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The fold-flip bifurcation occurs if a map has a fixed point with multipliers +1 and −1 simul-
taneously. In this paper the normal form of this singularity is calculated explicitly. Both local
and global bifurcations of the unfolding are analyzed by exploring a close relationship between
the derived normal form and the truncated amplitude system for the fold-Hopf bifurcation of
ODEs. Two examples are presented, the generalized Hénon map and an extension of the Lorenz-
84 model. In the latter example the first-, second- and third-order derivatives of the Poincaré
map are computed using variational equations to find the normal form coefficients.
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1. Introduction

Consider a family of discrete-time dynamical
systems generated by iteration of

x 7→ F (x, α) , (1)

where map F : R
n×R

m → R
n is sufficiently smooth.

It is well known (see e.g. [Arnold, 1983] for
the general theory and [Kuznetsov, 1998] for com-
putational formulas) that in generic one-parameter
families (1) only the following three bifurcations of
fixed points happen:

1. Fold: The fixed point has a simple eigenvalue
λ1 =1 and no other eigenvalues on the unit circle,
while the restriction of (1) to a one-dimensional
center manifold at the critical parameter value
has the form

ξ 7→ ξ +
1

2
aξ2 + O(ξ3) , (2)

where a 6= 0. When the parameter crosses
the critical value, two fixed points coalesce

and disappear. This bifurcation is often called
the saddle-node bifurcation. If Av = Fxv and
B(u, v) = Fxx[u, v] are evaluated at the criti-
cal fixed point, then

a = 〈q∗, B(q, q)〉 , (3)

where Aq = q, AT q∗ = q∗, and 〈q∗, q〉 = 1. Here
and in what follows 〈u, v〉 = ūT v is the standard
scalar product in C

n (or R
n).

2. Flip: The fixed point has a simple eigenvalue
λ1 = −1 and no other eigenvalues on the unit
circle, while the restriction of (1) to a one-
dimensional center manifold at the critical pa-
rameter value can be transformed to the normal
form

ξ 7→ −ξ +
1

6
bξ3 + O(ξ4) , (4)

where b 6= 0. When the parameter crosses the
critical value, a cycle of period 2 bifurcates from
the fixed point. This phenomenon is often called
the period-doubling bifurcation. If C(u, v, w) =

1
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Fxxx[u, v, w] is evaluated at the critical fixed
point, then

b = 〈p∗, C(p, p, p) + 3B(p, (In − A)−1B(p, p))〉,
(5)

where In is the unit n × n matrix, Ap =
−p, AT p∗ = −p∗, and 〈p∗, p〉 = 1.

2. Neimark–Sacker: The fixed point has simple
critical eigenvalues λ1,2 = e±iθ0 and no other
eigenvalues on the unit circle. Assume that

eiqθ0 − 1 6= 0 ,

q = 1, 2, 3, 4 (no strong resonances) .

Then, the restriction of (1) to a two-dimensional
center manifold at the critical parameter value
can be transformed to the normal form

η 7→ ηeiθ0

(

1 +
1

2
d|η|2

)

+ O(|η|4) , (6)

where η is a complex variable and d is a complex
number. Further assume that

c = Re d 6= 0 .

Under the above assumptions, a unique closed

invariant curve around the fixed point appears
when the parameter crosses the critical value.
One has the following expression for d:

d = e−iθ0〈v∗, C(v, v, v̄)

+ 2B(v, (In − A)−1B(v, v̄))

+B(v̄, (e2iθ0In − A)−1B(v, v))〉 , (7)

where Av = eiθ0v, AT v∗ = e−iθ0v∗, and 〈v∗,
v〉 = 1.

In generic two-parameter families, the above
listed codim 1 bifurcations occur when we cross
the corresponding bifurcation curve (defined by the
single condition on the eigenvalues) at a typical
point. Moreover, one can choose the eigenvectors so
that the normal form coefficients a, b and c will be
smooth functions along these curves.1 While trac-
ing a bifurcation curve in a generic two-parameter
family (1), one may encounter a double-degenerate
singularity if either (i) extra eigenvalues approach
the unit circle, thus changing the dimension of the
center manifold; or (ii) one of the nonequalities on
the normal form coefficients mentioned above be-
comes an equality. Therefore, the following eleven
doubly degenerate (or codim 2) bifurcation points

can be met in generic two-parameter families of
maps:

D1 : λ1 = 1, a = 0 (cusp) ;

D2 : λ1 = −1, b = 0 (generalized flip) ;

D3 : λ1,2 = e±iθ0 , c = 0 (Chenciner point) ;

D4 : λ1 = λ2 = 1 (1:1 resonance) ;

D5 : λ1 = λ2 = −1 (1:2 resonance) ;

D6 : λ1,2 = e±iθ0 , θ0 = 2π/3 (1:3 resonance) ;

D7 : λ1,2 = e±iθ0 , θ0 = π/2 (1:4 resonance) ;

D8 : λ1 = 1, λ2 = −1 ;

D9 : λ1 = 1, λ2,3 = e±iθ0 ;

D10 : λ1 = −1, λ2,3 = e±iθ0 ;

D11 : λ1,2 = e±iθ0 , λ3,4 = e±iθ1 .

The cases D1–D7 are well understood and presented
in many textbooks (see, e.g. [Arnold, 1983; Ar-
rowsmith & Place, 1990; Kuznetsov, 1998]). Notice
that these are the only possibilities if the map
(1) is a Poincaré map associated with a limit
cycle in a three-dimensional autonomous system
of ODEs: Then there are just two eigenval-
ues λ1,2 and their product is always positive
due to the Liouville Theorem, i.e. λ1λ2 > 0.
This is why cases D8–D11 received much less
attention.

This paper is devoted to a detailed analysis of
case D8, that we call the fold-flip bifurcation. This
bifurcation has been first treated by [Gheiner, 1994].
In the present paper we clarify, correct, and extend
that analysis. In Sec. 2, we derive the parameter-
dependent normal form for a generic fold-flip bi-
furcation and express explicitly the critical normal
form coefficients in two- and n-dimensional systems.
In Sec. 3 we complete the analysis of local bifurca-
tions of the normal form and study global bifurca-
tions approximating the map by time-shifts along
orbits of an auxiliary planar ODE, present (as com-
plete as possible) bifurcation diagrams of the trun-
cated normal form, including computer-generated
phase portraits, and then discuss effects of the trun-
cation. Section 4 is devoted to the normal form anal-
ysis of the fold-flip bifurcation in two examples: A
generalized Hénon map and the Poincaré map for a
four-dimensional extension of the Lorenz-84 model.
The generalized Hénon map appears in the study of

1The coefficient θ0 also has this property.
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bifurcations of diffeomorphisms with codim 2 homo-
clinic and heteroclinic tangencies, while the second
model describes the atmospheric circulation and, to
our best knowledge, is the first autonomous ODE
system appearing in applications that demonstrates
the fold-flip bifurcation. For this model, we compute
numerically the partial derivatives of the Poincaré
map (see Appendix) and then use them to evalu-
ate the critical normal form coefficients and, thus,

demonstrate the nondegeneracy of the fold-flip in
this case.

2. Normal Form for the Fold-Flip

Bifurcation

2.1. Planar normal form

Proposition 2.1.1 (Critical normal form). Sup-

pose a smooth map F0 : R
2 → R

2 has the form

(

ξ1

ξ2

)

7→













ξ1 +
∑

i+j=2,3

1

i!j!
gijξ

i
1ξ

j
2

− ξ2 +
∑

i+j=2,3

1

i!j!
hijξ

i
1ξ

j
2













+ O(‖ξ‖4) (8)

and h11 6= 0. Then F0 is smoothly equivalent near the origin to a map

(

x1

x2

)

7→





x1 +
1

2
a(0)x2

1 +
1

2
b(0)x2

2 +
1

6
c(0)x3

1 +
1

2
d(0)x1x

2
2

−x2 + x1x2



+ O(‖x‖4) , (9)

where

a(0) =
g20

h11
, b(0) = g02h11 ,

c(0) =
1

h2
11

(

g30 +
3

2
g11h20

)

,

(10)

d(0)

=
3g02(h02h20+2h21−2g11h20)−g20(3h

2
02+2h03)

6h11

−g2
11+g12+

1

2
g11h02−h2

02−
2

3
h03. (11)

Proof

Step 1 (Quadratic terms). Applying to (8) a poly-
nomial coordinate transformation














ξ1 = x1 +
1

2
G20x

2
1 + G11x1x2 +

1

2
G02x

2
2 ,

ξ2 = x2 +
1

2
H20x

2
1 + H11x1x2 +

1

2
H02x

2
2 ,

(12)

we obtain:

x1 7→ x1 +
1

2
g20x

2
1 + (g11 + 2G11)x1x2

+
1

2
g02x

2
2 + · · · ,

x2 7→ −x2 +
1

2
(h20 − 2H20)x

2
1 + h11x1x2

+
1

2
(h02 − 2H02)x

2
2 + · · · ,

where dots stand for higher-order terms. By setting

G11 = −1

2
g11, H20 =

1

2
h20, H02 =

1

2
h02 , (13)

we eliminate as much quadratic terms as possible.
The remaining quadratic terms are called resonant.

Step 2 (Cubic terms). Assume now that Step 1
is already done, so that (8) has only resonant
quadratic and all cubic terms. Consider a polyno-
mial transformation:















































ξ1 = x1 +
1

6
G30x

3
1 +

1

2
G21x

2
1x2 +

1

2
G12x1x

2
2

+
1

6
G03x

3
2 ,

ξ2 = x2 +
1

6
H30x

3
1 +

1

2
H21x

2
1x2 +

1

2
H12x1x

2
2

+
1

6
H03x

3
2 ,

(14)

3
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Obviously, it does not change the quadratic terms.
After this transformation, we get

x1 7→ x1 +
1

2
g20x

2
1 +

1

2
g02x

2
2

+
1

6
g30x

3
1 +

1

2
(g21 + 2G21)x

2
1x2

+
1

2
g12x1x

2
2 +

1

6
(g03 + 2G03)x

3
2 + · · ·

and

x2 7→ −x2 + h11x1x2 +
1

6
(h30 − 2H30)x

3
1

+
1

2
h21x

2
1x2 +

1

2
(h12 − 2H12)x1x

2
2

+
1

6
h03x

3
2 + · · · .

By setting

G21 = −1

2
g21, G03 = −1

2
g03 ,

H30 =
1

2
h30, H12 =

1

2
h12,

we eliminate four cubic terms. The remaining cubic
terms are also called resonant. They are not altered
by (14).

Step 3 (More cubic terms). The coefficients H11,
G20, and G02 of (12) do not affect quadratic terms
of (8) but alter its cubic terms. Taking into account
(13) while computing the cubic terms of the trans-
formed map, we obtain

x1 7→x1 +
1

2
g20x

2
1+

1

2
g02x

2
2+

1

6

(

g30+
3

2
g11h20

)

x3
1

+
1

2

(

2g02H11−g02G20+(g20+2h11)G02

+
1

2
g11h02+g12−g2

11

)

x1x
2
2+· · ·

and

x2 7→ −x2 + h11x1x2

+
1

2

(

g20H11 + h11G20 − g11h20

+
1

2
h02h20 + h21

)

x2
1x2

+
1

6

(

3g02H11 + 3G02h11 + h03 +
3

2
h2

02

)

x3
2

+ · · · ,

where only the resonant cubic terms are displayed.
Thus, we can try to eliminate three altered terms
by selecting H11, G20 and G02. This implies solving
the following linear system:







2g02 −g02 2h11 + g20

g20 h11 0

3g02 0 3h11













H11

G20

G02







=

















−1

2
g11h02 − g12 + g2

11

g11h20 −
1

2
h02h20 − h21

−h03 −
3

2
h2

02

















.

Its matrix has zero determinant. However, using the
nondegeneracy condition h11 6= 0, we can eliminate
the resonant cubic terms in the second component
of the normal form. Thus, we set

H11 = 0 (15)

and from the above linear system obtain:

G02 = − 1

h11

(

1

3
h03 +

1

2
h2

02

)

,

G20 =
1

h11

(

g11h20 − h21 −
1

2
h02h20

)

.

(16)

Step 4 (Final transformation). Transform now the
original map (8) using (12) with the coefficients
(13) defined in Step 1, and (15), (16) defined
in Step 3. This results in a map with resonant
quadratic terms, nonresonant cubic terms, and only
two remaining resonant cubic terms in the first com-
ponent. Transformation (14) from Step 2 allows
then to eliminate all nonresonant cubic terms, while
keeping unchanged all remaining quadratic and cu-
bic resonant terms. Finally, make the linear scaling

x1 7→ x1

h11

to put the coefficient in front of x1x2 in the sec-
ond component equal to one. As a result, we obtain
the expressions (10) and (11) for the critical normal
form coefficients. �

Remark 2.1.2. We have obtained the same criti-
cal normal form (9) as Gheiner [1994]. Moreover,
we have derived explicit expressions for the critical
normal form coefficients.

4
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Proposition 2.1.3 (Parameter-dependent normal
form). Consider a smooth two-parameter family of

smooth planar maps

ξ 7→ F (ξ, α), ξ ∈ R
2, α ∈ R

2 ,

where F : R
2×R

2 → R
2 is smooth and such that

1. F0 : R
2 → R

2, ξ 7→ F0(ξ) = F (ξ, 0) satisfies

Proposition 2.1.1;

2. The map T : R
2 × R

2 → R
2 × R × R, defined by

(

ξ

α

)

7→ T (ξ, α) =







F (ξ, α) − ξ

detFξ(ξ, α) + 1

TrFξ(ξ, α)






(17)

is regular at (ξ, α) = (0, 0).

Then F is smoothly equivalent near the origin to a

family

(

x1

x2

)

7→





µ1 + (1 + µ2)x1 +
1

2
a(µ)x2

1 +
1

2
b(µ)x2

2 +
1

6
c(µ)x3

1 +
1

2
d(µ)x1x

2
2

−x2 + x1x2



+ O(‖x‖4) , (18)

where all coefficients are smooth functions of µ
and their values at µ1 = µ2 = 0 are given by (10)
and (11).

Remark 2.1.4. Map (17) can be substituted by the
map

(

ξ

α

)

7→







F (ξ, α) − ξ

det(Fξ(ξ, α) + I2)

det(Fξ(ξ, α) − I2)






.

Proof of Proposition 2.1.3. Expand F in ξ at ξ = 0
for any small ‖α‖:

ξ 7→ F (ξ, α) = γ(α) + A(α)ξ + R(ξ, α) ,

where γ(0) = 0 and R(ξ, α) = O(‖ξ‖2). The first
assumption implies the existence of two eigenvec-
tors, q(α) and p(α) in R

2, such that

A(α)q(α) = λ1(α)q(α), A(α)p(α) = λ2(α)p(α) ,

where λ1(0) = 1 and λ2(0) = −1. Note that, due
to the simplicity of the eigenvalues ±1 of A(0), λ1,2

depend smoothly on α, and q, p can also be assumed
to be smooth functions of α. Any ξ ∈ R

2 can now
be represented for all small ‖α‖ as

ξ = η1q(α) + η2p(α) ,

where η = (η1, η2)
T ∈ R

2. One can compute the
components of η explicitly:

η1 = 〈q∗(α), ξ〉, η2 = 〈p∗(α), ξ〉 ,

where

AT (α)q∗(α) = λ1(α)q∗(α),

AT (α)p∗(α) = λ2(α)p∗(α)

and 〈q∗(α), q(α)〉 = 〈p∗(α), p(α)〉 = 1. Since
〈q∗(α), p(α)〉 = 〈p∗(α), q(α)〉 = 0, the map F in
the η-coordinates takes the form
(

η1

η2

)

7→
(

σ1(α) + λ1(α)η1 + S1(η, α)

σ2(α) + λ2(α)η2 + S2(η, α)

)

, (19)

where
(

σ1(α)

σ2(α)

)

=

( 〈q∗(α), γ(α)〉
〈p∗(α), γ(α)〉

)

,

(

S1(η, α)

S2(η, α)

)

=

( 〈q∗(α), R(η1q(α) + η2p(α), α)〉
〈p∗(α), R(η1q(α) + η2p(α), α)〉

)

.

Expanding S1,2(η, α) further, we can write (19) as

(

η1

η2

)

7→











σ1(α)+λ1(α)η1+
∑

i+j=2,3

1

i!j!
gij(α)ηi

1η
j
2

σ2(α)+λ2(α)η2+
∑

i+j=2,3

1

i!j!
hij(α)ηi

1η
j
2











+O(‖η‖4) . (20)

Now we wish to put (20) in the form of (18)
up to and including cubic terms by means of a
smoothly dependent parameter coordinate transfor-
mation. Consider the following change of variables:






























































η1 = x1+ε0(α)+ε1(α)x2+
1

2
G20(α)x2

1

+G11(α)x1x2+
1

2
G02(α)x2

2

+
1

2
G21(α)x2

1x2+
1

6
G03(α)x3

2,

η2 =x2+δ0(α)+δ1(α)x1+
1

2
H20(α)x2

1

+
1

2
H02(α)x2

2+
1

6
H30(α)x3

2+
1

2
H12(α)x1x

2
2,

(21)

5
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where all coefficients are yet unknown smooth
functions of α such that εi(0) = δi(0) = 0 for
i = 0, 1. Obviously, for α = 0 (21) reduces to
the transformation introduced in Step 4 of the

proof of Proposition 2.1.1 just before the final
scaling.

Require now that the Taylor expansion of (20)
in the x-coordinates up to and including cubic terms
takes the form

(

x1

x2

)

7→







µ1(α) + (1 + µ2(α))x1 +
1

2
A(α)x2

1 +
1

2
B(α)x2

2 +
1

6
C(α)x3

1 +
1

2
D(α)x1x

2
2

−x2 + E(α)x1x2






,

where, µ1(0) = µ2(0) = 0. After all substitutions,
this requirement translates into a system of alge-
braic equations:

Q(ε0, ε1, δ0, δ1, µ1, µ2, G20, G11, G02, G21 ,

G03, H20, H02, H30, H12, A, B, C, D, E) = 0 ,

where Q : R
20 → R

20 results from equating the
corresponding Taylor coefficients. For the Jacobi
matrix J = DQ of this system evaluated at

ε0 = ε1 = δ0 = δ1 = µ1 = µ2 = 0

we have det(J) = −3072h3
11 6= 0. Therefore, the

Implicit Function Theorem guarantees the local
existence and smoothness of the coefficients of
transformation (21) as functions of α.

Moreover, one can show that










































µ1 = A1α1 + A2α2 + O(‖α‖2) ,

µ2 =
1

h11(0)
([(g11(0)B1 + 2A3)h11(0)

− (h02(0)B1 + 2B3)g20]α1

+ [(g11(0)B2 + 2A4)h11(0)

− (h02(0)B2 + 2B4)g20]α2) + O(‖α‖2) ,

(22)

where Ai and Bi are defined by the following
expansions of the coefficients of (20):

σ1(α) = A1α1 + A2α2 + O(‖α‖2) ,

λ1(α) = 1 + A3α1 + A4α2 + O(‖α‖2) ,

σ2(α) = B1α1 + B2α2 + O(‖α‖2) ,

λ2(α) = − 1 + B3α1 + B4α2 + O(‖α‖2) .

(23)

The functions µ1 and µ2 can be taken as the un-
folding parameters if the determinant of the Jacobi
matrix

∆ = det

(

∂µ

∂(α1, α2)

)∣

∣

∣

∣

α=0

6= 0 .

From (22) we have

∆ =
1

2h11
[(A1B2 − A2B1)(g11h11 − g20h02)

+ 2(A1A4 − A2A3)h11

+2(A2B3 − A1B4)g20]α=0 .

On the other hand, taking into account (23), we
obtain by direct computations:

det

(

∂T

∂(η, α)

)∣

∣

∣

∣

η=α=0

= 4h11∆ ,

where T is the map (17) written in the (η, α)-
coordinates, i.e. for the map (20). Thus, if h11(0) 6=
0, the regularity of (17) at the origin is equivalent
to ∆ 6= 0.

The scaling

x1 7→ x1

E(µ)
, µ1 7→ µ1

E(µ)
,

where E(µ) = h11(0) + O(‖α‖), gives finally (18).
Obviously, the critical coefficients are the same as
in Proposition 2.1.1. �

2.2. Center manifold reduction

We now apply a special version of the center mani-
fold reduction combined with the normalization to
our model (see [Kuznetsov, 1999; Beyn et al., 2002]
and references therein for the case of ordinary differ-
ential equations). Consider a two-parameter family
of maps F : R

n × R
2 → R

n,

x 7→ F (x, α) , (24)

having at α = 0 a fixed point x = 0 with two simple
λ1,2 = ±1 and no other critical eigenvalues. We can
write:

F (x, α) = Ax + A1α +
1

2
B(x, x) + B1(x, α)

+
1

6
C(x, x, x) +

1

2
C1(x, x, α) + · · · ,

6
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where only relevant homogeneous linear, quadratic
and cubic terms are displayed. The multilin-
ear forms B and C are defined in Sec. 1,
while B1(q, β) = Fxα[q, β] and C1(q, p, β) =
Fxxα[q, p, β] are evaluated at (x, α) = (0, 0). The
matrix A has the eigenvalues λ1,2 = ±1. Introduce
the associated eigenvectors q, q∗, p, p∗, such that

Aq = q, AT q∗ = q∗, 〈q∗, q〉 = 1 ,

Ap = −p, AT p∗ = −p∗, 〈p∗, p〉 = 1 .

We wish to restrict (24) to its two-dimensional
center manifold

x = H(w, β), H : R
2 × R

2 → R
n , (25)

depending on two parameters (β1, β2). Expand
H as

H(w, β)

=
∑

j1+j2+k1+k2≥1

1

j1!j2!k1!k2!
hj1j2k1k2

wj1
1 wj2

2 βk1

1 βk2

2 .

Using the freedom of choosing the w-coordinates on
the center manifold, we can assume that the restric-
tion of (24) to (25),

w 7→ G(w, β), G : R
2 × R

2 → R
2 , (26)

has been put into the form

G(w, β) =









β1 + (1 + β2)w1 +
1

2
a1(β)w2

1 +
1

2
b1(β)w2

2 +
1

6
c1(β)w3

1 +
1

2
c2(β)w1w

2
2

−w2 + e1(β)w1w2 +
1

2
c3(β)w2

1w2 +
1

6
c4(β)w3

2









+ O(‖w‖4)

Furthermore, we assume a dependence

α = K(β) = K1β + O(‖β‖2) ,

where K : R
2 → R

2 and K1 is a 2 × 2-matrix.

Remark 2.2.1. Note that we have included all terms
which become resonant at α = 0 in the second com-
ponent of the normal form (26). In the proof of
Proposition 2.1.1 we used primary and secondary
normalization. By the primary normalization we ap-
plied a quadratic change of coordinates to remove
nonresonant quadratic terms, and a cubic change
for nonresonant cubic terms. The secondary nor-
malization used quadratic terms to remove some
resonant cubic terms, if an additional nondegener-
acy condition is satisfied. Sometimes this is called a
hypernormalization. The coefficient d(0) is changed
by this secondary normalization. A priori we do
not know if the nondegeneracy condition h11 6= 0
is satisfied. Therefore we compute all cubic coef-
ficients in the second component of G, and then
use formulas (10) and (11) to obtain the critical
coefficients.

The condition of invariance of the center man-
ifold is the homological equation

F (H(w, β), K(β)) = H(G(w, β), β) . (27)

Collecting quadratic terms in Eq. (27) gives for

β = 0

(A − In)h2000 = a1(0)q − B(q, q) ,

(A + In)h1100 = e1(0)p − B(p, q) ,

(A − In)h0200 = b1(0)q − B(p, p) ,

(28)

while the cubic coefficients are obtained from

(A − In)h3000 = c1(0)q + 3a1(0)h2000 − 3B(q, h2000)

−C(q, q, q) ,

(A − In)h1200 = c2(0)q + b1(0)h2000 − 2e1(0)h0200

−B(q, h0200) − 2B(p, h1100)

−C(p, p, q) ,

(A + In)h2100 = c3(0)p + (2e(0) − a(0)) h1100

− 2B(q, h1100) − B(p, h2000)

−C(q, q, p) ,

(A + In)h0300 = c4(0)p − 3b1(0)h1100

− 3B(p, h0200) − C(p, p, p) .

Since 1 and −1 are simple eigenvalues of A, the
Fredholm solvability condition yields the critical
quadratic coefficients

a1(0) = 〈q∗, B(q, q)〉, e1(0) = 〈p∗, B(p, q)〉 ,

b1(0) = 〈q∗, B(p, p)〉 ,

7
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and using the bordering technique described in
[Kuznetsov, 1999] we find

h2000 = (A − I)INV (〈q∗, B(q, q)〉q − B(q, q)) ,

h1100 = (A + I)INV (〈p∗, B(q, p)〉p − B(q, p)) ,

h0200 = (A − I)INV (〈q∗, B(p, p)〉q − B(p, p)) .

Here h = LINV R denotes the unique solution of the
nonsingular bordered linear system:

(

L v

v∗ 0

)(

h

s

)

=

(

R

0

)

.

It is assumed that L has a one-dimensional null-
space, so that Lv = LT v∗ = 0, 〈v∗, v〉 = 1.

It follows from (28) that 〈q∗, h2000〉 = 〈q∗,
h0200〉 = 〈p∗, h1100〉 = 0. Therefore we can
simply write the expressions for the critical cubic
coefficients

c1(0) = 〈q∗, C(q, q, q) + 3B(q, h2000)〉,

c2(0) = 〈q∗, C(q, p, p) + B(q, h0200) + 2B(p, h1100)〉,

c3(0) = 〈p∗, C(q, q, p) + B(p, h2000) + 2B(q, h1100)〉,

c4(0) = 〈p∗, C(p, p, p) + 3B(p, h0200)〉.
Remark 2.2.2. Note that we do calculate e1(0) in
the center manifold reduction. If e1(0) 6= 0, we can
scale and using the previous remark obtain

a(0) =
a1(0)

e1(0)
, b(0) = b1(0)e1(0), c(0) =

c1(0)

e2
1
(0)

,

d(0) = c2(0)

+
1

e1(0)

(

b1(0)c3(0) −
1

3
(2e1(0) + a1(0))c4(0)

)

.

Then a(0), b(0), c(0) and d(0) are the coefficients
for (9).

For β 6= 0 we obtain from Eq. (27) the co-
efficients hj1j2k1k2

and (K1)ij . This shows us how
the center manifold and α depend on β in lin-
ear approximation. The w-independent terms give

(A − In)[h0010 h0001]β = ([q 0] − A1K1)β .

Here [h0010 h0001] should be interpreted as a 2×n
matrix and so on. We take the matrix product with
q∗ and find q∗A1K1 = (1, 0). We have some freedom
and can scale K1 and take as a solution

K1 =
1

γ2
1 + γ2

2

(

γ1 −γ2

γ2 γ1

)

,

with (γ1, γ2) = q∗A1 . (29)

Then one can also solve for h0010, h0001. The equa-
tions for other coefficients are

(A − In)[h1010 h1001]

= [2h2000 q] − 2[B(q, h0010) B(q, h0001)]

−B1(q, K1) ,

(A + In)[h0110 h0101]

= [−h1100 0] − 2[B(p, h0010) B(p, h0001)]

−B1(p, K1) ,

(A − In)[h2010 h2001]

= a(0)[h1010 h1001] + 2[a1(0) h2000 h2000]

− 2[B(h0010, h2000)B(h0001, h2000)]

−B1(h2000, K1) + C1(q, q, K1) ,

(A + In)[h1110 h1101]

= e1(0)[h0110 h0101] + [e1(0)h1100 − h1100]

− 2[B(h0010, h1100)B(h0001, h1100)]

−B1(h1100, K1) − 2C1(q, p, K1) ,

(A − In)[h0210 h0201]

= b1(0)[h1010 h1001] + 2[b1(0)h2000 0]

− 2[B(h0010, h0200)B(h0001, h0200)]

−B1(h0200, K1) − C1(p, p, K1) .

3. Analysis of the Normal Form

Introduce the truncated normal form

(

x1

x2

)

7→ N(x, µ) =







µ1 + (1 + µ2)x1 +
1

2
a(µ)x2

1 +
1

2
b(µ)x2

2 +
1

6
c(µ)x3

1 +
1

2
d(µ)x1x

2
2

−x2 + x1x2






(30)

8
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Remark 3.0.3. Note that (30) is invariant under the
reflection in the x1-axis:

x 7→ Rx, R =

(

1 0
0 −1

)

, (31)

for which R2 = I2. The phase portraits below will
reflect this Z2-symmetry.

Denote the critical values of the normal form coef-
ficients by

a0 = a(0), b0 = b(0), c0 = c(0), d0 = d(0) .

In this section, we study local and global bifurca-
tions of the truncated normal form (30), present
its bifurcation diagrams, and then briefly discuss
relationships between (30) and (9).

3.1. Local codim 1 bifurcations

Proposition 3.1.1. The family of maps (30) has

the following local codim 1 bifurcations in a suf-

ficiently small neighborhood of (x, µ) = (0, 0).

1. There is a curve

tfold : (x1, x2, µ1)

=

(

−µ2

a0
+ O(µ2

2), 0,
µ2

2

2a0
+ O(µ3

2)

)

,

on which a nondegenerate fold bifurcation occurs

if a0 6= 0.
2. There is a curve tflip : (x1, x2, µ1) = (0, 0, 0) on

which a nondegenerate flip bifurcation occurs if

b0 6= 0.
3. If b0 > 0 and µ1 < 0, there is a curve

tNS : (x1, x2, µ2) =

(

0,

√

−2µ1

b0
+ O(µ

3/2
1 ),

(d0 + 2b0)µ1

b0
+ O(µ2

1)

)

,

on which a nondegenerate Neimark–Sacker

bifurcation of the second iterate of (30) occurs,
provided

a2
0b0 + 3a0b0 + a0d0 − b0c0 6= 0 . (32)

Proof. The Jacobi matrix of (30) is

A(x, µ) = Nx(x, µ) =





1 + µ2 + a(µ)x1 +
1

2
c(µ)x2

1 +
1

2
d(µ)x2

2 b(µ)x2 + d(µ)x1x2

x2 −1 + x1



 .

Fold bifurcation. The map (30) has a fixed point
x with multiplier 1 if

{

N(x, µ) = x ,

det(A(x, µ) − I2) = 0 .

Using the Implicit Function Theorem, we see that
this algebraic system has a unique solution curve
tfold near the origin that is given in statement 1. The
critical (adjoint) eigenvectors are q = q∗ = (1, 0)T ,
while

B(p, q) =

(

a0p1q1 + b0p2q2 + O(µ2)

p1q2 + p2q1

)

.

With (3) from Sec. 1, we obtain

afold = a0 + O(µ2) ,

and if a0 6= 0 we have a nondegenerate (quadratic)
fold when µ2 → 0.

Flip bifurcation. Another look at the Jacobi ma-
trix above shows that along the curve tflip defined

in the statement 2, the truncated normal form (30)
has a fixed point with multiplier −1, i.e. this curve
satisfies the algebraic system

{

N(x, µ) = x ,

det(A(x, µ) + I2) = 0 .

Now we have p = p∗ = (0, 1)T as (adjoint) eigen-
vector. Clearly C(p, p, p) = 0 and we compute the
flip coefficient (5) as

bflip =〈p∗, 3B(p, (I2 − A)−1B(p, p))〉=−3b0

µ2
+o(1),

where o(1) is bounded as µ2 → 0. Then, the flip
bifurcation is nondegenerate if b0 6= 0.

Neimark Sacker bifurcation. Considering the
second iterate of (30) we solve for its fixed point
with the determinant of the Jacobi matrix equal to
one, i.e.

{

N(N(x, µ), µ) = x ,

det A(N(x, µ), µ) detA(x, µ) − 1 = 0 .

9
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We find the following exact solution to this system:

x1 = 0, b(µ)x2
2 + 2µ1 = 0, µ2 =

d(µ) + 2b(µ)

b(µ)
µ1 ,

(33)

which implies the expansion for tNS in the statement
3. Evaluating the Jacobian matrix of the second
iterate of (30) on (33), we find

A = (N(N(x, µ), µ))x

=











1 + 6µ1 + 4µ2
1 2b(µ)

√

−
2µ1

b(µ)
(1 + µ1)

−2

√

−
2µ1

b(µ)
(1 + µ1) 1 + 2µ1











.

For small µ1 < 0, it has complex eigenvalues e±iθ0 =
1 + 4µ1 + 2µ2

1 ±
√

µ1(2 + µ1)(1 + µ1)2. Therefore,
we find that in the case of b0 > 0, µ1 < 0 there is a
Neimark–Sacker bifurcation.

We wish to know the sign of the first Lyapunov
coefficient cNS along (33). We take

q =

(

b(µ)

2

√

− 2µ1

b(µ)

(

1 +

√

2 + µ1

µ1

)

, 1

)T

and

q∗ =

(

−1

2

√

− 2µ1

b(µ)

(

1 −
√

2 + µ1

µ1

)

, 1

)T

,

such that Aq = eiθ0q and AT q∗ = e−iθ0q∗, with
eiθ0 = 1 + 4µ1 + 2µ2

1 −
√

µ1(2 + µ1)(1 + µ1)2. We
should still scale q∗, since 〈q∗, q〉 6= 1. Next we com-
pute the first Lyapunov coefficient cNS on tNS, using
(7) from Sec. 1, where the multilinear forms B and
C correspond to the second iterate of (30). This
gives:

cNS =
1

2
(−a2

0b0 − 3a0b0 − a0d0 + b0c0) + o(µ1)

as µ1 → 0. Therefore, the Neimark–Sacker bifurca-
tion of the period-2 cycle of (30) is nondegenerate
near the origin, if (32) holds. �

Remark 3.1.2. [Gheiner, 1994] obtained similar
results of the fold and flip bifurcations, but some
calculations are puzzling. The Neimark–Sacker
bifurcation was proven to exist, but no attempt
had been made to analyze it. As we have seen,
this bifurcation is nondegenerate under the condi-
tion (32) on the critical normal form coefficients.
Choosing, for numerical example, b0 = c0 = d0 = 1
we find a0 6= −2 ±

√
5 as a condition for cNS to be

nonzero.

3.2. Global bifurcations

As we shall see, the map (30) has two saddle fixed
points, which can posses a heteroclinic structure.
To study this global bifurcation phenomenon, we
derive a vector field, such that the unit shift along
its orbits approximates (30). Bifurcations of this
vector field are easy to analyze, since it is similar to
an amplitude system for the fold-Hopf bifurcation
(see [Chow et al., 1994; Kuznetsov, 1998]).

Proposition 3.2.1 (Approximating vector field).
In a small neighborhood of (x, µ) = (0, 0), the trun-

cated normal form (30) satisfies

RN(x, µ) = ϕ1(x, µ) + O(‖µ‖2) + O(‖x‖2‖µ‖)
+O(‖x‖4) . (34)

Here R is the matrix defined by (31), ϕt is the flow

generated by the system

ẋ = X(x, µ), x ∈ R
2, µ ∈ R

2 ,

where the vector field X is given by

X(x, µ) =









µ1 +

(

−1

2
a0µ1 + µ2

)

x1 +
1

2
a0x

2
1 +

1

2
b0x

2
2 + d1x

3
1 + d2x1x

2
2

1

2
µ1x2 − x1x2 + d3x1x

2
2 + d4x

3
2









, (35)

with

d1 =
1

6

(

c0 −
3

2
a2

0

)

, d2 =
1

2

(

d0 +
1

2
b0(2 − a0)

)

,

d3 =
1

4
(a0 − 2), d4 =

1

4
b0 .

Proof. We construct ϕt as the first two-dimensional
component of the flow

ξ 7→ φt(ξ) =

(

ϕt(x, µ)

µ

)

, ξ =

(

x

µ

)

∈ R
4 ,

10
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generated by a four-dimensional system with the
parameters considered as constant variables:

ξ̇ = Y (ξ) . (36)

Here

Y (ξ) = Jξ + Y2(ξ) + Y3(ξ) + · · · ,

J =









0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0









, Yk(ξ) =

(

Xk(ξ)

0

)

,

where each Xk is an order-k homogeneous function
from R

4 to R
2 with unknown coefficients. Define

M(ξ) =

(

N(x, µ)
µ

)

and introduce the 4 × 4 block-diagonal matrix

S =

(

R 0
0 I2

)

,

where R is given in (31). We look for a vector field
Y such that S M(ξ) = φ1(ξ)+O(‖ξ‖4) (cf. [Takens,
1974]).

To find the vector field Y explicitly, perform
three Picard iterations for (36) as described in
[Kuznetsov, 1998, Chap. 9]. We start with setting
φt

1(ξ) = eJtξ. Then, clearly, the linear part of
SM(ξ) coincides with φ1

1(ξ).
Since we know how the result φt

2 of the second
Picard iteration should look like, we set some coef-
ficients of Y2 equal to zero immediately:

Y2 =















A10µ1x1 + A01µ2x1 +
1

2
A20x

2
1 +

1

2
A02x

2
2

B11x1x2 + B10µ1x2

0

0















.

Then

φt
2(ξ) = eJtξ +

∫ t

0
eJ(t−τ)Y2(φ

τ
1(ξ))dτ

=









x1 + tµ1

x2

µ1

µ2









+



















(

A10t +
1

2
A20t

2

)

µ1x1 + A01µ2x1t +
1

2
A20x

2
1t +

1

2
A02x

2
2t

B11x1x2t +

(

1

2
B11t

2 + B10t

)

µ1x2

0

0



















+ O(‖µ‖2) .

Comparing quadratic terms in SM(ξ) and φ1
2(ξ),

we find the coefficients of Y2

A10 = −1

2
a0, A20 = a0, A01 = 1 ,

A02 = b0, B10 =
1

2
, B11 = −1 .

Passing on to the cubic part we remark that we
are only interested in cubic terms in x. Therefore,

we put

Y3 =





















∑

i+j=3

1

i!j!
Aijx

i
1x

j
2

∑

i+j=3

1

i!j!
Bijx

i
1x

j
2

0
0





















and get

φt
3(ξ) = eJtξ +

∫ t

0
eJ(t−τ) [Y2(φ

τ
2(ξ)) + Y3(φ

τ
2(ξ))] dτ

=



















x1 + tµ1 +
1

2
a0(t

2 − t)x1µ1 + x1µ2t +
1

2
a0x

2
1t +

1

2
b0x

2
2t

x2 − x1x2t +
1

2
(t − t2)µ1x2

µ1

µ2



















11
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+



















(

1

6
A30t +

1

4
A2

20t
2

)

x3
1 +

1

2
tA21x

2
1x2 +

(

1

2
A12t +

1

4
t2A02(A20 + 2B11)

)

x1x
2
2 +

1

6
tA03x

3
2

1

6
tB30x

3
1 +

(

1

2
tB21 +

1

4
t2B11(2B11 + A20)

)

x2
1x2 +

1

2
tB12x1x

2
2 +

(

1

6
tB03 +

1

4
t2A02B11

)

x3
2

0

0



















+O(‖µ‖2) + O(‖x‖2‖µ‖) .

Comparing cubic terms in SM(ξ) and φ1
3(ξ), we

find the coefficients of Y3:

A30 = c0 −
3

2
a2

0, A21 = 0 ,

A12 = d0 +
1

2
b0(2 − a0), A03 = 0 ,

B30 = 0, B21 =
1

2
(a0 − 2), B12 = 0, B03 =

3

2
b0 .

This gives the vector field (35) from the Proposition.
�

To explore relationships between the map (30)
and the vector field (35), consider first local bi-
furcations of the vector field X. One can check
that there are two curves, tfold : (x1, x2, µ1) =
(−µ2/a0 + O(µ2

2), 0, µ2
2/(2a0) + O(µ3

2)) and tflip :
(x1, x2, µ1) = (0, 0, 0), on which equilibria of (35)
have a zero eigenvalue. These are the same expan-
sions as we computed for the map (30). The cen-
ter manifold reduction shows that a fold (saddle-
node) bifurcation occurs on the first curve, while
a pitchfork bifurcation occurs on the second. Next,
we computed a Hopf bifurcation curve for (35). We
get indeed the same expression

tNS : (x1, x2, µ2)

=

(

0,

√

−2µ1

b0
+ O(µ

3/2
1 ),

(2b0 + d0)µ1

b0
+ O(µ2

1)

)

as in Proposition 3.1.1.
Next, we can classify the critical phase portraits

of the vector field (35). In the usual polar coordi-
nates the vector field at µ = 0 becomes

(

ṙ

θ̇

)

=











r2

(

1

2
a0 cos2 θ +

(

1

2
b0 − 1

)

sin2 θ

)

+ O(r3)

− r sin θ

((

1 +
1

2
a0

)

cos2 θ +
1

2
b0 sin2 θ

)

+ O(r2)











.

We see that there are invariant lines in the critical
normal form if θ̇ = 0. This equation is satisfied if
θ = 0, π, which is expected due to the invariance of

the vector field under the map (31). Another possi-
bility is that

tan2 θ = −2 + a0

b0
.

Therefore, we find six different critical portraits, see
Figs. 1 and 2.

The invariant curves born from the Neimark–
Sacker bifurcation cannot exist everywhere. They
should disappear through some global bifurcations.
To study this, we investigate what happens to the
cycles of the approximating vector field X born at
the Hopf bifurcation.

Proposition 3.2.2. If a0, b0 > 0 and µ1 < 0
then the vector field (35) has two saddles, which are

always connected by a heteroclinic orbit along the

x1-axis. There exists another heteroclinic orbit for

tJ : µ2 =
µ1

3+a0

(

(a0+2)
d0+2b0

b
+

c0−a0−a2
0

a0

)

+ o(µ1) . (37)

Proof. We first shift the x1-coordinate in (35) with

x1 → x1 −
(

µ1

2
+

µ2

a0

)

.

Then we apply a singular rescaling

x1 → δx1, x2 → δx2, dt → xq
2

δ
dt

to obtain






























ẋ1 = xq
2

(

β1 +
1

2
a0x

2
1 +

1

2
b0x

2
2 + δ[d1x

3
1

+ d2x1x
2
2]

)

ẋ2 = xq
2

(

−x1x2 + δ[β2x2 + d3x
2
1x2 + d4x

3
2]
)

,

(38)

where

β1 = µ1 + O(‖µ‖2), β2 =
µ2

a0
+ O(‖µ‖2) .

12
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b0 > 0

a0 > 0−2 < a0 < 0a0 < −2

a0 > 0−2 < a0 < 0a0 < −2

b0 < 0

Fig. 1. Phase portraits of the approximating vector field X at µ = 0.

b0 > 0

b0 < 0

a0 < −2 −2 < a0 < 0 a0 > 0

a0 > 0−2 < a0 < 0a0 < −2

Fig. 2. Phase portraits of the normal form N at µ = 0. Compare with the orbits of the vector field to see how the orbits of
the map advance.

The system (38) can be rewritten as

ẋ = f(x, β) + δg(x, β) (39)

with

f(x, β) = xq
2

(

β1 +
1

2
a0x

2
1 +

1

2
b0x

2
2

−x1x2

)

,

g(x, β) = xq
2

(

d1x
3
1 + d2x1x

2
2

β2x2 + d3x
2
1x2 + d4x

3
2

)

.

For δ = 0 and q+1 = a0, system (39) is Hamiltonian

with

H(x) = xq+1
2







β1 +
1

2
a0x

2
1

q + 1
+

b0x
2
2

2(q + 3)






. (40)

We have a0, b0 6= 0 as nondegeneracy conditions,
therefore q 6= −1. Level curves of H for several
values of a0 are shown in Fig. 3. Now we treat
the term δg in (39) as a small perturbation of the
Hamilton system. We should therefore evaluate the
Pontryagin–Melnikov function (see [Guckenheimer
& Holmes, 1983, 2002])

∆(h, β) =

∮

Γh

f(xh(τ), β) ∧ g(xh(τ), β)dτ ,

13
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−2 < a0 < 0a0 < −2 a0 > 0

Fig. 3. Level curves of H for several a0.
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0.00002
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Q
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h

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

Q

a0 = −

1

2
a0 = 2a0 = −3

Fig. 4. Ratio Q(h) = I1,h/I3,h.

where xh(τ) is a periodic solution of the Hamilto-
nian system corresponding to a closed regular level
set Γh = {x : H(x) = h}, while for a0 > 0

∆(0, β) =

∫ +∞

−∞

f(x0(τ), β) ∧ g(x0(τ), β)dτ ,

where x0(τ) is the nontrivial heteroclinic solu-
tion in the critical level set H = 0. Notice that
limh→0− ∆(h, β) = ∆(0, β), since the integral
over the trivial heteroclinic connection equals zero.
Then ∆(0, β) = 0 defines a linear approximation
to a curve on which the heteroclinic connection
“survives” in (39) for small δ 6= 0. Our computa-
tion is analogous to the one in [Chow et al., 1994].

Using Green’s formula, we have

∆ =

∮

Γh

xq
2
(d1x3

1 + d2x1x2
2)dx2

−xq
2
(β2x2 + d3x2

1x2 + d4x3
2)dx1

=

∮

Γh

xq
2

(

d1x3
1 + d2x1x2

2 + (q + 1)

(

β2x1 +
1

3
d3x3

1

)

+ (q + 3)d4x1x2
2

)

dx2 .

Now, using it along Γh we have dH = xq
2(β1 +

(1/2)a0x
2
1 + (1/2)b0x

2
2)dx2 + xq+1

2 x1dx1 = 0 and
continue

∆ =

∮

Γh

xq
2

(

a0β2x1 +

(

d1 +
1

3
a0d3

)

x3
1 + (d2 + (a0 + 2)d4)x1x

2
2

)

dx2

=

∮

Γh

xq
2

(

x1

(

a0β2 −
2

b0
β1(d2 + (a0 + 2)d4)

)

+ x3
1

(

d1 +
1

3
a0d3 −

a0

b0
(d2 + (a0 + 2)d4)

))

dx2

−
∮

Γh

2

b0
(d2 + (a0 + 2)d4)x

2
1x

q+1
2 dx1

= I1,h

(

a0β2 −
2

b0
β1(d2 + (a0 + 2)d4)

)

+ I3,h

(

d1 +
a0

3
d3 −

a0

3b0
(d2 + (a0 + 2)d4)

)

.

14
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Here, we define Ii,h =
∮

Γh

xq
2x

i
1dx2 for i = 1, 3.

For h = 0 we can evaluate the Pontryagin–
Melnikov function as follows. We rewrite our Hamil-
tonian system as










ẋ1 = xq
2

(

β1 +
1

2
a0x

2
1 +

1

2
b0x

2
2

)

=
b0

a0 + 2
xq+2

2

ẋ2 = xq
2(−x1x2) .

Here, we used the zero-level set of the Hamiltonian.
The initial conditions are

x1(0) = 0, x2(0) =

√

−2(a0 + 2)β1

a0b0
,

which are not changed if we reparametrize dτ =
x−q

2 dt. We get the new system










ẋ1 =
b0

a0 + 2
x2

2

ẋ2 = −x1x2,

which can be explicitly solved with x1(τ) =
γ tanh(γτ), x2(τ) = x2(0) cosh−1(γτ), where

γ =

√

−2β1

a0
.

With these solutions, we evaluate Ii,0 defined above:

Ii,0 =

∫

Γ0

xq
2x

i
1dx2

= −
∫ ∞

−∞

xa0

2 xi+1
1 dτ

= −
∫ ∞

−∞

sinh(γτ)i+1

cosh(γτ)i+a0+1
dτ

= −γix2
2(0)(1 + (−1)i+1)

Γ
(a0

2

)

Γ

(

2 + i

2

)

2Γ

(

1

2
(2 + a0 + i)

) .

In this time-parametrization, we have used the ex-
plicit forms of x1(τ) and x2(τ). If we now compute
the ratio Q = I3,0/I1,0, we find

Q =
−6β1

a0(3 + a0)
.

Using the expressions for βk and di, we find that
the Melnikov function ∆(0, β) has a zero if

µ2 =
µ1

3 + a0

(

(a0 + 2)
d0 + 2b0

b0
+

c0 − a0 − a2
0

a0

)

+ o(µ1) . (41)

This value of µ2 asymptotically corresponds to the
existence of a nontrivial heteroclinic orbit for the
perturbed system (38). �

Remark 3.2.3. Taking a0 = b0 = c0 = d0 = 1 we
find µ2 = 2µ1 + o(µ1).

Remark 3.2.4. We derived the linear approxima-
tions to both the Neimark–Sacker bifurcation curve,
see Proposition 3.1.1,

µ2 =
d0 + 2b0

b0
µ1 (42)

and the heteroclinic bifurcation curve, see (41). To
analyze their relative position, we compute the dif-
ference between their slopes:

1

a0b0(a0 + 3)

(

−a0d0 − 3a0b0 − b0a
2
0 + b0c0

)

.

This shows that the curves coincide in the linear ap-
proximation if and only if the Lyapunov coefficient
cNS vanishes. Thus, changing the relative position
of the two curves changes the stability of the closed
invariant curve.

Remark 3.2.5. Moreover, for the vector field we
have the uniqueness of the limit cycle. This can be
verified as follows. We should evaluate the Pontrya-
gin function on a level curve of the Hamiltonian
with h 6= 0. Now Q(h) = I1,h/I3,h cannot be evalu-
ated explicitly, but one can prove the monotonicity
of Q as Chow et al. [1994]. This implies the unique-
ness of the limit cycle. We include some pictures,
we computed Q(h) numerically, which illustrate the
monotonicity (see Fig. 4).

3.3. Bifurcation diagrams

Although we had six cases for F0, only four
bifurcation diagrams will be reported in Figs. 7–
14, because two others differ only at the criti-
cal parameter values. We start with the bifurca-
tion diagrams of the vector field (35), which are
similar to the bifurcation diagrams of the trun-
cated amplitude system for the fold-Hopf bifur-
cation (see [Guckenheimer & Holmes, 1983, 2002;
Kuznetsov, 1998]). In our study, however, we have
to take into account that the Neimark–Sacker bifur-
cation can be either sub- or super-critical, depend-
ing on the sign of cNS. We included these sketches
to indicate the direction of the orbit in the phase
portraits for the map. The orbits of the map contin-
uously jump from the lower to the upper half plane
and back. This is easily understood from (34), which
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J
h2

h1

h1 h2J

x1x0x1x0x1x0

W
s(x1) W

u(x0)
W

s(x1)

W
u(x0) W

s(x1)

W
u(x0)

Fig. 5. Heteroclinic tangencies appearing in the lines h1,2 together with a transversal heteroclinic structure between them.

0.4

-0.4

-0.4 0.15 -0.5

0.50.16

-0.85

-0.16 -0.5

-0.33-0.25

(a) (b) (c)

Fig. 6. Heteroclinic structures in (30) near the left fixed point for a = b = d = 1, c = 0.5, µ1 = −0.2 and (a) µ2 = −0.35345880;
(b) µ2 = −0.35347; (c) µ2 = −0.35349058.

implies that (9) can be approximated by the com-
position of the unit shift along the orbits of X
with the reflection R. We go around the origin in
the parameter plane and discuss the phase por-
traits of the truncated normal form (30). The fold
and flip bifurcation curves are denoted by F± and
P±, respectively. The sub/super-critical Neimark–
Sacker bifurcation curve is indicated by NS±. For
the vector field, J is the heteroclinic bifurcation
curve.

Remark 3.3.1. We took c = d = 1 to generate the
pictures related to the map, unless stated otherwise.
We use a version of DSTool by Back et al. [1992],
incorporating the algorithms from Krauskopf and
Osinga [1998a], Krauskopf and Osinga [1998b]. The
colors should be interpreted as follow: Orbits are
green, while unstable manifolds of saddles are red
and stable manifolds are blue. Note that, with the
above choice of the coefficients, cNS is negative in
case 1 and positive in case 2.

• Case 1. In region 1 orbits merely jump to the
right. Crossing F+ implies the appearance of two

fixed points on the horizontal axis. In 2 one of
these fixed points is totally unstable, while the
other is a saddle. While crossing curve P+ from
2 to 3, the unstable fixed point becomes a saddle
and an unstable period-2 cycle appears. If cNS >
0, an unstable invariant curve “around” the
period-2 cycles appears via the Neimark–Sacker
bifurcation on NS+, when we go from 3 to 4+.
The invariant curve disappears through a series of
bifurcations associated with the heteroclinic bi-
furcations near J+, if we come to 5. The pres-
ence of the J -curve for the vector field implies for
the map the existence of two curves, along which
heteroclinic tangencies occur (see sketches in
Fig. 5). Between these two curves, a heteroclinic
structure is present. Figure 6 shows invariant
curve configurations computed with DSTool.
If cNS < 0, a stable closed invariant curve emerges
in 4- through a series of bifurcations associated
with the heteroclinic structure. This stable in-
variant curve exists until we cross NS−, where
the stable period-2 cycle becomes attracting in
5. Next we cross P− and the period-2 orbit dis-
appears, leaving us with a stable fixed point and

16
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Fig. 7. Vector field: Case 1. a0 > 0, b0 > 0.

4- 4+ 5

6

1

3

2

F
−

P
−

F+ P+

Fig. 8. Map: Case 1. a0 > 0, b0 > 0.

a saddle in 6. These two collide if we return back
to 1.

• Case 2. Fix a phase domain near the origin. Now
we start with the two fixed points, one stable and

one unstable on the axis in region 1. Then, cross-
ing the flip curve P+ to 2, one fixed point exhibits
a period doubling and a period-2 cycle appears.
The fixed points on the horizontal axis collide at
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Fig. 9. Vector field: Case 2. a0 < 0, b0 > 0.
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4+4-

P+P+
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−

Fig. 10. Map: Case 2. a0 < 0, b0 > 0.

F+ separating region 2 from 3, where a stable
period-2 cycle exists. If cNS > 0, then an unsta-
ble invariant curve appears when we cross the
Neimark–Sacker bifurcation curve NS+. This in-

variant curve grows, until it blows up and dis-
appears from the fixed phase domain at some
curve B+. Actually, the invariant curve can lose
its smoothness and disappear before touching the
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Fig. 11. Vector field: Case 3. a0 > 0, b0 < 0.

1 2

43

F+ P+

F
−

P
−

Fig. 12. Map: Case 3. a0 > 0, b0 < 0.

boundary of the domain. If cNS < 0, then we first
encounter the “boundary bifurcation” curve B−,
where a big stable invariant curve appears in our
fixed phase domain. The transition from 4- to 5

destroys the curve via the Neimark–Sacker bifur-
cation. Finally, crossing the fold curve F− pro-
duces two fixed points in 6 and through the flip
bifurcation on P− the period-2 cycle disappears
again as we are back in 1.

• Case 3. We start with a period-2 saddle cycle in
1. Entering 2 through the fold curve F+ creates
two fixed points on the horizontal axis, a saddle

and a repelling one. Then, while crossing the flip
curve P+ to 3, the period-2 cycle is destroyed and
we get two saddles on the x1-axis. Passing P− one
saddle becomes stable and a period-2 orbit in 4

is created. Finally, the fixed points on the hori-
zontal axis collide on F− and we are in region 1

again.
• Case 4. Starting in region 1 we have as in

Case 3 a period-two saddle cycle, but also a stable
and an unstable fixed point on the x1-axis. The
unstable one becomes a saddle when we enter 2

through P+ curve. Then nothing special appears
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Fig. 13. Vector field: Case 4. a0 < 0, b0 < 0.

1 2

43

P+ F+

P
−F

−

Fig. 14. Map: Case 4. a0 < 0, b0 < 0.

but a “saddle-like flow” in 3 after the saddle and
the stable point collided on F+. Going from 3 to
4 we get a saddle and an unstable point through
the fold bifurcation on the curve F−. We are back
in 1, when the flip bifurcation creates the period-
2 cycle on P−.

The obtained diagrams give a rather detailed
description of bifurcations of the truncated normal
form (30). However, this description remains incom-
plete due to the presence of closed invariant curves
and heteroclinic tangencies. Indeed, the rotation
number on the closed invariant curve can change in-
finitely many times from rational to irrational and,

moreover, the invariant curve can lose smoothness
and disappear. Near a heteroclinic tangency, infinite
series of bifurcations happen, including cascades of
flips and folds (see [Gavrilov & Shil’nikov, 1972,
1973; Gonchenko et al., 1996]).

Fig. 15. A transversal heteroclinic structure near the hori-
zontal axis.
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3.4. Effect of higher order terms

Adding higher order terms to the truncated normal
form (30), i.e. restoring (9), complicates the bifur-
cation picture further.

Using the Implicit Function Theorem, one can
prove that for ‖µ‖ sufficiently small, the map (9) has
the same local bifurcations as (30). More precisely,
Proposition 3.1.1 is valid also for the full normal
form (9) with any higher order terms. Therefore,
we know what to expect locally. In particular, in
Cases 1 and 2 closed invariant curves appear. More-
over, the unit shift along the orbits of the vector
field (35) composed of the reflection approximates
(9) as good as (30). This implies that (9) also has
two bifurcation curves along which heteroclinic tan-
gencies occur. Between these curves, a heteroclinic
structure is present. Higher order terms in (9) do
affect these curves, but they both remain tangent
to the curve (37) from Proposition 3.2.2.

As mentioned in [Gheiner, 1994], there are more
differences between the phase portraits of (30) and
a generic (9), which are related to other hetero-
clinic tangencies. Indeed, in the truncated normal
form (9) the x1-axis is always invariant. Therefore,
in Cases 1 and 3 we have heteroclinic connections
between the saddles located on the horizontal axis.
However generically, the higher order terms in (9)
break down the reflectional symmetry and the het-
eroclinic connection along the x1-axis is lost. This
allows for heteroclinic structures caused by inter-
sections of the invariant manifolds of the saddles
near the horizontal axis. These intersections can
be either transversal (as in Fig. 15) or tangential.
Therefore, in the first three cases, the bifurcation
diagrams of (30) and a generic (9) are not locally
topologically equivalent.

Gheiner [1994] showed that in Case 3, an
additional heteroclinic structure may appear: The
unstable manifold of the period-2 cycle could in-
tersect tangentially the stable manifold of a saddle
fixed point on the x1-axis.

In Case 4, Gheiner [1994] gave a strong indica-
tion that (9) is locally topologically equivalent to
(30), where the cubic terms can be omitted.

4. Examples

In this section we present two examples of the
fold-flip bifurcation. We compute the normal form
coefficients and show that the behavior predicted
by the normal form is correct.

4.1. A note on the generalized

Hénon map

Consider the generalized Hénon map
(

x

y

)

7→
(

y

α − βx − y2 + Rxy + Sy3

)

. (43)

Setting R = S = 0 one obtains the standard Hénon
map. We will consider α and β as control parame-
ters and R and S as constants. This map appears as
a rescaled first return map in the study of at least
two global bifurcations of maps related to codim 2
homoclinic tangencies, when:

(1) a diffeomorphism in R
2 has a neutral sad-

dle with a quadratic homoclinic tangency (see
[Gonchenko & Gonchenko, 2002; Gonchenko,
2002]);

(2) a diffeomorphism in R
3 has a saddle with a gen-

eralized homoclinic tangency (i.e. the unstable
manifold of the saddle has a quadratic tangency
to its stable manifold but is nontransversal to
leaves of the strong stable foliation in the stable
manifold at homoclinic points) (see [Gonchenko
et al., 2001]).

In these studies, codim 2 local bifurcations of fixed
points of (43) play an important role, since they
allow to predict bifurcations of closed invariant
curves. Bifurcations of (43) are well understood for
β > 0, where the standard Hénon map preserves
orientation. In this parameter region, strong reso-
nance points have been found. Much less is known
about bifurcations of (43) when β < 0. We show
below that the map has a fold-flip point in this pa-
rameter region, and compute its normal form.

For α = 0 the map has the fixed point (x, y) =
(0, 0). The Jacobi matrix of (43) at this point is

A =

(

0 1
−β 0

)

.

Thus, if β = −1, we have two multipliers +1 and
−1. So we have found a fold-flip codim 2 point for
all values of R and S.

First we analyze (43) without the cubic term,
i.e. set S = 0. It is easy to verify that fixed points
of this map can bifurcate at the following curves:

tfold =

{

(α, β) : α =
(β + 1)2

4(R − 1)

}

,

tflip =

{

(α, β) : α =
1

4
(β + 1)2(3 − R)

}

.
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Fig. 16. The (α, β)-plane: (a) Case 1; (b) Case 2; (c) Case 3/4. The thick/dashed line is the fold/flip curve. The dotted one
is the Neimark–Sacker curve.
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Fig. 17. Selected phase portraits of (43).

Note that these two parabolas have a common
point: The fold-flip point (α, β) = (0, −1). They
coincide if R = 2, i.e. the flip bifurcation is degen-
erate for R = 2.

If we consider the second iterate of (43) with
S = 0, a curve can be found, where a period-2 cycle
has two multipliers with unit product:

tNS =

{

(α, β) : α =
(β + 1)(β + R2 − (1 + R))

R2

}

.

To exclude neutral saddles, we should check that
the multipliers are indeed complex for some val-
ues of α, β and R. Simple analysis shows that
the Neimark–Sacker bifurcation occurs only if R 6=
0 and R > −1. This means that depending on
whether R < −1 or R > −1 we have either the
“difficult” or the “easy” case, respectively. For the
difficult case we have a distinction between R > 1

and R < 1, since the fold and flip curve changes po-
sition in the parameter plane when crossing R = 1.
We sketch in Fig. 16 the bifurcation curves in the
(α, β)-plane for three typical values of R. We rec-
ognize (a) and (b) as Cases 1 and 2 from Sec. 3.3,
respectively, and (c) as Case 3 or 4.

We now compute the critical normal form coef-
ficients using the formulas obtained in Sec. 2.2. The
eigenvectors are

q = 2q∗ =

(

1

1

)

, p = 2p∗ =

(

1

−1

)

,

while the multilinear functions are given by

B(x, y) =

(

0
R(x1y2 + x2y1) − 2x2y2

)

,

C(x, y, z) =

(

0
6Sx2y2z2

)

.
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For the quadratic coefficients we find

a1(0) = −(1 − R), e1(0) = −1 ,

b1(0) = −(R + 1) ,

h2000 =
1

2
(1 − R)

(

1
−1

)

, h1100 = −1

2

(

1
1

)

,

h0200 =
1

2
(1 + R)

(

1
−1

)

,

then we get

c1(0) =
3

2
(1 − R), c2(0) = −1

2
(1 + R) ,

c3(0) = −1

2
(1 − R)2, c4(0) =

3

2
(1 + R)2 .

The normalized coefficients of (9) are therefore

a(0) = (1 − R), b(0) = (1 + R) ,

c(0) =
3

2
(1 − R), d(0) = −1

2
(5 + 3R)

(see Remark 2.2.2). We see that, indeed, depending
on R the following cases occur:

a b

R < −1 + − case 3

−1 < R < 1 + + case 1

R > 1 − + case 2

For Cases 1 and 2 we calculate the leading term of
the Lyapunov coefficient

cNS = R2(1 − R) ,

so that the closed invariant curves appearing via
the Neimark–Sacker bifurcation will be unstable in
Case 1 and stable in Case 2.

The bifurcation structure does not change much
locally, if S 6= 0. For (α, β) = (0, −1), we have
the same critical fixed point and the same eigen-
vectors for the center manifold computations. The
critical values for a(0) and b(0) remain unchanged,
therefore we can distinguish the same Cases 1–3,
depending on R. The coefficients ci(0) are different,
namely:

c1(0) =
3

2
(1 − R) + 3S, c2(0) = −1

2
(1 + R) + 3S ,

c3(0) = −1

2
(1 − R)2 + 3S, c4(0) =

3

2
(1 + R)2 + 3S .

From these expressions we obtain the normalized
critical cubic coefficients:

c(0) =
3

2
(1 − R) + 3S,

d(0) = −1

2
(5 + 3R) + S(3 + 4R) .

The Lyapunov coefficient also gets an extra term:

cNS = R2(1 − R) + 2RS(1 + 2R) .

Now, while we still have Case 1 for −1 < R < 1, the
closed invariant curve might be stable or unstable
depending on a combination of R and S. Similarly,
for Case 2 where R > 1, the closed invariant curve
need not be stable. We excluded R = 0 as excep-
tional. For (α, β, R) = (0, −1, 0) we actually have
a codim 3 singularity, since the Lyapunov coefficient
is then equal to zero.

We present in Fig. 17 some phase portraits to
show the behavior of (43) close to the fold-flip point
for several values of R and S:

Subfigure R S α β

a −2 0 0.0004 −0.999

b −2 −5 0.0004 −0.999

c 0.5 0 0.0001 −1.001

d 0.5 −2 0.001 −1.001

e 3 0 0.0004 −0.9985

f 3 0.5 0.001 −0.9985

4.2. The extended Lorenz-84 model

As an example of the fold-flip bifurcation in ODEs
we study an extension of a model formulated by
Lorenz [1984]. A bifurcation analysis of this model
was presented by Shil’nikov et al. [1995] and van
Veen [2003]. The latter paper showed, that the
Lorenz-84 model approximates the dynamics of a
low-order Galerkin truncation of an atmospheric
flow model. The atmospheric model describes syn-
optic dynamics, i.e. dynamics on a time scale of
about a week and a length scale of about ten thou-
sand kilometers. The synoptic atmospheric dynam-
ics over the North Atlantic ocean is dominated by
the jet stream, a westerly circulation, and baroclinic

waves, which transport heat and momentum north-
ward. In the Lorenz-84 model the intensity of the
jet stream is given by X and the sine and cosine
coefficients of a baroclinic wave are given by Y and
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Z. The dynamical equations for these variables are
the first three equations in the system























Ẋ = −Y 2 − Z2 − αX + αF − γU 2

Ẏ = XY − βXZ − Y + G

Ż = βXY + XZ − Z

U̇ = −δU + γUX + T

(44)

The damping time scale of the baroclinic wave is
about one week and is scaled to unity. As α = 1/4
the jet stream is damped more slowly. We extend
the Lorenz-84 model by adding the fourth equa-
tion in the spirit of Palmer [1995], who studied
the influence on the jet stream and the baroclinic
waves of external parameters such as the sea sur-
face temperature. Note, that U interacts nonlin-
early with the jet stream and that the Lyapunov

function L = X2 +Y 2 +Z2 +U2 is conserved in the
absence of linear damping and constant forcing. In
the following we will fix

β = 1, γ = 0.987, δ = 1.04, G = 0.2 .

It is known from [van Veen, 2003], that the ba-
sic cycle of the Lorenz-84 model, which is created
via a Hopf bifurcation of the trivial equilibrium
and represents a traveling baroclinic wave, under-
goes a period-doubling cascade at certain values of
the parameter F . By construction, solutions of the
Lorenz-84 model are also solutions of the extended
model for U = T = 0. At a period-doubling bifurca-
tion of the Lorenz-84 model a small perturbation of
the extended model can yield a cycle with Floquet
multipliers +1 and −1.

Table 1. The critical fixed point of the Poincaré map associated to (44) with the
parameter values and the multipliers.

Y = −5.6335141581943.10−2 F = 1.7620532879639 λ1 = 1 ± 10−11

Z = 4.1293337647981.10−2 T = 2.80597685.10−4 λ2 = −1 ± 10−9

U = 0.31352886978279 λ3 = −0.43054026152942

We study the Poincaré map in the plane X = 1.05
at the fold-flip point. In Table 1 the numerical
values are listed. Figure 18 shows the bifurcation
diagram obtained in a neighborhood of the codim 2
point. On the top left corner there is a generalized
Hopf point GH at which a Hopf bifurcation and a
fold bifurcation of a cycle meet (see e.g. [Kuznetsov,
1998], Chap. 8.3). Along the fold line the cycle has
one multiplier +1 and two multipliers within the
unit circle. One of them crosses −1 at the codim 2
fold-flip point A. From the picture and its scale
we deduce that a(0), b(0) > 0. Secondly we ex-
pect that a(0) is small, since the fold and flip
curves are very close. To compute the multilin-
ear functions, we integrated the variational equa-
tions described in Appendix A numerically using a
Runge–Kutta–Felbergh scheme of 7–8 order. Then
we implemented the formulas for the Poincaré map
and its derivatives in maple and applied the for-
mulas of Sec. 2.2 for the center manifold reduction.
This gives

a(0) = 0.002047, b(0) = 4.4010,

c(0) = −0.02336, d(0) = 232.682 .

These values are in agreement with what we
deduced from Fig. 18. For these coefficients the
Lyapunov coefficient has the value cNS = −0.6062,
which indicates that there is a stable invariant curve
in the center manifold. A configuration of the stable
invariant circles of the Poincaré map, obtained by
forward integration, is shown in Fig. 19. A double

torus around the period-2 cycle corresponds to the
invariant circles of the second iterate of the Poincaré
map. Also shown are the intersection points of the
unstable cycle that bifurcates on the torus line TR.
The period of this cycle is close to that of the motion
along the stable torus. The other period of stable
solutions on the torus is much longer and in fact
goes to infinity at the fold-flip point A. Away from
TR the torus breaks up and a strange attractor is
created in a thin tube around the original invariant
circle as shown in Fig. 20.

With a(0), b(0) > 0 we expect the torus to be-
come heteroclinic as can be seen from the unfolding
in Fig. 7. However, if we calculate the linear approx-
imation of the heteroclinic bifurcation line J− from
Proposition 3.2.2, it turns out to lie extremely close
to the period-doubling line PD in Fig. 18. Hence,
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Fig. 18. Bifurcation diagram near the codim 2 point: Hopf (black), period-doubling (red), fold of periodic orbits (blue), torus
bifurcation (darker blue). Obtained using auto97 [Doedel et al., 1977].
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Fig. 19. The invariant circles of the second iterate of the Poincaré map to the right of TR. The crosses indicate the intersection
points of the unstable cycle which bifurcates on TR.

we cannot find heteroclinic tangencies numerically.
In the Poincaré section of Fig. 19, corresponding to
phase portrait 4− in Fig. 8, we do see that the torus
is squeezed and looks like the heteroclinic surface
that exists on J−.

Summarizing, the stable solutions around the
codim 2 point A are

• an equilibrium which represents a steady jet
stream without wave activity,

• period 1 and 2 cycles which represent travel-

ing baroclinic waves, and are also present in the
Lorenz-84 model itself,

• a stable torus, which represents a traveling

baroclinic wave with an amplitude that is slowly

modulated or
• a strange attractor, which represents a traveling

baroclinic wave with an amplitude that is modu-

lated irregularly.
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Fig. 20. After the destruction of the torus a strange attractor is created. Also shown are the intersection points of the saddle
type cycle. The integration was started near the saddle type orbit.

The modulation of the amplitude of the traveling
wave is due to interaction with the added mode, U .

5. Discussion

In this paper we have contributed to the analy-
sis of a codim 2 bifurcation occurring in generic
two-parameter families of maps, namely the fold-flip
bifurcation. We have applied our results to two ex-
amples: a generalized Hénon map and an extended
Lorenz-84 ODE. Note that this bifurcation has been
found in the period map describing dynamics of a
simple robotic arm by Steindl [1990], and recently
in a periodically forced Lorenz-84 model by Broer
et al. [2002]. In that case the period map is consid-
ered as well.

There are open numerical problems appearing
while applying the theory of codim 2 bifurcations
of fixed points to limit cycles in multi-dimensional
ODEs. The approach based on numerical integra-
tion of the higher-order variational equations, that
we have applied in Sec. 4.2, has obvious limitations.
Although it works well for low-dimensional and
nonstiff ODEs, a more robust approach to study
codim 2 bifurcations of limit cycles has to be devel-
oped. Such an approach might combine the center
manifold reduction near the cycle with a periodic
normalization of the ODE on the center manifold.
For first theoretical advances in this direction, see
[Iooss, 1988] and [Chow & Wangm, 1986].

Finally, let us note that the bifurcation be-
havior of the generalized Hénon map (43) is far
from being completely understood. Although the
complete bifurcation diagram is likely to be never

constructed, its essential global features can be ana-
lyzed using existing analytical and numerical tools.
In particular, it would be interesting to investigate
how the known bifurcation structures existing for
β > 0 match those emanating from the fold-flip
point existing in the half-plane β < 0.
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Appendix A
Poincaré Maps and Their Derivatives

In this appendix we present a method to compute
numerically the derivatives of a Poincaré map up
to and including third order. Let f(x) be a smooth
vector field in R

n. We take a local cross-section

Σ ⊂ R
n with dimension n − 1. The hypersurface Σ

does not need to be a coordinate plane, but should
be chosen transversal to the flow of f . This is sat-
isfied if for the normal nΣ(x) for x ∈ Σ we have
〈f(x), nΣ(x)〉 6= 0. Let L0 be a τ0-periodic orbit
through Σ and U ⊂ Σ a subset which contains an
intersection point x0 of L0 ∩ Σ. If L0 intersects Σ
in multiple points we shrink U until we have one
point of intersection, i.e. x0. The Poincaré map

P : U → Σ is defined for x ∈ U by

P (x) = φ(t(x), x) ,

where t(x) is the arrival time after which the orbit
intersects Σ for the first time again, and φ(t, x) is
the solution to

ẋ = f(x), x ∈ R
n ,

with the initial condition φ(0, x) = x (see Fig. 21).
Note that φ is as smooth as f . The arrival time τ
depends on x but t(x0) = τ0. The Floquet multi-
pliers of L0 can be calculated as the eigenvalues of
the monodromy matrix ∂φ(τ0, x)/∂x. It always has
a trivial eigenvalue 1. With the Liouville Theorem
one can prove that the product of the multipliers is
always positive.

We proceed with a method to compute the
Poincaré map and its derivatives numerically. We
closely follow Simó [1989], but we extend the
method to the third-order derivatives. We can write
for a displacement x + h ∈ R

n
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Σ

x

L0

x0
P (x)

Fig. 21. The geometry of the Poincaré map.

φ(t, x + h) = φ(t, x) +
∂φ(t, x)

∂x
h

+
1

2

∂2φ(t, x)

∂x2
h2 + · · ·

We assume that (x + h) ∈ Σ, or, more pre-
cisely, ∂φ(t, x)/(∂x)h = (Dxφ(t, x))(h), ∂2φ(t, x)/
(∂x2)h2 = (D2

xφ(t, x))(h, h), etc. The multilinear
functions ∂iφ(t, x)/∂xi satisfy the variational equa-
tions, which we find by successive differentiation of
φ̇(t, x) = f(φ(t, x)). Since f and φ are smooth we
can change the order of the derivatives and find

d

dt

∂φ(t, x)

∂x
= Df(φ(t, x))

∂φ(t, x)

∂x
,

d

dt

∂2φ(t, x)

∂x2
= D2f(φ(t, x))

(

∂φ(t, x)

∂x

)2

+Df(φ(t, x))
∂2φ(t, x)

∂x2
,

d

dt

∂3φ(t, x)

∂x3
= D3f(φ(t, x))

(

∂φ(t, x)

∂x

)3

+3D2f(φ(t, x))

(

∂2φ(t, x)

∂x2
,

∂φ(t, x)

∂x

)

+ Df(φ(t, x))
∂3φ(t, x)

∂x3
.

The initial conditions are given by

∂φ(t, x)

∂x

∣

∣

∣

∣

t=0

= In,
∂2φ(t, x)

∂x2

∣

∣

∣

∣

t=0

= 0 ,

and
∂3φ(t, x)

∂x3

∣

∣

∣

∣

t=0

= 0 .

To find an analytic solution to the variational equa-
tions is an exception, but numerically we can inte-
grate these equations and we will show how to use

them to compute the derivatives of the Poincaré
map. Normally one considers a cross-section Σ and
the Poincaré map is just the return map to Σ. This
is the case when one looks at periodic orbits, which
account for fixed points of the Poincaré map. How-
ever, we will set up the structure of the Poincaré
map for a flow from a cross-section Σ1 to a cross-
section Σ2 to distinguish the initial and final cross-
section. In this way the notation is clearer, but in
the end we will set Σ1 = Σ2. The sections are de-
fined by equations g1(x) = 0 and g2(x) = 0, respec-
tively and we assume both sections to be transversal
to the flow.

Let x1 ∈ Σ1 be the initial point and we define
P : Σ1 → Σ2 by P (x1) = x2 = φ(t(x1), x1), such
that g2(φ(t(x1), x1)) = 0. Here t(x1) is the travel
time and it depends, of course, on the initial point.
We compute the first derivative of P by differenti-
ation with respect to x1

∂P

∂x1
= f(x2)

∂t

∂x1
+

∂φ

∂x1
(t(x1), x1) . (A.1)

Remark A.0.1. We add a word of caution. We
should make a distinction between the variables of
the ODE in R

n and the variables of the Poincaré
map in Σ ∼ R

n−1. The derivatives above are for-
mal w.r.t. x1 ∈ R

n, but the LHS of (A.1) has the
domain Σ1. Therefore the RHS has to be restricted
to Σ1. Now, if we take Σ1 = Σ2 to be given by set-
ting the nth coordinate equal to a constant, then
the derivatives of the Poincaré map will contain a
block of zeros, namely for the nth component. This
result follows easily from (A.2) and (A.5) for the
linear and quadratic part and can be extended for
higher orders. In this way we can take the variables
{x1, . . . , xn} of f in R

n as variables for the Poincaré
map, excluding the nth.

The first variational equation provides the
matrix ∂φ/∂x1. The derivative ∂t/∂x1 is still un-
known. We obtain it by differentiating the relation
g2(φ(t(x1), x1)) = 0
〈

Dg2(x2),

(

f(x2)
∂t

∂x1
+

∂φ

∂x1
(t(x1), x1)

)〉

= 0 ,

or

∂t

∂x1
= − 1

〈∇g2(x2), f(x2)〉
Dg2

∂φ

∂x1
.

Note that the transversality condition implies that
the denominator is nonzero. Now we suppose that
Σ1 and Σ2 are just coordinate planes, i.e. g1 and
g2 are given by taking, for instance the last, a
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coordinate equal to a constant. We write aij =
∂φi/∂x1,j(t(x1), x1). Then, we have ∂t/∂x1,i =
−ani/fn(x2) and in coordinates the (n−1)×(n−1)
matrix ∂P/∂x1(x1) is given by

(

∂P

∂x1

)

ij

= aij −
fi(x2)

fn(x2)
anj . (A.2)

The restriction to the first n−1 components is given
by taking 1 ≤ i, j ≤ n − 1.

We continue with the second derivative. We
differentiate another time and find

∂2P

∂x2
1

= Df(x2)f(x2)

(

∂t

∂x1

)2

+2Df(x2)
∂φ

∂x1

∂t

∂x1
+ f(x2)

∂2t

∂x2
1

+
∂2φ

∂x2
1

.

Note that the first variational equation is used
here to simplify the derivatives. As before ∂2φ/∂x2

1

is obtained from the second variational equation
and ∂2t/∂x2

1 by differentiating g(φ(t(x1), x1)) once
more

D2g2(x2))

(

f(x2)
∂t

∂x1
+

∂φ

∂x1

)2

+Dg2(x2)

[

Df(x2)f(x2)

(

∂t

∂x1

)2

+2Df(x2)
∂φ

∂x1

∂t

∂x1
+ f(x2)

∂2t

∂x2
1

+
∂2φ

∂x2
1

]

= 0 ,

(A.3)

or more compactly (using (A.1) and (A.3))

D2g2(x2)

(

∂P

∂x1

)2

+ Dg2(x2)
∂2P

∂x2
1

= 0 . (A.4)

For notational clarity we drop from now on the sub-
script 1 in x1. All derivatives are now with respect
to (the components xj of) x or to t. Returning
to the specific case of a return map we introduce
the notation bijk = ∂2φi/∂xj∂xk, fi = fi(x2) and
fij = Difj(x2). Making these substitutions also for
the time derivatives, we obtain

∂2Pi

∂xj∂xk
= bijk −

fi

fn
bnjk +

1

fn

n
∑

s=1

(

fsi −
fi

fn
fsn

)

×
(

fs

fn
anjank − askanj − asjank

)

.

(A.5)

As before we have 1 ≤ i, j, k ≤ n − 1.
Finally, we do the third derivative as well.

Differentiating one more time, we find

∂3P

∂x3
= D2f(x2)

(

f2(x2)

(

∂t

∂x

)3

+3f(x2)
∂φ

∂x

(

∂t

∂x

)2

+ 3

(

∂φ

∂x

)2 ∂t

∂x

)

+Df(x2)
2

(

f(x2)

(

∂t

∂x

)3

+ 3
∂φ

∂x

(

∂t

∂x

)2
)

+ f(x2)
∂3t

∂x3
+

∂3φ

∂x3
+ 3Df(x2)

×
(

f(x2)
∂t

∂x

∂2t

∂x2
+

∂φ

∂x

∂2t

∂x2
+

∂φ

∂x2

∂t

∂x

)

.

More explicitly in coordinates we have

∂3Pi

∂xj∂xk∂xl
=

n
∑

r,s=1

Drsfi(x2)

(

frfs
∂t

∂xj

∂t

∂xk

∂t

∂xl
+fs

∂φr

∂xj

∂t

∂xk

∂t

∂xl

∗

+
∂φr

∂xj

∂φs

∂xk

∂t

∂xl

∗
)

+

n
∑

r,s=1

Dsfi(x2)Drfs(x2)

(
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∂xj

∂t

∂xk

∂t

∂xl
+

∂φr

∂xj

∂t

∂xk

∂t

∂xl

∗
)

+

n
∑

s=1

Dsfi(x2)

(

fs(x2)
∂t

∂xj

∂2t

∂xk∂xl

∗

+
∂φs

∂xj

∂2t

∂xk∂xl

∗

+
∂2φs

∂xj∂xk

∂t

∂xl

∗
)

+ fi
∂3t

∂xj∂xk∂xl
+

∂3φi

∂xj∂xk∂xl
. (A.6)
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Here the ∗ means that the term with j, k, l
cyclically permuted should be included as well. The
above expression is then invariant under changing
the order of the differentiation, if f is smooth. The
third-order derivative of the time can be found from

D3g2(x2)

(

∂P

∂x

)3

+ 3D2g2
2(x2)

∂2P

∂x2

∂P

∂x

+Dg2(x2)
∂3P

∂x3
= 0 .
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