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DIRECT AND INVERSE PROBLEMS ENCOUNTERED IN VIBRO-IMPACT 

OSCILLATIONS OF A DISCRETE SYSTEM

Y. V. Mikhlin

Department of Applied Mathematics, Kharkov Polytechnic University, Kharkov 310002,
Ukraine

and

A. F. Vakakis and G. Salenger

Department of Mechanical and Industrial Engineering, University of Illinois at
Urbana—Champaign, 1206 W. Green Street, Urbana, IL 61801, U.S.A.

We study direct and inverse problems that arise in the vibro-impact oscillations of a
discrete system. Specifically, we examine a class of systems with two coordinates undergoing
single- or double-sided impacts; however, the presented techniques are sufficiently general
to apply to systems with multiple impacts. The analytical methods employed are a nonlinear
normal mode (NNM)-type analysis and a boundary value problem (BVP) formulation, and
enable the computation of various branches of bifurcating periodic solutions with different
impacting characteristics. Additional insight on the dynamics of these systems is obtained
by direct integrations of the equations of motion and by numerical Poincaré maps. It is
found that the vibro-impact systems considered possess rich nonlinear dynamics, including
vibro-impact localized and nonlocalized time-periodic motions, complicated bifurcation
structures giving rise to new types of single- and double-sided impacting motions, mode
instabilities, and chaotic responses. We also formulate inverse vibro-impact problems,
whereby, we seek the class of dynamical systems that produce specified orbits in the
configuration plane. The solutions of the inverse problems are generally non-unique, since
they can be reduced to underdetermined sets of algebraic equations with multiple infinities
of unknowns. Numerical applications are provided to demonstrate the techniques and
validate the analytical results.

1. INTRODUCTION

Vibro-impact oscillations are of considerable practical importance and occur in many

engineering applications, including systems with clearances, loose joints, or motion

confining rigid constraints. Vibro-impacts lead to strong and essential nonlinearities and

their analytical or even numerical study presents challenging technical difficulties [1–3].

Among various studies in the literature, Masri and Caughey [4] analyzed linear systems

with rigid constraints by matching linear solutions computed before and after the time

instants of impacts. Studies of piecewise linear and vibro-impact oscillations with

analytical/numerical Poincaré maps and geometrical techniques were performed in a series

of works by Shaw and Holmes [5], Moon and Shaw [2], Shaw [6], Shaw and Rand [3],

and Shaw and Shaw [7]. Ivanov [8] studied vibro-impact oscillations by introducing

auxiliary phase planes, and Zhuravlev [9] analyzed these oscillations by employing special

nonsmooth transformations of variables. In a related work, Vedenova et al. [10] studied
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localized and nonlocalized vibro-impact periodic solutions of discrete oscillators using

nonsmooth coordinate transformations (cf. also reference [11]). Van de Vorst et al. [12],

studied periodic motions of a beam undergoing vibro-impacts by using finite elements and

reducing the problem to numerically solving two-point boundary value problems.

Numerical and experimental investigations of flexible elastic and rotordynamic systems

with impact nonlinearities were carried out in references [13, 14].

Additionally [5, 15–17], local and global bifurcations of periodic orbits and chaotic

motions in systems with vibro-impacts were examined. Chaotic motions of such systems

were studied in these and other works [18–21]. Whiston [22] presented a study of the

‘‘shredding’’ of the invariant manifolds of a periodically excited system with impacts due

to the non-differentiable nature of the vibro-impact dynamics, and Brogliato [23] discussed

the dynamics and controls of systems with impact nonlinearities.

In this work we study direct and inverse problems related to vibro-impact oscillations

of discrete linear or nonlinear systems with rigid constraints. The theoretical part of the

work centers on the use of functional relations between coordinates to study periodic

solutions and local dynamics, as well as, the formulation of two-point boundary value

problems (BVPs) to study analytic continuations and bifurcations of solutions. The

numerical part of the work focuses on the numerical solution of the formulated BVPs and

on the construction of Poincaré maps to study the global dynamics. An inverse problem

is also posed, whose solution leads to the determination of linear or nonlinear systems that

are capable of producing a specified vibro-impact motion in configuration space.

Bifurcating problems associated with the inverse problem are discussed and numerical

simulations that validate the theoretical findings are presented.

2. THE DIRECT PROBLEM

2.1. analytical results

We analyze the dynamics of the system depicted in Figure 1(a). It possesses two degrees

of freedom, but the methodology to be developed can be extended to the

multi-degree-of-freedom case. The motion of each particle is restricted by two rigid

barriers, and takes place in the interval [−e, e]. As a result, for sufficiently high energy

of motion impacts occur and the equations of motion are expressed in the form

ẍ+
��(x, y)

�x
+P(x)=0, ÿ+

��(x, y)

�y
+P(y)=0, (1)

where �(x, y) denotes the (smooth) potential energy, and P(u) models purely elastic

impacts of the two particles with their rigid constraints. The elastic impacts are

mathematically modelled by the relationship [cf. Figure 1(b)]

P(u)= lim
n��

c(n)�ue�
2n−1

, (2)

where c(n) is a scaling constant depending on n.

In the direct problem, we seek analytic approximations and numerical solutions to

vibro-impact, time-periodic orbits of the system, with a specified number of impacts per

cycle. Whereas this problem has been addressed in the past by other authors (especially

for the case of single degree of freedom oscillators), the technique that we propose is new

since it relies on the concept of a ‘nonlinear normal mode’ (NNM) [11] to formulate a

functional relation between the two coordiantes of the system during the vibro-impact
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Figure 1. The vibro-impact oscillator: (a) system configuration, (b) the limiting process defining the elastic
impact forces as n��.

motion. Hence, we assume that during the vibro-impact oscillation the following

expression is satisfied at all time instants:

y(t)= ŷ[x(t)], t�R. (3)

The function y[·] is determined by substituting equation (3) into equation (1) and

eliminating the time variable from the problem. This leads us to the following quasi-linear

ordinary differential equation governing ŷ[·] in open intervals of x and y between

consecutive impacts,

2ŷ� h−�(x, ŷ)

1+ ŷ2 + ŷ'�−��(x, ŷ)

�x �=−
��(x, ŷ)

�y
, �x�� e, �ŷ(x)�� e, (4)

where h denotes the (conserved) energy of the system, and primes denote differentiation

with respect to x. Assuming that h−�(x, ŷ)� 0 during the motion, i.e. that the

vibro-impacts occur before the system reaches its maximum potential energy value, the

equation above is nonsingular, and must be complemented by appropriate boundary

conditions at the elastic impacts.

We suppose at this point that the periodic motion under consideration involves only

impacts in the x-coordinate, and is composed of two branches y= ŷ1(x) and y= ŷ2(x),

as depicted in Figure 2(a). Between impacts the functions ŷ1,2[·] are governed by

equation (4), whereas at each instant of impact they satisfy the compatibility conditions

ŷ1(�e)= ŷ2(�e), ŷ1'(�e)=−ŷ2'(�e). (5)

That is, at the time instant t= t* when the elastic impact occurs, there is C0 and C1

continuity in y(t), but only C0 continuity in x(t). The C1 discontinuity in x(t) satisfies the
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Figure 2. Vibro-impact motion with imapcts only in the x-coordinate: (a) motion in the configuration plane,

(b) joining of branches at the point of elastic impact.

jump condition, ẋ(t*− )=−ẋ(t*+ ), which in turn leads to the conditions (5). Hence,

the direct vibro-impact problem consists of solving two nonlinear ordinary differential

equations governing the two branches ŷ1,2[·] [each similar to expression (4)] subject to the

compatibility conditions (5). Since no exact analytical solutions exist for the general

nonlinear problem, it will be necessary to resort to asymptotic approximations. We note

that more complicated vibro-impact oscillations corresponding to an arbitrarily large

number of impacts in the x- and/or y-coordinates can also exist, but these will not be

considered herein. For such motions, a similar asymptotic analysis can be performed by

considering vibro-impact motions possessing more than two branches and/or multiple

impacts per period in the x- and y-coordinates.

Before we consider the asymptotic solution of the direct problem, we remark that the

previous discussion regarding the vibro-impact motion is valid only if the condition

h−�(x, ŷ)� 0 is satisfied. If the system reaches at any time instant its maximum

equipotential surface [corresponding to the condition �(x, ŷ)= h], the coefficient of the

highest derivative in equation (4) vanishes and the problem becomes singular. Such

problems with singularities at the maximum equipotential surface are encountered in

calculations of nonlinear normal modes (NNMs) of discrete oscillators [11]; their solution

requires imposing the following boundary orthogonality condition that is valid when

�(x, ŷ)= h:

�ŷ'�−��(x, ŷ)

�x �+
��(x, ŷ)

�y ��(x, ŷ)= h

=0. (6)

This condition must be imposed whenever the orbit of the vibro-impact oscillator reaches

the maximum equipotential surface.

We now consider the analytic approximation of the two-branch time-periodic orbit

depicted in Figure 2(a). It should be clear that such a vibro-impact response can only occur

for sufficiently large values of the total energy h. Indeed, for sufficiently small h the two

particles cannot reach their rigid constraints and the sought time-periodic motions are

4



merely NNMs of the system with no impacts [11]. To be able to perform analytic

computations we assume the following specific form for the potential energy:

�(x, y)=
�

2
(x2 + y2)+

�

3
(x3 + y3)+

�

4
(x4 + y4)+

�

2
(x− y)2. (7)

In the above expression, the scalars �, �, � are the coefficients of the quadratic, quartic

and cubic parts of the potential functions of the oscillators, whereas � is the coefficient of

the weak linear coupling stiffness.

At low energies and sufficiently small coupling �, this system possesses two localized

NNMs, corresponding to periodic oscillations of the two masses with amplitudes of O(1)

and O(�), respectively [27]. We are interested in examining the behavior of these localized

NNMs as the energy increases and impacts start to occur. Hence, in what follows we will

assume that all coefficients in equation (7) are of O(1) with the exception of the coupling

coefficient which will be assumed small, ��1. Considering the vibro-impact orbit of

Figure 2(a), the two branches ŷ1,2(x) must satisfy the relations (4) and (5). For a potential

function given by equation (7), and taking into account that the problem possesses a small

(perturbation) parameter �, we express the two branches in the following series of

successive approximations:

ŷj(x)= �
k=1

�kŷj
k (x), j=1, 2. (8)

With equation (8) we seek vibro-impact motions that localize to the particle with

coordinate x [note that with x=O(1), we seek y=O(�)�x]. Substituting equation (8) into

the equations governing ŷ1,2(x), we obtain

2[�ŷj�
1 + �2ŷj�

2 +O(�2)]�h−
�x2

2
−

�x3

3
−

�x4

4
−

�

2
(x2 −2�xŷj

1)+O(�2)�[1+O(�2)]

+ [�ŷj'
1 + �2ŷj'

2 +O(�3)][−�x− �x2 − �x3 − �(x− �ŷj
1)+O(�3)]

= −��ŷj
1 − ��2ŷj

2 − ��2(ŷj
1)

2 − �(�ŷj
1 − x)+O(�3) (9)

for j=1, 2. This expression is vaid for �x�� e, i.e. between consecutive impacts, and for

sufficiently large values of h so that the condition h−�(x, ŷ)� 0 is satisfied pointwise

for each of the two branches of the vibro-impact motion. When �x�= e the elastic impact

conditions (5) are imposed and matching of the two branches takes place.

Considering terms in equation (9) proportional to � we obtain the following quasi-linear

ordinary differential equation governing ŷj
1:

2ŷj�
1 �h−

�x2

2
−

�x3

3
−

�x4

4 �+ ŷj'
1 (−�x− �x2 − �x3)+ �ŷj

1 = x, �x�� e, j=1, 2.

(10)

Since by assumption the coefficient of the leading derivative is a nonzero quantity, we can

express the solution in the power series form

ŷj
1 = �

�

p=0

cjpxp, (11)
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with the coefficients of the series determined by substituting equation (11) into equation

(10) and matching corresponding powers of x. Following this procedure we obtain the

approximation

ŷj
1 = cj0�1−

�x2

4h
−

�2x4

32h2 −
��x5

48h2�+ cj1�x+
�x4

24h
+

�x5

40h�+� x3

12h
+

�x5

60h2�+O(x6)

� cj0f1(x, h)+ cj1f2(x, h)+ f3(x, h)+O(x6), j=1, 2, (12)

where the leading coefficients of the series remain undetermined up to this point. A similar

expression for the second (or higher) order approximations ŷj
2 can be derived in the form,

ŷj
2 � dj0g1(x, h)+ dj1g2(x, h)+ g3(x, h)+O(x6), but this higher order correction will not be

pursued in the present work.

Imposing the elastic impact conditions (5) and taking into account only terms of O(�)

[expression (12)], we obtain the following matrix equation governing the leading order

coefficients cjp , j=1, 2, p=0, 1:

f1(e, h) f2(e, h) −f1(e, h) −f2(e, h) c10 0

f'1 (e, h) f'2 (e, h) f'1 (e, h) f'2 (e, h) c11 −2f'3 (e, h)
�
�

�

�

�

�
�

�

�

�

	
�

�




�

�
�

�



�

	
�

�




�

�
�

�



�
f1(−e, h) f2(−e, h) −f1(−e, h) −f2(−e, h) c20

=
0

.

f'1 (−e, h) f'2 (−e, h) f'1 (−e, h) f'2 (−e, h) c21 −2f'3 (−e, h)

(13)

Provided that the matrix of the determinant of coefficients is nonsingular, the above

equation yields a unique solution for the coefficients, which is derived symbolically using

Mathematica, as follows:

c10 = c20 =
8�e4(�e2 +3h)

�(−9��e6 +10�2e6 −72�e2h−36�e4h−288h2)
,

c11 = c21 =
6e2(�2e4 +7�e2h+12h2)

h(−9��e6 +10�2e6 −72�e2h−36�e4h−288h2)
. (14)

This solution shows that leading order approximations for the two branches coincide,

ŷ1
1 � ŷ2

1 , and, furthermore, that the slope of the vibro-impact trajectory in the configuration

plane at the points of impact is equal to zero, ŷ1'
1 (�e)� ŷ2'

1 (�e)=0. In Figure 3 we depict

the asymptotic approximation (11)–(14) for parameter values �= �= �=1, e=1,

�=0·1, and h=2. In the same figure we show the maximum equipotential energy level

corresponding to h=2, which is sufficiently wide to allow double-sided vibro-impact

motions to occur.

Numerical simulations were also performed, integrating the equations of motion (1) with

potential energy given by equation (7). The numerical results validated the analytical

predictions, indicating that the double-sided vibro-impact localized motion is orbitally

stable, and, hence, physically realizable. Moreover, using the numerical simulations it was

established that the localized motion persists as a stable solution for arbitrarily high levels

of the energy h, and that no bifurcations associated with this motion take place in the

system for large h. The above theoretical and numerical results prove the existence of

localized vibro-impact oscillations, where the energy of the motion is mainly confined to

one of the two particles. Moreover, the motion in the configuration plane is represented

by a line (and not by a closed loop), which indicates synchronous motion of the two particles

(purely in-phase or out-of-phase). We will show later that this is not the case for systems

6
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Figure 3. First order asymptotic approximation ŷ1
1 (x)� ŷ2

1 (x) to a localized double-sided vibro-impact motion
with parameters �= �= �=1, e=1, �=0·1 and h=2.

with other types of potential function, which can support periodic motions possessing

nontrivial phase differences between particles.

An interesting question concerns the behavior of the previous localized solution as h
decreases, and we now briefly discuss this issue. For the system with (asymmetric) potential

function (7), we expect that as the energy decreases below a critical value the particle

characterized by the coordinate x will make the transition from double-sided to

single-sided impacts, and (after further decrease of energy), eventually, to no impacting

motions. Indeed, assuming small � and a localized periodic motion of the form

ŷ(x)= �ŷ1(x)+O(�2), the function ŷ[·] is still governed by equation (4). The first critical

value of the energy hc1 separating the regimes of single- and double-sided impacts is

determined approximately by the condition

�(e, ŷ(e))=
�e2

2
+

�e3

3
+

�e4

4
+

�e2

2
+O(�2)= hc1, (15)

which corresponds to the energy level for which the particle characterized by x reaches

its maximum amplitude when x= e, and, hence, the relation hc1 −�(e, ŷ)=0 is satisfied.

Since the potential energy of the system is asymmetric, at x=−e the condition

hc1 −�(−e, ŷ)� 0 is still satisfied and impact of the particle with its rigid constraint

occurs. For �= �= �=1, e=1 and �=0·1 we find that hc1 =1·1333. As a result, for

a sufficiently small neighborhood of h bounded from above by hc1 the system undergoes

single-sided localized vibro-impact oscillations, and the motion in the configuration plane

ŷ(x)= �ŷ1(x)+O(�2) is determined by solving equation (4) subject to the boundary

conditions

ŷ'(−e)=0, (elastic impact at x=−e), (16a)

�ŷ'�−��(x, ŷ)

�x �+
��(x, ŷ)

�y �x=X1

=0, (right boundary of the motion), (16b)

where X1 is the maximum amplitude attained by x at the right boundary of the single-sided

vibro-impact motin (cf. Figure 4). Performing a perturbation analysis similar to the
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Figure 4. First order asymptotic approximation ŷ1(x) to the localized single-sided vibro-impact motion with
parameters �= �= �=1, e=1, �=0·1 and h=0·933333.

double-sided impact case, we express ŷ1(x) as, ŷ1(x)� c0f1(x, h)+ c1f2(x, h) +

f3(x, h)+O(x6), where the functions fk (x, h), k=1, 2, 3, are defined by equation (12).

Imposing the conditions (16) we then determine the values of the coefficients c0 and c1.

For the above values of the system parameters and h=0·93333� hc1, we find c0 =0·20042

and c1 =−0·49791. In Figure 4 the motion in the configuration plane is presented,

superimposed to the maximum equipotential energy level. The left boundary curve

possesses zero slope since it encounters an impact, whereas the right boundary terminates

at the maximum equipotential energy level; at that point the system possesses zero kinetic

and purely potential energy. The localized motion of Figure 4 is the analytic continuation

of the double-sided vibro-impact motion discussed earlier when the energy is decreased a

small distance below the critical value hc1.

With a further decrease of the energy below a second critical value hc2, the system ceases

to impact with its rigid barriers and performs localized NNM oscillations (Vakakis et al.
[11]). The value hc2 is determined from the relation

�(−e, ŷ(−e))=
�e2

2
−

�e3

3
+

�e4

4
+

�e2

2
+O(�2)= hc2, (17)

which for the above values of the system parameters is equal to 0·46666. For h� hc2 the

localized NNM is computed by solving equation (4) subject to the boundary conditions

(6). Expressing the mode as ŷ(x)= �ŷ1(x)+O(�2), a perturbation analysis can be used to

compute the first order approximation. The resulting analytical approximation for

h=0·26666� hc2 is depicted in Figure 5, superimposed to the maximum equipotential

energy level.

The previous analysis proves the existence of a localized vibro-impact motion. As the

energy decreases this localized motion is preserved in the single-sided impact regime, and

ultimately degenerates to a localized NNM of the (smooth) dynamical system with no

impacts. Hence, the localized vibro-impact periodic motions discussed in this section can

be viewed as analytical continuations of strongly localized NNMs that are encountered

in many classes of smooth dynamical systems [11]. As mentioned earlier, the localized

vibro-impact motion is orbitaly stable at all levels of energy. This result, along with
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Figure 5. First order asymptotic approximation ŷ1(x) to the localized nonlinear normal mode of the system
with parameters �= �= �=1, e=1, �=0·1 and h=0·26666.

additional ones concerning bifurcations of other (nonlocalized) types of vibro-impact

motions, was deduced by means of direct numerical simulations and construction of

Poincaré maps.

2.2. numerical results

The analytical results of the previous section were local in nature, establishing the

existence of localized vibro-impact motions and providing asymptotic approximations for

sufficiently small values of the coupling parameter �. The global vibro-impact response of

the system will now be considered by numerically integrating the equations of motion (1)

and constructing numerical Poincaré maps [24–26].

To construct the Poincaré maps we note that the motion of equation (1) generally takes

place in the four dimensional phase space (x, ẋ, y, ẏ). Since the impacts are assumed to

be purely elastic the energy h is conserved throughout the oscillation, and by fixing it to

a specific level we can restrict the flow of the dynamical system to an isoenergetic

three-dimensional space. If, in addition, we intersect transversely the three-dimensional

isoenergetic flow by a two-dimensional cut-plane, the cut-plane defines a two-dimensional

Poincaré map which can be used to study the global dynamics of the system. Choosing

the cut plane as T: {x=0}, the Poincaré map P(·) is defined as

P: ���, (y, ẏ)�P(y, ẏ),

where the Poincaré section is given by �= {x=0, ẋ� 0}� {energy h}. The additional

restriction of positive ẋ at the point of intersection was imposed in order that the Poincaré

map be orientation preserving [25]. A period-one vibro-impact orbit pierces the cut-section

� only once and corresponds to a fixed point of the map. The stability of the periodic orbit

can be determined by examining near-by orbits of the Poincaré map: if the fixed point

appears as a center and is surrounded by closed curves, the corresponding orbit is

stable; otherwise it is unstable. Subharmonic vibro-impact orbits of higher periods pierce

� in more than one point, whereas quasiperiodic orbits are represented by closed loops.

Chaotic motions appear as randomly distributed points that occupy a definite region of

the map.
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The numerical simulations were carried out by integrating equations (1) between impacts

using the fifth-order Runge–Kutta SLATEC routine DDERKF. The energy-conserving

elastic impacts were modelled by imposing new initial conditions after each impact, to

reflect the abrupt sign change in velocity after the x- or y-particle collide with their rigid

constraint. The exact time instant when the impact occurs is of great importance in this

numerical scheme, since it determines the points where the new initial conditions must be

imposed. The time instants of impact were determined numerically by applying Newton’s

method to the numerical results of the integration close to each instance of impact. Special

care was taken to choose a sufficiently small time steps in order to ensure accurate

convergence of Newton’s method and precise calculation of the instant of impact. This is

Figure 6. Poincaré map of the neighborhood of the localized vibro-impact motion of a system with
�= �= �=1, e=1, �=0·1, and energy (a) h=18, and (b) h=99.
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particularly important for grazing (near impact) oscillations where the accuracy of the

numerical integrations is important in order to construct correct bifurcation diagrams and

study mode instabilities initiated by impact.

2.2.1. Nonlinear potential function
In Figures 6(a, b) we present the neighborhoods of the Poincaré maps close to the

localized double-sided vibro-impact motions of equation (1) with potential energy (7),

parameters �= �= �=1, e=1, �=0·1, and energy h=18 and 99. The Poincaré maps

consist of centers surrounded by closed curves, indicating that the vibro-impact localized

motions are stable even at high values of the energy. The global dynamics of the system

are more clearly discerned from the Poincaré maps of Figure 7. In Figure 7(a) we depict

the global map of the system for energy h=2. We note the large central region that is

dominated by the localized vibro-impact periodic motion. In addition, the system possesses

a stable in-phase periodic orbit represented by the center at the top of the map; this motion

corresponds to in-phase synchronous oscillations of the two particles satisfying x= y. We

also note the large chaotic ring, composed of chaotic vibro-impact motions, that surrounds

the central region. This ‘stochastic sea’ possess islands of regular subharmonic motions.

For comparison purposes, in Figure 7(b) we present the Poincaré map of the same system

but with no impacts. The system with no impacts possess a stable localized NNM that

also dominates the central part of the map, a smaller chaotic region, and a stable in-phase

NNM at the top of the map. Islands of subharmonic motion can also be detected in this

case.

2.2.2. Linear potential function
To perform a systematic study of the effects of the vibro-impacts on the global dynamics

of system (1) we performed a detailed computation of Poincaré maps for the case of the

quadratic potential,

�(x, y)=
�

2
(x2 + y2)+

�

2
(x− y)2, (18)

with parameter values and varying values of the clearance e. In Figure 8(a–j) we present

the results of the numerical simulations, ranging from a system with no vibro-impacts

[Figure 8(a)] to a system with vibro-impacts and clearance e=1.

We note that as vibro-impacts start to occur, a region of chaotic motions starts to

develop at the boundaries of the domains of influence of the stable in-phase and

out-of-phase modes [cf. Figures 8(a–e)]. This central chaotic region expands with

decreasing clearance and surrounds the domains of influence of the two modes, where

regular quasiperiodic motions continue to occur. For e� 1·78 two saddle-node

bifurcations occur and two pairs of stable-unstable vibro-impact modes are generated. In

the Poincaré map of Figure 8(f) only the one pair of newly created modes can be observed,

since the other pair is very close to the lower boundary curve of the map, and is difficult

to observe. The small chaotic region surrounding one of the newly generated stable

vibro-impact mode close to the origin of the axes is due to transverse homoclinic

intersections of the invariant manifolds of one of the now unstable out-of-phase mode,

and, hence, is a direct result of the mode bifurcation. A similar bifurcation of nonlinear

normal modes was previously observed in a system with smooth nonlinearities [26].

With the clearance further reduced, the newly created mode becomes localized (it

approaches the origin of the axes), and its domain of influence expands. At the same time,

the regular regions surrounding the in-phase and out-of-phase vibro-impact modes

contract [cf. Figure 8(g)], until the in-phase mode becomes unstable close to e=1·4
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Figure 7. Global Poincaré map of the system with �= �= �=1, �=0·1 and energy h=2, when (a)
vibro-impacts occur at e=1, and (b) no vibro-impacts exist.

[cf. Figure 8(b)] and the out-of-phase mode becomes unstable below e=	5/3. We note

that the in-phase mode regains stability for e� 1·4; the bifurcations associated with the

small instability region of this mode is discussed in detail below. The out-of-phase mode

loses stability in a pitchfork bifurcation and remains unstable for smaller values of e. This

behavior of the out-of-phase mode is consistent with the findings of reference [26] for a

similar system with smooth nonlinearities. Further decreases of the clearance results in an

expansion of the regular domain of influence of the localized modes, with the in-phase

mode continuing to be stable [cf. Figure 8(i, j)]. As a general observation we note that the

region of chaotic motions contracts as the clearance is further reduced and the stable

localized vibro-impact modes dominate the global dynamics of the system. In the following
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Figure 8. Global Poincaré map of the system with �=1, �= �=0, �=0·1 and energy h=2, for clearances:
(a) e=2·0 (no impacts), (b) e=1·9, (c) e=1·88, (d) e=1·85, (e) e=1·8, (f) e=1·78, (g) e=1·5, (h) e=1·4,
(i) e=1·2, (j) e=1·0.

discussion we examine more closely the separate sequences of bifurcations associated with

the instability of the in-phase mode, and the generation of the localized mode in the

vibro-impact system.

We start with the bifurcations giving rise to the instability of the in-plane vibro-impact

mode. These are complicated and generate additional periodic vibro-impact motions that

have no counterparts in the corresponding smooth dynamical systems with no impacts.

To investigate the series of bifurcations associated with the in-phase mode instability we

performed detailed Poincaré map calculations in the neighborhood of that mode, as well

as, analytical/numerical boundary value problem (BVP) computations to precisely

determine the bifurcation points. We start with a discussion of the Poincaré maps in the

vicinity of the in-phase mode, as depicted in Figure 9(a–f).

In Figure 9(a) (corresponding to e=1·418) the in-phase mode (labelled ‘A’) is orbitaly

stable and non-impacting. That is, for the level of energy h=2 the in-phase synchronous

oscillations of the two particles do not possess enough amplitude to reach the rigid barriers,

and are, in fact, in-phase NNMs of the system. We also note the large region of chaotic

vibro-impact motions surrounding the in-phase mode, and the plethora of co-existing

regular quasi-periodic motions. As e is reduced to 1·417 [cf. Figure 9(b)], the in-phase

motion ‘A’ is still stable and non-impacting, and an additional stable periodic motion

appears (labelled as ‘B’) on the right of the in-phase mode. As shown below, this new orbit

corresponds to a double-impacting synchronous motion where both x- and y-coordinates

undergo single-sided impacts; clearly this type of orbit cannot be realized in the

corresponding smooth dynamical system. Moreover, it will be shown that this new motion

is generated through a Saddle-node bifurcation, and that there exists an additional

unstable orbit that cannot be discerned in the Poincaré map; also, due to symmetry, there

exists an additional stable-unstable pair of similar orbits lying on the left side of the

in-phase mode, which is not depicted in Figure 9(b). At e=	2 [Figure 9(c)] the in-phase

mode ‘A’ starts impacting and loses stability, whereas, the stable motion ‘B’ expands its

surrounding domain of influence which is composed of regular quasi-periodic orbits. It

turns out that at least four unstable branches of vibro-impacting periodic motions

converge to the in-phase mode at its point of instability, including the two unstable

counterparts of motion ‘A’. As discussed below, the in-phase impacting mode remains

unstable until e� 1·40099, when it coalesces with two new unstable branches of

vibro-impact motions and regains orbital stability. This can be realized from Figures 9(e)

for e=1·398, where both the in-phase impacting ‘A’ and the periodic motion ‘B’ are stable.
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Figure 9. Poincaré maps in the neighborhood of the in-phase mode of the system with �=1, �= �=0, �=0·1
and energy h=2, for clearances: (a) e=1·418, (b) e=1·417, (c) e=	2, (d) e=1·402, (e) e=1·398,
(f) e=1·390

A further reduction of e to 1·390 reduces the domain of influence of motion ‘B’ [cf.

Figure 9(f)], and at e� 1·38813 the orbit ‘B’ ceases to exist when it coalesces with another

unstable vibro-impact motion in a saddle-node bifurcation. Hence, the small region of

instability of the in-phase motion is associated with a complicated series of bifurcations,

which we now proceed to examine in detail using BVP formulations.

The BVP formulation is based on the realization that, since the motions of the two

particles between instants of impact is linear, they can be explicitly determined as

x(t)=C1 cos (	�t−	1)−C2 cos (	�+2�t−	2), �x�� e;

y(t)=C1 cos (	�t−	1)+C2 cos (	�+2�t−	2), �y�� e. (19)
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The undetermined amplitudes and phases can be evaluated by imposing appropriate

boundary conditions at instants of impact for each of the vibro-impact orbits. Then, by

construction the solution (19) will be periodic in t. The first time-periodic solution to be

examined is a double-sided impacting synchronous motion, where both x- and y-coordinates

undergo single-sided impacts. For this type of motion the appropriate boundary conditions

that must be imposed on equations (19) are

ẋ(T/2)=0, x(0)=�e, ẏ(0)=0, y(T/2)=�e, (20)

where T is the period of the motion, and the origin of the t-axis is chosen at the time instant

when the x-coordinate impacts. Combining equations (19) and (20), we obtain the set of

algebraic equations

1 0 −1 0 C1 cos 	1

0 
1 0 
2 C1 sin 	1�
�

�

�

�

�
�

�

�

�

	
�

�




�

�
�

�



�
cos 
1T sin 
1T cos 
2T sin 
2T C2 cos 	2

−
1 sin 
1T 
1 cos 
1T 
2 sin 
2T −
2 cos 
2T C2 sin 	2

−e

0
	
�

�




�

�
�

�



�

=
e

, (21)

0

where 
1 =	� and 
2 =	�+2�. Provided that the matrix of coefficients is nonsingular,

the above relation provides a unique solution for the coefficients C1, C2, 	1, and 	2 and

determines the solution (19). Once the solution is determined, the period T of the motion

is computed by imposing the additional condition that the total energy of the motion is

conserved and equal to h. This completes the calculation. Singularities of the matrix of

coefficients indicates points where analytic continuation of this particular branch of

solutions cannot take place, i.e. bifurcation points of the solution.

Similar BVPs can be formulated for determining the branches of solutions and

bifurcation points of other types of vibro-impact modes, such as, in-phase synchronous
motions [solution (19) with boundary conditions x(0)=−e, x(T/2)= e, y(0)=−e,
y(T/2)= e], out-of-phase synchronous motions [boundary conditions x(0)=−e,
x(T/2)= e, y(0)= e, y(T/2)=−e], and ‘loop’ vibro-impact modes (see discussion and

results below, corresponding to boundary conditions x(0)=�e, ẋ(T/2)=0, ẏ(0)=0,

y(T/2)=�e).
The numerical solutions of the aforementioned BVPs enable us to fully understand the

series of bifurcations that generate the instability of the in-phase mode, as depicted in the

Poincaré maps of Figure 9. In Figure 10 we provide the complete bifurcation structure

that gives rise to this instability for the system whose Poincaré maps were depicted

previously. In the plots of this figure we graph the values of y and ẏ vs e for each branch

of periodic solutions at the time instant when x=0 and ẋ� 0. There are four families

of periodic solutions in this bifurcation structure. For e�	2 the in-phase mode ‘A’ is

non-impacting and stable. At e=	2 the in-phase mode becomes where it coalesces with

four unstable branches: two of loop’ vibro-impact modes ‘C’, and two of double-sided

synchronous modes ‘B’. The mode ‘B’ (which were observed in the Poincaré plots of

Figure 9) are generated in two saddle-node bifurcations and exist in stable–unstable pairs

up to e=	2. At e=(	h/
1) sin (�
1/2
2)� 1·40099 the in-phase mode regains stability
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Figure 10. The bifurcation structure associated with the instability of the in-phase mode. Graphs of (a) y and

(b) ẏ vs e for each periodic solution at the time instant when x=0 and ẋ� 0: ——, stable; - - - - -, unstable
motions.

in a pitchfork bifurcation and generates two unstable branches of solutions ‘D’. These are

in-phase synchronous motions with coinciding endpoints with the in-phase mode, and

cease to exist at e=(1/
1)	h/{1+2 tan2 [(�/2)+ (�
1/2
2)]}� 1·38813, when they

coalesce with the stable modes ‘B’ in saddle-node bifurcations. The bifurcation structure

of Figure 10 agrees completely with the numerical simulations of Figure 9, and leads to

a full understanding of the dynamic phenomena associated with the instability of the

in-phase mode.

The bifurcation results depicted in Figure 10 reveal the richness of the dynamics of the

system. Indeed, in the region where the symmetric in-phase NNM looses stability it gives

rise to stable or unstable motions with differing impacting patterns. Solutions C (cf.

Figure 10) are of particular interest due to their loop-like appearance, indicating nontrivial

phase differences between the two position coordinates; moreover, these motions
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correspond to anisochronous and single-impacts for x and y. Similar anisochronous and

single-impacts occur in solutions B, but for these motions trivial phase differences occur

between the coordinates. Nontrivial phase differences between x and y also occur in

solutions D, but these represent unstable free oscillations. We point out that it would be of

considerable interest to analytically study the degenerate bifurcations associated with the

loss of stability of the in-phase mode at e=	2. These bifurcations indicate that the

initiation of impacts (grazing) for the in-phase mode is destabilizing, although the mode

regains stability when the non-linear impacting effects become stronger for e� 1·40099.

Additional bifurcations are expected to occur involving motions in the configuration plane

of increased complexity. Such bifurcations can be studied using the techniques outlined

herein, by imposing different boundary conditions and impacting restrictions for the

motions to be studied.

Similar BVP computations help us understand the bifurcations giving rise to the

localized vibro-impact mode that appears in the Poincaré maps of Figure 8. As mentioned

previously, due to symmetry there exists two such localized modes, one localizing in the

x-coordinate, and the other in the y-coordinate. Here we will analyze only the mode

localizing in the x-coordinate, but a similar calculation can be performed for the other

mode. To this end, we seek localized solutions governed by equation (19) between impacts,

with only the x-coordinate impacting, and boundary conditions

x(0)=−e, x(T/2)= e, ẏ(0)=0, ẏ(T/2)=0. (22)

In Figure 11 we depict the numerical solutions of the BVP. The solutions are depicted as

graphs of y vs e for each periodic solution at the time instant when x=−e. We note that

the localized mode is generated at e� 1·79 in a saddle-node bifurcation. The unstable

mode of the bifurcation has the same impacting properties with the localized mode and

ceases to exist at e=	5/3� 1·291 when it coalesces with the out-of-phase vibro-impact

mode in a pitchfork bifurcation. After this bifurcation the out-of-phase modes loses

stability, and remains unstable for lower values of e. It is the transverse intersections of

the invariant manifolds of this unstable mode that give rise to the small chaotic regime

in the central region of the Poincaré plot of Figure 8(f).

In the previous sections we analyzed some of the dynamic phenomena occurring in the

direct vibro-impact problem of a two-degree-of-freedom linear or nonlinear oscillator

undergoing purely elastic impacts. We considered both analytical and numerical
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techniques, which enabled us to study local and global dynamics, and bifurcations

generating vibro-impact mode localization and mode instabilities. We now turn our

attention to the inverse problem associated with the two degree-of-freedom system. This

problem seeks the systems that under vibro-impact conditions generate an a priori specified
trajectory in the configuration plane. The solutions of the inverse problem provide

interesting insight on the class of dynamical systems that are capable of producing required

pre-determined vibro-imapct orbits.

3. THE INVERSE PROBLEM

The inverse problem associated with the vibro-impact oscillator of Figure 1 is posed as

follows. Consider the equations of motion (1) and assume that the trajectory of the system

in the configuration plane follows a specified orbit: What is the required potential function

�(x, y) required for such an orbit to exist? Moreover, under what conditions does such

a potential function exist and when is it unique? In what follows we will discuss in detail

a method of solution to the inverse problem and will provide some numerical applications.

Although the inverse problem considered herein addresses the two-degree-of-freedom

vibro-impact oscillator, it can be easily generalized to higher dimensions. In addition, in

the following exposition the inverse problem is formulated for a motion composed of two

two-sided impacting branches. Generalization to other types of vibro-impact motion can

be similarly performed.

Considering again the equations of motion (1), we assume that the orbit of the system

in the configuration space is composed of two double-sided impacting branches. We

further assume that each branch is sufficiently smooth to be expanded in power series in

x for the entire range of the vibro-impact motion:

y= ŷ1(x)= �
k=0

akxk and y= ŷ2(x)= �
k=0

bkxk for −e� x� e. (23)

Assuming that the coefficients ak and bk in the above series are specified, we seek the

potential energy function �(x, y) that is required for such a motion. Expressing the

potential function in the general form

�(x, y)= �
i+ j� 2

cijxiyj for i, j=0, 1, 2, . . . , (24)

the solution of the inverse problem reduces to the determination of the coefficients cij in

the above expression.

Since the branches (23) represent double-sided vibro-impact orbits, they must satisfy the

differential equation (4) and the set of compatibility conditions (5). Substituting equations

(23) and (24) into equations (4) and (5) we obtain the algebraic equations

2� �
k=2

k(k−1)�kxk−2��h− �
i+ j� 2

cijxi� �
k=0

�kxk�
j

�
−�1+� �

k=1

k�kxk−1�
2

�� �
k=1

k�kxk−1�� �
i+ j� 2

icijxi−1� �
k=0

�kxk�
j

�
+� �

i+ j� 2

jcijxi� �
k=0

�kxk�
j−1

��1+� �
k=1

k�kxk−1�
2

�=0, �k = ak or bk , (25a)
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complemented by the compatibility conditions

�
k=0

ak (�e)k = �
k=0

bk (�e)k and �
k=1

kak (�e)k−1 =− �
k=1

kbk (�e)k−1. (25b)

These equations govern the sought coefficients cij , and their solution provides the answer

to the inverse problem. We note that conditions (25b) do not involve the unknowns cij ,

and represent mere geometric restrictions on the assumed vibro-impact branches (23).

Considering relations (25a), we make the initial observation that, if we truncate the infinite

summations to only the first N terms, by matching coefficients of respective powers xk we

obtain an underdetermined set of 2N algebraic equations for N2 unknowns. Hence, in

general, the inverse problem appears to possess non-unique solutions.

Due to the difficulty of analyzing the general equations (25), it will be necessary to

consider specific geometric forms for the branches (23) in order to proceed with concrete

solutions of the inverse problem. Hence, as an application, we consider a vibro-impact time

periodic solution composed of the two branches

y= ŷ1(x)= a−(a/e2)x2 and y= ŷ2(x)=−ŷ1(x)=−a+(a/e2)x2 for −e� x� e.

(26)

In terms of the previous notation we have, a0 = a, a1 =0, a2 =−(a/e)2, ak =0, k� 3, and

b0 =−a, b1 =0, b2 = (a/e)2, bk =0, k� 3. Substituting these values into relations (25a),

and considering terms only up to O(x3) we obtain the following matrix relation governing

the leading coefficients of the potential function:

K+ L+
2 L+

3 0 0 0 0 0 h D+
1

K− L−
2 L−

3 0 0 0 0 0 c02 D−
1

0 0 0 M+
1 M+

2 0 0 0 c03 D+
2

0 0 0 M−
1 M−

2 0 0 0 c11 D−
2�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

	
�

�

�

�

�

�

�

�




�

�
�

�

�

�

�

�

�

�



�

	
�

�

�

�

�

�

�

�




�

�
�

�

�

�

�

�

�

�



�

0 N+
2 N+

3 0 0 O+
0 O+

1 0 c12

=
D+

3

, (27)

0 N−
2 N−

3 0 0 O−
0 O−

1 0 c20 D−
3

0 0 0 P+
1 P+

2 0 0 Q+
0 c21 D+

4

0 0 0 P−
1 P−

2 0 0 Q−
0 c30 D−

4

where the various coefficients are defined in Appendix A. Assuming that all coefficients

ci j , i� 4, are set equal to zero, the above matrix relation governs exactly the inverse

problem and involves no approximation. The vector on the right-hand-side depends on

an infinite number coefficients cij (cf. Appendix A), and, hence, the inverse problem

possesses non-unique solutions. Furthermore, it can be realized that problem (27) can be

decomposed into two separate subproblems, one governing the coefficients c1j and c3p with

j� 1, p� 0, and the other governing the coefficients c0k and c2p with k� 2, p� 0. The

solutions of these subproblems are summarized below.

(1) Subproblem I governing c1j and c3p with j� 1, p� 0.

� If c1j =0, j� 1, then,

either, c3p =0, p� 0

or, c30 =D+
4 /Q+

0 , and c3j , j� 1 satisfy �
j� 1

c3j (Q+
j +Q−

j )=0.
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�c11

c12�=�M+
1

M−
1

M+
2

M−
2 �

−1

�D+
2

D−
2 �, c30 = (D+

4 −P+
1 c11 −P+

2 c12)/Q+
0

and c3j , j� 1 satisfy the relation

(D+
4 −P+

1 c11 −P+
2 c12)/Q+

0 = (D−
4 −P−

1 c11 −P−
2 c12)/Q−

0 .

(2) Subproblem II governing c0k and c2p with k� 2, p� 0.

In this case we cannot have the trivial solution c0j =0, j� 2 and these coefficients

satisfy

�c02

c03�=�L+
2

L−
2

L+
3

L−
3 �

−1

�−hK+ +D+
1

−hK− +D−
1 �.

the remaining coefficients satisfy the relation

�c20

c21�=�O+
0

O−
0

O+
1

O−
1 �

−1

��N+
2

N−
2

N+
3

N−
3 ��−c02

−c03�+�D+
3

D−
3 ��.

All matrices in the solutions above are invertable, provided that the parameter a of the

trajectory (26) is nonzero. This eliminates the possibility of a trivial trajectory in the

configuration plane.

A solution to the inverse problem can be formed by combining one of the two solutions

of subproblem 1 with the solution of subproblem 2. We note that since the above solutions

involve an infinite number of coefficients, one can obtain an infinity of solutions to the

inverse problem by assigning arbitrary values to all the coefficients except the ones required

to satisfy the above relations. Perhaps the simplest of these solutions is obtained by setting

c1j =0, j� 1 and c3p =0, p� 0 (solution of subproblem 1), and c02 =2h/(2a2 + e2), c0j =0,

j� 3, c20 = h/2(2a2 + e2), c2j =0, j� 1 (solution of subproblem 2). Hence, we obtain a

linear system with clearance nonlinearities, which is predicted to possess the vibro-impact

periodic solution (26). In Figure 12 we superimpose the theoretical orbit (26) and the

numerical orbit obtained by direct numerical integration of the vibro-impact equations of

Figure 12. Comparison between theoretical and numerical solutions of the inverse problem.
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motion. The agreement between theory and numerical integration validates the previous

inverse analysis.

Summarizing, in this section we formulated an inverse vibro-impact problem by

computing the required potential function of a system in order to produce a specified

trajectory in the configuration plane. Although the analysis herein was performed for a

double-branch orbit of parabolic shape, the technique can be applied to a more general

class of orbits with single- or double-sided impacts. An interesting aspect of the inverse

problem analyzed is the degeneracy of its solutions: indeed, it was found that an infinity

of vibro-impact systems can produce the specified trajectory, a result which is due, perhaps,

to its relatively simple parabolic shape. It is conjectured that the degeneracy of solutions

of the inverse problem decreases as the shape of the trajectory becomes more complicated.

This is an interesting topic for some future research.

4. DISCUSSION

We studied direct and inverse problems associated with vibro-impact oscillations of

discrete systems. The usefulness of the presented analytical/numerical techniques stems

from the fact that the majority of previous vibro-impact works were direct problems and

centered on dynamical systems with a single impacting coordinate. By contrast, in this

work we examined systems with two impacting coordinates, undergoing single- or

double-sided impacts. The analytical methods employed were a NNM-type analysis and

a BVP formulation. In the NNM-type analysis the displacement of one of the particles

was expressed as a function of the displacement of the other particle, and the functional

relation of the motions of the two particles was asymptotically approximated. The BVP

enabled the computation of various branches of bifurcating time-periodic solutions with

different impacting properties. Numerical results were obtained by direct integrations of

the equations of motion and then used to construct Poincaré maps.

The class of vibro-impact systems considered possesses rich nonlinear dynamical

behavior, including vibro-impact localized and nonlocalized time-periodic motions (which

can be considered as analytic continuations in the vibro-impact regime of NNMs of

corresponding smooth dynamical systems), as well as, complicated bifurcation sequences

giving rise to new types of single- or double-sided impacting motions, instabilities, and

chaotic responses. These bifurcations can be studied using appropriate BVPs and

numerical Poincaré maps.

We also formulated inverse vibro-impact problems, whereby we sought systems that

would produce specified orbits in the configuration plane. As expected from experience

with similar types of inverse problems for other engineering areas, the solution of the

vibro-impact inverse problem is generally non-unique, since it can be reduced to an

underdetermined set of algebraic equations with multiple infinities of unknowns. The

inverse problems discussed in this work can find applications to tracking problems were

the design task calls for the responses of the coordinates of a system to track specified

paths. Such problems arise often in kinematics and dynamics of mechanisms, and in other

engineering applications.

The presented techniques can be extended to vibro-impact oscillators with more than

two degrees-of-freedom, although in such cases the computational and numerical effort is

expected to increase. Moreover, the outlined analysis can be used to study bifurcations

associated with the inverse problem, i.e., to investigate degeneracies in the class of

dynamical vibro-impact systems that produce a specified orbit in configuration space. That

would be an interesting problem in inverse nonlinear dynamics. In addition, the mentioned

analytical and numerical techniques can be applied to study the bifurcation structure of
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the periodic solutions of multi-degree-of-freedom vibro-impact systems, and to establish

regions of regular and chaotic responses.
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APPENDIX A: COEFFICIENTS OF THE MATRIX EQUATION (23)

The coefficients are expressed in terms of the geometric parameters of the trajectory (22)

as follows:

K� =(�4a/e2),

L�
j =−4(�a/e2)(�a)j + j(�a) j−1, j=2, 3, . . . ,

M�
j =−6(�a/e2)(�a)j + j(�a) j−1, j=1, 2, . . . ,

N�
j = j(j−1)(�a)j−2(�a/e2), j=2, 3, . . . ,

O�
j =−8(�a/e2)(�a)j + j(�a) j−1, j=0, 1, . . . ,

P�
j =−2j(a2/e4)(�a) j−1 −8(�a/e2)(a2/e4)(�a) j + j(j−1)(�a) j−2(�a/e2)

j=1, 2, . . . ,

Q�
j =−10(�a/e2)(�a) j + j(�a) j−1 j=0, 1, . . . ,

D�
1 =− �

j� 4

c0jL�
j , D�

2 =− �
j� 3

c1jM�
j , D�

3 =− �
j� 4

c0jN�
j − �

j� 2

c2jO�
j ,

D�
4 =− �

j� 3

c1jP�
j − �

j� 1

c3jQ�
j .
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