face and a normal push of equal magnitude at the 
bottom face (see Fig. 7.1a). 

Symmetric Case. The solution for the symmetric case is 
obtained in similar fashion. The type of deformation of the plate is 
represented in Figure 7.1b. The solution (7.11) is replaced by 

U(ly) = 0 1 cosh f31ly + O2 cosh f32ly 
(7.27) 

V(ly) = 0; sinh f31ly + 0; sinh f31ly 

The procedure followed is exactly the same as for the antisymmetric 
case. The applied forces T s, qs and the displacements Us, Vs at the 
top surface (y = h/2) are related by the equations 

We put 

z~ = f3~ tanh f31Y 

z; = ;2 tanh f32Y 

(7.28) 

(7.29) 
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The coefficients 

(7.30) 

b12 = [(Q + B21f322)Z~ - (Q + B21f312)Z~] ~ 
s 

with 

(7.31) 

Comparing the coefficients (7.21) and (7.30), we note that the values 
of blf may be derived from those of aij by simply interchanging the 
sinh and cosh functions. This amounts to interchanging Zl and Z2 

with l/z~ and l/z~ respectively. 
The forced oscillation under forces normal to the surface of the 

plate are obtained by putting Ts = 0 in equations 7.28. We derive 

Evaluation of the coefficient on the right side yields 

RIZ~ - R2Z~ 
Q(f312 - f322)Z~Z~ 

(7.32) 

(7.33) 

Free Oscillations and Surface Waves. There are two types of 
free oscillations corresponding to symmetric and antisymmetric 
deformations. We consider first antisymmetric waves. In the 
absence of exciting forces we put qa = Ta = 0 in equations 7.19. 
This yields the characteristic equation 

(7.34) 

When we use the value (7.25), this equation becomes 

(7.35) 

By solving this equation for the frequency a as a function of the 
wavelength we obtain the velocity dispersion branches for anti
symmetric waves in the plate. 
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For symmetric waves we put expression (7.33) equal to zero, and 
the characteristic equation becomes 

(7.36) 

The frequency equation for surface waves is immediately derived 
from these results. Surface waves are obtained for the limiting case 
of a plate of infinite thickness. In addition, in order to eliminate 
body waves, we must assume that the values of f31 and f32 are real 
or complex conjugate. Their sign may be chosen arbitrarily so that 
the real values and real parts are positive. Infinite thickness 
corresponds to putting y = 0Ci. Hence in this case 

tanh f31Y = tanh f32Y = 1 (7.37) 
and 

(7.38) 

Equation 7.35 becomes 

(7.39) 

This equation may be solved for all as the unknown. This yields 
the phase velocity of the surface wave, which is independent of the 
wavelength. The same equation is obtained by introducing the 
limiting values (7.37) into equation 7.36 for the symmetric waves. 

Surface wave velocities corresponding to solutions of equation 7.39 
have been evaluated by Buckens. * 

Incompressible Medium. When the material of the plate is 
incompressible, we may derive the particular values of the coefficients 
aij and blj by writing the elastic coefficients in the form 

Bll = K +,N + P 

B12 = K - N + P 

B21 = K - N 

B22 = K + N 

(7.40) 

These expressions are the same as those of equations 8.31e of Chapter 

* F. Buckens, The Velocity of Rayleigh Waves along a Prestressed Semi·infinite 
Medium Assuming Two·Dimensional Anisotropy, Annali di Geofisica, Vol. XI, No.2, 
pp. 99-112, 1958. 
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2 where it was shown that incompressibility corresponds to the 
limiting case obtained by putting 

(7.41 ) 

By substituting the limiting values in equation 7.13 we find 

1 ( a
2p

) 2m = - 4M - 2L - -L l2 

1 ( a
2p

) k2 = L L - P - P 
(7.42) 

with 
M = N + iP (7.43) 

The same substitution and limiting process may be introduced in the 
coefficients ajj and bjj' For example, for the antisymmetric case 
expressions (7.21) become 

a 
_ f322 - f31

2 

11-
Z2 - Zl 

a - (f32
2 

- f312) Z Z 
22 - Z2 _ Zl 1 2 

(f322 + l)Zl - (f31
2 + 1)z2 a1 2 = -"-"'------'-"------'.:......=.._-.;.....;;; 

Z2 - Zl 

(7.44) 

These results are identical with the coefficients (5.8) of Chapter 4, 
which were derived directly for the static problem in connection with 
an incompressible material. 

The result is formally the same in the present dynamical problem 
because the frequency appears explicitly only in the values (7.42) for 
m and k2 which in turn determine the values of f31 and f32' 

By a similar procedure in the limiting case of incompressibility, 
expressions (7.30) for the coefficients blf become identical with the 
values (5.16) of Chapter 4;. 

Multilayered Media. In the absence of gravity forces the 
dynamics of multilayered compressible elastic media under initial 
stress is formally identical with the theory of stability of incompres
sible multilayered media developed in section 7 of Chapter 4. The 
basic reason for this formal identity resides in the fact that in both 
cases the behavior of a single plate may be derived by the super
position of symmetric and antisymmetric solutions which are 
completely determined by six matrix elements alj and bu' 
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When gravity is present, this procedure is not generally applicable 
because the symmetry is destroyed. Disturbances in a compressible 
medium produce changes of density. In the presence of a gravity 
field a coupling between symmetric and antisymmetric deformations 
of a layer results. However, for the particular case of an incom
pressible medium this difficulty disappears when an analog model is 
introduced. We shall return briefly to this topic later. 

Let us assume that there are no gravity forces. The multilayered 
medium is illustrated in Figure 7.1 of Chapter 4. The principal 
directions of initial stress are the same in all layers. The initial 
stress component 8 22 normal to the layers is also the same in all 
layers. The component 8 11 parallel to the layers may be different in 
each layer. As shown in Chapter 4 (section 5), all equations derived 
for the single plate are applicable to each layer provided we replace 
Pby 

(7.45) 

where 8W denotes the component 8 11 of the initial stress in the jth 
layer. 

The six basic matrix elements attached to a particular layer are 

Al = !(all + bll) 

A2 = !(aI2 + bd 

Aa = !(a22 + b22 ) 

A4 = !(all - bll ) 

A5 = !(a12 - b12 ) 

As = !(a22 - b22 ) 

(7.46) 

The quantities alj and btJ are now defined by expressions (7.21) and 
(7.30) derived in this section. 

With these definitions the formulation of the dynamical problems 
is obtained by exactly the same formulas as in Chapter 4. Equation 
7.1 of that chapter defines a quadratic form I j for thejth layer. It 
is a quadratic function of the four displacement components Uj, Vj' 
UH 1, VH 1 at the top and bottom faces ofthis layer. The coefficients 
of this quadratic form are given by expressions (7.46). It is also 
assumed that there is perfect interfacial adherence. We also write 

(7.4 7) 

where L j is the slide modulus of the jth layer. The dynamical 
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equations are obtained by expressing the continuity of the stresses 
at the interfaces of the layers. They are written 

(7.48) 

They are recurrence equations between the six displacements at 
three successive interfaces. 

It will be noted that equations 7.48 are equivalent to the variational 
principle expressed as Sf = O. 

The frequency equation for wave propagation in the multilayered 
system is obtained by equating to zero the determinant of equations 
7.48. Solving for the frequency as a function of wavelength yields 
the various branches of the dispersion curves. 

We must add a remark concerning the case where the layers are in 
contact with a semi-infinite medium. (See Fig. 7.2, Chapter 4.) 
Since this semi-infinite medium may be considered as a layer of 
infinite thickness, this case falls within the foregoing formulation. 
There is a difference, however, in the nature of the matrix elements 
(7.46). If we assume that the wave is propagated without attenua
tion in the multilayered system, no radiation, i.e., no body waves, 
are generated in the adjacent semi"infinite medium. This means 
that for this adjacent medium neither of the roots fJl and fJ2 is pure 
imaginary. Their sign may be chosen so that their real part is 
positive. Then for an infinite thickness (i.e., Y = co) we find 

tanh fJ1Y = tanh fJ2Y = 1 
Hence 

With such values the matrix elements (7.46) become 

Al = all = b22 

A2 = a 12 = b22 

A3 = a 22 = b22 

(7.49) 

(7.50) 

(7.51) 

The corresponding quadratic form (7.47) for the semi-infinite medium 
is then simplified accordingly. 
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Matrix Multiplication Procedure. For numerical computation the 
same matrix .A given by equation 7.15 of Chapter 4 may be used, 
the matrix multiplication procedure of Thomson and Haskell being 
followed. 

Iteration Process for the Numerical Solution of the Recurrence 
Equations. Equations 7.48 are recurrence equations for the six 
displacements at three successive interfaces. Their numerical 
solution may be obtained by elementary procedures and standard 
programming, as already discussed, for the stability problem, at the 
end of section 7 in Chapter 4. 

Multilayered Incompressible Medium in a Gravity Field. 
For horizontal layers of incompressible materials the results may be 
extended to the case where a gravity field is present. This can be 
seen by applying the concept of an analog model whose validity for 
dynamical problems was discussed in section 2. In this model the 
gravity field is replaced by interfacial forces proportional to the 
vertical displacements. This was shown in section 7 of Chapter 4 
for problems of stability of multilayered media in a gravity field. 
All the results become applicable to the dynamical case by simply 
introducing the values (7.21) and (7.30) for the coefficients ali and bjj' 

Elastic Material of Finite Isotropy. For a material which is elastic and 
isotropic in finite strain the incremental stress-strain relations were derived in 
Chapter 2. Particular attention was given to the derivation of a simple 
expression for the incremental shear coefficient Q. It should be pointed out 
that the other elastic coefficients may also be derived quite simply. With 
principal directions of finite strain oriented along the x, y, z axes and corre
sponding extension ratios AI, A2, Aa, the principal stress along x is 

S11 = F(Al> A2, Aa) (7.51a) 

Because of isotropy the function F satisfies the relation 

F(Al> A2, Aa) = F(A1, Aa, A2) (7.51b) 

For the same reason the other stress components are obtained from equation 
7.51a by cyclic permutation. Hence 

S22 = F(A2, Aa, AI) 

Saa = F(Aa, AI, A2) 

For incremental deformations in the x, y plane, Aa is constant. 
principal stresses are 

OS11 OSl1 
811 = dS11 = oA

1 
dA1 + oA

2 
dA2 

OS22 OS22 
822 = dS22 = oA

1 
dA1 + oA

2 
dA2 

(7.51c) 

The incremental 

(7.51d) 
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With the strain components Bzz = dAI/AI and Byy = dA2/A2 the incremental 
stresses become 

8S11 8S11 
811 = Al 8Al Bzz + A2 8A

2 
Byy 

\ 8S22 \ 8S22 
822 = 1\1 8Al Bzz + 1\2 8A2 Byy 

(7.51e) 

Comparing this result with equations 7.3, we derive 

A 8S11 8S11 
B11 = 1 8Al B12 = A2 8A2 

B _ \ 8S22 
22 - 1\2 8A2 

(7.5lf) 

Existence of a potential energy requires that the following condition be 
verified (see equations 6.2 of Chapter 2). 

B12 + Sl1 = B21 + S22 

This condition may be written 

8 8 
8A2 (A2S 11) = 8Al (A1S 22) 

The coefficient Q is given by equation 7.15 of Chapter 2: 

A12 + A22 
Q = t(Sl1 - S22) A 2 A 2 

1 - 2 

(7.51g) 

(7.51h) 

(7.5li) 

The coefficients for the other coordinate planes are derived similarly. Hence 
the incremental coefficients are completely defined by a single function 
F(Al' A2' A3) relating directly measurable quantities. When this function 
corresponds to isothermal deformations, the incremental adiabatic coefficients 
are obtained from equations 4.35. 

Stability. The foregoing analysis has been carried out in the 
context of wave propagation. However, the results derived in this 
section are also solutions of the more general problem of static and 
dynamic stability of elastic plates and multilayered media. 

This can be seen by putting 

(7.52) 

Then the equations correspond to solutions proportional to exp (pt). 
We have shown in section 2 that the roots p2 of the characteristic 

equation must be real. A positive value of p2 yields positive and 
negative values ofp. To the positive value corresponds a charac
teristic solution proportional to an increasing exponential, which 
represents a dynamic buckling. On the other hand, a negative 
value of p2 corresponds to oscillations of a stable system. 

If the characteristic equation has a solution for p = 0, the equilib
rium is neutral. Hence by putting (X = ° in the equations of this 
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section we obtain the generalization to compressible media of the 
stability theory derived in Chapter 4 for plates and multilayered 
media in the particular case of incompressibility. 

Thus we generalize to compressible media the equations obtained 
in Chapter 4 for internal, surface, and interfacial instability. For 
example, the condition of surface instability is obtained by putting 
a = 0 in equation 7.39. The equation for internal instability is 
obtained by expressing the condition that at least one of the roots f31 
and f32 be pure imaginary. This is done as in Chapter 4 in terms of 
the quantities m and k2 which in this case are defined by putting 
a = 0 in equations 7.13. The same distinction may be made between 
internal instability of the first and second kind, depending on whether 
one or two roots are pure imaginary. 

There is an interesting similarity between problems of wave 
propagation and stability. This was pointed out in our discussion of 
internal, surface, and interfacial instability (section 1, Chapter 4), 
which are analogous, respectively, to body waves/Rayleigh waves, 
and Stoneley waves. 

The general character of this analogy is illustrated by considering 
a single plate. The value of Q in (7.14) may be written 

(7.53) 

We put 

d = Bll + P 

(7.54) 

In the basic equations 7.13, 7.21, and 7.30, which govern the plate 
dynamics, the frequency a appears only in combination with P in 
the term f!lJ. The other place where P appears explicitly is in the 
term d, where it is combined with B ll • In general, the initial stress 
P will represent an insignificant fraction of Bll> so that in the first 
approximation the combined term s;/ may be considered to be 
independent of P. Then the characteristic solutions are represented 
by plotting f!lJ = P + a2pJl2 as a function of the wavelength. 

To this approximation the same curve represents either P with 
a = 0 or a2pJP with P = O. The first case corresponds to static 
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buckling, and the second corresponds to the phase velocity dispersion 
of acoustic waves in the absence of initial stress. 

Dominant Wavelength in Dynamic Instability . . When the 
layered system is unstable, the time variable is contained in the 
amplitude factor exp (pt) which represents an increasing exponential. 
The characteristic equation of the system may be solved for p as a 
function of the wavelength. This value of p will generally go through 
a maximum for a given wavelength .P d which may be called the 
dominant wavelength. In a Fourier representation of an initial 
disturbance the amplitude of the component of dominant wavelength 
will grow much more rapidly and will represent the significant aspect 
of the deformation. 

This may be illustrated for the simple example of a thin plate of 
thickness h under an axial compression P. The classical equation 
for oscillations of the plate is 

where 

We put 

~ ~ h3 a
4
w + a2

w a2
w 

12 1 _ v2 ax4 Ph ax2 + ph at2 = 0 

x = coordinate along the plate 

p = mass density 

w = normal deflection 

E = Young's modulus 

v = Poisson's ratio 

(7.55) 

(7.56) 

Substitution of this value in equation 7.55 yields the characteristic 
equation 

We recognize on the left side the combination 

pp2 
~=p--

12 

defined by equation 7.54. The value of p2 is 

p2 = P12 _ ~ ~ h2 
l4 

P 121 - v2 P 

(7.57) 

(7.58) 

(7.59) 
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It goes through a maximum for 

l2 = 6(1 - v
2 )P 

Eh2 

This defines a dominant wavelength 

27T J 2E· 
.2 d = T = 7Th 3(1 _ v2)P 

Ok. 5 

(7.60) 

(7.61) 

This result must be interpreted as follows. A thin plate of large size 
is first loaded by an axial compression P and restrained laterally to 
prevent buckling. When the lateral restraint is suddenly released, 
the plate buckles dynamically and the predominant shape is a 
sinusoidal deflection of wavelength .2 d' The same effect is obtained 
by a sudden application of a compressive axial load P to a plate 
which is unrestrained. The theory is applicable to this case provided 
the speed of propagation of the compressive stress P along the plate 
is sufficiently high in relation to the time required for the buckling 
to appear.* 

* See, for example, N. J. Hoff, The Dynamics of Buckling of Elastic Columns, 
Journal of Applied Mechanics, Vol. 18, No.1, pp. 68-74, 1951. 



CHAPTER SIX 

Mechanics of Viscoelastic Media 

under Initial Stress 

1. INTRODUCTION 

As already pointed out, the general equations derived in Chapter 1 
for the statics of incremental stresses are applicable to all continuous 
media independently of the physical properties of the material. The 
same is true of the dynamical equations 2.9 of Chapter 5. The 
properties of the material are introduced separately in the relations 
between incremental stresses and strains. These relations remain 
arbitrary. In particular, we may apply results of the previous 
chapters to develop an analysis of viscous and viscoelastic media 
incorporating the effect of initial stress. Other types of materials 
with plastic or other non-linear properties may also be analyzed by 
considering incremental deformations. 

The case of a viscoelastic medium initially at rest under initial 
stress is of considerable interest. Small incremental stresses and 
strains may be assumed to obey linear relations. A special example 
in this category is provided by a viscous fluid initially at rest in a 
gravity field. It is possible to apply the general principles of linear 
non-equilibrium thermodynamics to such media. The thermo
dynamic theory does not distinguish between an initially stressed or 
stress-free system; all that is required is that the initial state be one 
of thermodynamic equilibrium. 

For this reason the first item discussed in section 2 concerns the 
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application of general thermodynamic principles to dissipative 
systems. A new feature which does not appear in usual applications 
of thermodynamics and which is due to the presence of initial stress 
is the occurrence of instability with a negative value of the free 
energy near equilibrium. 

The linear stress-strain relations for incremental viscoelastic 
properties are analyzed in section 3. They are expressed in opera
tional form. This formulation is based on the well-known techniques 
of operational calculus introduced by Heaviside and used extensively 
in electronics and electrical engineering. These methods are ideally 
suited for the treatment of viscoelasticity. The particular form of 
the viscoelastic operators which is imposed by thermodynamics is 
derived by applying results based on Onsager's relations. This leads 
to operators which verify with respect to the indices the same sym
metry properties as the elastic coefficients. Hence formal solutions 
of the theory of elasticity are immediately extended to viscoelasticity 
by replacing the elastic coefficients by operators; thus a "corre
spondence principle" is established. Although these results of the 
general theory are based on thermodynamics, there are many 
particular cases for which these properties remain applicable without 
recourse to thermodynamics. This point is discussed in more detail 
at the end of this introduction. 

In section 4 the general properties of characteristic solutions are 
discussed. Sufficient conditions are established for the operators to 
ensure that the solutions are real and proportional to a real ex
ponential function of time which may be decreasing or increasing, 
depending on the stability. This criterion is also discussed in relation 
to thermodynamics. 

The correspondence principle is strictly applicable only if the 
medium is at rest in the initial state. In a medium with fluid 
properties, an initial stress which is non-hydrostatic is associated 
with a finite rate of flow and large deformations. In section 5 the 
case of small deformations superposed on such a state of initial flow is 
examined. The analysis is carried out in detail for a viscous fluid. 
The limits of validity of the correspondence principle, in the presence 
of initial flow, are discussed. A rigorous theory is also derived for 
viscous buckling of a fluid plate under axial compression with finite 
strain. The section includes an analysis of fundamental kinematic 
relations between strain rate and finite strain. 
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The theory of surface and internal instability which was developed 
in Chapters 3 and 4 in the context of elasticity theory is readily 
extended to viscous 'and viscoelastic media. This is carried out in 
sections 6 and 7. The problems discussed include the surface 
instability of a homogeneous and a non-homogeneous half-space and 
internal instability in anisotropic viscoelasticity and anisotropic 
fluids. As an approximation the results are also applicable to plastic 
flow. 

Problems of folding due to instability of layered viscous and visco
elastic media are analyzed in section 8. The solutions obtained in 
the earlier chapters for the elastic medium for single layers and 
multilayers are extended to viscoelasticity by applying the principle 
of correspondence. In these problems a complete analysis requires 
an evaluation of the time history of folding which develops gradually 
owing to the presence of initial deviations of the layers from perfect 
flatness. Such a numerical analysis is carried out for the folding 
under compression of a viscous layer embedded in a viscous medium. 
This is intended to establish the important result that under usual 
conditions the dominant wavelength actually emerges as the 
physically significant feature of the folding. The phenomenon is 
also discussed in terms of the theory of buckling of a viscous fluid 
with large deformations established in section 5 as an independent 
theory. General and rigorous equations are also developed as an 
independent theory for the folding of an arbitrary number of hori
zontal layers of viscous fluids undergoing a finite horizontal 
compression in a gravity field. 

Addition of the inertia terms to the equations yields the dynamical 
theory of viscoelastic media under initial stress developed in section 9. 
It includes a discussion of the general properties of linear dynamical 
systems with a potential energy and a dissipation function. This is 
of interest because the properties of such systems are closely related 
to those of viscoelastic media which obey thermodynamic principles. 
Of particular importance is the property that unstable solutions are 
non-oscillatory and proportional to a real increasing exponential 
function of time. Criteria which ensure that this property is main
tained, independently of thermodynamic considerations, are also 
derived. General stability criteria and variational principles are 
established. In particular, the case for which the condition for static 
stability also ensures dynamic stability is discussed. The analytical 



340 Mechanics of Viscoelastic Media under Initial Stress Ok. 6 

results are used to derive a general theorem for evaluating the power 
dissipation in periodic motion. The variational method leads to 
equations with generalized stresses and generalized coordinates 
applicable to materials of arbitrary physical properties including 
plasticity. For linear viscoelasticity these results yield a variational 
principle in operational form and associated reciprocity properties. 

As pointed out in previous chapters, the variational principle also 
provides a simple procedure for deriving the general equations in 
curvilinear coordinates. 

The mechanics of a viscous fluid initially in equilibrium in a gravity 
field is treated in section 10 as an application of the general theory. 
Two examples of layered fluids are treated numerically in order to 
illustrate the procedure for stability problems. The general 
dynamical equations are also derived ·with particular attention to 
variational principles. It is shown that they are obtained from the 
theory of acoustic-gravity waves of Chapter 5 (section 6) by adding a 
dissipation function. 

Viscoelasticity and Thermodynamics. The results obtained 
in this chapter are presented partly in the context of the thermo
dynamics of irreversible processes. This provides a unifying frame
work for the theory. Many of the results, however, are independent 
of any thermodynamic theory. In particular, this is the case for 
properties which depend on the symmetry of the matrix of visco
elastic operators when this symmetry is a consequence of geometric 
properties. This is immediately evident, for example, for a medium 
with isotropic properties or cubic symmetry. Another example is 
provided by the two-dimensional problems for an incompressible 
medium of orthotropic properties. Many of the problems discussed 
in this chapter fall in this category, when the viscoelastic properties 
are defined either by two operators if and Q or equivalently by if 
and L. The same considerations apply to the compressible laminated 
material analyzed in section 3. 

2. THERMODYNAMICS OF VISCOELASTICITY WITH 
INITIAL STRESS 

Let us consider a system in a state of stable thermodynamic 
equilibrium. When such a system is disturbed, it will tend to revert 
to its equilibrium state. We shall assume that the disturbances are 
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"small" and of such a nature that the thermodynamics is expressed 
by linear equations. In classical thermodynamics it is further 
assumed that the perturbations of the system occur at an infinitely 
slow rate through reversible processes. 

In order to deal with a viscoelastic medium under initial stress it is 
necessary to include in the theory the cases for which 

(a) the state of equilibrium may be unstable; 
(b) the transformations may be irreversible. 

The occurrence of unstable equilibrium in a system under initial 
stress was shown, in particular, for the buckling of a purely elastic 
medium. 

In the framework of a linear theory, irreversible processes have 
recently been incorporated by the author in very general thermo
dynamics which is applicable to systems under initial stress. 

We shall discuss these less familiar aspects of thermodynamics by 
using a simple example. 

Thermodynamics and Stability. In the classical context of 
reversible isothermal transformations the condition of stable equilib
rium of a system is expressed by stating that its free energy is a 
mInImum. It is assumed that the processes are so slow that the 
system retains a uniform temperature throughout, or that the 
temperature changes themselves remain small and are not significant 
parameters of the transformation. 

In this classical context, however, thermodynamics need not be 
confined to stable systems. Equilibrium requires only that the free 
energy be stationary. In other words, a small variation of the par
ameters is associated with a variation of the free energy which is 
of a higher order. Hence the free energy may be a minimum or a 
maximum. Hit is a minimum, the equilibrium is stable; and, if it is 
a maximum, the equilibrium is unstable. We may also conceive of 
an equilibrium where the free energy curve plotted as a function of 
one parameter has an inflection point. At such a point the equilib
rium is metastable. This case is characterized by the fact that the 
free energy, although stationary, is not necessarily a maximum' or 
a minimum. 

Such unstable conditions are known in physical chemistry and are 
represented, for example, by the phenomenon of supercooling. 
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Figure 2.1 Rod R under axial compression due to the action of a spring S. 

Some fundamental aspects of this instability will be illustrated by 
discussing a simple example in the context of mechanics. 

Let us consider the system illustrated in Figure 2.1. A thin rod R 
is mounted in such a way that it is under an axial compression P 
generated by a compressed spring S. We know that beyond a 
certain critical value of the compression the rod will buckle. 
Whether stable or unstable, the system is in equilibrium when the 
rod is straight. Let us evaluate the free energy of this system when 
the rod is not straight and acquires a lateral deflection w(x), a function 
of the coordinate x along the rod. 

If we assume that the process is isothermal, the free energy coin
cides with the mechanical concept of potential strain energy of the 
elastic system. The length of the rod is denoted by a. The 
shortening of the rod is 

-da = ! fa (dW) 
2 

dx 
2 Jo dx 

The elastic strain energy due to bending of the rod is 

fa (d2w)2 
~ = tEl Jo dx2 dx 

(2.1) 

(2.2) 
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where E is Young's modulus and 1 the moment of inertia of the 
cross-section about its neutral axis. 

We derive the free energy of the system as 

f!jJ = tff - P Lla (2.3) 

The term P Lla represents the decrease of strain energy in the com
pressed spring S. vVe are assuming here that the compressive stress 
is not affected appreciably by the shortening, Lla. 

A more convenient form of the free energy (2.3) is obtained by 
expanding the deflection of the rod in a Fourier series. We write 

w = ~ qn sin (n7T~) 
n=l a 

(2.4) 

Introducing this expression into equation 2.3 yields 

(2.5) 

with 

(2.6) 

The value Pc is the critical buckling load of the rod as derived from 
the classical Euler Theory. 

Expression (2.5) for the free energy f!jJ is a quadratic form which is 
positive definite for 

(2.7) 

In this case the free energy is an absolute minimum for zero deflection, 
and the system is stable. 

On the other hand, if 

(n = 1, 2, 3, ... ) (2.8) 

some of the terms in the free energy are negative. Then the quad
ratic form f!jJ is indefinite, and the system is unstable. If the 
inequality (2.8) is verified, only the first n terms of the Fourier series 
correspond to instability and the system may be called metastable. 

In any case the system is in equilibrium for zero deflection, that is, 
for 

(2.9) 
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The equilibrium condition is also expressed by the equations 

(2.10) 

These equations correspond to a stationary value of the free energy. 
For a particular value of the compression given by the equation 

(2.11) 

the free energy (!}J becomes independent of qn' This corresponds to 
neutral equilibrium with respect to the coordinate qw For n = 1,2, 
3, ... , etc., equation 2.11 defines a sequence of values P which are 
characteristic values of the system. The sinusoidal deflections 
corresponding to each of these characteristic values are the "modes 
of instability," in this case the "buckling modes" of the rod. 

Although the foregoing example does not introduce explicitly any 
thermodynamic variables, it is nevertheless quite general and, for 
reversible phenomena, it contains the essential features of the 
thermodynamic theory. The variables qn in this case may represent 
not only geometric displacements but also other extensive parameters 
defining the thermodynamic state of the system. 

Thermodynamics and Irreversibility. In the foregoing 
example, only reversible processes have been considered. Within 
the framework of a linear theory, non-reversible processes may be 
included in a general thermodynamic theory. This will be illustrated 
by discussing the same example of a rod under axial compression. 
Irreversibility may be introduced by the addition of viscous dashpots 
which restrain the lateral motion of the rod (Fig. 2.2). We shall 
assume that they are continuously and uniformly distributed length
wise. The differential equation for the deflection of the rod may 
now be written: 

(2.12) 

In this equation b is a coefficient which measures the viscous resistance 
of the dashpots to the lateral velocity 8w/8t. Because the motion is 
assumed to occur slowly, inertia forces are negligible. 

Let us consider a solution w in the form of the Fourier series (2.4). 
The coefficients qn(t) of the series are now unknown functions of the 
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:.;=0 

Figure 2.2 Rod R under axial compression with the addition of 
viscous dashpots D restraining the lateral deflection. 
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time. Substitution of the Fourier series into equation 2.12 yields 

7T2n2 

-2 (P - n 2 P c)qn = biJn (2.13) a. 

where iJn denotes the time derivative of qn. This equation has a 
solution of the type 

qn = CePt (2.14) 
with 

7T2n 2 

p = ba2 (P - n 2 P c) (2.15) 

If P < Pc, that is, if the initial stress is smaller than the buckling 
load, the values of p are all negative. This means that any com
ponent in the Fourier expansion of an initial deflection will decay 
exponentially. On the other hand, if P > Pc, some of the Fourier 
series components will grow exponentially with time. This we find 
an infinite sequence of characteristic exponents p some of which may 
be positive and may correspond to modes of viscoelastic instability. 

In order to formulate this result in a more general form let us 
introduce the so-called dissipation function. It is written 

(2.16) 
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By substituting the Fourier series (2.4) for w we obtain 

00 

~ - .1 '" abq' 2 - 4 L.. n (2.17) 
n=l 

With expressions (2.5) and (2.17) for & and ~, equations 2.13 may 
be written 

8& + 8~ = 0 
8qn 8qn 

(2.18) 

These equations coincide with those which govern the linear thermo
dynamics of irreversible processes in the vicinity of an equilibrium 
state. 

The Linear Thermodynamics of Irreversible Processes. 
This phenomenological theory deals with a thermodynamic system 
initially in an equilibrium state. Small perturbations are super
imposed owing to the action of external disturbances. General 
equations may be written for the thermodynamic variables describing 
the history of the system. It is essentially a linearized first order 
theory. 

In the general case the free energy & is written as the quadratic 
form 

(2.19) 

where the qt's are generalized thermodynamic coordinates defining 
the perturbation. They are assumed to be extensiye coordinates. 

The dissipation function is a quadratic form in the time derivatives 
qj. It is written 

(2.20) 

It may be defined thermodynamically as a quantity proportional to 
the rate of entropy production in the system during an irreversible 
process. Hence ~ is a positive definite form. 

Strictly speaking, it is only required that ~ be non-negative. 
However, we shall assume that we have excluded all degrees of 
freedom for which the dissipation vanishes. 

It was shown by the author that the differential equations which 
govern the time history of the thermodynamic system may be 
written 

(2.21 ) 
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The term Qt on the right side represents the time-dependent forces 
acting on the system. Equations 2.21 were derived in a series of 
pUblications in the years 1954 to 1956.t In this work the author 
introduced a generalized definition of the free energy f!jJ which 
includes the cas~ of non-uniform temperature distribution. This 
made equations 2.21 applicable to thermo elasticity and heat con
duction. In this case the extensive coordinates qt include an 
"entropy displacement" field. The disturbing forces Q tare 
generalized forces in the meaning of Lagrangian mechanics. They 
may represent mechanical forces or thermodynamic forces. For 
example, in problems dealing with a non-uniform temperature they 
include a "thermal force" due to temperature differences. By 
inserting the values (2.19) and (2.20) for f!jJ and!?) into equations 2.21 
we obtain 

(2.22) 

This result represents a system of linear differential equations for the 
unknown coordinates qi. They contain the time derivatives ql. 
The existence of a generalized free energy f!jJ implies the symmetry 
property 

alj = aJl 

The coefficients blj also satisfy the reciprocity relations 

blj = bit 

(2.23) 

(2.24) 

The latter property is a consequence of the famous Onsager relations. 
Their discovery in 1931t marked the starting point of a general 
thermodynamics of irreversible processes. The concepts and 
methods derived from Onsager's relations have been applied to many 
areas of physics and chemistry.§ 

t M. A. Biot, Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena, Journal of Applied PhY8ir;s, Vol. 25, No. 11, pp. 1385-1391, 
1954; Variational Principles in Irreversible Thermodynamics with Application to 
Viscoelasticity, The PhY8ical Review, Vol. 97, No.6, pp. 1463-1469, 1955; Thermo
elasticity and Irreversible Thermodynamics, Journal of Applied Physic8, Vol. 27, 
No.3, pp. 240-253, 1956. 
t L. Onsager, Reciprocal Relations in Irreversible Processes, I, The PhY8ical Review, 
Vol. 37, No.4, pp. 405-426, 1931; Reciprocal Relations in Irreversible Processes, 
II, The PhY8ical Review, Vol. 38, No. 12, pp. 2265-2279, 1931. 
§ See, for example, S. R. De Groot, Thermodynamic8 of Irrever8ible Proces8es, North 
Holland Publishing Company, Amsterdam, and Interscience Division, John Wiley 
and Sons, New York, 1952; I. Prigogine, Introduction to Thermodynamir;s of I rrever8ible 
Proces8es, 2nd edition, Interscience Division, John Wiley and Sons, New York, 1962. 
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The author has shown that they lead to the Lagrangian equations 
(2.21) for transient phenomena and that these equations are applicable 
to systems involving non-uniform temperatures by generalizing the 
concepts of free energy and dissipation function. t 

It is important to call attention to one of the essential assumptions 
of this linear thermodynamic theory, namely, that the departure 
from a reversible process is measured by forces which depend linearly 
on the time rates of the thermodynamic variables. Hence the rate 
of entropy production is a second order quantity. A typical example 
of this property is provided by viscous behavior. The linear theory 
is therefore applicable only to those dissipative processes which fall in 
this general category and which may be called viscoelastic if the 
word is used in a broad thermodynamic context. 

Normal Coordinates. For a system which is not subject to 
applied forces we must put Qt = 0 in the differential equations 2.22. 
They become 

(2.25) 

The characteristic solutions ofthis system may be written qt exp (pt), 
where the qt's are time-independent amplitudes. The characteristic 
exponent p is now determined by the system of algebraic equations 

(2.26) 

The roots p of the determinant of this homogeneous system are the 
characteristic exponents. 

It is easily shown that the characteristic roots p are always real. 
This is a direct consequence of two important properties of the 
coefficients of equations 2.25, namely, 

(a) their symmetry; 
(b) one of the quadratic forms associated with the coefficients (in 

this case the dissipation function E&) is positive definite. 

The proofis exactly the same as given in section 2 of Chapter 5 (p. 270) 
for the case of dynamics where the equations are written 

(2.27) 

t For a general discussion of thermodynamics from the viewpoint of equation 2.22 
see M. A. Biot, Linear Thermodynamics and the Mechanics of Solids, Proc. Third 
U.S. National Congres8 of Applied Mechanics (Amer. Soc. Mech. Eng.), pp. 1-18, 
New York, 1958. 
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In this case the positive definite quadratic form is the kinetic energy 
!mj/ijqj. We have shown that the roots p2 are always real. 

We must note the important fact that the symmetry of the 
coefficients is not a sUfficient condition for the roots to be real. The 
additional property must be used that :;g is positive definite. 

The matrices [ajtJ and [btj] may of course be diagonalized by a 
linear transformation with real coefficients. The system is then 
represented by normal coordinates. The free energy and dissipation 
function become a sum of squares, and the differential equations 
become uncoupled. This happens to be the case in the example of 
the rod under compression treated in this section; it is illustrated by 
equations 2.5 and 2.17. 

By multiplying equations 2.26 by qj we derive 

f!/ 
(2.28) p=--

D 
with 

D = !b,jqjqj (2.29) 

When the free energy f!/ is positive, the value of p is negative. This 
corresponds to a viscoelastic relaxation mode whose amplitude decays 
exponentially with time. 

For negative values of the free energy, p is positive and it corre
sponds to a mode of viscoelastic instability whose amplitude grows at 
an exponential rate. 

When there are a number of unstable modes, the one which 
possesses the largest characteristic root p usually represents the 
dominant amplitude which emerges from an initial random disturb
ance. In the example in Figure 2.2 the value of p is given by 
equation 2.15. It is maximum for a certain value of n representing 
the number of half-waves in which the rod buckles. The corre
sponding wavelength is called the dominant wavelength since its 
amplitude grows at the fastest rate. 

In this section we have assumed that inertia forces arp. negligible. 
The dynamical theory will be considered in section 9. 

3. OPERATIONAL EXPRESSIONS FOR INCREMENTAL 
STRESSES. CORRESPONDENCE PRINCIPLE 

We now come to the problem of expressing the relation between 
stress and strain in a viscoelastic material under initial stress. 
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In the previous section we have considered the general phenomeno
logical properties of a finite system of arbi+.rary complexity under 
initial stress. In order to determine the stress-strain relations we 
must restrict ourselves to an element of the material and to 
homogeneous strain. 

For the initially stress-free medium a general thermodynamic 
theory of stress-strain relations was derived by the author for linear 
viscoelasticity. t The same theory is immediately applicable to a 
medium under initial stress under two conditions: 

1. The material must be in a state of stable thermodynamic 
equilibrium under the initial stress. 

2. The concept of incremental force per unit initial area must be 
introduced instead of the true stresses. 

What is referred to here as stability is a material property which must 
be carefully distinguished from the mechanical stability of the 
structure as a whole. The material must be physically stable, 
whereas the structure under initial stress may be unstable. 

Under these conditions the theory proceeds along exactly the same 
lines as in the paper cited. This extension of the viscoelastic stress
strain relation to a material under initial stress has been discussed by 
the author in a subsequent publication.t 

A detailed discussion of the thermodynamic theory lies beyond our 
purpose in this book. We shall therefore confine ourselves to an 
illustration of the methods and concepts by treating a simple 
example. 

Let us consider an element of material represented by the system 
illustrated in Figure 3.1. We shall think of it as a deformable 
rectangular box oriented along the coordinates. An initial force f is 
applied to the element on two opposite faces. This forcefis balanced 
by a spring 1 under tension inside the box. This system constitutes 
a simple example of stable equilibrium under initial stress. Let us 
assume that the box also contains the additional springs 2 and 

t M. A. Biot, Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena, Journal of Applied Physics, Vol. 25, No. 11, pp. 1385-1391, 
1954. 
t M. A. Biot, On the Instability and Folding Deformation of a Layered Viscoelastic 
Medium in Compression, Journal of Applied Mechanics, Ser. E, Vol. 26, pp. 393-400, 
1959. 
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dashpots 3. These additional springs are initially unstressed. If 
the force f is increased by an amount L1f, a change ql in the length of 
the box will take place in the same direction. At the same time the 
internal dashpots and springs 2 and 3 will become active with a 
certain time lag and relaxation. The time history will be expressed 
by the differential equations 

k1ql + k2(ql - q2) = L1/ 

bq2 + k2(q2 - ql) = 0 
(3.1) 

In these equations q2 represents the displacement of the piston in the 
dashpot. 

f ) l!.f) 

Figure 3.1 Example of a viscoelastic system with initial stress. 

This very simple example embodies the essential features 
theory applicable to a very wide range of phenomena. 

By introducing the quadratic functions 

& = tk1q12 + tk2 (ql - q2)2 

p) = tbq22 

we may write the differential equations 3.1 in the general form 

8& = L1/ 
8ql 

8& + 8P) = 0 
8q2 8q2 

This result brings out important generalizations. 

of a 

(3.2) 

(3.3) 

Internal Coordinates. We may consider & as representing the 
free energy of the system for perturbations near a state of initial 
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stress. In addition, the coordinate q2 may be looked upon as an 
"internal" degree of freedom in contrast to the external coordinate 
ql. Hence we should like to eliminate q2 from the equations and 
obtain relations which contain only the incremental force LJf and the 
external coordinate ql. 

Since the equations are differential equations, this elimination is 
most conveniently accomplished by means of the standard opera
tional formalism which was introduced by Heaviside and used 
extensively by electrical engineers for over a century. t If LJf is a 
simple harmonic function of time, we may replace it by LJf exp (icd) 
where LJf is now a complex amplitude. In a steady state solution the 
unknowns ql and q2 may be written in the same way. With the 
notation 

p = ia 

the differential equations 3.1 become 

k1ql + k2(ql - q2) = .df 

pbq2 + k2(q2 - ql) = 0 

Elimination of q2 yields 

ql( kl + pf~2kJ =.df 

(3.4) 

(3.5) 

(3.6) 

If the incremental force .dfis an arbitrary function of time, it may be 
expressed by a Fourier integral. By using equation 3.6 the Fourier 
transform of ql is immediately derived and, hence, also' the transient 
response of ql to the force. These Fourier transforms are uniquely 
determined by the condition that ql = .df = 0 for t < o. 

Equation 3.6 may also be looked upon as an operational relation. 
For example, let us consider the quantity 

pbk2 _ k _P_ 
ql pb + k2 - 2 P + r ql = Z 

(3.7) 

where r = k2/b. We multiply z by p + r and replace p by the time 
differential: 

(3.8) 

t See, for example, Th. von Karman and M. A. Biot, Mathematical Methods in 
Engineering, McGraw-Hill Book Co., New York, 1940. 
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Hence we obtain a first order differential equation for z: 

k2I'J1 = Z + rz 
Its solution is 

z = k2e -rt ft eft dql( r) dr 
Jo dr 
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(3.9) 

(3.10) 

The constant of integration has been chosen such that z = 0 for 
t = O. The significance of the fractional operator is therefore 
defined by the equation 

_P_ = e-rt rt 
eft d 

p + r Jo (3.11) 

Hence equation 3.7 may be interpreted in terms of integral operators. 

L -q1 

r~-' 
Figure 3.2 Spring and VISCOUS dashpot in series representing a 

Maxwell element which corresponds to the operator (3.11). 

The physical significance of the fractional operator is brought out 
if we note that z may be considered as a force acting on a spring and 
dashpot in series as illustrated in Figure 3.2. The displacement ql 
of point A is governed by the differential equation 3.9, and the time 
history of the force z is determined by the integral (3.10). If point A 
is suddenly displaced by a unit amount at t = 0, we put 

ql = l(t) 

where l(t) represents the Heaviside step function; that is, 

l(t) = 1 

l(t) = 0 

(t > 0) 

(t < 0) 

(3.12) 

(3.13) 

The force z is given by equation 3.10, which in this case becomes 

Operationally this result may be expressed by the equation 

-p- l(t) = e- rt l(t) 
p + r 

(3.14) 

(3.15) 
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The exponential stress relaxation corresponding to this equation is 
characteristic of the spring-dashpot element of Figure 3.2, which is 
called a Maxwell element. It is a simplified analog model for a 
material which is purely elastic for fast deformations and purely 
viscous for very slow deformations. 

The properties of this Maxwell element are easily verified by 
considering equation 3.7. Since p may be interpreted as icx, fast 
deformations correspond to p = 00. Equation 3.7 then becomes 

(3.16) 

The dashpot is frozen at high frequency, and the system is reduced to 
a spring of modulus k2 • At low frequency corresponding to small 
values of p, equation 3.7 becomes 

(3.17) 

The force in this case is due entirely to the viscous resistance of the 
dashpot. 

In the foregoing example we have considered a system with only a 
single internal coordinate q2' The result may be generalized to any 
number of such coordinates. Moreover, these internal coordinates 
may be of a very general thermodynamic nature. We write the 
generalized free energy of the system as 

[ljJ = !ajjqtqj 

and a dissipation function as 

p) = ibtlM'j 

(3.18) 

(3.19) 

The coordinate ql is the external one. As in Figure 3.1, it represents 
the change oflength ofthe system. All other coordinates Q2' qs, etc., 
are internal. The system is in equilibrium under an initial force f. 
The internal coordinates are a measure of the internal thermodynamic 
perturbation in terms of electrical, physical, chemical, thermal, or 
any other phenomena involved. 

The differential equations of this system under the action of the 
incremental force LJj are 

(3.20) 
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When written operationally, the first equation becomes 

(ali + pblj)qj = LJf 
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(3.21) 

The additional equations (for k =1= 1), which may be large in number, 
are 

(3.22) 

These equations may be solved for q2' q3' etc., in terms of ql' and these 
values are then substituted in equation 3.21. The result is found to 
be of the form 

(i OJ -p- + 0 + Olp)ql = LJf 
p + rj 

(3.23) 

From the assumption that the system is stable under the initial stress 
and from the positive definite nature of the dissipation function, it 
follows that the quantities 0 ' , 0, OJ, and rj are non-negative. The 
proof of this property will not be given here. It is immediately 
derived from the author's theory of stress-strain relations in visco
elastic media. t Although the theory was developed in the context 
of an initially stress-free medium, the proof is directly applicable to 
the present case. 

Figure 3.3 Spring-dashpot model for equation 3.23. 

Expression (3.23) for LJf is an obvious generalization of equation 
3.6. The operational terms on the left side may be interpreted as 
representing a spring, a dashpot, and a large number of Maxwell 
elements all in parallel (Fig. 3.3). The mechanical model is also 

t M. A. Biot, Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena, Journal of Applied Physics, Vol. 25, No. 11, pp. 1385-1391, 
1954. 
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an analog for a thermodynamic system. An equivalent electrical 
analog represented by a resistance-capacitance network may also be 
derived. 

We write the operator in equation 3.23 as 

(3.24) 

Hence 
(3.25) 

Note that the operator C is of the same form as that for an initially 
unstressed medium. 

If there is a very large number of relaxation constants r j , 

the summation may be replaced by an integral. Hence 

C = 100 

-p- G(r) dr + G + G'p 
o p + r (3.26) 

The function G(r) is a density function which may be called a 
relaxation spectrum. If it is assumed that this function may include 
singular terms of the Dirac function type, it contains the discrete 
summation of equation 3.24 as a particular case. t 

General Stress-Strain Relations. The foregoing considera
tions apply to the incremental force LJj. For a continuous medium 
under initial stress an important distinction must be made between 
the incremental force and the incremental stress. Let us consider 
an element of the viscoelastic medium represented by a cube of unit 
size oriented along the coordinate axes. An initial normal stress 8 11 

is acting on the faces perpendicular to the x direction. When an 
incremental force LJj is applied in the x direction, the changes of 
length of the element along each direction are, respectively, er:t> eyy , 

ezz and the stress 8 11 becomes 8 11 + Sl1' The system is identical 
with the previous example provided we put 

j = 8 11 

LJj = 811 + 8 11(eyy + ezz) 

q1 = exx 

Equation 3.25 now becomes 

811 + 8 11 (eyy + ezz ) = Cexx 

(3.27) 

(3.28) 

t See M. J. Lighthill, Fourier AnalY8i8 and Generalized Functions, Cambridge 
University Press, 1959. 
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where Sl1 is the incremental stress. We may write 

tll = Gexx 
by putting 
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(3.29) 

(3.30) 

This result coincides with the expressions for incremental forces per 
unit initial area already discussed as alternative stresses in section 
2 of Chapter 2. 

It is possible to generalize this result to express the incremental 
stress-strain relations in three dimensions. This possibility becomes 
evident when we consider that the perturbations of a system in the 
vicinity of a stable equilibrium state obeys the same thermodynamic 
equations whether initially stressed or not. 

The only difference lies in the definition of the incremental stresses. 
In the presence of initial stress we must introduce the alternative 
stress components tij defined in section 2 of Chapter 2. In this 
general case there are also a large number of internal coordinates, but 
there are six: observed strain components and six externally applied 
force components tij. The operational relations between these 
external variables are the same as in a medium initially stress-free. 
Hence the incremental stress-strain relations are written 

(3.31) 

This is the generalized form of equation 3.29. 
Thermodynamic principles require the operators to be of the form 

GIlV = (00 _P_ OIlY(r) dr + OilY + pOl',!!V 
Ii Jo p + r I, I, 

They must satisfy the symmetry properties 

GIlV - GIlV - GVIl - O~lj ii - il - tj - IlV 

(3.32) 

(3.33) 

In addition, the quadratic forms 0f/(r)etjellv , 0flejjellv> O;rejjellVmust 
be non-negative. 

Some additional remarks are in order with reference to the thermodynamic 
properties of the operators (3.32). The author has pointed outt that these 
operators are the same as those obtained for a material initially stress-free if 
we use the alternative stress components tlf. That the coefficients Cft" define 

t M. A. Biot, On the Instability and Folding Deformation of a Layered Viscoelastic 
Medium in Compression, Journal of Applied. Mechanics, Ser. E, Vol. 26, pp. 393-400, 
1959. 



358 Mechanics of Viscoelastic Media under Initial Stress Ok. 6 

a non-negative form can be seen by putting p = O. This corresponds to 
infinitely slow elastic deformations with a non-negative strain energy. For 
infinite frequency the term pO;~v becomes dominant, and the coefficients 0;1v 

represent the anisotropic viscosity. Since the dissipation is never negative, 
the coefficients 0;1 v must define a non-negative quadratic form. These 
properties also follow from the general expressions of these coefficients derived 
in the author's thermodynamic theory of relaxation phenomena.t Further
more it was shown in the same paper that the coefficients Or!(r) may be written 
in the form 

(3.33a) 
The variable r is inversely proportional to the relaxation time of the internal 
degrees of freedom. Actually there may be a large number of such degrees of 
freedom with the same relaxation time corresponding to a degeneracy with a 
multiple characteristic root r. We then write 

8 

Omr) = L rpW(r)rp<:J(r) (3.33b) 

There may be an infinite number of terms in this summation leading in the 
limit to an integration. From expression (3.33b) we derive 

8 

Ofl(r)e,hv = L [rp\1'(r)efj]2 (3.33c) 

Hence the quadratic form is non-negative. For the same reason all diagonal 
terms of the matrices °fl(r) , Of I, and O;~v are non-negative. The non-negative 
property of the quadratic forms, as a consequence of the thermodynamics, was 
also discussed by the author in a later paper.t 

The foregoing results may be expressed in terms of the incremental 
stresses 81j by using equations 2.22 of Chapter 2; that is, 

(3.34) 
Hence 

81j = Of Jell v - Slje + t(StkeJk + Sjketk) (3.35) 

This relation is formally the same as equation 4.17 of Chapter 2. 
It may be written 

(3.36) 
where 

13fJ = Of! + 1Yt! - SUSIlV (3.37) 
and Dr! is defined by expression (4.34) of Chapter 2. 

As in the analogous elastic case, the operators 13r/ satisfy the 
relations 

(3.38) 

t M. A. Biot, Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena, Journal of Applied PhY8ics, Vol. 25, No. II, pp. 1385-1391, 
1954. 
:j: M. A. Biot, Linear Thermodynamics and the Mechanics of Solids, Proc. Third U.S. 
National Oongre88 of Applied Mechanics (Amer. Soc. Mech. Eng.), pp. 1-18, New 
York,1958. 
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Hence they are not generally symmetric. 

Correspondence Principle. Certain formal analogies between 
the expressions for the stresses in a viscous fluid and an elastic 
medium have long been known. It- was shown by Alfreyt that the 
analogy is applicable to problems of static stress analysis for an 
incompressible and isotropic viscoelastic medium. The complete 
analogy between the general theory of elasticity and the properties 
of a viscoelastic medium including compressibility and anisotropy 
follows immediately from the theory of viscoelastic stress-strain 
relations derived by the author in 1954t in the context of thermo
dynamics. It was shown that the mechanics of viscoelastic media is 
governed by equations which may be derived from the theory of 
elasticity by the simple rule of replacing the elastic coefficients by 
operators. In order to emphasize its generality and far-reaching 
consequences the term correspondence principle was introduced for 
this rule in 1955 by the author in a companion paper.§ This paper 
also discussed applications to wave propagation in viscoelastic media 
and the dynamics of viscoelastic plates. Similar applications were 
also discussed in a paper published simultaneously~ which included a 
variational form and extensions of the correspondence principle to a 
viscoelastic medium under initial stress and to a non-linear theory of 
viscoelastic plates. 

The existence of such viscoelastic correspondence is a direct conse
quence of equations 3.31 and 3.36. These equations are completely 
analogous to the stress-strain relations of a purely elastic medium 
under initial stress. The elastic coefficients Of}' are replaced by 

t T. Alfrey, Non.homogeneous Stress in Viscoelasticity, Quarterly of Applied Mathe
matics, Vol. 2, No.2, pp. 113-119, 1944. 
t M. A. Biot, Theory of Stress-Strain Relations in Anisotropic Viscoelasticity and 
Relaxation Phenomena, Journal of Applied Physics, Vol. 25, No. ll, pp. 1385-1391, 
1954. 
§ M. A. Biot, Dynamics of Viscoelastic Anisotropic Media, Proc. Second Midwestern 
Conference on Solid Mechanics, Research Series, No. 129, Engineering Experiment 
Station, Purdue University, Lafayette, Ind., pp. 94-108, 1955. 
~ M. A. Biot, Variational and Lagrangian Methods in Viscoelasticity, Deformation and 
Flow of Solids (IUTAM Colloquium, Madrid 1955), pp. 251-263, Springer, Berlin, 
1956. The term "correspondence rule" was also used alternatively by the author 
instead of "correspondence principle." The latter term, however, seems to have 
been generally adopted by other writers. This correspondeJ1ce was applied ex
tensively by the author in a series of subsequent pUblications on viscoelastic stability 
as indicated in sections 7 and 8 and on porous media (see pp. 458 and 490). 
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operators efr These operators satisfy the symmetry relations (3.33) 
which are the same as for the elastic coefficients. 

It should be pointed out that in the general case of anisotropy these 
symmetry properties are a conseque,nce of thermodynamic principles. 
In general, they imply the validity of Onsager;s relations. However 
it is not always necessary to involve thermodynamic principles. For 
example, in an isotropic medium the symmetry of the operators is a 
consequence of the isotropy and does not depend on the validity of 
the thermodynamics. On the other hand, the explicit form of the 
operators (3.32) in terms of p will still depend on the validity of the 
thermodynamic principles. 

Some examples will now be presented in order to illustrate the 
application of the correspondence principle. 

Viscoelastic Properties of a Laminated Medium. In Chapter 
4 (section 2) it was shown how an elastic material composed of thin 
laminations could be approximately represented by a continuous 
anisotropic medium. Because of viscoelastic correspondence it is 
possible to extend these results to viscoelasticity. We consider first 
an incompressible material. The layers are assumed to be composed 
of two distinct materials. In material of type one the viscoelastic 
properties are repesented by two operators L1 and M l' The material 
occupies a fraction (Xl of the total thickness. The initial stress in this 
material is denoted by Pl' Material of type two occupies a fraction 
(X2 of the total thickness. In this material the initial stress is P 2, and 
the viscoelastic properties are defined by the operators L2 and M 2' 

The average initial stress P in the laminated medium is given by 
equation 2.21 of Chapter 4. Its value is 

(3.39) 

The operators Land N for the composite viscoelastic medium are 
obtained by substituting operators for the elastic coefficients in 
equations 2.22 and 2.29 of Chapter 4. We obtain 

1 L=---
(Xl + (X2 

L1 L2 

N = N1(X1 + N2(X2 

(3.40) 

The last equation may also be written in terms of the operators M 1 
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and M 2 by using the relations 

Ml = Nl + IPI 

M2 = N2 + IP2 
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(3.41 ) 

By combining equations 3.39, 3.40, and 3.41 and using the property 
al + IX2 = 1, we derive 

M = Mlal + M2IX2 (3.42) 

This is the value of the operator M for the "averaged" composite 
medium. Let us consider two particular cases. We put 

£1 = Ll 

Ml = Ml 

£2 = M2 = TJP 

P 2 = ° 
(3.43) 

This case corresponds to a medium composed of elastic layers 
separated by a purely viscous material. The elastic material is 
defined by the elastic coefficients Ll and M 1> the viscous material is 
defined by a viscosity coefficient TJ. The average initial stress is 

(3.44) 

It is carried entirely by the elastic layers. The operators represent
ing the properties of the composite material are obtained by sub
stituting the values (3.43) into equations 3.40. They may be written 
in the form 

where 

£ = -P-L 
P + r r 

M = M + M'p 

M = IXIMI 

L = Ll 
r a

l 

M' = IX2TJ 

IX2Ll 
r=--

IXlTJ 

(3.45) 

(3.46) 

The physical properties represented by the operators (3.45) will be 
discussed in section 6. 

Another illustration is provided by the case of two materials which 
are purely viscous. However, the result in this case involves an 
approximation, because the medium is not at rest but in a state of 
flow under the initial stress. A discussion of this approximation in 



362 Mechanics of Viscoelastic Media under Initial Stress Ok. 6 

section 5 will establish its general validity. The viscous materials of 
the two layers are represented approximately by the operators 

L1 = M1 = "71P 

L2 = M2 = TJ2P 
(3.4 7) 

The coefficients TJ1 snd TJ2 play the role of viscosity coefficients 
characterizing the two materials. The operators (3.40) for the 
composite medium may be written 

L = L'p M=M'p (3.48) 
with 

L' 
1 

(3.49) 

M' = TJ1/X1 + TJ2/X2 

In the foregoing examples we assumed the materials to be incom
pressible. Similar procedures may be applied to derive the average 
operators for a laminated medium of compressible materials. We 
consider again thin elastic layers separated by a very viscous fluid. 
The operators giving the incremental stresses in this medium are 
obtained immediately by using the result derived in Chapter 4 for the 
purely elastic case. The initial stress is assumed to be carried by 
the elastic layers which occupy a fraction /Xl of the total thickness. 
The viscous fluid carries no initial stress and occupies a fraction /X2 

of the thickness. We must apply equations 2.33, 2.34, and 2.37 of 
Chapter 4. For the viscous layers the elastic coefficients /X2, b2, C2 
must be replaced by operators expressing the stress-strain relations 
in a viscous compressible fluid. For plane-strain deformations the 
stresses in a compressible fluid of bulk modulus .\ and Newtonian 
viscosity TJ are expressed operationally by the equations 

U xx = 2pTJexx + (.\ - iPTJ)(exx + e~2~) 
U yy = 2pTJeyy + (.\ - iPTJ)(exx + e~~]) 

(3.50) 

The superscript in e~2J is used to represent the local strain components 
in the fluid layer. Since the fluid is not stressed initially, the actual 
stresses Uxx' U yy and incremental stresses ti21 and t22 are the same. 
Hence we may write equations 3.50 in the form 

(3.51) 
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a2 = e2 = A + tPYJ 

62 = A - iPYJ 
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(3.52) 

The incremental stresses in the composite laminated medium are then 

tll = 011eXX + Ol2eyy 

tl2 = Ol2exx + 022eyy 
(3.53) 

where the operators are obtained by using equations 2.37 of Chapter 4 
and replacing the coefficients a2 , b2 , C2 by the operators (3.52). The 
coefficients aI' bl , ci are maintained, and they represent the properties 
of the elastic layers under initial stress. For example, we write 

b • 2 
A ala2( I - b2) 
li11 = alaI + a2a2 - -=---',:-:---=-----=-:.... 

a l c2 + a2CI 

The tangential stress t~2 is written 

t~2 = 2Lexy 

(3.54) 

(3.55) 

The operator L for the composite medium is the same as in the case of 
incompressibility. It is given by the first of equations 3.45. Hence 

L= __ l_=~L 
a2 P + r r 

+-
(3.56) 

YJP 

In this expression LI represents the slide modulus of the elastic 
layers. 

The same procedure is also applicable if the individual layers 
themselves are viscoelastic, with properties represented by more 
complicated operators. 

Due caution should be exercised when applying these results. The 
anisotropic continuous medium may be substituted as an approxima
tion for the laminated material only within certain limits. For the 
elastic medium these limitations have been discussed in section 2 of 
Chapter 4. In the case of viscoelasticity similar limitations are 
imposed. The wavelength of the deformations must be sufficiently 
large in comparison with the thickness of the laminations. The 
limiting wavelength depends on the comparative rigidities and 
viscosities of the layers. For example, for elastic layers separated 
by a viscous fluid it is obvious that the continuous model will be 
valid only for a combination oflayer thickness, wavelengths, viscosity, 
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and time intervals such that the fluid will not flow appreciably in the 
direction of the layering. 

In many problems the approximation by a continuous medium will 
be valid. On the other hand, when not strictly applicable, the 
approximation will still yield insight into some of the basic features of 
the problem and provide a foundation for the development of more 
refined theories by the application of suitable corrections. Further 
discussion of these points will be found in section 6 of this chapter in 
connection with the problem of internal instability of a laminated 
viscoelastic medium. 

Torsional Stiffness of a Viscoelastic Bar under Axial 
Tension. This problem was analyzed for the elastic medium in 
section 10 of Chapter 2. Let us consider the particular case of a bar 
of homogeneous material and circular cross section under a uniform 
axial tension 8 33 , Let us also assume the medium to be transverse
isotropic around the axis of the bar. The torsional strain e denotes 
the angle of twist per unit distance along the axis. The torque is 
obtained by applying the correspondence principle to equation 10.24 
of Chapter 2. Replacing the slide modulus L by an operator L, we 
write for the torque 

(3.57) 
where 

IG = !7Ta4 (3.58) 

is the polar moment of inertia of the cross section of radius a. The 
operator L is of the form 

L = (CO _P_ L(r) dr + L + pL' (3.59) Jo p + r 
It may be determined experimentally by applying a tangential stress 
along the axial direction of the material and measuring the shear 
displacement as illustrated in Figure 10.2 of Chapter 2. 

It is possible to imagine a bar of the nature of a cable made of a 
composite material where the axial stress is carried by fine steel 
wires oriented in the axial direction and bonded together by a viscous 
material. In this case the shear displacement will be approximately 
a pure viscous flow, and the operator will be reduced to 

L =pL' (3.60) 



Sec. 4 Properties of Characteristic SolutionS 

In terms of time derivatives the torque is then 

T = L'la ~~ + 8331aB 
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(3.61) 

The same method is applicable to the more complicated cases of 
non-circular cross-sections with orthotropic and non-homogeneous 
materials. The solution of the corresponding Saint-Venant problem 
for the elastic medium yields at the same time the solution for the 
case of viscoelasticity. 

4. PROPERTIES OF CHARACTERISTIC SOLUTIONS 

When initially displaced from an equilibrium state, a viscoelastic 
medium will exhibit deformations which are functions of time. They 
may correspond to relaxation modes or to modes of instability, 
depending on the stability of the initial state of equilibrium. 

These time-dependent deformations are represented by character
istic solutions of the homogeneous equations defining the system, with 
homogeneous boundary conditions. 

Slow deformation rates are assumed so that inertia forces may be 
neglected. They will be included later in the more complete theory 
of section 9. 

In a characteristic solution all amplitudes are proportional to the 
same exponential factor, exp (pt). The displacement field U j is then 
written 

(4.1) 

where the amplitudes uj(x) are functions only of the coordinates X j , 

while the time t appears only in the exponential factor. 
These characteristic solutions are obtained by substituting expres

sion (4.1) into the field equations and boundary conditions of 
the viscoelastic medium. Because the equations are homogeneous, 
the exponential is factored out. 

An important advantage of the operational method is that the 
characteristic equation is obtained immediately by treating the 
operators as algebraic quantities. 

As an example let us consider the viscoelastic system represented 
in Figure 3.1 and governed by equations 3.1. In the absence of a 
disturbing force we put LJ.f = 0, and the equations become 

k1ql + k2(ql - q2) = 0 
(4.2) 



366 Mechanics of Viscoelastic Media under Initial Stress Ok. 6 

In order to derive a characteristic solution we must replace ql and q2 

by ql exp (pt) and q2 exp (pt), respectively. Equations 4.2 become 

k1ql + k2(ql - q2) = 0 

pbq2 + k2(q2 - qd = 0 
(4.3) 

By eliminating ql and q2 in these equations we find the characteristic 
equation 

(4.4) 

The same result is obtained immediately by equating to zero the 
operational coefficient of ql in equation 3.6. 

The root p of equation 4.4 is the characteristic exponent 

(4.5) 

This value yields a decaying exponential factor, exp (pt), correspond
ing to a relaxation mode. 

This example points to a general rule of great simplicity whereby 
equations for the characteristic solutions are immediately derived for 
any viscoelastic system. By this rule the equations are written by 
treating all operators as algebraic quantities. Then p represents the 
real or complex coefficient of time in the exponential. 

The characteristic equation (4.4) in the previous example is, of 
course, very simple. In general, the characteristic equation for p 
may be algebraic or transcendental and may have a finite or an 
infinite number of roots. The roots may yield decreasing or 
increasing exponentials, depending on the stability of the system. 

An important question which we now examine is whether these 
roots are real or complex. We shall show that under very broad 
conditions the roots p are always real. 

In order to establish this we shall first derive two lemmas. These 
lemmas are closely related to the variational principles discussed in 
Chapter 2. 

Lemma 1. Let us write the equilibrium equations in the form 
(2.24) of Chapter 2. They are 

8ttj 8 (S IS IS) AX--;- + ~ kjWik - "2 Ikejk + "2 jkelk + P L.I t - 0 
uXj uXj 

(4.6) 
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We assume the body force to be derived from a fixed potential; hence 

oU 
X j = --

oX j 

Then the linearized expression for L1X j is 

02U 
L1X j = - --u} 

OXj ox} 
For convenience we put 

F jj = tjj + SkjWjk - !Sjkejk + !Sjkejk 

The equilibrium equations (4.6) become 

of li _ P 0
2 

U u. = 0 
ox} ox! ox} 1 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

We now multiply these equations by arbitrary functions Ut of the 
coordinates and integrate the result over an initial volume T of the 
solid. We find 

JJ'( (OFli Ut - P 02U UjU j) dT = 0 
)1' oXj oXt ox} 

(4.11) 

Integration by parts yields 

IIi (Fjj ::; + p O:~~Xj UjU) dT - IL Fjjnjut dA = 0 (4.12) 

The surface integral on the right side is extended to the boundary A 
of the volume T. The unit outward normal to this boundary is 
denoted by n t . The significance of F jj is brought out by substituting 
the value (2.22) of Chapter 2 for ttj. We obtain 

(4.13) 

The incremental boundary force L1fi expressed by equation 7.56 of 
Chapter 1 may then be written 

L1ft = Fjjn} 

We also introduce the notation 

_ OUt cPU_ 
F(u, u) = Fli~ + p~ UjUj 

uXj uX j uXj 

Hence we write equation 4.12 in the form 

(4.14) 

(4.15) 

(4.16) 
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As shown below, the value of F(u, u) may be transformed into the 
expression 

02U 
p~UjUt 

uX t uX j 

(4.17) 

Equation 4.16 with the value (4.17) for F(u, u) constitutes the first 
lemma. 

In order to derive expression (4.17) we use the identity 

au I - +_ 

Hence 

-;-- = elj Wlj 
uXj 

+ SkjWlk61j + SkjWlkWlj 

- !Slkejk61j - !Slkej1cWlj 

+ !Sjkelk61j + !SjkelkWIj 

The quantities in this expression verify the relations 

tlj = tjl 

61j = 6j1 

wlj = -wil 
From these relations and the property of dummy indices we find 

t"wlj = 0 

Hence 

!Slkejk61j = !Sjkelk61j 

-!SI1cejkWIj = !SjkelkWIj 

FIj ~I = t,,61j + Skj(Wlk6" + elkw" + WlkW,,) 
uXj 

By a change of dummy indices we may also write 

au 
F" ~ = t,,61j + S,,(WkI6kj + eklWkj + Wkliiikj) 

uXj 

Equation 4.17 follows from this result. 

(4.17a) 

(4.17b) 

(4.17c) 

(4.17d) 

(4.17e) 

(4.17f) 

Lemma II. Until now the functions Ut have remained arbitrary. 
Let us now assume that they also satisfy the equilibrium equations 
4.10. Hence 

oFtj _ 02U 
ox]. p ax. ax. uj = 0 , ] 

(4.18) 

We denote by Flj the value (4.9) after replacing Ut by ut • 
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We may repeat the foregoing derivation by multiplying equations 
4.18 by Ut and integrating over the same volume. The result 
amounts to interchanging u and u in equation 4.16. Thus 

(4.19) 

Subtracting this equation from equation 4.16, we obtain 

From equation 4.17 and the symmetry property Sij = Sjt we also 
derive 

F(u, u) - F(u, u) = tiltj - ttjetj 

and equation 4.20 finally becomes 

This constitutes the second lemma. 

(4.21) 

Conditions Leading to Real Values for the Characteristic 
Exponents. Let us assume that there exists a characteristic 
solution of amplitude field U t and complex value of the characteristic 
exponent p. There must exist also complex conjugate solutions ur 
and p*. We may substitute these two solutions in place of Ut and UI 
in the second lemma (4.22). Hence 

We consider now three types of boundary conditions. 

(a) A free surface where the boundary forces vanish. For this 
surface LJft = LJj;* = O. 

(b) Vanishing displacement U t = ut = 0 at the boundary. This 
will occur at a rigid boundary with perfect adherence or with 
boundaries at infinity and the condition that the displacement 
becomes very small with increasing distance, so that boundary 
integrals of the products AfiUi will vanish. 

(c) Perfect slip at a rigid boundary. 
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For all three conditions we may write 

f L (Jffu1 - Jj;*Uf) dA = 0 (4.24) 

In cases (a) and (b) this is immediately evident. That it is also true 
for case (c) can be shown without difficulty by following the procedure 
used in deriving equations 4.66 and 4.67 of Chapter 3. We may 
write 

(4.25) 

where r/> and F are defined by the shape of the rigid surface, and S is 
the magnitude of the normal initial stress. Equation 4.24 is verified 
by substituting expression (4.25). 

Hence with boundary conditions (a), (b), (c) equation 4.23 is 
reduced to the vanishing of a volume integral: 

IIi (tfie~ - tjl;elj) dT = 0 ( 4.26) 

We shall now consider the stress-strain relations between tlj and eli' 
We write 

tli = OflelLv (4.27) 

where the OfJv represent functions of the complex variable p. Let us 
also introduce the assumption that these function3 satisfy the 
symmetry condition 

OILV - Ofi 
!j - ILV 

With this assumption we derive 

tlie~ - t~elj = (Of; - Ofr)e~eILv 
We put 

O~j - O~j* = 2if"~~ 

where if"~j is the imaginary part of O~j. Hence 

tkie%i - t%hi = 2if"~je%ieILv 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

Because of our assumption (4.28) the following symmetry condition 
is also valid: 

(4.32) 

Let us write 
( 4.33) 
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From equation 4.32 it follows that 

§~jeZhv = §~j(akja/lV + ~kj~/lV) (4.34) 

Let us assume that, throughout the medium for any arbitrary 
complex value of p, the quadratic form 

(4.35) 

is either non-negative at all points or non-positive at all points. We 
shall also assume that, for the particular characteristic solution con
sidered, the expression §%jeZje/lV does not vanish everywhere in a 
finite region of the medium. As a consequence it must be of the 
same sign at all points where it does not vanish. Hence equation 
4.26 cannot be verified unless p is real. Under these conditions and 
with the implied boundary conditions (a), (b), (c) listed above, the 
characteristic exponent p must be real. 

This criterion is generally fulfilled in actual physical situations for 
characteristic solutions which involve dissipation. As a trivial 
example in which the criterion is not fulffiled, we note the case of a 
medium composed of elastic and viscoelastic regions and a character
istic solution where the deformation vanishes in the viscoelastic 
regions. Under these conditions the expression §%je~e/lV vanishes 
throughout the medium for all values of p whether real or complex. 
However, such a case does not differ from purely elastic buckling. 

Relation of Real Characteristic Values to Thermodynamics. If the 
viscoelastic material obeys the principles of linear thermodynamics, the 
operators or,. are of the form (3.32). They are written 

(}#V _ J.'" P #v #v '#V '" - -- 0" (r) dr + 0" + pOli 
o p + r 

(4.35a) 

The operators must satisfy the symmetry condition (3.33). Hence 

(Jrl = (J~v (4.35b) 

For a complex value p the imaginary part of (J~~ is 

. d#V( ) _ (p - p*) [J.'" r O#V( ) d + O,#v] 
~J lei p - 2 0 (p + .r)(p* + r) lei r r lei (4.35c) 

As already pointed out in the discussion of expressions (3.32), thermodynamic 
principles imply that the quadratic forms O~Hr)eZje#V and O;:}veZie#v be non
negative. Equation 4.35c then shows that f~~(p)eZle#v is either non-negative 
at all points or non-positive at all points, according to the sign of (p - p*)/i. 
Let us assume that e"i represents the complex deformation field of a character
istic solution. We consider a local deformation elei exp (iat) varying harmoni
cally with time at the frequency a/271' with complex strain amplitudes elei' It 
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will be shown in a later section (see equation 9.54 below) that the power 
dissipated per unit volume is iJmia)e~fe#v. If the dissipation thus defined 
is not everywhere zero, equation 4.35c shows that J~Hp)e~fe#v does not vanish 
everywhere unless p is a real quantity. 

Hence under these conditions the criterion for real characteristic values p 
is fulfilled and becomes a consequence of thermodynamic principles. 

It is implied, of course, that the system also satisfies the boundary conditions 
(a), (b), and (c) listed above and associated with equation 4.26. 

This conclusion is in agreement with the general properties of characteristic 
roots of thermodynamic systems already discussed in the more general 
context of equations 2.26. 

Real Characteristic Values for an Incompressible Medium 
with Horizontal Stratification. These values are of particular 
interest in the technological problems of creep buckling of laminated 
plates. They are also applicable to geological problems of folding 
instability of stratified rock structures under tectonic stresses. We 
shall show that for such media the criterion ensuring real character
istic values is considerably simplified. 

L 

g: r-------, ----
~ YSIl 

---------

Figure 4.1 Incompressible medium with horizontal stratification deformed 
sinusoidally along the horizontal direction in a gravity field g. 

We assume an incompressible orthotropic medium with vertical 
and horizontal directions of viscoelastic symmetry and principal 
initial stresses also oriented along the same directions. We consider 
incremental deformations in the x, y plane with a vertical y axis. 
The effect of gravity is taken into account. The two principal com
ponents of the initial stress 3 11 and 3 22 in the x, y plane are functions 
of y (Fig. 4.1). 

The incremental stress-strain relations are obtained from equations 
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8.28 of Chapter 2 by replacing the elastic coefficients Nand Q by 
operators. They are 

8 11 - 8 = 2Nexx 

8 22 - 8 = 2Neyy 

8 12 = 2Qexy 

The two operators Nand Q are functions of y. 

(4.36) 

Essentially, this case corresponds to a non-homogeneous medium 
with horizontal stratification either continuous or discontinuous. 
In stability problems, solutions are considered which are sinusoidal 
along the horizontal direction. We shall consider such a solution and 
apply the second lemma (4.23) to the rectangular area ABOD of 
Figure 4.1. 

The vertical sides AB and OD are separated by a distance !l! of 
one wavelength. The surface integral in equation 4.23 is now 
reduced to a contour integral. It becomes 

f (Llljuf - Ll!ruj) dl = f; + f: + f: + f: (4.37) 

The length element along the contour is denoted by dl. Owing to the 
periodicity of the solution, the line integrals along the vertical sides 
AB and 0 D cancel out. If the horizontal side BO is a free surface, 
we must put Lllj = 0 and the integral also vanishes along that side. 
If the viscoelastic medium rests on a rigid base with perfect adherence, 
the displacement U j is zero and the integral along the bottom side 
AD vanishes. It also vanishes if we assume perfect slip on a rigid 
base. Then the boundary forces are normal to the displacements, 
and their scalar product vanishes. Hence 

( 4.38) 

For a half-space of infinite depth the side AD is at infinity, and the 
integral along AD will vanish if the solution tends to zero at large 
depth. Finally, of course, the top and bottom boundaries may 
belong to any of the three types considered. For example, they 
include a free plate or a plate embedded in an infinite medium. 

For all these cases the contour integral (4.37) vanishes. Equation 
4.23 may then be written 

If (tjje~ - ttfe jj ) dx dy = 0 
ABeD 

( 4.39) 
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This surface integral in the x, y plane is now evaluated over the 
rectangular domain ABOD. Let us write the integrand explicitly: 

tlje~ - tteji = t11 e;x + t22e;y + 2t12e:y 

- ttl exx - t~2eyy - 2tt2exy ( 4.40) 

The values of tlj in terms of sl1 are given by equations 4.33 of Chapter 
3. They are 

t11 = 8 11 + S11eyy 

t22 = 8 22 + S22exx ( 4.41) 

t12 = 8 12 - i(S11 + 822 )eXY 

When we substitute these values into expression (4.40) and take into 
account the assumption of incompressibility, the terms containing 
8 11 and 8 22 cancel out. For example, 

The condition of incompressibility is 

exx = -eyy 

e:x = -e;y 
( 4.43) 

Hence eyye:x = e;yeXX' and equation 4.42 is simplified to 

t11e:X - ttlexx = 811e:X - 8tlexX (4.44) 

The same cancellation occurs for the other terms. Therefore the 
integrand (4.40) may be written 

tijet - t~eij = 811e:X + 822e;y + 2sl2e:y 
- 8tl exx - S~2eyy - 2st2eXY ( 4.45) 

We now substitute in this equation the values (4.36) for the stress 
components 811 , 822, and 812 , Again taking into account the 
incompressibility conditions (4.43), we derive 

(4.46) 

This expression shows that for p complex the integral in equation 
4.39 cannot vanish if the following conditions are fulfilled: 

1. The coefficients of the imaginary parts of 11 and a are every
where non-negative or everywhere non-positive. 

2. For the particular characteristic solution considered, at least 
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one of the quantities eN - tr*)exx or (Q - Q*)eXY is different from 
zero over a finite region of the medium. 

These conditions provide an adequate criterion for ensuring real 
values for the characteristic roots p. The· boundary conditions as 
stated previously are, of course, implied. A direct proof of this 
theorem for the same case, that of an incompressible medium with 
horizontal stratification, was derived ina recent paper by the author. t 

The theorem may be expressed in terms of the operators: 

t = Q + lP 
M = tr + IP 

(4.47) 

where P = S22 - 8 11 , Since P is real, the same criterion holds with 
the operators Land M instead of Q and tr. Hence the characteristic 
roots are real if the imaginary parts of Land M are not zero and 
always of the same constant sign, and if condition 2 is also satisfied. 

For a material whose viscoelastic properties are governed by the 
principles of linear thermodynamics the operators Land M are written 

t = roo _P_ L(r) dr + L + pL' Jo p + r 

M = roo _P_ M(r) dr + M + pM' Jo p + r 

( 4.48) 

In these expressions the quantities L(r), L', M(r), and M' are all 
non-negative. Hence the condition that the imaginary coefficients 
of Land M be either non-negative everywhere or non-positive 
everywhere is always fulfilled. 

5. SMALL DEFORMATIONS SUPERPOSED ON AN 
INITIAL STATE OF FLOW 

Until now we have assumed that the medium is initially at rest 
and in a state of thermodynamic equilibrium. 

In many problems of stability this may not be the case. For 
example, a rod of purely viscous material subject to a constant axial 
compression will be in an initial state of steady flow. This initial 

t M. A. Biot, Stability of Multilayered Continua Including the Influence of Gravity 
and Viscoelasticity, Journal of the Franklin Institute, Vol. 276, No.3, pp. 231-252, 
1963. 
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state is unstable, and a perturbation will induce gradual buckling. 
We are dealing here with a perturbation in the vicinity of a steady 
irreversible process. Such perturbations may not obey the principles 
which govern the linear thermodynamics in the vicinity of an 
equilibrium state. Onsager's relations, for instance, may not be 
applicable. 

There are cases, however, for which the initial irreversible process 
does not deviate too much from an equilibrium state. Under these 
conditions, if the total deformations remain small, the linear thermo
dynamic theory may still be applicable. The incremental stresses 
will then be the same as if the medium were initially free of stress. 

Certain questions come up in the formulation of such problems in 
connection with the concept of incremental strain and its relation to 
strain rates. In particular, it is important to examine the validity 
of the correspondence principle for a medium which is initially in a 
state of flow. These questions are purely kinematic in nature. 

They will now be examined in more detail through an analysis of 
the perturbations of steady flow in a fluid with Newtonian viscosity. 
We shall assume slow deformations and neglect inertia forces. 

Kinematics of Steady Flow. For an incompressible Newtonian 
fluid in two-dimensional flow the stresses are given by the equations 

(5.1) 

(
OVy OVx) 

U Xy = TJ ox + oy 

The components of the velocity field at a fixed point x, yare Vx and 
vy, and the fluid viscosity is denoted by TJ. 

The condition of incompressibility Of the fluid is 

oVx + oVy = 0 
ox oy (5.2) 

Let us assume a velocity field defined by the equations 

(5.3) 
Vy = Poy 
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where Po is a constant. The state of stress corresponding to this 
velocity field is obtained by substituting the components (5.3) into 
equations 5.1. The shear stress U Xy vanishes. We denote by 8 11 , 

8 22 , and 8 the constant. values of U xx , U yy , and u. Equations 5.1 
become 

8 11 - 8 = -21JPo 

8 22 - 8 = 21JPo 
(5.4) 

They correspond to a uniform stress with principal components 
along the x and y axes. Equations 5.4 lead to the result 

P 
(5.5) Po =-

41J 
with 

P = 8 22 - 8 11 (5.6) 

For 8 22 = 0, this expression represents a compressive stress along x. 
Equations 5.3 define the deformation in terms of the velocity field. 

We shall now d0termine the corresponding displacements of the fluid 
particles. We consider a particle whose coordinates are x and y at 
the time t = O. The coordinates X and Y of the same particle at the 
time t are functions of t, and they determine the motion of the particle. 
According to equations 5.3 they satisfy the differential equations 

dX at = -PoX 

dY 
at = PoY 

(5.7) 

They must be solved with the initial conditions that the coordinates 
be x and y for t = O. The solution is 

X = xe-Po t 

Y = yePot 
(5.8) 

Since Y increases exponentially, there is an appearance of instability 
which is purely kinematic in origin. A sinusoidal line along the x 
direction as shown in Figure 5.la acquires the appearance of Figure 
5.1 b after a large deformation has taken place. 

Kinematics of Strain Rate in Unsteady Flow. We shall first 
analyze the kinematics of the plane homogeneous deformation for the 
general case of finite strain and unsteady flow. The homogeneous 
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L 
(b) 

Figure 5.1 Appearance of kinematic instability in a viscous 
homogeneous fluid in uniform flow. 

Ok. 6 

deformation is represented as in section 1 of Chapter 1. The 
coordinates X, Y of a particle originally at the point x, yare written: 

X = allx + a12Y 

Y = a21x + a22Y 
(5.9) 

It is more convenient here to write au and a22 for the two coefficients 
1 + au and 1 + a22 used in Chapter 1. The four coefficients 
au(t), adt), a21(t), and a22(t) are now functions of the time t. With 
the notation 

the velocity field is 

Vx = X = aux + a12Y 

Vy = Y = a21x + a22Y 

(5.10) 

(5.11) 

These expressions represent the velocity of a particle at the point 
X, Y in terms of its initial coordinates x, y. 

In order to analyze the stresses in a viscous fluid we need to express 
the velocity of a particle by means of the coordinates of the particle 
at the' instant considered. Hence we must determine the velocity 
field (5.11) as a function of the coordinates X, Y instead of the 
original values x, y. We therefore solve equations 5.9 for x and y. 
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Since the fluid is incompressible, the determinant of the equation is 
equal to unity: 

We derive 

x = a22X - a12Y 

y = -a21X + allY 

Substitution of these values into equations 5.11 yields 

Vx = dX + flBY 

with the coefficients 
Vy = C(/X + ~Y 

.91 = all a22 - a12a21 

flB = a12all - all a12 

C(/ = a21 a22 - a22a 21 

~ = a22all - a21 a12 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

We may, of course, replace X and Y by x and y in equations 5.14, 
because this is a mere change of notation. These equations then 
represent the velocity at the point x, y. We write 

Vx = dx + flBy 

Vy = C(/x + ~y 
The strain-rate components are 

oVx = .91 
ox 
oVy = ~ 
oy 

! (OVy + OVx) = ! (flB + C(/) 
20x oy 2 

(5.16) 

(5.17) 

By substitution of these expressions into equations 5.1 we obtain the 
stress components in the fluid: 

au - a = 21).91 

a yy - a = 21)~ 
a XY = 1)(flB + C(/) 

The condition of incompressibility (5.2) becomes 

.91+ ~= 0 

(5.18) 

(5.19) 
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The same condition is also derived by taking the time derivative of 
equation 5.12. 

These results are quite general and valid for finite deformations. 
They will now be used to derive expressions for incremental stresses 
in the fluid under the assumption that the total deformation is small. 
This total strain is the combined deformation due to the superposition 
of a perturbation on the initial steady flow. 

Incremental Stresses when the Total Strain Remains Small. 
We consider an initial state of stress with principal stresses Su and 
S22 along the x and y directions. In a viscous fluid this constant and 
uniform stress field is associated with a steady flow. The particle 
displacement is given by equations 5.8. The corresponding 
coefficients in the coordinate transformation (5.9) are 

au = e-Po t a22 = ePo t 

a12 = a21 = 0 
(5.20) 

Let us superpose a small perturbation on this steady state. We 
express it by writing the coefficients of equations 5.9 in the form 

au = e- Pot + Yu 

a 12 = Y12 

a21 = Y21 

a 22 = ePot + Y22 

(5.21) 

The perturbations Yli are assumed to be small quantities of the first 
order. They are functions of time. 

Since we are concerned primarily with stability problems, we shall 
restrict the analysis to the particular case in which the perturbations 
are exponential functions of time. Therefore we put 

(5.22) 

where y~j is a constant. Hence the time derivative of Yii may be 
written 

Yli = PYIi (5.23) 

We now substitute expressions (5.21) for the coefficients into equations 
5.15 and retain only the first order terms in YH' We derive 

d = -Po + PYuePot - POY22e - Pot 

f!jJ = (p + PO)Y12e - Po t 

f{? = (p - PO)Y21e"ot 

f!J = Po + PY22e-Pot + PoYue"ot 

(5.24) 
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y 

x 
o 

Figure 5.2 Stresses referred to fixed axes x, y. 

These expressions are further simplified by introducing the additional 
assumption 

e-Po t - 1 « 1 

ePo t - 1 « 1 
(5.25) 

This implies that during the time interval t the deformation associated 
with the initial state of steady flow is also small. Under this condition 
equations 5.24 become 

.xl = -Po + PYn - POY22 

fJIj = (p + PO)Y12 
(5.26) 

f'(j' = (p - PO)Y21 

!!J = Po + PY22 + PoYn 

With these values the stresses (5.18) in the fluid are written 

U xx - U = - 21)Po + 21)(PYn - POY22) 

U yy - U = 21)Po + 21)(PY22 + PoYn) (5.27) 

U Xy = 1)P(Y12 + Y21) + 1)PO(Y12 - Y2d 

The condition of incompressibility (5.19) becomes 

(5.28) 

The stress components (5.27) are referred to the x and y directions 
(Fig. 5.2). Our purpose here is to evaluate the incremental stresses 
in a form comparable with the stress components sij which we have 
used in the general elastic and viscoelastic theory. Hence we must 
derive expressions for the incremental stresses Sjj referred to axes 
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which have been rotated through the same angle as the material. 
The angle through which the material has rotated is 

(5.29) 

If coordinate axes which have undergone the same rotation ware 

1 

~~ ______________ L-_x 

Figure 5.3 Stresses referred to rot.ated axes 1,2. 

chosen, the coefficients Yli acquire particular values which satisfy the 
relation 

Y12 = Y21 (5.30) 

With stresses au, a22' a12 referred to the same rotated axes (Fig. 5.3), 
equations 5.27 become 

au - a = -21)Po + 21)(pyu - POY22) 

a22 - a = 21)Po + 21)(PY22 + PoYu) 

a12 = 21)PY12 

(5.31) 

By introducing the values (5.4) for the two terms - 21)Po and 21)Po 
we derive 

au - a = 8 u - 8 + 21)(pyu - POY22) 

a22 - a = 8 22 - 8 + 21)(PY22 + PoYu) 

a12 = 21)PY12 

(5.32) 

Since 8 u - 8 and 8 22 - 8 represent the initial stress, the remaining 
terms yield the incremental stresses. They are 

8 U - 8 = 21)(pyu - POY22) 

8i2 - 8 = 21)(PY22 + PoYn) 

8 12 = 21)PY12 

(5.33) 
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These incremental stress-strain relations are correct to the first order. 
However, their form is quite different from those of incremental 
stresses in an elastic medium. They contain not only the incre
mental strain but also the factor Po, which is related to the initial 
strain rate. 

The difficulty may be eliminated by introducing a third and 
important assumption, namely, 

Po «P (5.34) 

This assumption that Po is small with respect to P amounts to saying 
that the exponential factor exp (pt) which characterizes the unstable 
perturbation grows much faster than the factor exp (Pot), which 
represents the strain produced by the initial flow. Such an assump
tion is verified if the unstable solution is physically significant. In 
practice, it will be so if we have approximately 

Po 1 -<
P 20 

(5.35) 

Under these conditions we neglect the terms containing Po and write 
the incremental stresses (5.33) as 

Sl1 - 8 = 21)PYll 

8 22 - 8 = 21)PY22 

8 12 = 21)PY12 

(5.36) 

With the same assumption the condition of incompressibility (5.28) 
becomes 

Yll + Y22 = 0 (5.37) 

Validity of the Correspondence Principle for a Viscous 
Fluid with Initial Flow. On the basis of the preceding results it 
is possible to show a formal correspondence between the equations of 
incremental deformations of a solid initially at rest and those of a 
fluid in a steady state of initial flow. Let us consider the displace
ments X and Y given by equations 5.8 for the initial st,ate of flow. 
A perturbation is represented by adding small displacements U x and 
u y to these expressions. The total displacements are therefore 

X + U x = xe-Po t + U x 

Y + u y = yePot + u y 

(5.38) 
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Since the linear transformation (5.9) is referred to rotated axes, the 
coefficients are by definition all = 1 + Ell, a 22 = 1 + E22' and 
a12 = a 21 = 812' The strain components Eli referred to the rotated 
axes 1, 2, are those analyzed in Chapter 1 (section 2), where it was 
shown that to the first order they are the same as the strain com
ponents referred to the fixed axes x, y. For example, 1 + Ell ~ 

(%x)(X + ux), etc. Hence, if we assume the total strain to be 
small, we may write 

(5.39) 

o (Y ) 0 (X ) OUy OUx 
2a12 = 2E12 ~ ox + U y + oy + U x = ax + By 

Comparison of these values with equations 5.21 yields 

1 (OUy OUx) 
Y12 = 2" ox + 8y 

Hence with the notation 

1 (BUy OUx) 
eXY = 2" ox + 8ii 

the stress-strain relations (5.36) become 

Sll - S = 27Jpexx 

S22 - S = 27Jpeyy 

8 12 = 27JpeXY 

These equations are also obtained by putting 

(5,4,0) 

(5,4,1) 

(5,4,2) 

(5,4,3) 

in the stress-strain relations (8.33) of Chapter 2 for the elastic medium. 
Although the coefficients (5.39) are derived for homogeneous strain, 
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equations 5.42 are obviously valid also for a non-homogeneous 
deformation where the incremental displacements U x and u y are 
arbitrary functions of x and y. 

The condition (5.37) for incompressibility becomes 

(5.44) 

The equilibrium conditions for the incremental stress field are 
obtained by applying the equations derived in Chapter 1. They are 
applied by considering the particle coordinates to be Xi at t = 0 and 
to become Xi + 'iti + U j at the time t. The term 'it j represents the 
displacement due to the initial steady flow, while U t is the component 
due to the perturbation. The equations derived in Chapter 1 are 
valid for the present case if U t is replaced by 'it i + U t• Their validity 
requires the assumption that the incremental stresses, as well as the 
gradients of the total displacements 'itt + U t, remain small. The 
equilibrium conditions are given by equations 6.17 of Chapter 1. 
They are 

0811 + 0812 _ P Ow = 0 
ox oy oy 

0812 + 0822 _ P ow = 0 
ox oy ox 

(5.45) 

Note that only the perturbation Ut contributes to the total rotation 
w. Hence 

(5.46) 

Equations 5.42 and 5.45 are identical with those of an elastic 
medium. The only difference comes from the interpretation of the 
elastic coefficient p- which is now given by expression (5.43). Thus 
the correspondence principle is extended to a medium of Newtonian 
viscosity under initial stress. All solutions derived from the elastic 
medium are therefore immediately applicable to the viscous medium 
provided that we replace p- by pTJ. 

We must remember that this correspondence is formulated in terms 
of strain components (5.41) defined by means of displacements U x 

and u y which represent a perturbation superimposed on the initial 
steady state of flow. Validity of the correspondence requires the 
assump1;ion that the gradient8 of the total di8placement8 including both 
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the perturbed and unperturbed motion are small. In addition, con
dition (5.34) must be verified; that is, the . instability must be 
significant. 

Relation to the Navier-Stokes Equations. Since we are 
dealing with a viscous fluid, a question naturally arises regarding the 
relationship of the present results and those obtained from the 
equations of fluid dynamics. 

This relationship is clarified by considering the equilibrium 
equations 5.45 for the stress field. According to equations 4.13 of 
Chapter 1 we may write 

8~~ = S11 

8'/11 = S22 (5.47) 

8~n = S12 - Pw 

These quantities represent the incremental stresses referred to the 
fixed axes x and y. When we use these expressions, the equilibrium 
conditions (5.45) become 

08~~ + 08~n = 0 
ox oy 

08~n + 08'm = 0 
ox oy 

(5.48) 

Let us turn our attention to the stress-strain relations for the 
incremental stresses (5.47). When we compare them with the values 
given by equations 5.27, we obtain a paradoxical result which requires 
some clarification, as follows. 

Substituting into equations 5.47 the values (5.42) and the value 
P = 4'Y}Po derived from equation 5.5, we obtain 

8~~ - s = 2'Y}pexx 

8nn - s = 2'Y}peyy ( 5.49) 

8~n = 2'Y}peXy - 4'Y}Pow 

On the other hand, the same incremental stresses referred to fixed 
axes may be derived from equations 5.27. They are written 

8~~ - s = 2'Y}(PYn - POY22) 

Snn - s = 2'Y}(PY22 + PoYn) (5.50) 

8~n = 'Y}P(Y12 + Y21) + 'Y}PO(Y12 - Y21) 
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The variables Ytf in this case are referred to the fixed axes x, y. By 

definition, exx = Yll' eyy = Y22' 2eXY = Y12 + Y21> and 2w = Y21 - Y12' 

With these values, equations 5.50 become 

8~~ - s = 21J(pexx - POeyy) 

81111 - s = 21J(peyy + poexx ) 

8~11 = 21JpeXY - 21JPow 

(5.51) 

This result does not coincide with equations 5.49. In addition, 
equations 5.49 and 5.51 both contain the rotation wand the par
ameter Po which defines the initial strain rate. However, within the 
approximation of the present theory these difficulties may be 
eliminated by the following procedure. 

In the first place, according to the assumption (5.34) (Po « p), we 
may drop the terms with Po in the first two of equations 5.51. The 
same argument cannot always be applied to the third of equations 
5.49 and 5.51, because we must consider the possibility that the 
strain is much smaller than the rotation. If the strain is smaller, we 
introduce a fictitious strain component e~y defined as 

- _ 2 dexy _ K de~y 
S~11 - 1J dt 2 1JPow = 21J (It (5.52) 

For K = 1 this relation expresses the third of equations 5.51, and 
for K = 2 the third of equations 5.49. By integration with 
respect to time, equation 5.52 yields 

(5.53) 

We denote by W a.v an average value of the rotation. The strain due 
to the initial stress is exp (Pot) - 1 ~ Pot and is assumed to be of the 
first order. Hence the product Potwav is of the second order. There
fore to the first order we may write eXY = e~y. Note that the time 
derivatives of these quantities are not the same to the first order, but 
this is immaterial since we are interested not in the actual strain 
rates but in the displacements. 

These considerations lead to the conclusion that, within the 
approximations introduced above, equations 5.49 and 5.51 are 
equivalent to the form 

8~~ - s = 21Jpexx 
81111 - 8 = 21Jpeyy 

8~11 = 21JpeXY 

(5.54) 
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By substituting these stresses in the equilibrium equations (5.48) 
and taking into account the condition of incompressibility (5.44), we 
derive the equations 

(
02 

(
2

) os 
TJP OX2 + Oy2 Ux + ox = 0 

(5.55) 

(
02 

(
2

) os 
TJP OX2 + Oy2 Uy + oy = 0 

Let us go back to expressions (5.1) for the stresses Uxx> Uyy, and U Xy in 
a viscous fluid. These stresses satisfy the equilibrium conditions 

(5.56) 

Substituting in these equations the values (5.1) for the stresses 
and using the incompressibility condition (5.2), we obtain 

(
02 

(
2

) OU 
TJ OX2 + oy2 Vx + ox = 0 

(
02 

(
2

) OU 
TJ OX2 + oy2 Vy + oy = 0 

(5.57) 

These relations are a particular form of the Navier-Stokes equations 
for the mechanics of an incompressible viscous fluid when inertia 
forces are negligible. They are identical with equations 5.55 
provided we put 

Vx = pUx 

Vy = pUy 

(5.58) 

Hence we have shown that under the present assumptions the 
theory of incremental deformations of a viscous fluid leads to the 
Navier-Stokes equations. We note that the initial stresses do not 
appear at all in equations 5.55. However, they still remain in the 
boundary conditions, which must now be expressed by means of the 

stress components 8~~, 8,m, 8~1l' 

As an example, let us consider the boundary conditions 
sponding to equations 6.17 of Chapter 3. They are written 

t1fx = 8 12 + PeXY 

t1fy = 822 

corre-

(5.59) 
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These conditions correspond to the case of an initial compression P 
in the x direction. The quantities Jfx, Jfy are the tangential and 
normal components of stress on a deformed surface initially coincident 
with a plane perpendicular to the y axis. Substituting in expressions 
(5.59) the values of S12 and S22 taken" from equations 5.47, we find 

Jfx = 8~1/ + P OUy ox 
Jfy = 81/1/ 

(5.60) 

These boundary conditions contain the initial stress P. They are 
the same as those derived in the latter part of this section dealing 
with incremental stresses in a fluid under conditions of finite strain. 

Attention should be called to the fact that equilibrium conditions 
(5.45) and (5.48) are mathematically equivalent, while the stress
strain relations (5.42) and (5.54) are not. This is because of the 
approximations which have been introduced in these relations and 
which involve the assumption Po «p. Hence solutions of equations 
5.42 and 5.45 will not be mathematically equivalent to solutions of 
the Navier-Stokes equations (5.55). However, from the physical 
viewpoint their differences will not be significant. 

The interest in the forms (5.42) and (5.45) of the equations lies, of 
course, in their formal identity with those of an elastic medium. As 
a consequence the exact solution for the elastic medium is also valid 
as an approximation in stability problems for viscous fluids. 

Application of this approximation will be discussed in later 
sections of this chapter. 

Anisotropic Fluids and Non-linear Flow Properties. In the foregoing 
analysis of a medium with initial flow we have restricted ourselves to a viscous 
fluid of Newtonian viscosity. Application of the correspondence principle 
may be extended to stability problems of materials with anisotropic and 
non-linear flow properties. This can be seen by considering the flow properties 
of the material in a rotating frame of reference. In two dimensions the total 
strain components referred to rotating axes are ell' e22, e12 as defined in section 
2 of Chapter 1. In a material with flow properties the stress depends on the 
time derivatives ell' e22' e12' and the incremental stresses 811' 822, 812 in the 
same rotating frame of reference depend on the increments Jell' L1e22' and L1e12' 

The medium may be an anisotropic fluid. The procedure is also applicable 
to a material with non-linear flow properties. For such a material a plot of 
the stress a as a function of the strain rate e is not a straight line, as shown in 
Figure 5.3a. The incremental stresses are governed by a differential visco8ity 
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coeffwient proportional to the local slope da/de of the flow curve. This 
differential viscosity may be considerably smaller than the average viscosity 
for the over-all deformation as represented by the slope of OA (Fig. 5.3a). 

In such cases of anisotropy and non-linearity the correspondence principle 
will be applicable as an approximation provided the incremental stresses Sjj are 
expressed by means of the differential viscosity coefficients. The assumption 
(5.34), which implies that the instability is significant, is also required. 

Figure 5.3a Stress a as a function of the strain rate e for non-linear 
flow properties. The slope of the tangent AB defines a "differential 

viscosity" coefficient. 

Attention should be called to a fundamental kinematic property of the 
strain rate. According to equations 2.28 of Chapter 1 we may write the shear 
strain referred to rotating axes as 

(5.60a) 

The quantities ezz, eyy , and eZy are the strain components referred to the fixed 
axes, and w is the rotation of the material. To the first order, 812 ~ eZY ' 

This relation does not hold for the time derivatives, however. Let us write 

ezz = E zz + LIeu 

e yy = Eyy + Lleyy 
(5.60b) 

where the strains Ezx and Eyy are due to the initial stress alone. The time 
derivative Exx and Eyy of these quantities is not small but is ofthe order ofthe 
initial stress. Therefore, if only first order terms are retained, the time 
derivative of equation 5.60a is 

(5.60c) 

Hence e12 '# e XY ' This corresponds to the paradox discussed in connection 
with equation 5.52, in which the same term containing w appears. The 
difficulty is resolved in the same way by integrating equation 5.60c with 
respect to the time and introducing the assumption that the total deforma
tion is small. Hence 812 ~ eXY ' By considering a perturbation 812 proportional 
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to exp (pt), we may write 612 = pe12 ~ peXY' With this approximation the 
correspondence principle is applicable. 

Plastic Bucklin~. The theory is obv.iously not restricted to cases in 
which the actual initial state is one of uniform stress. It is applicable also to 
problems where the incremental deformation is at all times one of small 
deviation from a uniform, but variable, finite field. Such a case is represented, 
for example, in the problem of plastic buckling of a column where an eccentric 
load is applied gradually. The problem has been treated in a fundamental 
paper by Shanley.t 

Incremental Stresses in a Viscous Fluid Undergoing Large 
Deformations. The foregoing analysis of incremental stresses in 
the vicinity of steady flow has been restricted to the case in which the 
total strain remains small. We shall now consider the case where a 
small perturbation is superposed on a large deformation. 

The problem can be treated very simply· for an incompressible 
viscous fluid of Newtonian viscosity in slow motion. The simplicity 
in this case is due to the linearity of the Navier-Stokes equations 
(5.57). The method has been developed in a recent paper by the 
author·t 

Let us consider a sinusoidal surface attached to the fluid particles 
and illustrated in Figure 5.1 for steady flow under a compressive 
stress P. We isolate that portion of the fluid lying below the 
surface as shown in Figure 5.4. The normal and tangential compo
nents of the stress acting on the surface at point A are 

a12 = pouy 

ox 
(5.61) 

a22 = 0 

The ordinate of the surface is uy, and the slope angle a = GUy/ox is 
assumed to be small. 

On this steady flow we now superpose a velocity field of com
ponents Vx and vy • Because of this perturbation an additional stress 

t F. R. Shanley, Inelastic Column Theory, Journal of the Aeronautical Sciences, 
Vol. 14, No.5, pp. 261-268, 1947. A later paper by the same author discusses tensile 
instability (Aerospace Engineering, Vol. 20, No. 12, pp. 30-31, 51-56, 58-61, 1961). 
t M. A. Biot, Theory of Viscous Buckling of Multilayered Fluids Undergoing Finite 
Strain, The Physics of Fluids, Vol. 7, No.6, pp. 855-859, 1964. 
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field is generated in the fluid. The normal and tangential stress 
components at the boundary are now 

_ p Buy 
U12 = U12 + AX 

(5.62) 

Because of the linearity of equations 5.1 and 5.57, the additional 
stresses 1712 and 0:22 are the same as in a fluid initially at rest, and with 
the same velocity field as the perturbation. The wavelength of the 

Figure 5.4 Boundary stresses in a viscous fluid with initial st,ress. 

surface varies with time because of the initial steady flow. The x 
axis in Figure 5.4 represents a plane attached to the fluid particle in 
the unperturbed steady flow. With respect to this moving plane, 
the ordinate of a fluid particle lying on the sinusoidal surface may be 
written 

u y = V cos lx 

Corresponding sinusoidal distributions for the stresses are 

0:12 = 'f sin lx 

0:22 = ij cos lx 

U12 = T sin lx 

U22 = q cos lx 

With the values (5.63) and (5.64), equations 5.62 become 

T = 'f - PlV 

q = ij 

(5.63) 

(5.64) 

(5.65) 
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Similarly, sinusoidal distributions of the perturbation velocities at 
the surface are 

Vx = U' sin Ix 

Vy = V' cos Ix 
(5.66) 

An important kinematic relation will now be derived. It relates 
the perturbation velocity V'to V and its time derivative. 

At any given instant the normal velocity of a fluid particle relative 
to the x axis is 

Uy = V cos Ix (5.67) 

This is not equal to the perturbation velocity vy, however, because 
uy does not vanish in the absence of a perturbation. A velocity still 
remains which is due to the initial strain rate Po given by equation 
5.5. The value of this velocity is POuy. Hence the total velocity of 
the fluid is 

(5.68) 

For a sinusoidal distribution we substitute in this equation the values 
(5.63), (5.66), and (5.67), and we obtain 

V' = V - PoV (5.69) 

This important result expresses the perturbation velocity in terms of 
the surface ordinate and its time derivative. 

Viscous Buckling of a Fluid Plate with Large Deformations. 
The results represented by equations 5.65 and 5.69 provide an exact 
procedure for the evaluation of stability problems and the complete 
time history of a perturbation in a viscous fluid undergoing steady 
flow with large deformations. Let us consider, for example, a fluid 
plate under a constant compressive stress P. After a time tits 
original thickness ho has become (Fig. 5.5) 

(5.70) 

where Po is the strain rate of the steady flow. The value of Po is 
given by equation 5.5. We superimpose a small sinusoidal deforma
tion of t.he fluid plate of initial wavelength .Po. At time t this 
wavelength has been reduced to the value 

(5.71) 



394 

p 

Mechanics of Viscoelastic Media under Initial Stress 

lho 
I 

p 

v 

Ok. 6 

Figure 5.5 Viscous buckling of a fluid plate with large deformation. 

We also write 

(5.72) 

We assume that the perturbation represents a flexural deformation; 
hence it is antisymmetric relative to the axis of the plate. 

Now we consider the relation between the stresses and the instan
taneous velocity field at the time t. Since the boundaries are free of 
stress, we put 

at the top surface. Hence equations 5.65 be,come 

T = PlV 

ij=O 

(5.73) 

(5.74) 

The problem is now to find relations between the perturbation 
velocities U' and V' and their corresponding stresses T and ij. This 
problem has already been solved in section 5 of Chapter 4 in the 
context of elasticity. The solution for the case of a viscous fluid is 
governed by the Navier-Stokes equations (5.57). They are the same 
as the equations of elasticity of an incompressible isotropic medium 
initially free of stress, provided that we replace the velocity by the 
displacement and the viscosity coefficient by the shear modulus. 
Hence we write 

T = l1J(all U' + a12 V') 

ij = l1J(a12 U' + a22 V') 
(5.75) 
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The viscosity coefficient of the fluid is YJ. The coefficients alj are 
given by equations 5.36 of Chapter 4. They are 

with 

4 cosh2 y 
a = --:--::-------'-

11 sinh 2y + 2y 

4y 
sinh 2y + 2y 

4 sinh2 y 
a = --:--::--.,------'---:-

22 sinh 2y + 2y 

TTko 2 t Y = ilk = - e Po 
"Po 

(5.76) 

(5.77) 

Equating the values (5.74) and (5.75) for the stresses and using 
equation 5.5, we find 

all U' + a12 V' = 4po V 

a12 U' + a22 V' = 0 
(5.78) 

Elimination of U' and substitution of the value (5.69) for V' yields 
the differential equation 

v 4y 
+ V sinh 2y _ 2yPo Po (5.79) 

Integration by quadrature is immediate. Denoting by Vo the value 
of V at t = 0, we find 

V it 4yPo dt 
log -V = . h 2 2 + Pot o osm y-y 

(5.80) 

If we put 

log A(t) = ft . 4ypo dt 
Jo smh 2y - 2y 

(5.81) 

equation 5.80 becomes 

(5.82) 

The amplification ratio is thus the product of a factor ePot , which 
represents the purely kinematic instability, and a factor A(t), which 
corresponds to a true mechanical instability. The integral for the 
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value (5.81) of log A(t) may be simplified by taking into account 
equation 5.77. We derive 

dy 2ypo dt (5.83) 

Hence 

log A(t) = e . h ~ dy 2 J", sm y - y 
(5.84) 

where K = 7Tho/!l'o represents the value of y at t = o. 

Extension to Unsteady and Triaxial Initial Flow. In the foregoing 
analysis the initial flow field was assumed to be a two-dimensional constant 
velocity field. The results may be readily extended to the case where the 
initial stress P is time-dependent. We write 

P(t) 

47] 

and equations 5.B are replaced by 

X = x exp ( - I: Po dt) 

y = y exp ({ Po dt) 
The value of y becomes 

y = ~: exp (2 f: Po dt) 

(5.B4a) 

(5.B4b) 

(5.B4c) 

The differential equation 5.79 remains valid, and its integration is carried out 
exactly like that for steady flow. ' 

When the initial flow is triaxial, the product XY is not necessarily constant. 
We write 

x = x exp ( - f: Po dt) 

y = y expU: Po dt) 
(5.B4d) 

For example, if the initial flow is symmetric with respect to the x axis, incom
pressibility requires that the product XY2 be constant. Hence in this case 
2po = Po, and we must replace 2po by Po + Po in the value (5.B4c) of y. 
Relation (5.B4a) between Po and P must also be modified accordingly. Except 
for changes in the numerical factors, the equations for viscous buckling remain 
formally the same as for plane initial flow. 

The criterion (5.35) for the validity of the correspondence principle is 
obviously applicable to triaxial initial flow, because it expresses the physical 
fact that the true mechanical instability overshadows the kinematic instability. 
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6. INTERNAL INSTABILITY IN ANISOTROPIC 
VISCOELASTICITY 

397 

In section 3 of Chapter 4 the phenomenon of internal instability 
was analyzed for a purely elastic incompressible medium. Because 
of the general correspondence between elastic and viscoelastic 
deformations, similar properties must appear for a viscoelastic 
medium under initial stress. 

In the discussion which follows we recognize several distinct 
aspects of the problem which depend on the physical nature of the 
material. 

We initiate the analysis by considering first a viscoelastic material 
of infinite extent and at rest in the initial state of stress. The initial 
stress components are principal stresses 8 11 and 8 22 along the x and y 
directions. These components correspond to an effective compressive 
stress 

(6.1) 

acting along x. The medium is assumed to be incompressible and 
orthotropic with axes of symmetry parallel to the coordinate axes. 

The viscoelastic properties for deformations in the x, y plane are 
characterized by the two operators (4.47). In order to facilitate the 
discussion, we shall first consider a material defined by the operators 

L = _P- L 
P + r r 

.M = M + M'p 
(6.2) 

These equations are a particular application of expressions (4.48) for 
a material obeying the principles of linear thermodynamics. As we 
shall see, the conclusions derived for this particular case are applicable 
to more general viscoelastic properties. 

The operator L represents a viscoelastic model constituted of a 
spring and dashpot in series, usually called a Maxwell model (Fig. 
3.2). The operator .M represents a spring and dashpot in parallel, 
sometimes called a Kelvin model. 

Comparison with equations 3.45 shows that the operators (6.2) may 
also represent within suitable limitations a thinly laminated material 
of elastic and viscous layers. The limitations of this approximation 
in problems of internal instability are discussed in the latter part of 
this section. 
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In order to discuss the instability, we go back to equation 3.15 of 
Chapter 4, which represents the condition of internal instability in 
an elastic medium. Applying the correspondence principle, we 
replace the elastic coefficients Land M by the operators (6.2). We 
obtain 

Lg4 + 2(2M - L)e + L - P = 0 (6.3) 

As already stated, we assume a medium of infinite extent. The 
variable g represents the slope of the characteristic lines. The 
displacement field of the medium is given by 

and 

U= 
_ 01> 

oy 
01> 

v =-ox 

1> = cp(x - gy) 

is an arbitrary function of the argument (x - gy). 

(6.4) 

(6.5) 

In order to discuss the significance of these equations, we write 
the condition (6.3) in the form 

1 - 4M e 
P L (6.6) 

(1 - e)2 P 

This may be considered as a relation between the variable defining 
the slope of the characteristic direction and the algebraic quantity p. 
As shown in sections 3 and 4, this value of p yields a time-dependent 
solution 

(6.7) 

proportional to the exponential factor exp ~pt). Hence this is an 
unstable solution whose degree of instability depends on the slope g 
of the characteristic direction. 

Let us determine the functional dependence of p on g by examining 
the properties of equation 6.6. For a given value of g the roots p 
of equation 6.6 are obtained by plotting both sides of the equation as 
functions of p. The right side of the equation is represented by the 
hyperbola (a) of Figure 6.1. The left side is represented by the 
straight line (b) with a negative slope. These curves always intersect 
at two points, A and B, which represent the only roots because 
equation 6.6 is of the second degree inp. Hence the roots are always 
real. This conclusion is in agreement with the general theorems of 
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Lr 
p 

Figure 6.1 Graphical construction for the roots p of equation 6.6. 

section 4, since the contour integral (4.37) also vanishes in the present 
case. Examination of Figure 6.1 shows that there is never more 
than one positive root. 

The limiting case for which the positive root becomes negative is 
obtained by putting p = 0 in equation 6.6. The equation becomes 

1_
4M

e=0 p 

and yields two values of the slope 

t. = + _ P 1J-
s - 2 M 

(6.8) 

(6.9) 

This result is interpreted as follows. The two values (6.9) of g deter
mine two characteristic· lines whose angle of inclination with the 
direction normal to the compression is given by 

(6.10) 

This is shown in Figure 6.2. For characteristic directions lying 
within the sector of angle 28 the solution increases exponentially as 
the factor exp (pt). 

We now examine the case g = O. This value of g defines the 
characteristic direction normal to the compression. The corre
sponding value of p is determined by putting g = 0 in equation 6.3. 
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(6.11) 

Substituting the value (6.2) of the operator in equation 6.11 and 
solving it for p, we find 

rP 
(6.12) p = L - P 

r 

This value of p becomes infinite for P = L r. For P > Lr the 
solution loses its physical meaning because the material will instan
taneously collapse elastically in the direction ~ = O. 

We may inquire whether this normal direction is also the one for 
which p is maximum. Theoretically this is not necessarily the case, 
and it is possible for p to be maximum for two directions which are 
oriented symmetrically with respect to the normal to the compression. 
However, this will happen only in exceptional cases, and then the 
left side of equation 6.6 must be an increasing function of ~ in the 
vicinity of ~ = O. This will occur if 

or 

4M < 2 
P 

2M + 2M'p < P 

(6.13) 

(6.14) 

In general, this condition will not be fulfilled because the value of P 
will be smaller than that of the elastic modulus M. Hence under 
usual conditions the value of p will be maximum for a characteristic 
direction normal to the compression. 



Sec. 6 Internal Instability in A nisotropi.c Viscoelasticity 401 

The physical behavior of the medium is illustrated by considering 
a localized disturbance. The disturbance is unstable and will 
spread entirely within the sector of angle 28 as shown in Figure 
6.2. Under usual conditions the maximum rate of growth of the 
disturbance will occur in the direction normal to the compression. 

The conclusions for the viscoelastic medium considered in the 
foregoing analysis remain valid for the general case of viscoelasticity 
if the operators Land M obey thermodynamic principles. Then 
these operators are increasing functions of p, and therefore it can be 
shown that the qualitative properties derived from equation 6.6 
remain unaltered. 

Internal Instability of a Viscous Anisotropic Medium. We 
consider now a medium of infinite extent in a state of steady flow 
under initial stress. We have shown in section 5 that the general 
theory is applicable to this medium as an approximation, provided 
the amplification of a disturbance is sufficiently large when compared 
with the simultaneous deformation due to the initial steady state of 
flow. This condition is expressed by the criterion (5.35). 

We assume again an initial stress represented by the effective 
compression (6.1). The viscous medium is incompressible with 
orthotropic properties along directions parallel and normal to the 
initial stress. The incremental stresses in this case are derived by . 
introducing the operators 

L = L'p 

M=M'p 
(6.15) 

These operators represent purely viscous behavior of the incremental 
deformations. The instability properties are derived by substituting 
the operators (6.15) into equation 6.3. We obtain 

(6.16) 

We assume that the medium exhibits preferential resistance to flow 
in the direction of the initial compression. Hence 

(6.17) 

in analogy with the condition for internal instability of the first kind 
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of the elastic medium analyzed in Chapter 4. The maximum value 
of P occurs for g = O. This maximum value is 

p 
P = L' (6.18) 

Therefore the characteristic direction (g = 0) normal to the com
pression corresponds to the highest instability. 

In order to evaluate the magnitude of this instability, we turn our 
attention to the steady state flow. We assume that the flow under 
the initial compression P is governed approximately by the same 
viscosity coefficient M' as for the incremental deformation. The 
initial flow for plane-strain deformations is represented by a shorten
ing proportional to the exponential function of time, exp (-Pot). 
The value of Po is given by equation 5.5, where the viscosity 7J is 
replaced by M'. Hence 

P 
Po = 4M' 

From equations 6.18 and 6.19 we derive 

pt 

Pot 

4M' 
I7 

(6.19) 

(6.20) 

For a shortening of about 10% we put Pot = 0.1. During the time t 
a perturbation is amplified by a factor exp (pt). Significant in
stability will appear if this factor is about 50. A value pt ~ 4 is 
required. Hence from equation 6.20 we derive 

M' 
I7 = 10 (6.21 ) 

We conclude that internal instability in a viscous medium will be 
significant only for a material with sufficiently large anisotropy. 
Note that in this case Po/p = 1/40 and the criterion (5.35) for the 
validity of the approximate theory is fulfilled. 

Filtering Properties Due to Confinement. When the aniso
tropic viscous medium is confined between two rigid boundaries (see 
Figure 3.3 of Chapter 4), the variable g acquires a different meaning. 
Then g becomes proportional to the wavelength of the unstable 
deformations (see equation 3.26 of Chapter 4). Equation 6.16 then 
shows that, for g very small, the value of p is almost constant. 
Hence, in the range of small wavelengths, the unstable disturbances 
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are evenly amplified. For large wavelengths, p tends to zero and 
the amplification vanishes. This corresponds to a filtering-out ofthe 
large wavelength disturbances. t This property may be approximated 
by introducing a "cut-off" wavelength to represent the filtering. 

Relation of Internal Instability to the Occurrence of Slip 
Lines in Plasticity. The preceding analysis may be extended to 
materials for which the viscous properties are restricted to incremental 
deformations. The stress-strain relations for purely viscous incre
mental stresses are obtained by introducing the operators (6.15). 
The material may be strongly non-linear and may exhibit only a 
small amount of flow until a certain initial value is reached for the 
compressive stress P. Beyond this value the rate of flow of the 
material may increase very rapidly. Hence in the vicinity of this 
yield point we may define a differential viscosity as already discussed 
in section 5 and illustrated in Figure 5.3a. 

In a material which is intrinsically isotropic and exhibits a plastic 
yield point, a strong incremental anisotropy will generally be induced. 
An estimate of this effect may be obtained from the analysis leading 
to equations 7.15 and 7.16 of Chapter 2. It was shown that the 
superposition of a small shear on the initial finite extension is 
equivalent to a rotation of the strain axes without change of 
magnitude. Hence the value of M' will generally be much smaller 
than that of L', and we may assume 

(6.22) 

This is analogous to the condition for internal instability of the second 
kind which was analyzed in Chapter 4 for an elastic medium. 
Equation 6.16 shows that the directions for maximum strain rate lie 
at an angle with the axis of the initial stress. They correspond to 
slip lines. Note that the value of P incorporates the combined effect 
of stresses 8 11 and 8 22 in two perpendicular directions, and P 
represents either a tension or a compression, as may be seen by 
carrying the discussion in the context of equation 6.19c of Chapter 4 
using coefficients Nand Q. 

t See M. A. Biot, Internal Instability of Anisotropic Viscous and Viscoelastic Media 
under Initial Stress (Journal of the Franklin Institute, Vol. 279, in press). 
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The analogous problem for an elastic medium was discussed in the 
latter part of section 3 of Chapter 4. The properties of the slip lines 
were brought. out in the context of the elastic problem (see Fig. 3.6 
of Chapter 4). A specific finite stress-strain relation with an "elastic 
yielding" was also discussed as an illustration (see Fig. 3.7 of 
Chapter 4). 

Internal Instability of a Laminated Viscoelastic Medium. 
The properties of the laminated medium may be expressed by the 
operators derived in Section 4 for a continuous anisotropic medium 
which approximates the behavior of the composite material. For 
example, for a medium composed of elastic and viscous layers, the 
operators Land M are given by equations 3.45. They are identical 
with expressions (6.2) for the continuous anisotropic medium. For 
laminations of purely viscous materials, the operators are given by 
expressions (3.48), which are the same as equations 6.15. Hence, 
within the limits of validity of this approximation, the laminated 
medium will exhibit the same type of internal instability as found in 
the preceding analysis for continuous anisotropic media with 
viscoelastic or purely viscous properties. 

If the medium is confined between rigid boundaries, however, the 
analysis of the analogous case for an elastic material in section 3 of 
Chapter 4 shows that new features will appear. In the discussion of 
that case it was shown that the medium tends to buckle in the range 
of the shortest possible wavelengths. In that range the instability 
is governed by additional factors, such as the layer thickness, which 
are not included in the approximate continuous model, and corrections 
must be introduced. However, the simplified continuous model 
retains its usefulness by providing a theoretical foundation which 
brings out some of the essential features. 

An exact treatment of the problem of internal instability of 
laminated media may, of course, be obtained from the general theory 
of stability of multilayered viscous and viscoelastic media developed 
in section 8 of this chapter. A very simple approximate solution of 
this problem which takes into account the thickness of the layers has 
also been developed by the author in the context of geology.t 

t 1\1. A. Biot, Theory of Internal Buckling of a Confined Multilayered Structure, 
Geological Society of America Bulletin, Vol. 75, No.6, pp. 563-568, 1964. 
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7. SURFACE INSTABILITY OF VISCOELASTIC MEDIA 

The stability of the elastic half-space was analyzed in previous 
chapters. In Chapter 3 the material was assumed to exhibit 
incremental isotropy, and the problem was solved for the homo
geneous and non-homogeneous medium. In Chapter 4 the problem 
was treated for the case of anisotropy. In both discussions the 
medium was assumed to be incompressible. 

Analytical solutions for surface instability for a compressible elastic 
medium with or without anisotropy were developed in section 7 of 
Chapter 5. 

These results may be immediately extended to viscoelasticity. 
We shall consider only an incompressible material with incremental 
isotropy. 

Viscoelastic Instability of a Non-homogeneous Half-Space 
Initially at Rest. We shall discuss first a non-homogeneous visco
elastic medium lying below a horizontal surface. The medium is 
incompressible, and the initial stress is due to a horizontal compression 
superposed on the action of gravity. 

Let us assume that the medium is at rest in the state of initial 
stress. Application of the principle of viscoelastic correspondence to 
this medium yields an exact solution of the stability problem. The 
corresponding problem for the elastic medium was treated in section 8 
of Chapter 3.t For the viscoelastic medium the incremental sttesses 
are assumed to obey the equations 

S11 - S = 2Qexx 

S22 - 8 = 2Qeyy 

The operator Q is written 

with 

fOO _P_ Q(r) dr + Q + pQ' 
Jo p + r 

(7.1) 

(7.2) 

(7.3) 

t For a more extensive discussion of this problem in the context of viscoelasticity 
see M. A. Biot, Instability of a Continuously Inhomogeneous Viscoel,astic Half-Space 
under Initial Stress, Journal of the Franklin Inst{tute, Vol. 270, No.3, pp. 190-201, 
1960. 
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The thermodynamic properties of this expression will be examined 
below. The same coordinate system is chosen as that shown in 
Figure 8.1 of Chapter 3, the plane y = 0 is horizontal and located at 
the free surface, and the y axis is directed positively downward. 

As for the elastic medium, it is also assumed that the incompressible 
medium is of uniform density p and under the action of a constant 
gravity field of acceleration g. 

The operator (7.2) represents a medium whose rigidity decreases 
exponentially with depth. It gradually changes into a perfect fluid 
as the depth increases. 

The medium is in a state of initial stress represented by a hydro
static field due to gravity and an additional horizontal compression P 
decreasing exponentially with depth with the same exponential 
factor as the operator (7.2): 

P = Poe- ay (7.4) 

An important property of the operator (7.2) is indicated by the 
fact that the factor Qo which incorporates the operational features is 
independent of y. Because of this property the solution for the 
elastic medium may be immediately extended to the viscoelastic 
medium. In order to transpose the elastic solution to the viscoelastic 
problem we must replace the elastic coefficient j.t by the operator Q. 
Referring to equations 8.20 of Chapter 3, we conclude that in the 
formal solution for the elastic medium we must replace the value of 
, by 

(7.5) 

This quantity is a function of p through expression (7.3) for Qo. 
By the general theorems of section 4 the characteristic values pare 

all real in the present stability problem. As a consequence the value 
of , is always real, and the numerical solution for the elastic medium 
is applicable. This solution is plotted in Figure 8.2 of Chapter 3 as 
the value of , versus the dimensionless variable 

S=l. 
a 

(7.6) 

The solution corresponds to unstable modes, sinusoidal along x and 
of wavelength 

(7.7) 
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Hence 

(7.8) 

is a non-dimensional parameter proportional to the inverse of the 
wavelength. 

There is a family of curves depending on the parameter 

G = pg 
Paa 

(7.9) 

For a given value of G the plot of ~ versus 0 yields the value of p as a 
function of the wavelength. Each mode is associated with a value of 
p such that its amplitude grows proportionally to exp (pt). The 
wavelength for whichp is maximum is the most unstable. We shall 
call it the dominant wavelength 2' d' 

At this point a property of the operator Q is of particular 
significance. According to equations 4.47 we may write 

L = Q + iP (7.10) 

where the operator L is expressed by the first of equations 4.48. 
Thermodynamic principles require thatL(r) and L' be non-negative. 
Hence equation 7.10 leads to the conclusion that Q(r) and Q' are also 
non-negative. As a consequence, Q is an increasing function of p 
and the minimum value of ~ corresponds to the maximum value ofp. 
The dominant wavelength is therefore the same as the buckling 
wavelength in the elastic medium. 

This dominant wavelength is 

2'd = :~ (7.11) 

where Od is the value of 0 corresponding to the minimum of~. An 
empirical expression for Od is given by equation 8.30 of Chapter 3. 
The value of p for the dominant wavelength is obtained by writing 
the minimum value of ~ as 

r Po 
"'min = 2Qo (7.12) 

and solving this equation for p. 
In order to bring out some of the characteristic features of the 

instability let us assume that 
Q>O (7.13) 
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Figure 7 .1 Unstable range of wavelengths for a non-homogeneous 
viscoelastic half-space under the simultaneous action of gravity 

and a horizontal compression. 

Ok. 6 

For physical reasons this is a natural assumption for a material which 
is at rest in the state of initial stress. An unstable solution is 
possible only if 

(7.14) 

Hence, for instability to appear, the compressive stress at the surface 
must lie above a critical value 2Q~min. 

The case G = 1/60 is illustrated in Figure 7.1. If it is assumed that 
the inequality (7.14) is satisfied, instability will appear for a limited 
range of wavelengths corresponding to values of 0 between the limits 
01 and O2 • The limiting points are determined by the intersection of 
the curve with the line of ordinate 

(7.15) 

At these limiting points, p is zero and the instability vanishes. The 
existence of a common horizontal asymptote for the value ~ = 0.839 
has been derived for the elastic medium (section 8, Chapter 3). 
Hence, when P o/2Q approaches this value, the limiting point corre
sponding to O2 tends to infinity. In the treatment of the elastic 
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medium it was also pointed out that there is a vertical asymptote for 
the value of ,. The abscissa 8 of this asymptote depends on the 
parameter G and corresponds to a higher limit for the wavelength 
beyond which instability vanishes. This is due to the influence of 
gravity, which is stabilizing and bec.omes predominant at large 
wavelengths. 

Instability of a Non-homogeneous Viscous Half-Space. We 
consider now the stability problem of a non-homogeneous half-space 
for a medium which is not at rest under the initial stress. As an 
illustration, we shall discuss a viscous incompressible material of 
constant density and Newtonian viscosity. The initial state of the 
medium is one of steady flow under a horizontal compression 
superposed on the action of gravity. 

It was shown in section 5 that the results for the elastic medium 
are applicable to a viscous medium as an approximation, provided 
that the instability is of significant magnitude. The validity 
criterion is expressed by the inequality (5.35). 

The viscosity of the medium is assumed to be distributed 
exponentially as in equation 7.2. We write for the viscosity 

TJ = TJoe- ay 

and the operator Qo becomes 

The value of , is 

,= Po 
2TJop 

(7.16) 

(7.17) 

(7.18) 

The problem is formally identical with the preceding one. The 
dominant wavelength retains the value (7.11), the same as for the 
elastic and viscoelastic media, and depends only on G. The value 
ofp for this dominant wavelength is obtained from equation 7.18 by 
substituting the minimum value of , on the left side. In order to 
verify the validity of the approximation implied in this solution, let 
us assume that the initial state of flow is one of plane strain. 
According to equations 5.8 the finite extension ratio in the x direction 
under a compression P is exp (-Pot), where 

(7.19) 
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Hence expression (7.18) for' becomes 

, = 2po 
P 

Ok. 6 

(7.20) 

According to the condition (5.35) the ratio Po/p must be smaller than 
about lo. Hence the theory is valid provided that 

(7.21) 

Attention is called to the magnitude of the amplification in this case. 
A value Pot = lo corresponds to a shortening of .about 10%. For 
Po/p = 2\ the amplification is exp (pt) = 7.38. Below this value 
the amplification becomes insignificant. Hence regions of the 
solutions where , is larger than about 1\ lose meaning and validity 
for a purely viscous medium. 

For significant instability the minimum value of , must be smaller 
than about lo. Figure 7.1 shows that this implies 

1 
G < 60 (7.22) 

With reference to the definition (7.9) of G, the condition (7.22) means 
that the compressive stress Po must be sufficiently high or the thick
ness l/a of the region of high viscosity must be sufficiently small. 

Surface Instability of a Homogeneous Viscoelastic Medium 
Initially at Rest. We consider now the problem of surface 
instability of a viscoelastic homogeneous half-space without taking 
into account any gravity forces. The medium is incompressible and 
at rest under the initial stress. This initial stress is a compression P 
parallel to the surface. 

The corresponding solution was' derived in Chapter 3 (section 6) for 
the elastic half-space. Those results are directly applicable to the 
present case, and they provide an exact solution for the viscoelastic 
half-space. The elastic modulus appearing in the elastic solution 
must be replaced by the operator 

Q = roo -p-Q(r) dr + Q + pQ' Jo P + r 
The value of , (equation 6.14 of Chapter 3) becomes 

P ,= 2Q 

(7.23) 

(7.24) 
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The characteristic equation is (equation 6.20 of Chapter .3) 

~3 + 2~2 - 2 = 0 

411 

(7.25) 
/ 

There are three roots, ~1' ~2' ~3. For our purpose it is convenient to 
write the inverse of their numerical values: 

The real root 

1 _ 1.192 
~1 -

1 

~2 
- 0.596 + 0.255i 

1 
- - 0.596 - 0.255i 

~3 -

has already been evaluated for the elastic medium. 

(7.26) 

(7.27) 

The complex roots must be discarded because of the general 
theorem of section 4. According to this theorem, the characteristic 
values p must be real, and hence the values of ~ also. It is interesting 
to verify this directly by going back to the solution (6.13) of Chapter 
3. It is written 

(7.28) 

The y axis is chosen positive upward in this solution, and the medium 
is located in the region y < o. Hence the value of k must have a 
positive real part in order that the solution vanish at y = - 00. 

Actually, the characteristic equation (7.25) is the rationalized form 
of the original one. This non-rationalized form which includes 
explicitly the value of k is given by equation 4.45b of Chapter 4; 
that is, 

We write it 

1 
k=--

2 - + 1 
~ 

(7.29) 

(7.30) 

Substituting the complex values (7.26) of 11' into this expression, we 
find that the corresponding values of k have a negative real part. 
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Hence the complex roots do not satisfy the condition that the dis
placement vanish at infinite depth and do not correspond to a 
solution of the problem. 

In the present case of the weightless homogeneous half-space there 
is no dominant wavelength. The same amplification factor applies 
to all wavelengths, and surface disturbances are amplified without 
change of profile. 

Surface Instability for a Kelvin Material. As a more specific example 
we consider a medium of viscoelastic properties defined by the simple 
operator 

Q = Q + pQ' (7.30a) 

This represents a so-called Kelvin model illustrated by a spring and dashpot 
in parallel. The viscous damping is superposed on the elasticity. 

The value of p in the amplification factor exp (pt) is determined by the 
equation 

Q + pQ' = 2~1 = 0.596P (7.30b) 

Hence p is real, in agreement with the general theorem of section 4. For 

0.596P > Q (7.30c) 

the value of p is positive, and the surface is unstable. Similar considerations 
apply to more general operators. 

Surface Stability of a Viscous Fluid. Let us consider a homo
geneous half-space constituted of an incompressible viscous fluid of 
viscosity YJ and subject to a compressive stress parallel to the 
surface. Gravity and inertia forces are neglected. Here the initial 
state is one of steady flow. If we attempt to apply the solution of 
the elastic theory to this medium, we must introduce the operator 

(7.31) 

and according to equation 7.24 we write 

(7.32) 

If we assume that the initial state of flow corresponds to a plane 
strain deformation, the value Po is given by equation 5.5. Hence 

(7.33) 

In this equation we replace' by the positive root of equation 7.25. 
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We must substitute for, the numerical value '1 = 0.839 given by 
equations (7.26). Hence 

Po = 0.42 
P 

(7.34) 

This value does not satisfy the criterion (5.35), and the theory is 
not applicable here. In fact, equation 7.34 shows that the amplifica
tion factor exp (pt) is of the same order as the kinematic amplification 
factor exp (Pot). Hence the result does not correspond to an actual 
instability. 

We may verify that true surface instability is rigorously absent for 
first order perturbations in a viscous fluid. This can be seen by 
considering the limiting case of infinite thickness (y = 00) in equation 
5.79 for the viscous buckling of a fluid plate. When we put y = 00 

this equation becomes 

17 
V =Po (7.35) 

Hence 

(7.36) 

The amplification in this case is reduced to the purely kinematic 
phenomenon represented by equations 5.8. It is not a true 
instability. 

Surface Wrinkling in Plastic Deformations. The theory is 
applicable for a material initially at rest and behaving as a viscous 
fluid only for small incremental stresses. The operator in this case is 

Q = Q'p (7.37) 

In fact, as already pointed out in section 5, the material need not be 
initially at rest and the operator (7.37) may govern approximately 
deviations from a steady strain-rate. Although it is difficult to 
conceive of a material behaving exactly in this fashion, it seems 
permissible to assume that certain plastic materials may approach 
this behavior in the vicinity of the yield point. For example, we 
have already discussed the medium for which the rate of flow increases 
very rapidly beyond a critical stress. This was illustrated in Figure 
5.3a when the properties of the incremental deformations are 
expressed by a differential viscosity coefficient. If the anisotropy 
induced by the yielding process is small, the incremental stresses are 
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governed by the single operator (7.37) where Q' represents a differen
tial viscosity coefficient. Surface instability will appear as in a 
Kelvin material defined by the operator (7.30a). The value of pis 
obtained by putting Q = 0 in equation 7.30b. Surface irregularities 
are amplified proportionally to the factor 

exp (pt) = exp (0.596 ~!) (7.38) 

Since the over-all rate of flow due to the initial stress is assumed to 
be very small or non-existent, the value of the time t is not limited, as 
it is for a viscous fluid, and significant amplification may be attained. 

If the incremental deformations are not isotropic, their properties 
may be approximated by the operators 

Q = Q'p if = N'p (7.39) 

In this case we apply the theory of surface instability for the 
anisotropic elastic material and use the numerical result in Table 1 
of Chapter 4 (section 4). By viscoelastic correspondence the value 
of N /Q is replaced by 

(7.40) 

and the table yields the numerical value of 

P 'cr = 2Q'p (7.41 ) 

as a function of N'/Q'. We derive the value p = P/(2Q"cr) which 
must be substituted in the amplification factor exp (pt). Hence 
surface wrinkling will appear. The rate of growth of the wrinkles 
will depend on the induced anisotropy as measured by the ratio N' /Q'. 

8. FOLDING INSTABILITY OF LAYERED MEDIA 

The solutions obtained in Chapter 4 for the elastic stability of the 
embedded layer and multilayered media are also applicable to visco
elastic media. In these media the instability is manifested by a 
gradual folding of the layers: 

Embedded Layer. We shall consider a single viscoelastic layer 
of thickness h under a uniform initial compression P (Fig. 8.1). It 
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is embedded in an infinite viscoelastic medium free of initial stress. 
Both materials are incompressible. We shall assume first that the 
medium is initially at rest and in equilibrium under the initial stress. 
For simplicity we shall consider first the case where perfect slip takes 
place between the layer and the medium. It was shownt that for 
the single layer, if the embedding medium is soft, there is no 
significant difference between adherence and slip. 

p 

Figure 8.1 Viscoelastic layer under initial compression P 
embedded in a viscoelastic medium initially stress-free. 

The corresponding elastic case is represented by the characteristic 
equation (6.30) of Chapter 4. This equation is 

where 

Qeff = .!. (1 ') (f322 + 1)2Z1 - (f312 + 1)2z2 
Q 2 + f312 - f32 2 

Zl = f31 tanh f31Y 

Z2 = f32 tanh f32Y 

(8.1) 

(8.2) 

The parameter Y = ilk is related to the wavelength !l' = 27T/l of the 
deformation of the layer. We shall first write this equation for the 
case where the layer and the embedding material are both isotropic 
for incremental stresses. The elastic coefficient of the embedding 
medium is 

(8.3) 

t M. A. Biot, On the Instability and Folding Deformation of a Layered Viscoelastic 
Medium in Compression, Journal of Applied Mechanics, Ser. E, Vol. 26, pp. 393-400, 
1959; M. A.Biot and H. Ode, On the Folding of a Viscoelastic Medium with Adhering 
Layer under Compressive Initial Stress, Quarterly of Applied Mathematic8, Vol. XIX, 
No.4, pp. 351-355, 1962. 
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and the roots (31 and (32 become 

f31 = 1 

J1-1 
f32 = k = 1 + , 

Ok. 6 

(8.4) 

For a viscoelastic material we must replace the elastic coefficients 
by the corresponding operators. The layer is represented by the 
operator Q, and the embedding medium by the operator Q1' Hence 

(8.5) 

The characteristic equation for the viscoelastic medium becomes 

Q1 1 
Q = "' [tanh y - (1 + ')2k tanh ky] (8.6) 

This equation constitutes a relation between p and the wavelength 
parameter y. We solve the equation for p as a function of y and 
consider the value Ya for which p is a maximum. This determines 
the dominant wavelength 

7Th 
Sf a =-

Ya 
(8.7) 

An initial sinusoidal disturbance of the layer of wavelength Sf a has 
a maximum rate of growth. 

An approximate solution of equation 8.6 is obtained by replacing 
the hyperbolic functions by their power series rl3presentation. 
Limiting the series to its first two terms, we write 

tanh Y = Y _ ir3 

k tanh ky = Py - ik4y 3 

Equation 8.6 becomes (using 8.4 for k) 

~1 = 'y _ i(2 - Oy3 

Assuming , to be small, we write 

Q~l = 'y _ ir3 

Q 

(8.8) 

(8.9) 

(8.10) 

In the particular case of "spectral homogeneity," that is, if the 
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Figure 8.2 Stability parameter' versus the wavelength parameter 
y for the embedded viscoelastic layer of Figure 8.1. Exact solutions 
are represented by solid lines. Broken lines correspond to the 

approximate solution (8.14) (n = Ql/ih 

layer and the embedding medium have the same relaxation spectrum, 
we may write 

(8.11) 

where n is a numerical coefficient. Here the characteristic equation 
(8.6) is considerably simplified because p appears only in the par
ameter ,. Equation 8.6 becomes 

1 
n = ,[tanh y - (1 + ')2k tanh ky ] (8.12) 

It has been solved numerically, and the value of , is plotted as a func
tion of y in Figure 8.2. The curves are plotted for three values of n, 

n = 1/72, 1/144, 1/288 (8.13) 

They are reproduced from the author's paper.t Plots for other 
values of n are also given in the same paper. 

t M. A. Biot, Folding of a Layered Viscoelastic Medium Derived from an Exact 
Stability Theory of a Continuum under Initial Stress, Quarterly of Applied Mathe
matiC8, Vol. XVII, No.2, pp. 185-204, 1959; see also Stability Problems of Inhomo
geneous Viscoelastic Media, Non-homogeneity in Elasticity and Plasticity (IUTAM 
Symposium, Warsaw, 1958), pp. 311-321, Pergamon Press, New York, 1959. 
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The value of ~ obtained from the approximate equation (8.10) is 

n 
~ = - + ty2 

Y 
(8.14) 

This value is also plotted in Fig. 8.2 for comparison. 
The dominant wavelength is readily obtained from this result. 

The operator is of the form 

Q = foo ~ Q(r) dr + Q + Q'p Jo p + r 
(8.15) 

It is an increasing function of p. Therefore the minimum of ~ 
maximizes the value of p and determines the dominant wavelength. 
The value ~mln of this minimum is a function of n. Instability 
requires 

(8.16) 
Hence 

(8.17) 

For a compression satisfying this inequality there is a range of 
unstable wavelengths in the vicinity of the dominant wavelength. 
This type of behavior was discussed in section 7 for the case of the 
nonhomogeneous half-space and illustrated in Figure 7.1. The 
argument is entirely similar and will not be repeated. 

Adhering Layer. For the case of perfect adherence between the 
layer and the embedding medium an exact solution may be derived 
by viscoelastic correspondence from the elastic solution derived in 
section 6 of Chapter 4 and plotted in Fig. 6.6 of that chapter. The 
solution is exactly applicable for a medium initially at rest and if we 
assume 

(8.18) 

where P and PI are, respectively, the initial compressive stresses in 
the layer and the embedding medium. 

As already pointed out, the effect of adherence was also discussed 
in two papers (see references on page 415). 

Thin Plate Theory as a Limiting Case. Comparison with 
exact solutions shows that the classical thin plate theory is quite 
accurate for most applications. Its relation to the exact theory is 
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brought out by considering the approximate equations 8.10 and 8.14. 
The accuracy of the latter has been illustrated in Figure 8.2. 

By substituting' = P/2Q and y = ilk, equation 8.10 becomes 

41Ql = 12Pk - 4Q k 314 (8.19) 
12 

If the normal deflection w of the layer is proportional to cos lx, 
equation 8.19 may be written 

d2 ~ 4 
_ 41 Q w = Pk ---..3!!.. + 4Q k3 d w (8.20) 

1 dx2 12 dx4 

The right side represents the normal load on a thin plate under an 
axial compressive stress P. The elastic coefficient of the plate has 
been replaced by the operatorQ. The left side represents the visco
elastic reaction of the embedding medium per unit length. This can 
be shown by applying equation 6.27 of Chapter 4 to the viscoelastic 
half-space and by introducing a factor 2 in order to add the reactions 
of both top and lower half-spaces. 

Folding of an Elastic Plate in a Viscous Medium. The 
classical thin plate theory is applicable to an elastic material, and it 
includes the case of compressibility. For an elastic layer equation 
8.20 is replaced by 

(8.21) 

Young's modulus and Poisson's ratio for the elastic plate are denoted, 
respectively, by E and v. The shear modulus is 

E 
Q = 2(1 + v) (8.22) 

We note that 
2Q 

1 - v 
(8.23) 

For an incompressible material we put v = i, and the modulus 
E/(l - v2 ) becomes equal to 4Q. This result yields equation 8.20 for 
the incompressible medium if we replace Q by Q. 

We now discuss the stability of the elastic plate embedded in a 
viscous medium. The operator for the embedding medium of 
viscosity T)1 is 

(8.24) 
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and equation 8.21 becomes 

(8.25) 

Substituting a sinusoidal amplitude w proportional to cos lx, we find 

4YJIP = Plh - ~ ~ Ph3 

121 - v2 (8.26) 

The value of P goes through a maximum for a certain value la of 1 
which is given by 

(8.27) 

This value corresponds to a dominant wavelength .!l'a expressed by 

(8.28) 

This result was obtained previously by the author as a particular 
case of a more general theory. t Disturbances of wavelength .!l' a in 
the layer will exhibit the maximum rate of growth with time. 
Because of this selective amplification, the dominant wavelength will 
actually be observed. 

Equation 8.28 has been verified experimentally by testing thin 
layers of cellulose acetate and aluminum embedded in corn syrup.t 
The viscosity of the syrup was of the order of 

YJl ~ 102 to 104 poises (8.29) 

The compressive load P was also varied. The theoretical result 

(8.28) shows that the wavelength varies as the inverse of V P. The 
buckling of an elastic sheet of cellulose acetate under various loads is 
shown in Figure 8.3. The dominant wavelength was measured 
under varying conditions oflayer thickness, elastic rigidity, viscosity 
of the embedding medium, and compressive loads. The experi
mental results are plotted in Figure 8.4 and compared with the 

t M. A. Biot, Folding Instability of a Layered Viscoelastic Medium under Compres
sion, Proc. Roy. Soc., A, Vol. 242, pp. 444-454, 1957. 
:j: M. A. Biot, H. Ode, W. L. Roever, Experimental Verification of the Theory of 
Folding of Stratified Viscoelastic Media, Geological Society oj America Bulletin, Vol. 
72, No. II, pp. 1621-1631, 1961. 
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A 

B 

c 

10 em 

Figure 8.3 Photograph showing buckling of an elastic layer in a 
viscous medium. The layer is of acetate 1 mm thick and is embedded 
in corn syrup. The total compressive loads are 1.6 kg, 6.6 kg, and 

11.6 kg for cases A, B, 0, respectively. 
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theoretical value (8.28). They show good agreement with the theory. 
As predicted, the dominant wavelength does not depend on the 
viscosity of the embedding medium. The viscosity affects only the 
deformation rate. 

Folding of a Viscous Layer in a Viscous Medium. A viscous 
layer of viscosity 'l} under an axial compression P and embedded in a 
viscous medium of viscosity 'l}1 is analyzed by the same procedure. 
The operators are 

(8.30) 

The medium is initially in a state of steady flow, and the applicability 
of the theory is subject to the restrictions established in section 5. 
We shall show that they are satisfied for this problem. The thin 
plate theory yields an equation which coincides with the approximate 
characteristic equation (8.14) derived from the exact theory. It is 
written 

(8.31) 
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o Al sheet No.1 
• Al sheet No.2 
+ 1.02 mm plastic in 1132 syrup 

f). 1.02 mm plastic in 1152 syrup 
x 0.787 mm plastic in 1132 syrup 
o 0.51 mm plastic in 1152 syrup 

E 1 
1-,,2 P 

Ok. 6 

Figure 8.4 Experimental results showing the buckling wavelength 
2 d as a function of the compressive stress P for an elastic layer in a 
viscous medium (plotted non-dimensionally with h = layer thickness, 
E = Young's modulus of the layer, " = Poisson's ratio of the layer). 
Materials are aluminum and plastic for the layer, and corn syrup for 

the medium. The theoretical line is given by equation 8.28. 

with 

n 'f}1 

'f} 

P 
~ = 

2'f}p 

The dominant wavelength occurs when P is maximum. 
maximum value is 

p 
Pm = 

2'f}~mln 

(8.32) 

This 

(8.33) 

where ~mln is the minimum value of ~ obtained when y is equal to 

Yd = ! a/6
'f}1 

2;j 'f} 
(8.34) 
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The corresponding value of , is 

'min = ~ (6~1 f'a 
The dominant wavelength (8.7) is thereforet 

.;:£Ja = 27Th:/ 'Y} 
6'Y}1 

In this case it is independent of the initial stress P. 
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(8.35) 

(8.36) 

Values of this dominant wavelength (8.36) are given in Table 1 as 
a function of the viscosity ratio 'Y}i'Y}1 of the two materials. 

Table 1 
Ratio of the dominant wavelength !l' a to the 
thickness h of the layer as a function of the 
ratio of the layer viscosity 71 to the viscosity 
711 of the embedding medium 

71/711 !l'd/h 

12 7.9 
36 11.4 
72 14.4 

100 16.0 
144 18.1 
288 22.9 
500 27.4 

1000 34.5 
2000 43.5 

10000 74.5 

Since in this case the system is in a steady state of flow under the 
initial stress, we must verify the validity of the result by evaluating 
the magnitude of the instability. As already discussed in section 5, 
the theory is strictly applicable only for a time interval during which 
the steady state deformation remains small. On the other hand, dur
ing this time the instability, to be significant, must correspond to 
an amplification factor exp (pt) of sufficient magnitude. This is 

t This result was derived in 1957 by the author as a particular application of a more 
general treatment (see reference t on page 420). 
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expressed by condition (5.35). Consider the same time t = to already 
introduced in the problem of the viscoelastic half-space treated in 
section 7. The value to is defined by putting Poto = 0.1. It 
corresponds to a shortening of about 10% of the viscous layer. At 
the time to the amplification factor exp (Pmto) of the dominant 
wavelength may be expressed in terms of 'min by using equation 
7.20. Hence 

(8.37) 

When the value (8.35) for 'min is substituted, the amplification factor 
(8.37) becomes a function of the viscosity ratio YJiYJl' Values of this 
factor are shown in Table 2. It can be seen that the amplification 

Table 2 
Amplification factor exp (Pmto) ofthedominant 
wavelength at the time to as a function of the 
viscosity ratio; at the time to the shortening 
of the layer is about 10% 

27 2.91 
64 24.5 

125 148 
216 1340 

becomes significant only for values of the viscosity ratio which are 
larger than about 100. Beyond this value the amplification increases 
very rapidly. The value of 'min is given by equation 8.35. For 
YJiYJl = 100 it is 

'min = 0.067 

From equation 7.20 we derive 

Po = Hmin = 0.033 
Pm 

(8.38) 

(8.39) 

This value verifies the criterion (5.35) for the validity of the 
correspondence principle. 

These results are still based on the assumption that the over-all 
strain is not large. We shall now show that the validity of the 
theory is not restricted to small deformations. 
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The Effect of Large Deformations on Viscous Folding. In a 
viscous medium the initial compression causes a gradual shortening 
of the layer and an increase in thickness. If we allow sufficient time 
to elapse for the deformation to become appreciable, these two effects 
will tend to influence the folding in opposite directions. The shorten
ing will tend to decrease the wavelengths of the folds. On the other 
hand, the thickening of the layer increases the dominant wavelength, 
and therefore it will also tend to increase the folding wavelengths. 
Since these effects are associated with large deformations, their 
evaluation requires the use of a theory which is also valid for large 
deformations. Such a theory was developed in section 5 for viscous 
buckling of a fluid. 

In order to bring out the characteristic features due to large 
deformations, let us consider the buckling of a free plate. The 
amplification factor A(t) representing the true instability is given by 
equation 5.81. For the purpose of comparison with approximate 
theories it is convenient to write the amplification factor in the form 

A(t) = exp [f:P(t)dt] (8.40) 

which introduces a function of time p(t) that may be looked on as an 
"instantaneous value" for the exponential factor and coincides with 
the previous definitions for the case when p is constant. The value 
of p(t) derived from equation 5.81 is 

p = 4yPo 
sinh 2y - 2y 

(8.41) 

We introduce expression (5.5) for Po and consider the parameter 

,=..!...- = sinh2y _ 1 
2TJp 2y 

(8.42) 

In the purely elastic medium a similar parameter was defined as 

(8.43) 

where f-t is the elastic coefficient of the stress-strain relations (8.33) 
of Chapter 2. The two values (8.42) and (8.43) are interchangeable 
by applying the principle of correspondence, replacing f-t by TJp. 

Of considerable interest is the approximate value of , obtained by 
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expanding expression (8.42) in a power series of y. Reduced to its 
first term, this approximation is 

, = ty2 (8.44) 

This equation coincides with the result derived from the thin plate 
theory. This can be seen by putting n = 0 in equation 8.31. The 
exact value (8.42) of , for the viscous fluid and the approximate 
value (8.44) are compared in Figure 8.5. It can be seen that the thin 

0.4.-------,----,----,-----,'"""TT----, 

0.31----+-----t----+-/-I---j-+-----I 

t 0.21----+-----t----H-+-T'---j------I 

"""' 

O.ll----+---A6I''-------+----j------I 

O~~--~----L-----~----~----~ 
0.2 0.4 0.6 0.8 1 

Figure 8.5 Stability parameter ~ for the buckling of a plate as derived 
from viscous fluid theory (I), thin plate theory (2), and the theory of 

elasticity (3) plotted as a function of y. 

plate theory provides an excellent approximation. The value of , 
obtained from the exact elastic theory and reproduced from Figure 
7.5 of Chapter 3 is also plotted for comparison. All three values are 
equally satisfactory in the range y < 0.3, which corresponds to 
wavelengths larger than about ten times the thickness. 

We conclude that the thin plate theory provides a goo~ approxima
tion for estimating the effect of finite deformations. In the case of 
an embedded layer we apply equation 8.31. It may be written 

P n 
- = - + iy2 
27]p Y 

(8.45) 

where n = 7]1/7] is the ratio of viscosities of the embedding medium 
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and the layer. 
ofp is 
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According to equation 8.40 the instantaneous value 

A 
p=

A 
(8.46) 

Equation 8.45 is therefore a differential equation for A with a time
dependent variable y. For plane strain initial flow, y is expressed by 
equation 5.77. Its value is 

7Tho y = _ e2pot 

.Po 
(8.47) 

In order to simplify the integration we replace y by a constant 
average value during the time interval t. To do so we replace y by 
its value y' at the instant It. Hence 

, 7Tho t 
y = -ePo 

.Po 
(8.48) 

Because .Po is the initial wavelength, .P = .Po exp (-Pot) is the 
wavelength at the time t. Therefore 

(8.49) 

is defined in terms of the initial thickness ho and the final wavelength 
.P. With this value y', equation 8.45 becomes 

(8.50) 

Comparing this result with equation 8.31, we see that the maximum 
value of p occurs for y' equal to expression (8.34). Hence, if we 
measure the wavelength after deformation and substitute the initial 
thickness ho for h, the dominant wavelength .P d is expressed by 
equation 8.36. We write 

.P d = 27Tho 31 TJ 
;.; 6TJl 

(8.51 ) 

According to these definitions the dominant wavelength is not 
affected, in first approximation, by the finite compression. 

As already mentioned, this is due to a compensation resulting from 
the combined effect of thickening and shortening of the layer. The 
validity of this conclusion requires that the factor exp (2Pot) remain 
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below a certain limit; otherwise the averaging process would not be 
applicable. The total strain therefore should not exceed about 25%. 

Time History of Folding Initiated by a Local Disturbance. 
In the previous analysis we have considered only the case of folding 
represented by a pure sine wave of infinite extent. We now derive 
the time history of folding of a viscous layer embedded in a viscous 
medium for the case where the initial disturbance is not a pure sine 

Figure 8.6 Shape of the assumed initial disturbance of an embedded 
viscous layer represented by equation 8.52. 

wave but a localized departure from a plane surface. The analysis 
which follows and the numerical results were obtained in a recent 
paper. t The normal deflection w of the initial disturbance is 
expressed by the equation 

b 
W=--....,.....,....", 

I + (~r (8.52) 

This equation represents a bell-shaped curve illustrated in Figure 8.6. 
The disturbance may be expressed as a Fourier integral, 

w(x,O) = __ b_..", = ba fo"" e- 1a cos lx dl 

1 + (~r J (8.53) 

After a time t each sinusoidal component is multiplied by the 
amplification factor exp (pt). Hence at time t the deflection is 

w(x, t) = ba L"" ePt -
la cos lx dl (8.54) 

t M. A. Biot, H. Ode, W. L. Roever, Experimental Verification of the Theory of 
Folding of Stratified Viscoelastic Media, Geological Society oj America Bulletin, Vol. 
72, No. 11, pp. 1621-1631, 1961. 
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The value of p is a function of 1 given by equations 8.31 and 8.32. 
Introducing the variable S, we may write 

0.2 t 
pt=-

S to 
(8.55) 

The quantity to is the time required for a shortening of about 10% 
of the medium under the action of the initial compression P (see 
equation 8.37). The parameter S becomes a function of 1 when 
y = ilh is substituted in equation 8.31. 

The integral (8.54) has been evaluated numericallyt for a viscosity 
ratio 

7J1 1 n=-=--
7J 1000 

(8.56) 

In plotting the result, the maximum deflection w(O, t) which occurs 
at the center (x = 0) has been normalized to unity. Hence we have 
plotted the ratio 

w(x, t) = f (~ , ~ , ~) 
w(O, t) to h h 

(8.57) 

It is a function ofthe dimensionless time t/to and ofthe dimensionless 
distance x/h from the center of the disturbance. There is also a 
parameter a/h which is a measure of the initial "flatness" of the 
disturbance. The result is plotted in Figure 8.7 for three types of 
initial disturbances defined by the values 

a 
h = 2.75, 5.50, 11 (8.58) 

The shape ofthe layer is shown at the time t = 0 (initial shape) and 
at the instants corresponding to 

t 
- = 0.625, 1.25, 2.5 
to 

(8.59) 

The value t/to = 2.5 corresponds to a shortening of the layer of 
about 25%. 

We have shown in the preceding discussion that these results are 
valid in this range of large compressions, where h represents the 
initial thickness ho of the layer and the wavelengths must be measured 

t See reference on page 428. 
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o 

tlto = 2.5 
1.25 
0.625 

tlto = 2.5 
1.25 
0.625 

alh= 2.75 

alh = 5.50 

Ch. 6 

80 

Figure 8.7 Calculated time history of folding under compression of an 
embedded viscous layer in a viscous medium for a viscosity ratio "IdYl = 

1/1000. Three types of initial disturbances (at t = 0) are considered. All 
amplitudes are reduced to unity at the center (x = 0). Only the right half 

of the symmetrical figure is shown. 

in the final deformed state. This means that expression (8.52) does 
not represent the shape of the actual initial disturbance but the shape 
it would acquire because of the shortening alone. However, as 
indicated by the plots, this does not affect the folding in any 
significant way, because the result is quite insensitive to a flattening 
or sharpening of the initial disturbance. The dominant wavelength 
for n = 1/1000 is (Table 1) 

2a = 34.5h (8.60) 
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It is interesting to note from Figure 8.7 that this wavelength 
represents very closely the distance between crests of the folds. This 
dominant wavelength is therefore a distinctive feature of the 
deformation. It appears quite clearly for t/to = 0.625. At that 
time the shortening of the layer is about 6%. As already pointed 
out, the result shows that for all practical purposes the time history 
is very insensitive to the parameter a/h, which represents the flatness 
of the initial disturbance. Hence, if we exclude extreme cases, it 
does not matter whether the average width of the initial disturbance 
is close to the dominant wavelength or not. As for the magnitude 
ofthe deflection w(O, t) at the center, it was shownt that it follows 
very closely the exponential amplification factor exp (Pmt) for the 
corresponding dominant wavelength. Numerical solutions have 
also been obtainedt for the viscosity ratio n = 1/100. The folding 
in this case requires a longer time and is less sharp. 

Model tests for the case of purely viscous media have also been 
carried out using asphalt layers embedded in corn syrup. t The 
results are found to be in good agreement with the theory. In 
particular, it was verified that the wavelength is independent of the 
compressive stress. 

Folding Instability of Multilayered Viscous and Viscoelastic 
Media. By application of the correspondence principle, the folding 
instability of viscous and viscoelastic multilayered media may be 
treated by using the formal results derived for elastic media in 
section 7 of Chapter 4 and section 7 of Chapter 5. The equations are 
applicable to isotropic and anisotropic media, compressible or incom
pressible. For incompressible materials they include the effect of 
gravity.t The corresponding equations for viscous and viscoelastic 
materials are obtained by replacing the elastic coefficients by 
operators, following the procedure illustrated in this section for the 
embedded layer. For systems with a large number of layers, 
numerical solution may be obtained by using the matrix multiplica
tion procedure based on equation 7.18 of Chapter 4. The only 

t See reference on page 428. 
t The general problem of folding of multilayered viscous and viscoelastic media has 
been discussed in more detail in a paper by the author, Stability of Multilayered 
Continua Including the Influence of Gravity and Viscoelasticity, Journal oj the 
Franklin Institute, Vol. 276, No.3, pp. 231-252, 1963. 
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difference in the present case lies in the fact that the initial stress is 
given. The unknown is now the characteristic exponent p which 
must be evaluated as a function of the wavelength. Therefore, 
mathematically, this case resembles the vibration problem of multi
layered elastic media which has been treated in Chapter 5. The 
previously described iteration procedures also provide methods of 
numerical solution for media with a large number of dissimilar layers. 
(See Chapter 5, section 7.) 

Property of a Viscous Anisotropic Half-Space. An interesting result 
is obtained by applying the correspondence principle to a purely viscous 
incompressible half-space with anisotropic properties and free of initial stress. 
For the elastic medium it was found that tangential and normal stresses T and 
q sinusoidally distributed induce corresponding surface displacements expressed 
by equations 4.33 of Chapter 4: 

T = 2l-v'NQ U 

q = 2l-v'NQ V 

For a purely viscous material the corresponding operators are 

Q = P'T/t 

N = P'T/n 

(8.60a) 

(8.60b) 

The two viscosity coefficients for tangential and normal stresses are "It and 'TJn' 
By substituting the operators (8.60b) in equations 8.60a we obtain 

With 

these last equations become 

T = 2l-v' TJt'TJn pU 

q = 2l-v' TJtTJn p V 

T = 2lTJpU 

q = 2lTJpV 

(8.60c) 

(8.60d) 

(8.60e) 

These equations are the same as those expressing the surface stresses in an 
isotropic viscous fluid of viscosity "I' Hence the anisotropic viscous half-space 
may be replaced by an equivalent isotropic viscous fluid with a viscosity 
coefficient "I given by equation 8.60d. 

This result is useful in problems of folding of layers embedded in an aniso
tropic viscous medium. It was also shown that suchs medimn may be 
constituted by thin laminations of purely viscous isotropic fluid with two 
different viscosities "11 and "12' The two viscosity coefficients "It and "In for the 
equivalent anisotropic fluid may be obtained from equations 3.49. They are 

1 
"It = --

a1 + a2 
'TJl. "12 

"In = a1TJ1 + a2TJ2 
(8.60f) 
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In these expressions !Xl and !X2 represent the fraction of the total thickness 
occupied, respectively, by the fluids of viscosity "I}l and "I}2' 

If there are more than two different fluids in the laminations, it is possible 
in some cases to use weighted averages over a suitable averaging thickness. 
We may write 

(S.60g) 

This is analogous to equations 2.31 of Chapter 4 for the elastic medium. 

Viscous Buckling of a Multilayered Fluid with Large 
Deformations. The theory developed in the latter part of section 5 
may be used to derive the time history of buckling of a viscous 
medium composed of an arbitrary number of horizontal fluid layers. 
The problem of viscous buckling is considered for homogeneous com
pressive strain of arbitrary magnitude applied to the system in the 
horizontal direction. The medium is assumed to be incompressible 
and of high viscosity, so that inertia forces 'may be neglected. t 

Let us consider one of the layers of viscosity "I} and thickness h. 
Following the argument in section 5, we must consider the applied 
stresses T and q, the perturbation stresses f and ii, the corresponding 
perturbation velocities U' and V', and the vertical displacement V. 
We attach a subscript 1 to denote the values of these quantities at 
the top face ofthe layer. The subscript 2 denotes the same quantities 
at the bottom face. 

It was pointed out in section 5 that the perturbation stresses f1' iiI> 
7'2' ii2' due entirely to the perturbation velocities U~, V~, U;, V; are 
the same as in a viscous fluid of viscosity 7J initially at rest. The 
relation between the perturbation stresses and velocities is derived 
by applying the principle of correspondence to the solution obtained 
in Chapter 4 for an isotropic incompressible elastic medium free of 
initial stress. The correspondence in this case leads to an exact 
solution for the viscous fluid. We apply the matrix equation (5.20) 
of Chapter 4, substituting velocities for the displacements and 

t The present theory was originally developed more extensively and with specific 
examples in a recent paper (see M. A. Biot, Theory of Viscous Buckling of 
Multilayered Fluids Undergoing Finite Strain, The Physics of Fluids, Vol. 7, No.6, 
pp. 855-859, 1964. 
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replacing L by YJ. For the matrix coefficients we must use the values 
(see Chapter 4, equations 5.36 and 5.37) 

Al = !(a11 + bl1 ) A4 = !(a11 - b11 ) 

A2 = !(aI2 + b12 ) A5 = !(aI2 - bd (8.61) 

As = !(a22 + b22 ) A6 = !(a22 - bd 
with 

4 cosh2 y b = 4 sinh2 y a = 
11 sinh 2y + 2y 11 sinh 2y - 2y 

a =- 4y 
12 sinh 2y + 2y 

b = 4y 
12 sinh 2y - 2y 

(8.62) 

4 sinh2 y b = 4 cosh2 y a = 
22 sinh 2y + 2y 22 sinh 2y - 2y 

The variable y is defined in terms of the thickness h of the layer and 
the wavelength !l' = 27T/l of the disturbance, 

7Th 
y = !lh = !l' (8.63) 

It was shown (Chapter 4, section 5) that the matrix equation may be 
written in compact form by introducing the quadratic function 

1 = !A1(U? + U;2) - A4U~U; 

+ !As(V? + V;2) + A6 V~ V; (8.64) 

+ A2(U~ V~ - U; V;) + A5(U~ V; + U; V~) 

The relations between the perturbation stresses and velocities at the 
top and bottom faces are written 

- 1 81 
ql = YJ 8V~ 

81 
ii2 = -lYJ 8V; 

According to equations 5.65, the total stresses are 

81 
-l'YI- - PIV2 "'8U; 

81 
ql = lYJ 8V~ 

81 
q2 = -lYJ 8V; 

(8.65) 

(8.66) 
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The horizontal compressive stress in the fluid is denoted byP. 
These results may be applied to derive recurrence equations for 

the multilayered fluid by proceeding exactly as in the corresponding 
analysis of stability of multilayered solids in Chapter 4. The n layers 
are numbered from 1 to n (Fig. 8.8). For the jth layer the viscos
ity, the thickness, and the stress are denoted by YJj' hj, and Pj. The 
quadratic form I j for the jth layer is obtained from expression (8.64) 

/: 

'I/o 

'1/1 

'l/j ~Pj 
'l/n 

'l/n+l 

'/ 

Figure 8.8 Multilayered viscous fluid under initial compression. 

by substituting the subscripts j and j + 1 for 1 and 2 in the velocity 
components u~, u~, V~, etc. The variable y for the jth layer is 

(8.67) 

We now write the condition that the stresses T and q are continuous 
at an interface between the two adjacent layers j and j + 1. We 
derive (no summation) 

a 
au' (YJij + YJJ+IIj+!) = (Pj+! - Pj) Vi+! 

i+1 
(8.68) 

If the layers are embedded between two fluid half-spaces, we may 
include this case in equations 8.68 by adding corresponding layers of 
infinite thickness denoted by the subscripts 0 and n + 1 (Fig. 8.8). 

With the total quadratic form 
n+1 

.f = L YJii (8.69) 
i=O 
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equations 8.68 may be further abbreviated. They are written 

of 
-au' = (P j +! - P j )Vj +1 

j+1 

of = 0 
oVJ+1 

Finally we introduce the differential relation (5.69). 
becomes 

(8.70) 

In this case it 

(8.71) 

where Vj denotes the time derivative of Vj' Substituting this value 
of Vj into equations 8.70, we obtain a system of 2n + 2 linear homo
geneous differential equations for the 2n + 2 unknowns Uj and Vj' 
Each pair of equations 8.70 contains the unknowns for three 
successive interfaces. 

The equations are completely general, and they include boundary 
conditions. For example, if the top surface is free, we put TJo = 0 
in the equations. Other cases are handled exactly as in the previous 
discussion for the elastic medium (see Chapter 4). 

The coefficients in the differential equations are functions of the 
time through the variables Yj. For an initial flow with plane strain 
and steady state the time dependence of Y corresponds to equation 
5.77. We may write 

(8.72) 

where Kj is the initial value of Yj in the jth layer. 
Several generalizations of these equations are readily obtained. 

In the derivation we have assumed that the initial stress is a com
pression P j in the direction of the layers. Actually we may super
pose a constant fluid pressure on the whole system. This is 
equivalent to adding a normal stress 8 22 and considering P j as 
representing the effective compression: 

(8.73) 

This does not affect the equations, because they depend only on the 
differences P j +1 - P j and the term 8 22 cancels out. 

Equations 8.70 may also be generalized to include the effect of 
gravity. In this case P j is still constant within one layer, but the 
stresses 8 22 and 8rri are functions of the altitude coordinate. (See 
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equations 7.19, Chapter 4.) The results obtained for the elastic 
material are again applicable. It was shown that the problem is 
solved by introducing an analog model free of gravity stresses with 
interfacial forces proportional to the density difference and the 
vertical displacement. We must introduce the quadratic function 
given by equations 7.30 of Chapter 4: 

1 n 
f'§ = 2lL (PHI - P;)gVJ+l 

o 
(8.74) 

where P; is the mass density of the jth layer, and g represents the 
acceleration of gravity. The differential equations 8.70 are then 
replaced by 

~+~=o 
8V1+ 1 8VH1 

(8.75) 

The effect ofthe gravity forces is embodied in the additional term f'§. 

A useful simplification of equations 8.75 is obtained by introducing 
the transformation 

Uj = ujePot 

Vj = ojePot 

From equation 8.71 we derive 

(8.76) 

(8.77) 

Since equations 8.75 are homogeneous, the factor ePo t cancels out. 
We denote by f' and f'§' the quadratic functions (8.69) and (8.74) 
written with variables Uj' OJ, and bj replacing Uj, Vj' and Vj. 
Equations 8.75 become 

8f' 8f'§' 
-.-+--=0 
80H1 80j +1 

(8.78) 

These results are also applicable to the general case of unsteady and 
triaxial initial flow if the slight modification discussed in the latter 
part of section 5 is introduced. Thenpo, Pj' and y become arbitrary 
functions of time, and Pot is replaced by the time integral of Po. 
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Applications to Geology. The problem of folding of stratified geological 
structures under tectonic stresses has been analyzed by the author as an 
application of the general theory of stability of multilayered viscous fluids 
and viscoelastic solids. t This simple quantitative approach to geological 
folding with its emphasis on flow properties and time dependence has opened a 
new phase in geodynamics. The basic theoretical and experimental work 
was performed under a systematic program initiated around 1950 and 
sponsored by the Shell Development Company. The results were presented 
in a series of papers published since 1957 and cited in this section. It was 
shown that the assumption of viscous behavior as an approximate model for 
rock deformation leads to folding patterns which closely resemble the observed 
structures. The time history of the deformation was also evaluated and found 
to be in good agreement with the geological time scale. Problems of orogenesis 
were also discussed in the same papert in a treatment of the effect of gravity 
for the non-homogeneous viscous and viscoelastic half-space (see section 7) 
and for multilayers resting on top of a homogeneous half-space. The latter 
problem was discussed by using the results derived in an earlier paper by the 
author. t The problem of internal folding of a confined multilayered structure 
has also been solved in a simplified theory§ which brings out the significant 
factors and provides an explanation for one of the predominant features of 
geological structures. 

Problems of folding instability of porous multilayered media are also of 
interest in geology and are briefly discussed at the end of section 9 of this 
chapter. 

9. DYNAMICS OF VISCOELASTIC MEDIA UNDER 
INITIAL STRESS 

The dynamical equations for the incremental stresses in a con
tinuous medium were derived in section 2 of Chapter 5. Equations 
2.8 of that chapter may be written 

(9.1) 

t M. A. Biot, Theory of Folding of Stratified Viscoelastic Media and its Implications 
in Tectonics and Orogenesis, Geological Society of America Bulletin, Vol. 72, No. 
11, pp. 1595-1632, 1961. 
t M. A. Biot, The Influence of Gravity on the Folding of a Layered Viscoelastic 
Medium under Compression, Journal of the Franklin Institute, Vol. 267, No.3, 
pp. 211-228, 1959. 
§ M. A. Biot, Theory of Internal Buckling of a Confined Multilayered Structure, 
Geological Society of America Bulletin, Vol. 75, No.6, 563-568, 1964. 
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where F ij is a short-hand notation for a combination of terms given 
in two equivalent forms by equations 4.9 and 4.13. They are 

Fij = tli + SkjWlk - is;kejk + iSjkelk 

FIj = slj + SkjWlk + Slje - Sjkejk 
(9.2) 

When the body force is derived from a potential field and the value 
(4.8) for LlX is substituted in equations 9.1, we obtain 

oF jj _ 02U 02Uj 
ox; P OXj ox; u; = P ot2 (9.3) 

These equations generalize to dynamics the previously obtained 
result (4.10). 

To these equations must be added the stress-strain relations in the 
form (3.31) or (3.36). They are 

t i ; = Ofle/lv 
Slj = Bfle/lv 

(9.4) 

By substituting these values of the stresses into FIj equations 9.3 
become the field equations for the three unknown displacements U 1• 

These field equations may be expressed in operational form by writing 
p2 for the differential operator 02Jot2; that is, 

oFIj 02U 2 

OX; - p OX; OX; U; = P PUI (9.5) 

The operational coefficients in the stress-strain relations (9.4) may be 
interpreted as integro-differential operators as illustrated in section 3. 
The field equations are then also integro-differential equations with 
respect to the time variable. 

For harmonic oscillations we must put 

p = ia (9.6) 

By this procedure solutions may be obtained which correspond to 
forced oscillations of given frequency aJ27T. 

In problems of natural oscillations and stability the equations are 
solved by considering p as the unknown with real or complex values. 

Vibrations and Dynamic Stability of Viscoelastic Plates and 
Multilayered Media. In section 7 of Chapter 5 general solutions 
were obtained for the dynamics of plates and multilayered media in 
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the elastic case. By viscoelastic correspondence these solutions are 
immediately applicable to viscoelastic media. As already pointed 
out, the correspondence yields exact equations if the medium is 
initially at rest under the initial stress. 

Let us consider, for example, the dynamics of an incompressible 
viscoelastic plate. We replace the elastic coefficients Land M by 
operators Land 1fl in the coefficients (7.44) of Chapter 5. These 
coefficients become operators all' a12 , a22 , and equations 7.19 of 
Chapter 5 become operational relations: 

(9.7) 

If we substitute p = ia in the expression for the operators, equations 
9.7 correspond to forced oscillations of the flexural type with given 
frequency, as shown in Figure 7.1a of Chapter 5. Equations 9.7 
relate the amplitude and phase difference of the driving forces and 
surface displacements of the plate. The tangential and normal 
driving forces are distributed sinusoidally along the surface and they 
are equal to 'T a sin lx and qa cos lx. t The corresponding tangential 
and normal displacements at the surface of the plate are U a sin lx 
and Va cos lx. The operational coefficients aij are complex functions 
of the frequency variable p = ia and of the wavelength variable 
Y = ilk (k = plate thickness). Hence equations 9.7 determine 'Ta 

and qa also as complex quantities. 
For a plate of compressible isotropic or anisotropic viscoelastic 

properties the forced flexural oscillations are derived by using the 
same equations 9.7. For this medium the operational coefficients 
ali are obtained by substituting operators Bli and L for the elastic 
coefficients in the more general expressions of aij given by equations 
7.21 of Chapter 5. 

The general problem of forced oscillations of multilayered visco
elastic media is formulated exactly as in the case of pure elasticity. 
For each layer we must consider six operators. They are the three 
operators aij already discussed and three additional operators bij 

t The quantity g. in equations 9.7 represents the normal stress and should not be 
confused with the generalized coordinates g, which are used below. 
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obtained by substituting operators Bij and L in equations 7.30 of 
Chapter 5. 

In problems of free oscillations and dynamic stability of plates and 
multilayered viscoelastic media, solutions are readily obtained by 
using the same characteristic equation as that obtained for the 
corresponding problem in the purely elastic medium. We replace 
the elastic coefficients by operators. The characteristic equation is 
then solved for p as the unknown representing a real or complex 
characteristic exponent. 

The numerical methods discussed in Chapter 5 (section 7) are also 
applicable. 

It is of interest to derive fundamental theorems regarding the 
nature of characteristic exponents which are applicable to the general 
case of a viscoelastic medium with initial stress. From the thermo
dynamic viewpoint the properties of a viscoelastic medium are closely 
related to those of a certain class of dynamical systems with dissipa
tion. We shall therefore begin with a brief analysis of some basic 
properties of the characteristic solutions for dynamical systems. 

Stability Properties of Dynamical Systems with a Potential 
Energy and a Dissipation Function. Let us consider a dynamical 
system with a potential energy & and initially in equilibrium. With 
the addition of damping forces represented by a dissipation function 
!», the small motion of the system near equilibrium is governed by 
the equations 

where 
& = !aijqiqj 
!» = !b ijq iqj 
.'Y = !m1jqlqj 

(9.8) 

(9.9) 

The deviation from the equilibrium position is measured by the 
generalized coordinates q I and .'Y is the kinetic energy of the system. 
For physical reasons, !» is non-negativet and .'Y is positive definite. 
For a system with initial stress, however, the sign of & is not deter
mined. This has been shown in previous discussions of the stability 
problem (see section 4 of Chapter 3 and section 2 of Chapter 5). 

t If we exclude the degrees of freedom for which the dissipation vanishes, g} becomes 
also positive definite. 
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The linear equations of motion (9.8) are written explicitly: 

a1jqj + bljqj + m1ii; = 0 

Ok. 6 

(9.10) 

The stability of the system is determined by the nature of the 
characteristic solutions. These solutions are proportional to an 
exponential function of time which we write exp (pt). Hence we 
replace qj by qj exp (pt), with qj representing constant amplitudes. 
With this substitution equations 9.10 become a set of algebraic 
equations: 

(9.11) 

By equating to zero the determinant of this homogeneous system of 
equations a set of characteristic roots for the exponent p is deter
mined. Stability of these characteristic solutions depends on the 
sign of the real part of p. Some well-known theorems regarding 
stability properties of dynamical systems governed by equations 9.10 
will now be derived. 

Non-oscillatory Oharacter of Unstable Motion. We consider a set 
of values qj and the associated characteristic exponent p satisfying 
equations 9.11. The complex conjugate quantities qt andp* satisfy 
the same equations. Hence 

(9.12) 

We multiply equations 9.11 by qr and equations 9.12 by ql and 
obtain 

(aij + pbij + p2mlj)qjqr = 0 

(alj + p*btj + p*2mlj )qtql = 0 

The coefficients in these expressions are symmetric; that is, 

Therefore equations 9.13 may also be written 

(ali + pbij + p2mtj )qjqf = 0 

(ali + p*blj + p*2mij)qjqr = 0 

The difference of the two equations 9.15 yields 

(p - p*)[bliqjqr + (p + p*)m1jqjqrJ = 0 

(9.13) 

(9.14) 

(9.15) 

(9.16) 

As already stated, the dissipation function !?2 is non-negative and the 
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kinetic energy ff is positive definite. Hence (see equation 2.46f of 
Chapter 5) the following inequalities are verified: 

(9.17) 

Let us assume that the solution which we have considered is unstable. 
The singular case of neutral equilibrium p = 0 is non-oscillatory. 
For p oF 0 instability requires 

p + p* > 0 (9.18) 

The inequalities 9.17 and 9.18 show that the bracketed term in 
equation 9.16 is positive. Therefore equation 9.16 implies 

p = p* (9.19) 
and p is a real quantity. 

Thus we have established an important property of a dynamical 
system with a potential energy and a dissipation function. For such 
a system an unstable motion is non-oscillatory. Excluding the 
special case of neutral equilibrium, all displacements in this case are 
proportional to a real exponential function of time. 

Stability Criterion. A sufficient condition for stability of the 
dynamical system is immediately derived from the preceding results. 
Let us consider an unstable solution qj' We have just shown that 
such a solution is real with a positive or zero value of p. The 
solution satisfies equations 9.15. With real values of p and q, these 
equations are the same, and they become 

(a ,j + pbtj + p2mlj)qjqj = 0 

An unstable solution requires 

(9.20) 

p ~ 0 (9.21) 

At the same time the inequalities (9.17) must be satisfied. As a 
consequence, if 

f!lJ > 0 (9.22) 

equation 9.20 cannot be verified and the system cannot be unstable. 
We conclude that, for a dynamical system with a potential energy 

and a dissipation function, stability is ensured if the potential energy 
f!lJ is positive de~nite. 

From the physical viewpoint this stability condition is also a 
consequence of the law of conservation of energy. 
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The stable solutions may be complex or real. 
solutions represent damped oscillations, and the 
correspond to critical or hypercritical damping. 

The complex 
real solutions 

Stability in the Presence of Coriolis Forces. General 
properties of dynamical systems of the type discussed here have long 
been known in celestial mechanics. They are important in the 
problem of stability of equilibrium forms of rotating masses of fluid 
under the action of self-gravitational forces. The problem was first 
investigated by Poincare in 1885. For a rotating system additional 
terms corresponding to Coriolis forces must be added. These 
additional terms were included in equations 6.83c of Chapter 5 for 
acoustic-gravity waves. Similar terms may be added to the general 
dynamical equations (9.10). 

When we examine how the presence of Coriolis forces affects the 
stability properties, we find that equation 9.16 does not remain valid 
and unstable characteristic solutions may exist which are complex. 
Hence, for a rotating system, unstable motion may be oscillatory. 

However, the condition f!jJ > 0 for the potential energy remains a 
sufficient criterion for stability. This conclusion follows from the 
fact that the additional terms representing the Coriolis force constitute 
a skew-symmetric matrix. Hence, when the operations leading to 
equations 9.15 are performed, the additional terms cancel out. We 
then add the two equations 9.15 after dividing them, respectively, by 
p and p*. The result is 

(9.23) 

If f!jJ > 0, the equations of motion show that they cannot be verified 
for p = o. Therefore p =1= o. Then equation 9.23 cannot be verified 
unless p + p* < o. Hence a rotating system with a potential 
energy and a dissipation function is always stable if its potential 
energy is positive definite. t 

Dynamical Equations Extended to Thermodynamic 
Systems. The general dynamical equations (9.10) may be ex
tended to thermodynamic systems. For these systems the equations 
are obtained by including the inertia terms in the thermodynamic 

t For a more extensive discussion of problems of this type see, for example, R. A. 
Lyttleton, The Stability of Rotating Liquid Masses, Cambridge University Press, 1953. 



Sec. 9 Dynamics of Viscoelastic Media under Initial Stress 445 

equations (2.18). This generalization is justified by applying 
d'Alembert's principle to the thermodynamic system and treating 
inertia forces as if they were externally applied forces. The 
applicability of equations 9.10 is conditioned, of course, by the range 
of validity of the principles of linear thermodynamics. The general
ized coordinates represent a large variety of physical variables 
including thermodynamic and mechanical quantities. Under these 
conditions the properties of dynamical systems with a potential 
energy and a dissipation function are applicable to thermodynamics. 

In particular, these properties are applicable to viscoelastic media 
provided they obey the principles of linear thermodynamics. As 
pointed out in section 3, the viscoelastic medium may be described 
thermodynamically by a set of generalized coordinates which are of 
two different types and which have been referred to as external and 
internal coordinates. The latter represent the unobserved thermo
dynamic degrees of freedom which are responsible for the relaxation 
effects. From the thermodynamic viewpoint, however, these two 
types of coordinates are not distinct. They are governed by the 
dynamical equations (9.10). Hence under these assumptions the 
viscoelastic medium exhibits the same properties as a dynamical 
system with a potential energy and a dissipation function. As a 
consequence, unstable characteristic solutions will be non-oscillatory. 

It is of interest to examine the stability properties of viscoelastic 
media independently of thermodynamic principles. This will be 
done hereafter by deriving some general theorems which are 
formulated entirely by means of the operators appearing in the 
stress-strain relations. 

Extension to Dynamics of Lemmas I and II of Section 4. 
Properties of characteristic solutions for a viscoelastic medium with 
initial stress under the assumption that the inertia forces are negligible 
were examined in section 4. In order to generalize the analysis to 
dynamics we must extend the two lemmas derived in section 4 to 
dynamical systems. We start by multiplying equations 9.5 by an 
arbitrary displacement field Ui' We then integrate the result over 
the volume T. We derive 

(9.24) 

Following the procedure used in deriving equation 4.12, we integrate 
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equation 9.24 by parts. We obtain 

IIi [F(u, u) + p2pUjUj] dr = II LJfjUj dA (9.25) 

where the LJfj are the incremental forces applied to the boundary A. 
This result extends the first lemma (4.16) to dynamics. The 
expression F (u, u) is defined by equation 4.17. Let Ut also be a 
solution of the dynamical equations 9.5 with the characteristic value 
p. We may then interchange U j and ui in equation 9.25 provided 
that we replace p by p. Hence 

(9.26) 

We now subtract from each other the two equations 9.25 and 9.26. 
By applying equation 4.21 we obtain 

IIi [tt;i~1i - ljje jj + (p2 - p2)pUtUtJ dr 

= II (LJftUt - LJ!tUt) dA 

This result generalizes to dynamics the second lemma (4.22). 

(9.27) 

Conditions Ensuring Non-oscillatory Unstable Motion in 
Dynamic Viscoelasticity. In section 4 we examined some general 
properties of the mechanics of viscoelastic media under initial stress 
for the case where inertia forces are negligible, and we established a 
criterion which ensures that the characteristic solutions are real. 

For dynamical systems the criterion obviously cannot remain 
valid, because damped oscillations represent characteristic solutions 
of a stable viscoelastic medium. However, if the system is unstable, 
we shall show that, if we add a simple restriction, a criterion similar 
to that derived in section 4 will ensure that the unstable solutions 
are always real. 

Let us assume the existence of a complex characteristic solution 
U t of equations 9.5 with a characteristic exponent p. The complex 
conjugate quantities ut and p* constitute a solution also. 

We assume also that these solutions satisfy the conservative 
boundary conditions listed under (a), (b), and (c) in section 4 (page 
369). They correspond to either a free boundary or a rigid boundary 
with perfect adherence or perfect slip. 
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We now substitute uT and p* for ill and p in equation 9.27. 
Because of the assumed boundary conditions the surface integral 
vanishes as in equation 4.24. Hence we may write 

IIi [t!je~ - t~etj + (p2 - p*2)pU IUtJ dr = 0 (9.28) 

At this point we introduce some restrictions regarding the visco
elastic properties. As before (see equation 4.28), we assume that the 
viscoelastic operators are symmetric. Hence we write 

O/lV _ Oli 
Ii - /lV 

As a consequence equation 4.31 is also valid; that is, 

with 
A/lV A/lv* _ 2'; d:/lV 
liki - L;ki - uJ' ki 

(9.29) 

(9.30) 

(9.31) 

The dummy index i has been changed to k to avoid confusion with 
the imaginary symbol. We note that if~j represents the imaginary 
part of O~j obtained when we substitute into the operator a complex 
value of p. 

Substituting equation 9.30 into equation 9.28, we obtain 

(9.32) 

The singular case of neutral equilibrium (p = 0) is non-oscillatory. 
Hence we assume p ¥- O. The value of p may be either one of the 
complex conjugate values. Let us choose for p the value with a 
positive coefficient of the imaginary part. Then 

p- p* 
2i > 0 (9.33) 

Let us also assume that the characteristic solution which we have 
considered is unstable. Hence 

p + p* > 0 (9.34) 

Finally let us assume that f~f defines a non-negative quadratic form. 
Hence, as shown by equation 4.34, we may write the inequality 

(9.35) 
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However, equation 9.32 cannot be verified under the three assump
tions (9.33), (9.34), and (9.35) unless 

p = p* (9.36) 

Hence p must be a real quantity. 
We conclude that unstable characteristic solutions for a visco

elastic medium are always non-oscillatory if the following conditions 
are satisfied: 

1. The boundary conditions must be conservative as described 
previously in conditions (a), (b), and (c) of section 4. 

2. The viscoelastic operators must be symmetric; that is, C~j = C~~. 
3. We denote by if~j the imaginary part of C~j obtained when 

substituting a complex value of p such that (p - p*)Ji is positive. 
We assume that f~j must define a non-negative quadratic form. 

We see that these conditions differ from the criterion derived in 
section 4 by the additional requirement that expressions (9.33) and 
(9.35) be of the same sign. 

Conditions Ensuring Stability in Dynamic Viscoelasticity. 
In the preceding discussion we have considered an unstable system 
and derived sufficient conditions for the motion to be non-oscillatory. 
Let us now examine conditions under which a viscoelastic medium is 
dynamically stable. In order to arrive at a criterion which is of 
practical value we assume that conditions 1, 2, .and 3 above are 
fulfilled. These conditions, as we have seen, ensure that any unstable 
characteristic solution is real. They state that the boundary con
ditions are conservative, that the viscoelastic operators are symmetric 
(C~j = C~n, and that their imaginary parts satisfy a certain condition 
of non-negativeness. 

We go back to equation 9.25 and substitute U t = ut . We obtain 

IIi [F(u, u) + p2putud dT = IL LJftUt dA (9.37) 

From equation 4.17 we may write 

tF(u, u) = LJV + LJU (9.38) 
with 

(9.39) 
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These terms are formally identical with the quantities LI V and LI U 
represented by equations 2.12 and 2.17 of Chapter 5. The expression 

LI V is derived from LI V by substituting operators 0r/ for the elastic 
coefficients 0f/. 

In analogy with equation 2.19 of Chapter 5 we may write 

(9.40) 

We have shown that for .conservative boundary forces the surface 
integral in equation 9.37 may be written 

(9.41) 

where f?jJB represents a potential energy originating at a curved rigid 
boundary. For perfect slip it is expressed by equation 4.67 of 
Chapter 3. 

We put 

t!J = rfo ~ + f?jJ B 

Equation 9.37 may then be written 

(9.42) 

(9.43) 

Under our assumptions an unstable solution must be real, and the 
value of p must be real and non-negative. 

If, in addition, we assume that 

f?jJ > 0 (9.44) 

for arbitrary displacements and for all real non-negative values of p, 
equation 9.43 cannot be fulfilled. Thus we have shown that the 
viscoelastic medium is dynamically stable if §; is positive for all 
non-negative values of p and if, in addition, the conditions for non
oscillatory unstable motion are satisfied. 

Stable solutions may be real or complex. They represent an 
exponential decay or damped oscillations. Undamped oscillations 
must be considered as a limiting case of stability. 

The criterion (9.44) ensures the stability of characteristic solutions. 
In a physical system, stability of the response to an external excita
tion is also implied, as can be shown by applying standard Laplace 
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transform procedures. Under very broad conditions the response is 
expressed by a contour integral in the complex plane which is 
evaluated as a sum of residues. The terms in this series are propor
tional to exponential factors of the type exp (pt) and are the same as 
in the characteristic solutions considered above. If the characteristic 
solutions are stable, real parts of p are never positive, and therefore 
the response to a perturbation is either damped or non-increasing. 

Uniqueness. The stability criterion is closely related to the 
condition of uniqueness of solutions under external excitation. This 
can be seen by assuming that two different responses RI and R2 
are caused by the same excitation. Because the system is linear, the 
difference RI - R2 represents a solution occurring without external 
excitation. In a stable system such a spontaneous solution cannot 
occur. Therefore RI - R2 = 0, and the solution is unique. 

Thermodynamics and Viscoelastic Stability. We have already 
pointed out the relationship between thermodynamics and the properties of 
dynamical systems with a potential energy and a dissipation function. In 
particular, a viscoelastic medium which is governed by the principle of linear 
thermodynamics should exhibit the same stability properties as the afore
mentioned dynamical system. This can be verified by taking into account the 
special nature of the viscoelastic operators efl derived from thermodynamics 
and given by equation 4.35a. If in this case the boundary conditions are 
conservl!,tive, any unstable characteristic solution must be real. This con
clusion is obtained by referring to equation 4.35c for the expression of .f~~. 
This equation shows that conditions 1, 2, 3, ensuring a non-oscillatory unstable 
motion, are fulfilled (page 448). 

Moreover, in "this case the stability condition (9.44) is simplified. The 

expression for f!jJ is defined as a function of p by equations 9.39 and 9.40. 
The inequality (9.44) must be v.erified for positive values of p. Writing the 

value of f!} using the operators 4.35a, we find that for p > 0 it is never smaller 
than its value for p = O. This result follows from the property that the 
coefficients 0fl(r), Ofl, and O;f' define non-negative quadratic forms. Hence 
the stability condition (9.44) may be written 

f!jJ > 0 (9.44a) 

where f!jJ is the value of g; for p = O. This value of f!jJ is also obtained by 
substituting the elastic coefficients Ofl for the operators efr 

We conclude that, with conservative boundary conditions and viscoelastic 
operators derived from thermodynamics, the condition for static stability also 
ensures dynamic stability. The same property was obtained for a dynamical 
system with a potential energy and a dissipation function (page 443). 
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Application to an Incompressible Viscoelastic Medium with 
Horizontal Stratification. The medium is the same as that 
considered in the latter part of section 4. It is orthotropic with 
vertical and horizontal directions of viscoelastic symmetry. The 
principal directions of the initial stress are also vertical and horizontal, 
and we consider the incremental deformations in the vertical x, y 
plane. The effect of the gravity force is included. The incremental 
viscoelastic properties are defined by the two operators if and Q of 
the stress-strain relations (4.36). These operators and the initial 
stress components may be continuous or discontinuous functions of 
the vertical coordinate y. 

As in section 4, we consider a solution which is periodic in the 
horizontal direction x. Let us apply equation 9.27 to the rectangular 
area ABOD illustrated in Figure 4.1 and assume that the vertical 
sides AB and OD are separated by a distance of one wavelength. 
We also substitute the complex conjugate quantities il t = u'/' and 
p = p*. Proceeding as in section 4 and assuming the same boundary 
conditions, we derive 

with 
(9.46) 

Except for the addition of a dynamic term, this result coincides with 
equations 4.39 and 4.46. When p + p* is positive, equation 9.45 
cannot be verified if (if - if*)/i, (Q - Q*)/i, and (p - p*)/i are 
never of different sign. Hence under these conditions we must have 
p = p*, and the characteristic solution must be real. We conclude 
that, for the viscoelastic system considered here, an unstable motion 
will be non-oscillatory if the coefficients of the imaginary parts of 
if, Q, and p are never of different sign. 

Power Dissipation Theorem. The foregoing results are im
mediately applicable to the evaluation of the power dissipation in a 
viscoelastic medium in forced oscillations. Let us consider driving 
forces flit exp (iat) applied to the boundary. They are harmonic 
functions of time with a frequency a/27T. We apply the second 
lemma (9.27) and put 

p = ia p = p* -~a (9.4 7) 
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We derive 

IIi (tkjeZj - tZhj) dT ';= II (LJAuZ - LJ!:uk) dA (9.48) 

This result may be interpreted as expressing the power dissipated in 
the volume T. In order to show this we consider two real variables 
Zl and Z2 which are sinusoidal functions of time. They are repre
sented by the rotating vectors Zl exp (icd) and Z2 exp (iat), where 
Zl and Z2 are complex amplitudes. Hence 

Zl = !(Zletat + Zre- iat ) 

Z2 = !(Z2eiat+ Z~e-tat) 

The product of these quantities averaged over one period is 

a (2,,'a 
27T Jo ZlZ2 dt = HZIZ~ + Z2Z r) 

Let us apply this result by putting 

Zlk = LJA 
Z2k = iauk 

(9.49) 

(9.50) 

(9.51) 

The last expression represents the velocity. 
per unit area at the boundary is 

Hence the power input 

(9.52) 

We now multiply equation 9.48 by -iaJ4. The result is 

-i: IIi (tkjeZj ~ tZhj) dT = - i: II (LJAuZ - LJ!tuk) dA 

(9.53) 

The right side of this equation represents the power input through 
the boundary; therefore the left'side is the power dissipated in the 
volume T. 

If the viscoelastic operators are symmetric (O~j = (J~t), we may 
apply equations 9.30 and 9.31. Then the power dissipation (9.53) 
becomes 

-i: IIi (tkjeZJ - tZhj) dT = ta JJI ~~~eZAIVdT (9.54) 

The quantity i~%~ represents the imaginary part of O%i for p = ia. 
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Variational Principle and Lagrangian Equations.t In 
Chapters 2, 3, and 5 we have discussed several forms of variational 
principles for elastic media with initial stress. Actually the varia
tional principles are a consequence of the more fundamental principle 
of virtual work expressed by equation 5.50 of Chapter 2. It is 
written 

IIi (tijoetj + SijOY]tj) dT 

= IIi pLlXtou i dT + IL LlfiOUt dA (9.55) 

where 
(9.56) 

This principle does not involve any material property, and it may be 
looked upon as an invariant formulation of the equilibrium con
ditions. As pointed out in Chapter 2, the principle may be used to 
obtain the equilibrium equations for the incremental stresses in a 
CU1"vilinem· coo1"dinate system. It also leads to the formulation of the 
equilibrium equation in terms of generalized forces and generalized 
coordinates. 

The virtual work principle (9.55) is applicable to dynamics by 
d'Alembert's principle. Let us consider the body force increment 
LlXt. We may write it as 

(9.57) 

where U is a body force potential, and at is the particle acceleration. 
The surface integral in equation 9.55 represents the virtual work of 
the incremental boundary forces Llft. In order to simplify the 
writing we put 

:ff = IIi (SijY]jj + p Ll U) dT 

(9.58) 

t The variational theory and its operational form presented in the latter part of this 
section are based essentially on the methods developed in the author's paper, 
Variational and Lagrangian Methods in Viscoelasticity, Deformation and Flow of 
Solids (IUTAM Colloquium, Madrid, 1955), pp. 251-263, Springer, Berlin, 1956. 
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Equation 9.55 becomes 

(9.59) 

We now express the displacement field U j by means of generalized 
coordinates ql' We write 

(9.60) 

where the ukj(x) are given vector field functions of the spatial 
coordinates Xj' In terms of the variables qj' the value of :Y(' is of 
the form 

(9.61 ) 

Also 

(9.62) 

The virtual work principle (9.59) may be formulated in terms of 
the generalized coordinates qj and arbitrary variations Oql' By 
substituting the field (9.60), the integral terms in equation 9.59 are 
written: 

IIi palOUI dT = mjijjoql 

IL .dfIOUI dA = Qloqj 

Hence the variational principle (9.59) leads to the equations 

IIi t/lVE/lVI dT + kijqj + mlih = Ql 

(9.63) 

(9.64) 

Let us examine the significance of these equations. The right side, 
Qi' corresponds to the generalized force applied at the boundary. 
The coefficients mij are defined by equations 2.31 and 2.36 of Chapter 
5. They may be obtained by writing the kinetic energy in the form 

(9.65) 
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Up to this point no mention has been made of the particular physical 
properties of the material. The volume integral oft/LvE/Lv! represents 
a generalized stress. Equations 9.64 therefore are applicable to a 
very large category of materials. They may be linear or non-linear, 
and they may exhibit plastic properties. 

For a linear material the stresses may be written 

tlj = 0ljVe/LV (9.66) 

where Of! represents a linear operator. Substituting this value of 
tij into equations 9.64, we derive 

2 ijqj + kuqj + milL = Qt 

The operator !i if is defined by the integral: 

,;to = IIi EkljE/LvtO~r dT 

(9.67) 

(9.68) 

In the most general case this expression will be an integro-differential 
operator with respect to time. Equations 9.67 may therefore be 
considered integro-differential equations in Lagrangian form for a 
viscoelastic medium with initial stress. 

The significance of the operators may be illustrated as follows. Let us 
consider equation 3.10. It provides the following interpretation of the 
fractional operator: 

P J'=I dz -- z(t) = e- rl e" - dr 
P + r <=0 dr 

(9.68a) 

where z is a function of time. In abbreviated form equation 9.68a is written 

J
<-I 

_P- = e-rl - e" d 
P + r ,=0 

(9.68b) 

When the viscoelastic medium obeys thermodynamic principles, the operator 
afl is given by equation 3.32: 

a"V = J.'" ~ a"V(r) dr + a"' + pO'Il' 
" 0 P + r Ii 11 Ii 

(9.68c) 

Putting 

(9.68d) 

and taking into account equation 9.68b, we obtain the integro-differential 
operator: 

J"=I d 
af/ = Ffl(t - r) d + afl + a;1 v

-d <=0 t 
(9.68e) 

This operator has been derived for a material obeying thermodynamic 
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principles. In this case the function Ff/(t) is restricted to the particular 
form (9.68d), and the symmetry property (Jfl = (J~v is verified. 

Obviously expression (9.68e) also represents a linear operator of a more 
general type which may be non-symmetric and for which the nature of the 
function Ffl(t) is not restricted to the form (9.68d). Note that the integral 
operator in expression (9.68e) must be interpreted as representing a Stieltjes 
integral. 

Operational Form of the Variational Principle. 
assume that the operators 0f/ are symmetric. Hence 

OIf V = Olj 
'1 /lV 

Let us 

(9.69) 

The second equation follows from the first because of the definition 
(9.68). Equations 9.67 may be obtained by a procedure which is 
formally identical with the variational theory of elasticity and may 
be considered an extension of the principle of viscoelastic correspondence 
to variational methods. We put 

i), = IIi (LiV + pLlU) dT 

LI V = tOf/elje/lV + Sij'YJij 
(9.70) 

As can be seen, these expressions are obtained from the elastic 
potential energy f!Il, given by equation 2.19 of Chapter 5 by replacing 
the elastic coefficients by the operators Of!. Substituting the values 
(9.62) for e/lV' we obtain 

(9.71) 

We also introduce the quadratic form (2.39) of Chapter 5, namely, 

T = ~ IIi PUiU i dT = tm,jqiqj (9.72) 

We then write the variational principle 

with the operator p2 = 82 / 8t2. In performing the variation the 
operators are treated as constant algebraic quantities. The 
variational principle (9.73) leads to the equations 

"-

(!.Pi} + kif + p2mi}) qj = Qi (9.74) 
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These Lagrangian equations in operational form are equivalent to 
the integra-differential equations (9.67). 

By this formal correspondence it is possible to extend immediately 
to viscoelasticity the variational equations derived for the elastic 
medium. In particular, we may readily extend to viscoelasticity 
the variational principle (5.52) of Chapter 3 for a medium in the 
presence of hydrostatic stress. This will be illustrated in the next 
section for the particular case of a viscous fluid. 

Materials with Internal Resonance. It was stated that for a material 
which obeys the principles of linear thermodynamics the viscoelastic operators 
are expressed by equations 3.32. However, these expressions are based on the 
assumption that the inertia effects of the internal coordinates are negligible. 
When these effects are not negligible, the operators are of a more general type 
and contain terms which are representative of resonance phenomena. Never
theless, the reciprocity relations (3.33) will still be verified. Such internal 
resonance is illustrated by the vibration of dislocation lines in a crystal or by 
the pulsation of small air bubbles in a liquid. From the thermodynamic 
viewpoint the complete system of external and internal degrees of freedom 
will, of course, continue to obey the dynamical equations (9.10) and exhibit 
the same general properties. 

Curvilinear Coordinates. The equations of dynamic visco
elasticity may be expressed in orthogonal curvilinear coordinates by 
applying the variational principle (9.59), using the general expressions 
(5.54) and (5.55) derived in section 5 of Chapter 2 for the strain 
components and the rotation. 

Reciprocity Properties. By definition kij = kit and mij = m ji . 

Hence, if the operators obey the condition of symmetry (9.69), the 
operational matrix in (9.67) is completely symmetric. As a con
sequence, the system governed by these equations exhibits reciprocity 
properties. This means that the response at point B due to a forcing 
function at point A remains the same when we interchange points 
A and B. A direct proof is also obtained from the second lemma 
(9.27). We denote by LJjj and LJ!j the forces applied, respectively, at 
points A and B of the surface. The corresponding displacement 
fields are ~ti and Ul' The forces are applied at the same frequency 
aJ2r; hence p2 = jP = - a2 • Because of the symmetry assumption 
(9.69) we have ti/iij = tijeij' Hence the left side of equation 9.27 
vanishes, and the remaining surface integral must be zero. There
fore, if we denote by u; and u; the displacements at points A and B, 
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respectively, we obtain the relation LJfu; = LJ!tU;, which expresses 
the reciprocity property. By Fourier representation of the variables 
we can see that the property is valid for transients. 

The theorem obviously applies to the elastic medium under 
initial stress. Another particular case is that of a viscoelastic 
medium initially stress-free. The reciprocity property in this case 
is implicit in the results established by the author in 1955 in a papert 
on variational principles in isotropic and anisotropic viscoelasticity. 

Mechanics of Porous Media with Initial Stress. General equa
tions for the mechanics of porous media with initial stress were derived 
by the author.t The solid matrix is elastic, and the pores are filled 
with a viscous fluid. Problems of consolidation and acoustic 
propagation taking into account the initial state of stress in the earth 
are important in many fields such as foundation engineering, hydrol
ogy, and petroleum geology. On the other hand, the stability theory 
of multilayered porous media is of interest in geological problems of 
tectonic folding. In order to bring out the significant physical 
features involved in folding instability of porous media the buckling 
of a porous slab, free or embedded, has been the object of a simplified 
analysis.§ 

Viscoelastic Correspondence. Application of the author's corre
spondence principle (see section 3 of this chapter) to porous visco
elastic media was discussed in several papers~ dealing with problems 
of consolidation and acoustic propagation. The medium in this case 
is constituted of a solid matrix of viscoelastic material whose pores are 
filled with a viscous fluid. The correspondence principle was also 
extended to a porous viscoelastic medium under initial stresst 
leading to the theory of acoustic propagation and consolidation for 
this more general case. 

t See reference on page 453. 
t M. A. Biot, Theory of Stability and Consolidation of a Porous Medium under 
Initial Stress, Journal of Mathematics and Mechanics, Vol. 12, No.4, pp. 521-542, 1963. 
§ M. A. Biot, Theory of Buckling of a Porous Slab and its Thermoelastic Analogy, 
Journal of Applied Mechanics, Ser. E, Vol. 31, No.2, pp. 194--198, 1964. 
~r M. A. Biot, Theory of Deformation of a Porous Viscoelastic Anisotropic Solid, 
Journal of Applied Physics, Vol. 27, No.5, pp. 459-467, 1956; Mechanics of-Deforma
tion and Acoustic Propagation in Porous Media, ibid., Vol. 33, No.4, pp. 1482--1498, 
1962; Generalized Theory of Acoustic Propagation in Porous Dissipative Media, 
The Journal of the Acoustical Society of America, Vol. 34, No.5, Part I, pp. 1254--1264, 
1962. 
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Thermoelastic Analogy. The mechanics of a thermoelastic 
medium and that of a porous medium containing a massless fluid 
were shown by the author to be formally identical. t Solutions 
derived for porous media are applicable to thermo elasticity by a 
simple change of notation. The temperature plays the role of the 
pore pressure. The same analogy is applicable to the theory of 
acoustic propagation in a thermoelastic medium with initial stress.t 
In stability problems this analogy leads to a distinction between 
isothermal and adiabatic buckling as illustrated on the particular 
problem of a slab.t The analogy is more than a formal identity 
and results from deeper underlying principles of non-equilibrium 
thermodynamics. 

10. INSTABILITY AND SMALL MOTION DYNAMICS OF 
A VISCOUS FLUID IN A GRAVITY FIELD 

In this section we shall consider the particular case of a non
homogeneous viscous fluid in a gravity field. In the initial equilib
rium state the density is a function of the coordinates, and the initial 
stress is purely hydrostatic. 

Viscoelastic correspondence is rigorously applicable because the 
medium is at rest in the initial state. Hence we may apply the 
general solutions derived for the corresponding case with purely 
elastic properties. For the same reason the various solutions derived 
for viscous fluids are applicable to isotropic elastic and viscoelastic 
media under initial hydrostatic stress. This point is discussed in 
more detail in the last paragraph of this section. 

We begin with problems of stability for layered incompressible 
fluids, and special attention is given to the case of large viscosity for 
which inertia forces may be neglected. In the latter part of this 
section we shall consider the general small motion dynamics of a 
compressible viscous fluid in a gravity field. 

For the incompressible fluid the effect of gravity is conveniently 
introduced by using the concept of analog model. When the fluid 
is constituted of a superposition of homogeneous horizontal layers, 
the gravity field is replaced by buoyancy forces applied at the 

t M. A. Biot, Thermoelasticity and Irreversible Thermodynamics, Journal of Applied 
Physics, Vol. 27, No.3, pp. 240-253, 1956. 
t See page 458, references t and §. 
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interfaces and proportional to the vertical displacement. The 
incremental stress-strain relations for an incompressible viscous 
fluid of viscosity YI are written in operational form as follows: 

8 11 - 8 = 2Y1pexx 

8 22 - 8 = 2Y1peyy 

8 12 = 2Y1peXY 

Hence the operators if and Q become 

if = Q = YIP 

The initial stress being hydrostatic, we put 

P = 8 11 - 8 22 = 0 

As a consequence we may write 

M = if = YIP L = Q = YIP 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

All equations derived previously for incompressible elastic media are 
immediately applicable to incompressible viscous fluids if we put 
P = 0 and substitute the values (10.2) for the operators. Then, if 
we assume the inertia forces to be negligible, the six basic coefficients 
aij and b jj of the mechanics of layered media are given by the 
limiting values (5.36) and (5.37) of Chapter 4. They are 

and 

4 cosh2 y 

sinh 2y + 2y 

4y 

sinh 2y + 2y 

4 sinh2 y 
a = -;-.---:::-----'.~ 

22 sinh 2y + 2y 

4 sinh2 y 

sinh 2y - 2y 

b = 4y 
12 sinh 2y - 2y 

b 
_ 4 cosh2 y 

22 - sinh 2y - 2y 

(10.5) 

(10.6) 
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They are functions only of 
7Th 

Y = ilh = - (10.7) 
2 

where h is the layer thickness and 2 is the wavelength. 
The coefficients (10.5) and (10.6) may also be derived more directly 

from the Navier-Stokes equations (5.57) for the motion of an incom
pressible viscous fluid when inertia terms are neglected. 

We discuss first two examples for incompressible fluids which 
involve the stability of a single embedded layer. In these examples 
we shall assume the medium to be sufficiently viscous so that inertia 
forces may be neglected. For a layer embedded below a medium of 
higher density, an instability arises with the appearance of a wavy 
interface between the two media. Such problems are of interest in 
geophysics (see geology of salt structures, page 470). 

Gravity Instability of an Embedded Fluid Layer, t Example I. 

In this example we consider a fluid layer of thickness h, viscosity Tj, 

and density p resting on top of a horizontal rigid base (Fig. 10.1). 
It is surmounted by a fluid of infinite thickness of viscosity Tj' and 

gt 
r( P' 

UV 

h TJP 

Rigid 

Figure 10.1 Viscous layer on top of a rigid base surmounted by 
an infinite viscous medium in a gravity field. 

density p', Perfect adherence is assumed at the interface. There
fore the displacements vanish on the bottom side of the layer. 
Hence the problem may be formulated entirely in terms of the two 
displacement components U and Vat the top of the layer. 

The stresses r' and q' in the upper infinite fluid at the interface are 
given by applying equations (4.35) of Chapter 4. We must replace 

t These two examples were treated in a recent paper by the author: Stability of 
Multilayered Continua Including the Effect of Gravity and Viscoelasticity, Jou1'nal of 
the Franklin Institute, Vol. 276, No.3, pp. 231-252, 1963. 
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the elastic modulus I-' by r/p and change the sign of the stresses. 
They become 

T' = -2l'Y}'pU 

q' = -2l'Y}'pV 
(10.8) 

The change in sign is required because the equations are applied here 
to the upper half-space instead of the lower half-space. 

The stresses T and q on top of the layer are obtained from the 
first two of equations 5.20 of Chapter 4. In those equations we put 

and 

Hence 

with 

L = 'Y}P 

T = l'Y}p(A1U + A2 V) 

q = l'Y}p(A2U + Aa V) 

Al = t(all + bll ) 

A2 = t(a12 + bd 
Aa = t(a22 + b22) 

(10.9) 

(10.10) 

(10.11) 

( 10.12) 

Since inertia forces are neglected, these coefficients are obtained by 
introducing the values (10.5) and (10.6). They are functions of the 
variable y which embodies the effect of layer thickness and the 
wavelength. 

We now introduce the effect of gravity by using the analog model. 
This is done by applying a vertical force (p - p')g V per unit area at 
the interface. Hence 

, 
T = T 

q' = q + (p - p')g V 
(10.13) 

The gravity acceleration is denoted by g. These equations are also 
derived by applying equation 7.25 of Chapter 4. 

Substituting the stresses (10.8) and (10.11) into equations 10.13, 
we obtain 

(2 + KA1)U + KA 2V = 0 

KA 2 U + (2 + KAa - ;y) V = 0 
(10.14) 
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Figure 10.2 Parameter a representing gravity instability as a func
tion of y for a viscosity ratio K = 1/1000. (Curve a for medium of 

Figure 10.1; curve b for medium of Figure 10.3.) 

The parameters are defined as 

(p' - p)gh 
a= 

1)'p 
(10.15) 

Putting equal to zero the determinant of equations 10.14, we derive 
the characteristic equation 

(10.16) 

The parameter a has been evaluated numerically as a function of y 
for the following value of the ratio of viscosities: 

1) 1 
K = 1)' = 1000 (10.17) 

The value of a is plotted in Figure 10.2 (curve a). If the top layer 
has the larger density (p' > p), a positive value of a yields a positive 
value of the characteristic exponent p. Hence the interface is 
unstable. The minimum amin of a corresponds to a maximum of p 
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and occurs for Y = Yd' Hence the dominant wavelength is 

Trh 
.Pd' = -

Yd 

Ck. 6 

(10.18) 

The values of amin, Yd' and .Pdlh have also been evaluated as functions 
of the viscosity ratio K. They are shown in Table 3. 

Table 3 
Dominant wavelength .!l'd as a function of 
the ratio of viscosities K = "IIT/ for the 
layer represented in Fig. 1O.l. 

K = "I17J' U mln Yel .!l'd/h 

1/1000 0.687 0.114 27.6 
1/100 1.49 0.243 12.9 
1/10 3.36 0.495 6.35 

Example 11. As another example we consider a fluid layer of 
thickness h, density p, and viscosity "I embedded horizontally in a 
fluid of infinite extent of density p' and viscosity "I" Here the rigid 
base has been replaced by the same fluid as in the surmounting 
medium (Fig. 10.3). 

g! 
'Ij' p' 

U1 V1 .1 
h "'Ij p 

U2 V2 

'Ij' p' 

Figure 10.3 Viscous layer embedded in an infinite viscous 
medium in a gravity field. 

There are now two interfaces, and we must consider the displace
ments U1 , VI at the top of the layer and the displacements U2 , V 2 

at the bottom interface. The equations are obtained, as previously, 
by considering the analog model and replacing the effect of gravity 
by forces applied to the interface. In the present case this is done by 
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applying equations 5.20 of Chapter 4. The following equations are 
obtained. 

2 
-- U l Al A2 -A4 A5 U l K 

(-~+~)Vl A2 A3 -A5 A6 VI K 2yK 
(10.19) 

2 
- U2 A4 A5 -AI A2 U2 K 

(~+ ~)V2 K 2yK 
-A5 -A6 A2 -A3 V 2 

The coefficients Av A 2, A3 are given by equations 10.12. The other 
three are 

A4 = !(all - bu ) 

A5 = !(a12 - bd 
A6 = !(a22 - b22 ) 

(10.20) 

These six matrix elements AI, A 2, ... , etc., are functions of the 
wavelength parameter y through expressions (10.5) and (10.6). 

Examination of equations 10.19 shows that they remain unchanged 
if Uv VI' U2, V2 are replaced by U2, - V2, Uv - VI and if at the 
same time u is replaced by - u. Hence, when we equate to zero the 
determinant of the system of equations (10.19), we must obtain a 
characteristic equation which contains only u 2 • For p' > p the 
positive root u corresponds to an instability. It is plotted as a 
function of y for K = 1/1000 and is shown by curve b in Figure 10.2. 
It is seen that the result does not differ greatly from that obtained 
when the base is rigid. 

In this second example the layer is always unstable ifthe densities 
are different. The amplitudes of the vertical displacements will be 
larger at the top or the bottom, depending on which material is the 
denser. 

Gravity Instability of Multilayered Viscous Fluids. The 
problem of gravity instability of a multilayered incompressible 
viscous fluid may be handled as a particular application of the 
general methods derived previously for elastic and viscoelastic multi
layered structures. Each layer is homogeneous, of viscosity 'f/i' 
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density Pj' and thickness hj' We assume that there are n layers 
numbered as shown in Figure 10.4. The layers are resting on a 
half-space which may be considered a layer of infinite thickness 
numbered n + 1. 

Because the fluid is incompressible, we may apply the concept of 
analog model and replace the effect of the gravity field by interfacial 
and surface forces proportional to the vertical displacements and 
density differences. 

1 

7)j Pj 

n 

n+l 

/. 

Figure 10.4 Multilayered viscous fluid in a gravity field. 

Let us assume first that the inertia forces are negligible. Then the 
basic coefficients ajj and bij are given by equations 10.5 and 10.6. 
For the jth fluid layer we must replace y by Yj = !lhj • Through 
equations 10.12 and 10.20 we derive the six coefficients jA1' jA2' etc., 
of the jth layer. It is convenient to use the quadratic form (7.1) of 
Chapter 4, which reads (no summation) 

I j = ! jA1(Ul + UY+1) - jA 4 U j U j +1 

+ ! jA 3(vl + VY+1) + jA 6 Vj Vi+1 

+ jA2(Uj V j - Ui+1 Vi+d + jA 5(Uj Vj +1 -Ui+1 Vj) (10.21) 

where U j and Vj are the horizontal and vertical displacements at the 
top of the jth layer. We also write the composite quadratic form 
(7.10) of Chapter 4: 

n+1 
f = p 2: n;!j (10.22) 

j=l 

By the correspondence principle we have replaced the slide modulus 
L j by PT);, according to equation 10.4. Finally we apply equations 
7.30 of Chapter 4. This yields for the interfacial displacements the 
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recurrence equations 

with 
1 n+l 

C§ = - 2: (p; - p;-l)gVl 
2l ;=1 

(10.23) 

For j = 1 we must put Po = O. Thus we have obtained 2n + 2 
equations for the 2n + 2 unknown displacements U; and V;. 
Positive solutions for the characteristic exponent p correspond to 
modes of instability. 

We note that equations 10.23 are equivalent to the variational 
principle 

~(.F + C§) = 0 (10.24) 

which is a particular application of the more general variational 
principles discussed below. 

When the layers are resting on a rigid base, the number of 
unknowns is reduced to 2n if we put Un + 1 = Vn+ 1 = O. 

Since inertia forces are neglected, the general theorem of section 4 
is applicable. Hence we need only look for real characteristic values. 
The amplitudes are always proportional to real exponential factors. 
They are decaying or increasing exponentials, depending on the 
stability of the particular characteristic solution. 

We note that equations 10.23 also represent a particular case of the 
general solution obtained in section 8 for a viscous fluid under initial 
stress. For a fluid initially at rest, equations 8.75 and 10.23 are 
identical. 

Solution by Matrix Multiplicat1:on. For a large number of layers 
the instability may be evaluated numerically by the matrix multi
plication procedure represented by equation 7.35 of Chapter 4. 
This procedure is well suited for digital programming. The charac
teristic values of p are obtained as outlined for vibration problems of 
elastic media (see Chapter 5, section 7). 

The matrix AI to be applied is given by equation 7.33 of Chapter 4. 
In the coefficients we must replace L by the operator YJp. Since we 
are dealing with a viscous fluid, the coefficients Bl> B 2 , ••• , B 10 may 
be obtained in a simpler form by substituting the values of au and 
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b jj from equations 10.5 and 10.6 into equations 7.16 of Chapter 4. 
We find 

BI = 2y sinh 2y + cosh 2y 

B2 = 2y cosh 2y 

Ba = -2y cosh 2y 

B4 = cosh 2y - 2y sinh 2y 

B5 = 2(sinh 2y + 2y cosh 2y) 

B6 = 4y sinh 2y 

B7 = 2(sinh 2y - 2y cosh 2y) 

Be = t(sinh 2y + 2y cosh 2y) 

Bg = y sinh 2y 

B I0 = t(sinh 2y - 2y cosh 2y) 

(10.25) 

Solution by Iteration. The recurrence equations 10.23 relate the 
six displacements at three successive interfaces. Their numerical 
solution may be also obtained by the iteration process already 
discussed in Chapter 5 (page 332). 

Dynamic Instability. The problem of dynamic instability of an 
incompressible multilayered viscous fluid when inertia forces are 
taken into account may be solved in a similar way by applying the 
results obtained for the dynamics of multilayered elastic media. As 
illustrated by equation 7.44 of Chapter 5, for an incompressible 
medium the coefficients aij and blj expressed in terms of the roots f31 
and f32 in dynamic instability are formally the same as for the static 
problem of buc~ling. When inertia terms are added, they affect 
only the values of 

f3I = -vi m + V ni2 - k2 

f32 = -vim - Vm2 - k2 
(10.26) 

In expressions (7.42) of Chapter 5 for m and k2 we replace a2 by _ p2, 
and the elastic coefficients by the operators 

M = N = L = TJP (10.27) 

Since the initial stress is hydrostatic, we also put P = O. We derive 

f3I = Jl + pp 
TJP (10.28) 

f32 = 1 
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The coefficients au and bi } are obtained by substituting these values 
of f31 and f32 into equations 5.8 and 5.16 of Chapter 4. 

With these values of au and bi}, the dynamic stability problem is 
formulated by the same equations as in the previous non-dynamical 
problems with anisotropy. We may use either the recurrence 
equations (10.23) or the matrix multiplication process. 

Since we are interested in unstable solutions, we apply the general 
theorem of section 9 which indicates that such solutions must be real. 
Hence we need only consider real positive values of the characteristic 
exponent p. The values (10.28) of f31 and f32 are also real and positive 
in this case. 

Gravity Instability of Anisotropic Fluids. The corre
spondence principle may be applied to problems of gravity instability 
of anisotropic fluids. For an incompressible fluid the stress-strain 
relations are 

S11 - 8 = 2pTJnexx 

8 22 - 8 = 2pTJneyy 

8 12 = 2pTJteXY 

(10.29) 

where TJt and TJn are the viscosity coefficients for tangential and 
normal stresses. According to equations 10.29, the operators are 

Q = PTJt 

N = PTJn 
(10.30) 

They coincide with expression (8.60b). Since the initial stress is 
hydrostatic, we put P = O. Hence L = Q and M = N. With 
these operators the equations derived in Chapter 4 (section 7) for the 
elastic medium are immediately applicable to problems of gravity 
instability of anisotropic fluids. 

As an example, let us consider two anisotropic fluids adhering at a 
horizontal interface. We assume the viscous property to be sym
metric with respect to vertical and horizontal directions. For the 
lower medium the density is denoted by p, and the two viscosity 
coefficients are TJt and TJn' The corresponding quantities for the 
upper medium are p', TJ;, and TJ~. Applying equation 8.60c, we write 
for the vertical stresses in the lower and upper medium at the interface 

q = 2lv'TJtTJn P V 

q' = - 2lv' TJ~TJ~ P V 
(10.31) 
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The negative sign is required for the upper half-space, as already 
pointed out (see equations 5.29 and 6.27 of Chapter 4). In the 
analog model the effect of gravity is obtained by applying interfacial 
buoyancy forces. In accordance with equation 7.25 of Chapter 4, 
this is equivalent to requiring the continuity of the quantity 

q + pyV = q' + p'yV (10.32) 

Combining equations 10.31 and 10.32, we derive 

p = (pi - p)y 

2l( v'TJtTJn + v' TJ~TJ~) 
(10.33) 

This value of p gives a measure of the instability as a function of the 
wavelength. Interfacial disturbances of wavelength .P = 2rrJl grow 
proportionally to the factor exp (pt). 

Problems of instability of multilayered viscous media may be 
conveniently approximated by substituting an equivalent anisotropic 
fluid. The equivalent viscosities TJ t and TJn are given by equations 
3.49. The approximation is valid for a thinly laminated medium or, 
in general, when the wavelength is large compared to the thickness 
of the layers. 

Application to the Geology of Salt Structures and Isostatic Com
pensation. Problems of gravity instability of stratified fluids are of 
considerable interest in many geological problems. Because of the geological 
time scale, rock structures may be assumed to behave approximately like 
viscous fluids with very high viscosity. Since the rate of deformation is very 
small, inertia forces do not enter into the picture. Gravity instability occurs 
when a rock formation of higher density lies over a layer of salt. An instability 
arises at the interface, and, as shown by the earlier examples treated in this 
section, the deformation of the interface exhibits a dominant wavelength. 
Actually, of course, the structure is the result of gradual sedimentation and 
compaction. The thickness and density of the overlying material vary with 
time. A solution of this more complex problem has been obtainedt by 
applying the variational principle (10.24). This variational principle is also 
discussed further in the next paragraph in the more general context of dynamics 
and compressible fluids. 

In the foregoing analysis the emphasis has been put on the evaluation of 
unstable solutions. However, the methods are equally applicable to layered 
viscous media with stable configurations. When inertia forces are negligible, 
the characteristic solutions are real and proportional to decaying exponential 

t M. A. Biot and H. Ode, Theory of Gravity Instability with Variable Overburden 
and Compaction (Geophysics, Vol. 30, in press). 
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factors. Such solutions represent a gradual return to equilibrium when 
disturbing loads are removed, and they correspond to solutions of geophysical 
problems of isostatic compensation. For example, a gradual uplift will result 
from the load removal due to the melting of the ice-cap. Problems of this 
type have been treated on the basis of viscous flow theory. t The present 
results given here provide a systematic procedure applicable to a large number 
of layers. Extension to viscoelastic media is also readily obtained, as indicated 
in the last paragraph of this section. It should be pointed out that a structure 
with these stratifications may also be approximated by an anisotropic fluid. 
In this case problems of gravity instability or isostatic compensation may be 
treated as illustrated in the preceding paragraph. 

Small Motion Dynamics of a Viscous Fluid in a Gravity 
Field. In section 9 we have considered the general dynamics of a 
viscoelastic medium under initial stress. In this paragraph we shall 
discuss the particular case of a non-homogeneous viscous fluid initially 
in equilibrium in a gravity field; it includes inertia forces and 
compressibility. 

The dynamical equations may be derived by combining the 
results obtained in Ohapters 3 and 5 for the solid and the fluid in the 
presence of hydrostatic stress. 

Inserting the initial hydrostatic stress 

(10.34) 

and the potential field U into the dynamical equations (2.9) of 
Ohapter 5, we obtain 

(10.35) 

Analogous to equations 5.19 of Ohapter 5, these equations are in the 
"unmodified form." A "modified form" of these equations is 
obtained by following the procedure used in previous chapters (see 
equations 5.23 ofOhapter 3, and Ohapter 5). The modified equations 
are 

os;. op 02U! 
(10.36) _J _ peX!- X.-u} p ot2 ox} J ox! 

with 
8;} = 8iJ + PU k X k 8ij (10.37) 

tN. A. Haskell, Motion of a Viscous Fluid under a Surface Load, Physics, Vol. 6, 
pp. 265-269, 1935, and Vol. 7, pp. 56-6l, 1936; W. H. Heiskanen and F. A. Vening
Meinesz, The Earth and Its Gravity Field, McGraw-Hill Book Co., New York, 1958. 
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The incremental stress 8ij appearing in these equations is given by 
the stress-strain relations which govern a compressible fluid of 
Newtonian viscosity. Hence 

(10.38) 

The viscosity coefficient is denoted by T}, and ,\ represents the 
incremental bulk modulus. 

The equations of motion are obtained by substituting the values 
(10.38) of 8;j into the dynamical equations (10.35) or (10.36). In a 
constant gravity field of intensity g using a vertical z axis positive 
upward, equations 10.35 become 

0811 0812 0831 OW 02U 

OX + oy +Tz- pg ox=Pot2 

0812 0822 0823 OW 02V 

OX + oy + 8z - pg oy = P ot2 (10.39) 

0831 0823 0833 OW 02W 

oX + oy + Tz - pg oz + pge = p ot2 

The cartesian displacements of the fluid are denoted by u, v, w. 
For vanishing viscosity (T} = 0) the equations coincide with those 
obtained for acoustic-gravity waves in a perfect fluid (section 5, 
Chapter 5). 

Variational principles may also be formulated as a particular 
application of the more general theory developed in the preceding 
section for viscoelasticity. 

We consider the fluid to be bounded by surfaces which are either 
free of stress or rigid with perfect adherence of the fluid. We may 
write 

QjSqj = II LlfjSUj dA = 0 

The variational principle (9.73) becomes 

S(~ + p2T) = 0 

(10.40) 

(10.41) 

We may put f!jJ = f!jJ~ here because the contribution f!jJB of the 
boundary vanishes (see equation 9.42). 

Let us introduce explicitly into these equations the properties of 
the fluid. From equation 2.22 of Chapter 2 the stress ttl is 

(10.42) 
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Wi~h the initial hydrostatic stress (10.34) this expression becomes 

tlj = 8tj + SeSIj - Setj 

For the elastic medium, equation 2.12 of Chapter 5 yields 

LI V = ittjetj + Stj'YJtj 

(10.43) 

(10.44) 

where 'YJij denotes expression (9.56). Substituting expressions (10.34) 
and (10.43) for the fluid, we obtain 

with 

flt = is(e2 _ au, OUj) 
ax} ax, 

(10.45) 

(10.46) 

In operational form the stress-strain relations (10.38) for a viscous 
fluid are 

(10.47) 

With these values for 8'j' expression (10.45) for LI V also becomes 
operational 

Hence we may write 

If we put 

rJ; = IIi (LI V + p LI U) d-r 

rfo = fYJ + pD 

f!jJ = IIi (iAe2 + flt + p LI U) d-r 

D = IIi ry(e,jelj - le2
) d-r 

the variational principle (10.41) becomes 

S(fYJ + pD + p2T) = 0 

(10.48) 

(10.49) 

(10.50) 

(10.51) 

The term pD represents a dissipation function in operational form, 
and fYJ is the potential energy. 

We conclude that the variational principle (10.51) is obtained by 
adding a dissipation function to the variational equation derived 
previously for a perfect fluid (section 6, Chapter 5). 
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As before, it is possible to obtain a modified form of the principle 
which introduces the buoyancy forces. For this purpose we go back 
to equation 6.72 of Chapter 5. It is written 

a a (au. ) 0(8£ + p LI U) - a (Seou i ) + <l S ~ OUt 
Xi uX j uX; 

a 
= oil,l/ - - (pX.u.Ou.) 

OX; J J I 
(10.52) 

with 

il,l/ = pX.u.e + -21X . op U.U. 
J J J OX; I J 

(10.53) 

After adding pe2 to both sides, we integrate equation 10.52 over the 
volume T of the fluid and take into account that S = 0 at a free 
boundary while oUi = 0 at a solid boundary. We obtain 

with 

if/'t = IIi (Pe
2 + pXjuje + tXj ::; UiUj) dT 

1I'F = -~ IL pXun
2 dA 

(10.54) 

(10.55) 

The surface integral if/' F is the potential energy of the free surface F, 
as already expressed in equation 6.12 of Chapter 5. The quantities 
X and Un are the algebraic components of the body force and dis
placement along the outward normal to the free surface. When the 
value 

(10.56) 

is substituted in equation 10.51, the variational principle is expressed 
in terms of buoyancy forces. This result could also have been derived 
by viscoelastic correspondence from equation 5.52 of Chapter 3, 
which expresses a general variational principle for a solid in the 
presence of hydrostatic stress. 

The displacement field may be represented by generalized co
ordinates qt in accordance with equation 9.60. The variational 
principle (10.51) then leads to the following Lagrangian equations in 
operational form: 

(10.57) 
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With a dissipation function 

f» = IIi TJ(eiiij - le2
) dT 

and the kinetic energy 

/T = ~ IIi PUiUt dT 

equations 10.57 are equivalent to 

8& + of» + ~ (8/T) = 0 
oqt Oifi dt oift 

(10.58) 

(10.59) 

(10.60) 

They are the same as equations 9.8 for a dynamical system with a 
potential energy and a dissipation function. The general properties 
of such systems therefore apply to the viscous fluid in a gravity field. 
In particular, unstable characteristic solutions are always real. We 
note that the rate of energy dissipation in the fluid is 

of» . 2fiA 
-8' q(= ::LI q( 

(10.61) 

For an incompressible fluid (e = 0) and a vertical gravity field of z 
component equal to - g, the formulation is considerably simplified. 
The potential energy (10.56) becomes 

& = -ig IIi w2 ~: dT + ig IL pW2 dx dy (10.62) 

where w is the vertical displacement. The dissipation function is 

f» = IIi TJe(itj dT (10.63) 

For further discussion the same procedure as in section 6 of Chapter 5 
for a frictionless fluid may be followed. 

It should also be noted that the analog model discussed in section 5 
of Chapter 5 is directly applicable to dynamics for a viscous 
incompressible fluid. 

Generalized Analog Model for Large DeforITlations. The analog 
model for incompressible viscous fluids is valid for large deformations. That 
this is the case may be derived from the following equations of fluid dynamics: 

OUIf au 
- -p- = pal ax, OXI 

(lO.63a) 
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At a fixed point in space the variables are the stress alj' the pressure -a, the 
acceleration ai' the velocity VI, the density P, and the viscosity TJ. The body 
force potential U is a given function of the coordinates. The fluid is hetero
geneous with values of p and TJ depending on the time at a fixed point. In 
order to solve the dynamical problem we must add to equations 10.63a certain 
kinematic relations for the velocity field expressing the acceleration, the 
condition of incompressibility, and the transport of the values of p and TJ 
attached to the fluid particles. They have not been written because they are 
not relevant to the argument. We put 

a;j = ajj - pUS I! 

a' = a + pU 

With these variables, equations 10.63a become 

oa;j op 
- + U -;:;- = pal 
ax) uXI 

, ,,, (OVI OVj) 
alj - a 0lj = TJ - + -

OXj OXI 

(10.63b) 

(10.63c) 

These equations represent a fluid under the action of a body force U OP/OXI 
per unit volume. This result provides an analog model in which the velocity 
field is the same as in the actual fluid. However, the stress a;j in the model is 
different. Hence boundary conditions involving stresses are not retained and 
must be modified in accordance with equations 1O.63b. 

Of particular interest are homogeneous fluids of different densities. We 
consider two fluids of densities PI and P2.' At the surface of discontinuity the 
body force becomes a force per unit area applied normally to the surface and 
of magnitude U(P2 - PI). It is obtained by integration of U dp/dxI across the 
discontinuity. 

The analog model is not restricted to a fluid. The key property involved 
here is that the deformation depends only on the "stress deviator" ajj - aSjj. 

This property is usually associated with the assumption of incompressibility. 
Hence the analog model is generally applicable to an incompressible material. 

As an illustration let us consider the problem of gravity instability of two 
fluids. The fluid of higher density P2 lies on top of a fluid of density Pl. 
With a vertical z coordinate the gravity potential is U = gz. An arbitrary 
constant may be added to this value and may be chosen so that z = 0 represents 
the horizontal interface in the undisturbed initial state. We assume that 
instability has produced a dome.shaped intrusion into the upper region. 
In the gravity-free analog model the driving force of this intrusion is 
represented by normal forces of magnitude (P2 - PI)gZ per unit area applied 
to the interface as shown in Figure 10.4a. 

The model is valid for an arbitrary number of layers of incompressible 

homogeneous fluids of densities PI' P2 = PI + Llpl' P3 = P2 + Llp2' etc. This 
can be shown by substituting these values of p into equations 10.63a and 
applying the foregoing procedure to each term LIp,. For a vertical gravity 
field the gravity-free model is obtained by applying normal interfacial forces 
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Figure lO.4a Analog model for a dome-shaped intrusion due to grav
ity instability of two fluids of different densities PI and P2 (P2 > PI). 

of magnitude g Llp,z, (no summation), where Llp, is the density increment at 
the ith interface and ZI is the altitude above an arbitrary hOl;izontal plane 
which may be different for each interface, and may be chosen to coincide 
with its initial equilibrium position. 

Isotropic Viscoelastic Media in the Presence of Hydrostatic 
Stress. The dynamics of a viscous fluid in a gravity field is a 
particular case of the corresponding problem for an isotropic visco
elastic medium. It may be a viscoelastic fluid or solid. Because 
the initial stress is hydrostatic, the property of isotropy is retained 
for the incremental stresses. They are written 

(10.64) 

with two operators j1 and A. The dynamical equations in operational 
form are obtained by substituting the values (10.64) into equations 

10.35 or 10.36. 
The particular case of a viscous fluid considered above is obtained 

by substituting the operators 

(10.65) 

With the value (10.64) for 8 j1 , expression (10.45) assumes the form 

(10.66) 
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By introducing this expression into equations 10.41 and 10.49 we 
obtain the variational principle in operational form. This form of 
the variational principle assumes perfect adherence at a rigid bound
ary. For perfect slip the principle is easily modified by addition of 
the term f?jJB as in equation 9.42. 

As for a fluid, the variational principle (10.41) may be expressed in 
a modified form by writing 

tfo = f f i (!Ae2 + p,eije jJ + CfY) dT + if/' F (10.67) 

The values of CfY and if/' F are given by equations 10.53 and 10.55. 
This modified principle may also be considered a consequence of 
equations 5.52 of Chapter 3. 

The stress-strain relations may also be expressed by means of the 
stresses tjj' Because of isotropy they are written 

tiJ = 2QeIJ + ReSIJ 

Using equations 10.43 and 10.64, we derive 

A=R-S 

p,=Q+!S 

(10.68) 

(10.69) 

Additional properties are derived by assuming that thermodynamic 
principles are applicable to the operators Q and R. They correspond 
to the general expressions Cf/ of equations 3.32. Hence we write 

Q = (00 -p-Q(r) dr + Q + pQ' Jo p + r 

R = (00 _P _ R(r) dr + R + pR' 
Jo p + r 

(10.70) 

The condition of symmetry Cf/ = CU. required by thermodynamics 
is automatically verified in this case as a consequence of isotropic 
symmetry. 

Additional thermodynamic conditions were stated earlier in con
nection with the more general expressions (4.35a), and they require 
that Ofl(r), Of/, and 0;:' define non-negative quadratic forms. In 
the present case this requires that the quadratic forms 2Q(r)e jjeij + 
R(r)e2

, 2Qe jJejJ + Re2
, and 2Q'eiJeiJ + R'e2 be non-negative. The 

necessary and sufficient condition for this to be true is that all six 
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quantities Q(r), Q, Q', and R(r) + iQ(r), R + iQ, and R' + iQ' be 
non-negative. This can be shown by referring the strain to principal 
directions x, y, z and writing 

2Qe jieji + Re2 = (R + iQ)e2 

+ iQ[(exx - eyy )2 + (eyy - ezz )2 + (ezz - exx )2] (10.7l) 

The condition is obviously sufficient. That it is also necessary 
results from substituting successively e = 0 and exx = eyy = ezz • 

Incompressible Viscoelastic Fluids. For an incompressible medium, 
equations 10.66 and 10.67 are simplified by putting e = o. The 
properties of the medium are described by the single operator fl. 
The problems treated in examples I and II at the beginning of this 
section may be immediately generalized to this case provided we 
assume that the operators fl and P/ describing the viscoelastic 
properties of the two media are in a constant ratio: 

(10.72) 

The equations are the same as for viscous fluids provided we replace 
TJP and TJ'p by fl and fl'. The parameter G becomes 

G= 
(p' - p)gh 

fl' 
(10.73) 

The graphs of Figure 10.2 are applicable to this case. When the 
operator fl' obeys thermodynamic principles, it is derived from 
equations 10.69 and 10.70. Then fl' is an increasing function of p 
when p is positive. Hence the minimum of G yields the same 
dominant wavelength for all media, whether they are viscous or 
viscoelastic. The results are also applicable to the stability of incom
pressible and purely elastic isotropic media with initial hydrostatic 
stress. In this case K represents the ratio of the elastic moduli, and 
Gmln yields the critical density difference and the buckling wavelength. 

Medium Initially Stress-Free. The general properties discussed 
in this chapter for anisotropic media with initial stress are obviously 
applicable to the simpler particular case of isotropic media initially 
stress-free. In this case the operators Q and R become equal to fl 
and A. 
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Curvilinear Coordinates. The general equations for the small 
motion dynamics of a viscous fluid in a gravity field may be readily 
expressed in orthogonal curvilinear coordinates by using the 
variational principle. For a viscous fluid this procedure is a 
particular application of the general method mentioned at the end 
of section 9. If we use equations 10.36, a simplification occurs as in 
the similar case for acoustic-gravity waves discussed in the last 
paragraph of section 6 in Chapter 5. In equations 10.36 all terms 
except those containing the viscosity are in vector form, and their 
formulation in curvilinear coordinates is immediate. 



APPENDIX 

Non-linear Theories and Finite Strain 

Introduction. In the foregoing chapters we have been concerned 
with the linear theory of small deformations in the vicinity of a state 
of initial stress. However, the concepts and methods used in this 
development are equally applicable to the analysis of non-linear 
theories and finite strain. Many of the results of the linearized 
theory may readily be extended to include non-linear features. 
Moreover, it is found that there is a formal analogy between the 
equations of the non-linear and linearized theories. In fact, in the 
author's earlier papers* (1934-1940) the problem was considered in 
the context of non-linear theories, and small deformations of an 
initially stressed medium were treated as a particular case derived 
by linearization. 

In this book the process has been reversed, and the linear theory 
has first been developed extensively on an independent basis. 

The purpose of this Appendix is to give a brief survey of the 
methods and results derived by extension of the theory to include 
non-linearity and finite strain. The material presented here is 
fundamentally the same as that contained in the author's work 
already cited. 

Non-linear equations of equilibrium for the stress field are con
veniently derived by considering incremental deformations which are 
virtual and by applying the principle of virtual work. 

This is followed by a discussion of post-buckling behavior which 

* As listed at the end of the Preface. 
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leads to the possibility of applying the equations to an initially 
stressed medium with non-linear incremental stress-strain relations. 

It is also shown how the underlying concepts lead naturally to a 
distinction between non-linearity of purely geometrical origin and 
that arising from material properties. As a consequence it is possible 
to derive non-linear equations for large deformations of a medium 
with linear viscoelastic properties. 

The same distinction is also applicable under the assumption that 
the strain remains very small while the rotation may be of larger 
magnitude, and simplified equations are obtained by introducing ex
plicitly this assumption into the general results. 

As indicated in a short paragraph, the non-linear equations are 
easily expressed in curvilinear coordinates by applying the principle 
of virtual work. 

Finally, it is shown that the linearized theory of a medium under 
initial stress implies as a particular and trivial limiting case the 
equations for the velocity field and rate variables which are applicable 
to finite deformations. By the same token variational principles 
are obtained for the velocity field. 

Incremental Deformations and the Principle of Virtual 
Work. As already pointed out, the basic equations for incremental 
deformations were first derived by the author in the context of non
linear theories. By considering virtual incremental deformations it 
is possible to formulate the principle of virtual work in straight
forward fashion. This principle provides the simplest and most 
general method of derivation of the fundamental equations of the 
non-linear theory. 

Th.e concepts of stress and strain used in deriving non-linear 
equations are basically the same as those described in detail through
out this book. Let us consider, for example, a two-dimensional 
deformation. A point P is displaced to P'. On the infinitesimal 
scale, the deformation in the vicinity of point P may be considered 
homogeneous. In this homogeneous deformation a square of 
material originally of unit size and oriented along the fixed directions 
x and y becomes the parallelogram P'ABC (Fig. 1). The trans
formation of the square into the parallelogram may be obtained by 
applying to the square a linear transformation with symmetric 
coefficients followed by a rotation B. These coefficients 811, e22 and 
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2 

y 

L, 
Figure 1 Representation of the finite strain 8!J and corresponding forces T;j' 

812 = E21 are chosen to represent the finite strain, and their physical 
significance relative to a locally rotated system of axes 1, 2 is 
illustrated in Figure 1 (see also page 9). 

The stress is defined as follows. In two-dimensional strain the 
square and the parallelogram are considered to be cut out of a slab 
of unit thickness parallel to the figure. The forces acting on side AB 
in directions parallel to the rotated axes 1 and 2 are denoted by T~l 
and T;l' Similarly the forces acting on side OB are T;2 and T~2' 

The foregoing definitions are readily generalized to three dimen
sions. An infinitesimal region around a point P undergoes a solid 
rot5ttion and a finite deformation. Local rectangular axes originally 
parallel to x, y, z become the axes 1,2, 3 when subject to the same 
solid rotation as the medium. The finite deformation is defined by 
a linear transformation with symmetric coefficients Ejj = Ejt relative 
to the rotated axes 1,2,3. Note that the procedure described here 
defines implicitly both the finite strain and the solid rotation. 

This particular form of separation of rotation and finite strain is, 
of course, arbitrary, and the magnitude of the rotation is determined 
entirely by the symmetry condition Ejj = Ejl as a matter of definition. 
Other definitions are possible which will not be discussed at this time. 
However, the present definition has some theoretical advantage from 
the standpoint of formal symmetry. There is also a physical reason 
for this choice since the symmetric coefficients define a transformation 
with the property that there are three rectangular directions of the 
material which remain unchanged. This type of deformation has 
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been discussed in detail in Chapter 1 where it is referred to as a 
"pure deformation." 

The stresses in three dimensions are defined as the forces T~j acting 
on the faces of a parallelepiped which is initially a cube of unit size 
with sides oriented along x, y, z. The forces T;j are the components 
of these forces in directions parallel to the locally rotated axes 1, 2, 3. 
Note that the nine force components T~j must satisfy three relations 
expressing that there is no moment acting on the deformed element. 
Hence only six components are independent. 

Let us consider a medium initially enclosed in a volume n bounded 
by the surface A before deformation. Initial coordinates Xi of a 
material particle become gj = Xi + U j after deformation. A virtual 
displacement SUj defines a virtual deformation Seij. The virtual 
work of the forces T~j per unit initial volume is 

where 
(1) 

(2) 

This result is a consequence of the symmetry relation (eij = en). 
The forces Tij may be considered as alternative stress components, 
in complete analogy with the definition of the alternative incremental 
stresses tij in Chapter 2 (section 2). 

With these definitions the principle of virtual work is written 

fft TUSeij dn = fft pXj(gl)SU j dn + fLliSUj dA (3) 

In this expression Xj(gl) is the body force field per unit mass at the 
displaced point gj, and p is the initial density at the point XI before 
deformation. The principle is applicable to dynamics by including 
in the body force field the negative acceleration of the particle. In 
the term expressing the virtual work of the body force we have used 
the law of conservation of mass, 

pdn = p'dQ' (4) 

where p' and dn' are the density and the volume element after 
deformation. 

The last term on the right side of equation 3 represents the 
virtual work of the bqundary forces, and Ii is the force per unit 
initial area acting on the boundary surface A. The exact formula
tion of equilibrium conditions by the virtual work principle in the 
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form (3) was first described by the author in two papers published in 
1939* and 1940*. More recently, use of the same principle was also 
suggested in the context of viscoelasticity for the purpose of deriving 
a non-linear theory. t 

Brief reference is made here to some of the more relevant papers in the 
earlier literature. The first attempt to take into account a state of initial 
stress is found in a paper by Cauchy ~ (1827) using his assumption that the 
stress is due to central forces between molecular particles. The case of 
uniform initial stress was discussed by Southwell § (1913). The stability 
theory of Biezeno and Hencky (1928-29) mentioned in Chapter 2 (p. 63) 
introduces incremental stress-strain relations which are assumed to be those 
of isotropic elasticity with small deformations. The non-linear theories of 
Trefftzll and Kappus'\T (1933-39) involve the use of the metric tensor and the 
corresponding non-cartesian definition of stress. They also provide a useful 
physical interpretation. The difficulties inherent in this non· cartesian 
approach have already been pointed out with reference to more recent 
developments along this line (see p. 96). 

Formal Analogy of Non-linear and Linearized Theories. 
Equation 3 provides an exact formulation of the equilibrium equations 
in finite strain. It is valid for any continuous medium and does not 
refer to any material property. Hence it is applicable to materials 
with arbitrary rheological properties. 

In order to obtain corresponding differential equations for the 
stress field we must derive expressions for the finite strain components 
Bij in terms of the displacement gradients outfoxj • There are many 
ways of obtaining such expressions. However, from a practical 
viewpoint we may use the non-linear expressions derived in Chapter 1. 
Equations (3.27) of that chapter read 

(5) 

* See references 3 and 5 at the end of the Preface. 
t M. A. Biot, "Variational and Lagrangian Methods in Viscoelasticity," in Deformation 
and Flow of Solids (IUTAM Colloquium, Madrid, 1955), pp. 251-263, Springer, Berlin, 
1956. 
t A. L. Cauchy, Exercices de Mathimatique, Vol. 2, Bure Freres, Paris, 1827. 
§ R. V. Southwell, On the General Theory of Elastic Stability, Philosophical Transac
tions of the Royal Society, A, Vol. 213, pp. 187-244, 1913. 
II E. Trefftz, Zur Theorie der Stabilitat des elastischen Gleichgewichts, Zeitschrift 
fur Angewandte Mathematik und Mechanik, Vol 13, No.2, pp. 160-165, 1933. 
'\I R. Kappus, Zur Elastizitatstheorie endlicher Verschiebungen, Zeitschrift fur 
Angewandte Mathematik und Mechanik, Vol. 19, No.5, pp. 271-285, and No.6, 
pp. 344-361, 1939. 
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The explicit values of these six expressions are given in two and 
three dimensions by equations 2.28 and 3.18 of Chapter 1. They 
were derived by the author in two successive publications in 1938-39. * 
These expressions are correct to the second order and are quite 
satisfactory for the treatment of a vast category of non-linear 
problems in physics and technology. The virtual work principle (3) 
is equivalent to a system of partial differential equations and 
boundary conditions. By introducing the values (5) for elj' the 
partial differential equations are obtained by following exactly the 
same procedure a!'l used in section 5 of Chapter 2 for the linearized 
equations of a continuum under initial stress. By integration by 
parts we may write the identity 

ffL Tljoelj dQ = - ffL 8;:jlj oU I dQ + fL .91ljnjou l dA (6) 

In this expression we have put 

(7) 

and nj denotes the unit vector directed normally outward at the 
initial boundary A. 

When we use the identity (6), the virtual work principle (3) becomes 

Since the virtual displacements oUI are arbitrary, equation 8 implies 

8.911f 
-<;>- + pXI(gz) = 0 (9) 

uX j 

These equations must be verified in the volume Q. Equation 8 also 
implies the boundary condition 

Equations 9 are essentially equilibrium conditions for the stress field 
TIj and do not postulate any material properties. The material 
properties are introduced by expressing the stresses TIj by means of 
the strain components elj' These functional relations may be linear 
or non-linear and express properties of elasticity, fluid viscosity, 

* See references 2 and 4 at the end of the Preface. 
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viscoelasticity, plasticity, etc. We note that the strain components 
elf appearing in these relations must in turn be expressed by the 
non-linear relations (5) in terms of the displacement gradients. 

The foregoing results may be compared with the equations derived 
for the linearized theory of a continuum under initial stress. The 
two sets of results are formally similar, and they point to a funda
mental analogy between the non-linear and linearized theories. If 
we put 

(ll) 

where Sjj is the initial stress, the virtual work principle (3) becomes 
identical with equation 5.48 of Chapter 2. Similarly the equilibrium 
conditions (9) and boundary conditions (10) are formally identical with 
equations 5.28 of Chapter 2. By substituting TIf = tlf + Slj into 
the value (7) for dlf and linearizing the expression with respect to 
t jj , eli' and WIj we obtain equation 5.20 of Chapter 2 for the corre
sponding value A ij in the linearized theory with initial stress. 

Instead of stresses T ij referred to initial areas we may use the true 
stresses alf referred to actual areas after deformation. Both stress 
systems Tij and aij are referred to the same locally rotated axes 1, 2, 3. 
Relations between the two systems of stress components are easily 
obtained by applying equations 7.6 of Chapter 1, which express the 
forces per unit initial area. In applying these equations we must use 
strain components eij referred to the rotated axes 1, 2, 3. The exact 
relations involve the 2 x 2 Jacobians; hence they contain linear and 
quadratic terms in ejj' In the large majority of applications it is not 
necessary to retain the quadratic terms, and we may write 

(12) 

with 
(13) 

Hence 
(14) 

Here again we note a formal analogy with the results of the linearized 
theory for the initially stressed medium. By substituting Tjj = 

tjj + Sli' ajj = SIf + Sjj' and linearizing expressions (14) we obtain 
equations 2.22 of Chapter 2. 

Second and Higher Order Theories. The equations presented here 
include all second order terms. Thus a theory of elasticity is 
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provided which from the mathematical viewpoint is exact to the 
second order in the displacement gradients. These equations also 
contain the particular third order terms which are physically 
significant in most applications. However, the theory is not 
restricted to this case, and higher order terms may be evaluated 
and included if necessary. 

Non-linear Theories with Initial Stress. Post-buckling 
Behavior. In some cases buckling and related problems cannot be 
treated adequately by considering the linearized theory ofincremental 
deformations in the vicinity of a state of initial stress. However, 
a non-linear theory for initially stressed media is immediately derived 
by putting TlJ = tjj + SlJ into equations 6, 9, and 10, this time 
retaining the non-linear terms. The incremental stresses tij may also 
be non-linear functions of the strain elj' Such equations are, of 
course, applicable to materials with either elastic or non-elastic 
properties. 

In the case of elastic materials it will generally be sufficient to 
consider the incremental stresses tij to be linear functions of the strain 
elJ while retaining the non-linear expressions (5) for the strain itself. 
Such a theory will embody the essential features of the so-called 
"post-buckling" behavior of thin plates and shells. 

Distinction between Material and Geometric Non-linearity. 
The foregoing results lead naturally to a distinction between two fun
damentally different types of non-linearity. On the one hand, the 
non-linearity may be the result of material properties and it is 
expressed by non-linear relations between stress and strain. On the 
other hand, we have the non-linearity due to the geometry which is 
embodied, for example, in expressions (5) for the strain components. 

A first attempt to establish a theory which brings out the non -linear 
terms of purely geometrical origin was made by the author in 1934. * 
It was shown that this non-linearity is due essentially to the funda
mental role played by the rotation Wjj. In a second paper in 1938* 
the question was examined more rigorously and the foundation was 
laid for the later developments. To quote from the 1938 paper, with 
reference to the theory of elasticity the following was stated: "The 

* See references 1 and 2 at the end of the Preface. 
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restriction of the classical theory to small strain justifies in most cases 
the use of Hooke's law. However, there is no necessity to assume 
that also the rotation is small since it may become large with respect 
to the strain while the latter is still a small quantity." Actually the 
equations derived in this 1938 paper were not restricted to the case 
where the strain is much smaller than the rotation but are rigorously 
applicable to the more general case where both are of the same order. 

These results opened the way to an exact theory of elasticity with 
initial stress and provided a method by which non-linearities of 
physical and geometrical origin could be separated. For example, 
physical non-linearity may be represented by non-linear relations 

(15) 

relating the six stresses alj to the six strain components ellv . Sub
stitution of expressions (15) for au into equations 14 also yields non
linear relations for TU in terms of ellv which we write 

(16) 

It can be seen that from a purely mathematical viewpoint the 
distinction between physical linearity and non-linearity is not 
necessarily a sharp one, since it depends on the particular definition 
of the stress. For example, if the stress-strain relations for au are 
linear, relations (14) show that the stress-strain relations for TIj will 
not be linear. However, the difference between these two systems 
of stresses will often be negligible, and in any case the physical reason 
for the non-linearity will be clearly brought out. 

The stress-strain relations may represent a large variety of linear 
or non-linear rheological properties, including plasticity and creep. 
They may also correspond to viscoelasticity where linear stress-strain 
relations are valid for deformations which are not small in the 
mathematical sense, as indicated in the following paragraph. 

Linear Viscoelasticity and Non-linear Geometry. Within 
suitable limitations in the magnitude of the strain many viscoelastic 
materials obey linear stress-strain relations which are expressible in 
the form 

(17) 

In these equations Of/ are integro-differential operators given by 
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equation 9.68e of Chapter 6. They are written 

J
<=t d 

"'/lV _ /lV /lV '/lV Ot; - FIJ (t - T) d + 0li + OIJ -d 
<=0 t 

(18) 

Substitution of expressions (17) for Tlj into the equilibrium conditions 
(9) yields non-linear integro-differential field equations for the 
displacements. 

Viscoelastic Oorrespondence in Non-linear Problems. As can be 
seen, the non-linear field equations (9) for Ttj are independent of 
the material properties and are therefore valid for either elastic 
or viscoelastic materials. The viscoelasticity is embodied only in 
equations 17 which are obtained from elastic stress-strain relations 
by substituting operators Ofl for the elastic coefficients. In this 
sense and with the obvious restrictions associated with non-linear 
equations the correspondence principle may be extended to visco
elasticity with non-linear geometry. Application of such corre
spondence was made by the author in generalizing to viscoelasticity 
the non-linear Karman-F6ppl equations for an elastic plate with 
large deflections. * 

Strains Small Relative to the Rotations. In a large number of 
technological problems, in particular those dealing with structural 
metals, design specifications ensure that the stresses do not exceed a 
fraction of the elastic limit. In such cases the strain remains of the 
order of lO-3 or smaller. The non-linear properties in such instances 
are due entirely to the geometry. In particular, this will be true if the 
rotation WjJ becomes of larger magnitude than the strain, as illustrated 

'" M. A. Biot, ' 'Variational and Lagrangian Methods in Viscoelasticity, " in Deformation 
and Fww in Solids (IUTAM Colloquium, Madrid, 1955), pp. 251-263, Springer, 
Berlin, 1956. The principle of viscoelastic correspondence was first enunciated and 
its far-reaching consequences spelled out by the author in colloquium lectures in 
1954 at the California Institute of Technology and Brown University. In particular, 
the extension of elastic solutions to viscoelasticity for applied forces proportional to a 
function of time is an immediate consequence of the results in the author's 1954 
paper (see p. 359). There it is shown that the operators may be manipulated alge
braicallyas if they were elastic coefficients. In generality and substance this principle 
is quite different from the "viscoelastic analogy" proposed by E. H. Lee (Stress 
Analysis in Viscoelastic Bodies, Quarterly of Applied Mathematics, Vol. 13, No.2, 
pp. 183-190, 1955) which is restricted to static problems in isotropic media and is 
based on a particular differential formulation of the stress-strain relations in terms 
of the stress deviator. 
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in many problems of elastic thin shells and plates. With the 
foregoing assumptions we write expressions (7) by dropping the 
non-linear terms which do not contain the rotation. We obtain 

(19) 

Since the strain is small, the components TIj may be replaced by the 
stresses aij' Hence the equilibrium equations (9) become 

8 
-8 (aij + a/ejwj/e) + pXMz) = 0 

Xj 
(20) 

In two dimensions and in the absence of a body force these equations 
take the form 

8all 8a12 8 8 
8x + 8y - 8x (a12w) - 8y (a22w) = 0 

(21) 

where W is the rotation in the x, y plane as expressed by equation 
2.26 of Chapter 1. 

The author obtained equations 21 in 1934, * and their more general 
form (20) in 1939.* 

Equations 20 may, of course, be applied to derive a linearized 
theory of small deformations and large rotations for a medium under 
initial stress. By linearization of equations 20 we derive 

(22) 

The similarity of equations 20 and 22 is another example of the formal 
analogy between non-linear and linearized theories. 

For an elastic medium and with the assumption of small strain 
the values of aij may be expressed linearly in terms of elj by Hooke's 
law. However, the strain components ejj are given by the non-linear 
expressions (5). For small strain they may be simplified by writing 

(23) 

Note that this simplified form may be introduced in the expression 
of Hooke's law. However, in the variational principle (3) the 
complete value (5) is required because the assumption of small strain 

* See references 1 and 4 at the end of the Preface. 
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is to be introduced only after the variation 08ij has been evaluated. 
Equations 23, expressing the strain components when they are 

small in comparison with the rotation, were given by the author in 
1938* in the explicit form 

811 = exx + HWz
2 + W y

2) 823 = eyZ - iwywz 

822 = eyy + i(wx
2 + W z

2 ) 831 = ezx - iwzwx (24) 

833 = ezz + HWy
2 + w x

2) 812 = eXY - iWxWy 

The quantities appearing in these expressions are defined by equations 
3.10 of Chapter 1. 

Non-linear Equations in Curvilinear Coordinates. Theequi
librium equations (9) are readily obtained in orthogonal curvilinear co
ordinates by introducing into the strain components (5) the values 
(5.54) and (5.55) derived in Chapter 2 for ejj and Wjj in curvilinear 
coordinates. With these values the equilibrium equations are 
derived by applying the principle of virtual work (3). As already 
pointed out, this procedure leads also to the non-linear equations for 
the medium under initial stress and for other particular cases of 
non-linearity due to the geometry and the rotation described in the 
foregoing discussion. 

The non-linear dynamical equations in curvilinear coordinates are 
derived from the variational principle by including the negative 
particle acceleration -u; in the body force Xj(gz). 

Attention is called to the special type of curvilinear coordinates 
used here to represent the deformation. The strain components are 
locally cartesian and fundamentally different from the classical 
representation of finite deformation using the metric tensor. A 
particle initially at a point P moves to a point P'. The vector 

-+ 
P P' defines the displacement of a particle and is represented by its 
projections U i on a local cartesian system of axes. The origin of 
this local coordinate system coincides with the initial position P 
of the particle, and the axes are tangent to the curvilinear coordinate 
lines passing through point P. The displacement components U j 

* See reference 2 at the end of the Preface. The results represented by equations 
20 and 23 were later incorporated by a number of authors in discussions of non-linear 
behavior leading to useful applications in theories of plates and shells (see, e.g., 
v. V. Novozhilov, Foundations of the Non-linear Theory of Elasticity, Graylock Press, 
Rochester, N.Y., 1953). 
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are functions of the curvilinear coordinates ql> q2' q3 of the initial 
point P (see Chapter 2, section 5). In the variational principle 
(3) the quantities X!(gz) represent the components of the body 
force field at the displaced point pi projected on the local cartesian 
axes with its origin at the initial point P. The stresses Tjj are 
again referred to axes which are displaced and locally rotated with 
the material and are initially tangent to the coordinate lines at 
point P. 

Rate Variables as a Limiting Case of Incremental Deforma
tions. The mechanics of small deformations of a medium under 
initial stress leads directly to equations which in principle are appli
cable to finite strain and are expressed in terms of rate variables. 
These equations are derived very simply by a trivial and elementary 
limiting process which follows. as a natural consequence of the 
mechanics of incremental deformations. 

An arbitrary time-dependent finite deformation may be looked on 
as a continuous sequence of incremental deformations. Any 
instantaneous configuration at the time t is considered to be an 
initial state. At the instant t + LIt the particle displacements are U j , 

and the stress on a moving particle referred to axes rotating with the 
particle has increased by an amount slj. 

Let us go back to equations 5.21 of Chapter 1. They are written 

(25) 

The left side represents the stress increment on a moving particle 
l'eferred to fixed axes. We divide equations 25 by LIt and consider 
limiting values for LIt vanishingly small. In the limit we find 

aj j - Slj ----l>- DUlj = OUjj + V OUjj 

LIt Dt ot Ic OXic 
(26) 

The instantaneous velocity field Vi is the limiting value of 

U j 

LIt ----l>- VI (27) 

We also introduce the limiting value, 

(28) 

This quantity is the rate of change of the stress at a moving particle 
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with components referred to axes undergoing the same instantaneous 
rotation as the particle. This instantaneous rotation ntj is 
expressed by the limiting value 

Wtj ----l>- ~ (OVI _ OVj ) = ntj 

LJt 2 oX j oXI 
(29) 

The initial stress Stj becomes the instantaneous stress field alj' 

Hence the limiting form of equations 25 is 

(30) 

We consider also the stress-strain relations (4.15) of Chapter 2. 
They are 

(31) 

Let us divide this equation by LJt. Its limiting form, for vanishing 
LJt, is 

(32) 

The strain-rate components fff ltV in these equations are defined as 

eli ----l>- ~ (OVI + OVj ) = fffj' 
LJt 2 oXj oXI ] 

Elimination of .'7tJ between equations 30 and 32 yields 

Daif _ Bltv fff n n 
Dt - jf ltV + altj lit + alit jlt 

(33) 

(34) 

We may write four more equations. They are Newton's equations 
of motion 

(35) 

where p is the mass density and X I the body force field, and the 
equation of conservation of mass which is written 

(36) 

The interest in these equations is brought out if the coefficients 
Bf/ are functions only of the stresses. This will obviously be the 
case if the medium is a homogeneous isotropic elastic medium 
undergoing isothermal deformations. The ten equations 34, 35, and 
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36 then constitute a differential system for the ten unknown functions 
of time Ulj' Vi' and p. They are valid for finite deformations. 

Actually, for a homogeneous isotropic elastic medium with 
isothermal deformations the density may be written as an explicit 
function of the stress UiJ" Hence in this case equation 36 is super
fluous. This becomes evident when we write equation 36 in the form 

D 
Dt (log p) = fff'lj8ij = fff' (37) 

In this form it is a direct consequence of the definition of the density 
for a given mass of variable volume. 

As can be seen, the general equations which govern the rate 
variables in finite deformation follow as a natural and immediate 
consequence of the linearized theory of elasticity with initial stress 
developed by the author in 1939.* 

Equilibrium Equations with Rate Variables. The limiting 
process of dividing the linear equations for incremental deformations 
by a vanishingly small time increment LIt is quite general. In partic
ular, it may be applied to equations 7.32 of Chapter 1 which express 
the equilibrium condition for the incremental stresses su. They are 
written 

-;,0 (Sif + Sjk~ilC + Sije - Stkejk) + P LlX; = 0 (38) 
uXj 

As a consequence of d'Alembert's principle, we find that they are 
valid for dynamics by including the inertia forces as part of the body 
force field, and putting 

(39) 

We divide equations 38 by a vanishingly small time increment LIt 
and derive in the limit 

o DX~ 
oX

j 
(9'lj + ujJJtk + uijfff' - utkfff'jk) + p Dt' = 0 (40) 

These three equations for the rate variables may then be used 
instead of equations 35. 

* See reference 4 at the end of the Preface. More recently these concepts have been 
used by C. Truesdell and others in connection with mathematical developments 
sometimes referred to as "hypoelasticity." 
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It is of interest to show that equations 40 are also a direct consequence of 
relations 30, 35, and 36. We write equations 35 by introducing the value (39) 
for X;. The time derivatives of equations 35 are 

~ (OUff) oX; X' op _ 0 
ox ot + p ot + 'ot-, 

Equation 36 may be written 

Hence 

X,
' op __ 0 0, oX; - X; - (pv,) = - - (X,pv,) + pv, -

ot ox, ox, ox, 

We substitute this expression into equations 40a. They become 

o (OUff ') DX; - - - X,pv, + p -- = 0 
ox, ot Dt 

Equations 26 and 35 are written 

OU" DUff ou" 
at = Dt - Vk OXk 

X' OU'k 
,p = - OXk 

By introducing these values into equations 40d we obtain 

~ (DUff oUff OU'k) DX; 0 
ox, Dt - Vk OXk + v, OXk + P Dt = 

From the identities 

o ( OUff OU'k) 0 ( OV, OVk) - -Vk- + v,-- = - -U'k- + u,,
ox, OXk OXk ox, OXk OXk 

it follows that equations 40f are equivalent to 

o (DUff OV, Ovk) DX; 
- -- - U'k - + Uff - + P Dt = 0 ox, Dt OXk OXk 

(40a) 

(40b) 

(40c) 

(40d) 

(40e) 

(40f) 

(40g) 

(40h) 

Finally we substitute in these equations the values (30) for Du"fDt and the 
expressions Cff , C, and Q" defined by relations (29), (33), and (37). The 
term in parentheses in equations 40h becomes 

DUff OV, OVk 
Dt - U'k OXk + u" OXk = !/ff + U'kQ'k + u"C - U'kC'k (40i) 

Hence equations 40h are identical with equations 40 derived by the limiting 
process. 

Variational Principle for the Velocity Field. Let us consider 
an elastic medium undergoing slow finite deformations with negligible 
inertia forces. In this case X; = Xl' and the limiting process leads 
to equations for the velocity field which are derived from the 
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incremental theory by a simple change of notation. In particular, 
the displacement U t is replaced by the velocity Vi' and the incremental 
boundary force LJft is replaced by the time derivative jj of the 
boundary force itself. Because ofthis formal identity the variational 
principles derived in Chapters 2 and 3 for the displacements U j under 
conditions of static loading are readily applicable to the velocity 
field. Hence, for given values ofjt and a given state of deformation 
and stress, the velocity field of the medium is determined by a 
variational principle. Application of such a principle provides a 
step-by-step evaluation of the finite deformation under variable 
loading. Obviously the condition of uniqueness of the solution 
should be verified at each step. Hence the deformation must be 
confined within the limits of stability. 
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Dynamics, of elastic media under initial 

stress, 260 
of elastic plates and multilayered 

media, 320, 329, 332 
of instability, 269 
of stability, 439 
of viscoelastic media, 438 
planetary, 51 
small motion, 459, 471 

Earthquake, 291 
Elasticity, of rubber, 58 

second order, 108 
Embedded layer, 461 
Equilibrium equations, 5, 33, 35, 38, 44, 

57,63,79 
with rate variables, 495 

Equivalence of variational principles 
for a fluid, 316 

Euler equations of fluid dynamics, 299 
Euler theory of buckling, 3, 123, 171, 

229, 230, 292, 343 

Fluids, acoustic-gravity waves, 291 
anisotropic, 389, 401, 469 
folding instability, 421 
gravity instability, 459, 469 
surface stability, 412 
viscous buckling of plate, 393 

Folding, of geological structures, 438, 
458 

of viscous layer in viscous medium, 
421 

time history, 428 
viscous, 425 

Folding instability, 431 
Foppl, see Karman-Foppl equations 
Fourier expansion, 213, 243, 335, 458 

Geological problems, 372, 404, 438, 458, 
470 

Geophysical applications, 56, 150, 261 
Gravitational bodies, 51 
Gravity, effect of, 243, 272 
Gravity forces, 214, 250 
Gravity field, fluid in, 301, 307, 471 
Gravity surface wave, 279 
Gravity waves, 292, 300, 309 
Green's theorem, 35, 46 
Group velocity, 272 

Hamilton's principle, 319 
Heaviside's operational calculus, 338, 

352 
Hooke's law, 489, 491 
Horizontal stratification, 451 
Hydrostatic boundary condition, 54 
Hydrostatic pressure in variational pro-

cedure, 139 
Hydrostatic stress, 150, 273, 471, 477 

Incompressible material, anisotropic, 
182 

in fluid, 155 
in gravity field, 332, 461 
stress-strain relations, 96 
variational principle, 137 
viscoelastic, 360, 372 

Incremental elastic coefficients, 82 
Incremental isotropy, 102 
Incremental stresses, 23, 349, 380, 391 
Infinitesimal deformations of first order, 

4 
Initial state, of steady flow, 375 

of unsteady flow, 396 
Initial stress, triaxial, 225 
Instability, dynamic, 335, 468 

dynamics of, 269 
folding, 414 
gravity, 461, 465, 469 
interfacial, 227, 241, 334 
internal, 192, 397 
of anisotropic half-space, 204 
of homogeneous half-space, 159, 204 
of non-homogeneous half-space, 174, 

405,409 
of viscous fluid, 459 
surface, 159 
under axial tension, 232 
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Instability, viscoelastic, 405 
Internal coordinates, 351 
Internal instability, in viscoelasticity, 

397 
of first kind, 194, 334 
of laminated viscoelastic medium, 404 
of second kind, 200, 334 
of viscous media, 401 

Internal resonance, 457 
Irreversibility, 344 
Isothermal deformation, 286 
Isotropic medium, 89, 102, 289, 477 
Isotropy, finite, 89, 119, 215, 332 

transverse, 95, 115 
Iteration, solution by, 258, 332, 432, 468 

Jacobian, 45, 314 

Karman-Foppl equations, 490 
Kelvin material, 397, 412 
Kinematics, of steady flow, 376 

of strain rate in unsteady flow, 377 
of three-dimensional strain, 15 
of two-dimensional strain, 6 

Kronecker symbol, 47 

Lagrange equations, 261, 267, 308, 309, 
318, 347, 453, 455, 457, 474 

Lagrange multiplier, 137, 272 
Lame coefficients, 112 
Laminated medium, 184, 360, 404 
Laminated plates, 372 
Laplace transforms, 449 
Layer, adhering, 418 

embedded, 237, 414 
Length element, 18 
Linear mechanics, 4 
Linear transformation, 6 
Liquid, in constant gravity field, 301 

internal gravity waves in, 300 

Matrix multiplication process, 247, 253, 
332, 431, 467 

Ma;xwell material, 354, 397 
Mooney Material, 106, 123, 165, 174, 

181 
Multilayered media, 243, 329, 439 

periodic, 254 
Multilayered viscous fluids, 433, 465 

N avier-Stokes. equations, 386, 461 
Newtonian viscosity, 376, 385, 472 
Newton's law of motion, 294, 494 
Non-conservative forces, 149, 444 
N on-linear flow properties, 389 
Non-linear geometry, 489 
Non-linear theory of elasticity, 4, 481 
Non-oscillatory· unstable motion in dy-

namic viscoelasticity, 446 
Normal modes, 269 

Operational calculus, 352 
Orthotropic bar in torsion, 120 
Orthotropic medium, 82, 89 
Oscillations, free, 327 

of elastic systems, 269 

Perturbations, 376 
Plasticity, 131, 201, 391, 403, 413, 455, 

489 
Plate under initial stress, 216 

fluid, 393 
folding of elastic, 419 
thin, 418 

Poisson's ratio, 171, 242 
Porous media, 438, 458 
Post-buckling, 488 
Potential energy, of free surface, 306 

of rigid boundary, 146, 314 
Power dissipation, 451 
Principal directions, 7, 14 

of strain, 16 
of stress, 29 

Rate variables, 493 
Rayleigh internal gravity wave theory, 

292 
Rayleigh waves, i72, 230, 261, 272, 278, 

334 
Reciprocity properties, 457 
Rods, 112, 128, 364 
Rotation, large relative to strain, 490 

local, 11, 19 
pure rigid, 7 
solid body, 21, 31 

Rubber elasticity, 58, 96, 104, 119 
Rubber-like medium, 160, 167, 237, 254 

Saint-Venant's theory, 115, 365 
Salt structures (geology), 470 
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Second order elasticity, 108, 487 
acoustic propagation in, 285 

Second order volume change, 314 
Slide modulus, 57, 85 
Slip lines, 201, 403 
Stability, criterion for, 443 

for anisotropic media, 182 
for isotropic media, 122 
in dynamic viscoelasticity, 448 
in presence of Coriolis forces, 444 
of elastic plate, 333, 419 
of multilayered media, 243, 333, 459 
of rods and plates, 128, 333 
properties, 441 

Stability equations, 122 
and thermodynamics, 341, 444, 450 

Stieltj es integral, 456 
Stoneley waves, 242, 272, 334 
Strain, finite, 3, 18, 481 

incremental, 1 
infinitesimal, 15 
kinematics of two-dimensional, 6 
kinematics of three-dimensional, 15 
non-linear, 481 
plane, 100, 124 
principal directions of, 14 
with approximation of second order, 

4 
Strain components, 12, 17, 19, 21 
Strain energy, 64, 74 
Strain rate, 377, 379, 494 
Stratification, horizontal, 451 
Stress, generalized, 455 

hydrostatic, 54, 150 
incremental, 1, 5, 23, 27, 28, 56, 58, 64 
initial, 225, 563 
measurement, 291 
principal, 25, 29 
quadric, 29 

Stress deviator, 99 
Stress-strain relations, 56, 64, 66, 71, 

83,350,356 
String under tension, 1 
Sturm-Liouville equation, 303, 312 
Surface instability, 159, 204, 405, 410 

simplified criterion for, 215 
Surface loads, 213 
Surface stability of viscous fluid, 412 

Surface waves, 327 
in elastic medium, 272 

Surface wrinkling, 413 
Symmetry property of stress, 23 

Taylor instability, 302, 308 
Tensor invariants, 95, 110 
Thermodynamics, 340, 371, 450 
Thermodynamic systems, 444 
Thermoelasticity, 286, 459 
Thin plate theory, 418 
Torsional rigidity, 131 

. Torsional stiffness, of elastic bar, 58, 112 
of viscoelastic bar, 364 

Transformation, general linear homo-
geneous, 7 

homogeneous, 16, 20 
non-homogeneous, 15 
symmetric and linear, 16 

Triaxial flow, 396 
Triaxial initial stress, 225 

Uniqueness, 450 

Variational formulation of stability, 135 
Variational principle, 73, 157, 453 

for acoustic gravity waves, 305 
for velocity field, 496 
operational form, 456 

Vibrations of viscoelastic plates, 439 
Viscoelastic media, 174, 337, 410, 431, 

489 
incompressible, 451, 479 
isotropic, 477 
laminated, 360 

Viscoelastic plates, 439 
Viscoelastic stability, 450 
Viscoelastic system with initial stress, 

351 
Viscous buckling, of multilayered 

media, 431 
of single layer, 421 
time history, 428 

Wave guide propagation, 272 
Work,65 

virtual, 80, 454, 482 

Young's modulus, 171, 242 




