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Hopf-flip bifurcations of vibratory systems with impacts
G.W. Luo

School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People’s Republic of China 

Two vibro-impact systems are considered. The period n single-impact motions and Poincaré maps of the vibro-impact systems
are derived analytically. Stability and local bifurcations of single-impact periodic motions are analyzed by using the Poincaré maps.
A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map
associated with Hopf-flip bifurcation is obtained. It is found that near the point of codim 2 bifurcation there exists not only Hopf
bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. Period doubling
bifurcation of period one single-impact motion is commonly existent near the point of codim 2 bifurcation. However, no period
doubling cascade emerges due to change of the type of period two fixed points and occurrence of Hopf bifurcation associated with
period two fixed points. The results from simulation shows that there exists an interest torus doubling bifurcation occurring near
the value of Hopf-flip bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one
single-impact motion transit to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation
is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems.

Keywords: Vibration; Clearance; Impact map; Periodic motion; Hopf-flip bifurcation

1. Introduction

Impact oscillators arise whenever the components of a vibrating system collide with rigid obstacles or with each other.
Such systems with repeated impacts exist in a wide variety of engineering applications, particularly in mechanisms
and machines with clearances or gaps. The principle of operation of vibration hammers, impact dampers, shakers,
pile drivers, machinery for compacting, milling and forming, etc., is based on the impact action for moving bodies.
With other equipment, e.g., mechanisms with clearances, heat exchangers, fuel elements of nuclear reactors, gears,
piping systems, wheel-rail interaction of high speed railway coaches, etc., impacts also occur, but they are undesirable
as they bring about failures, strain, shorter service life and increased noise levels. Researches into repeated impact
dynamics have important significance in optimization design of machinery with rigid obstacles or clearances, noise
suppression and reliability analyses, etc. The physical process during impacts is of strongly non-linear and discontinuous
characteristics. The presence of the non-linearity and discontinuity complicates the dynamic analysis of repeated impact
systems considerably, but it can be described theoretically and numerically by discontinuities in good agreement with
reality. Compared with single impact, vibro-impact dynamics is more complicated, and hence, has received great
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attention. The large interest in analyzing and understanding the performance of such systems is reflected by vast and
ever increasing amount of research effort devoted in this area in recent years, a small sample of which is reported in Refs.
[1–6,8–11,14–20,23]. However, these studies focused mainly attention on codim 1 bifurcations of the vibro-impact
systems. The purpose of the present study is to focus attention on codim 2 bifurcation of single-impact periodic motion.
The results from qualitative analysis and numerical simulation shows that the vibro-impact systems, near the points of
codim 2 bifurcations, can exhibit richer and more complicated dynamical behavior.

2. Mechanical model and Poincaré map

The mechanical model for a vibro-impact system with masses M1 and M2 is shown in Fig. 1. The vibro-impact system
is similar to the model of the impact-forming machine with double masses (see p. 15). Displacements of the masses
M1 and M2 are represented by X1 and X2, respectively. The masses are connected to linear springs with stiffnesses K1,
K2 and K3, and linear viscous dashpots with damping constants C1, C2 and C3. The excitations on both masses are
harmonic with amplitudes P1 and P2. Here � is the excitation frequency, and � the phase angle. The mass M1 impact
mutually with the mass M2 when the difference of their displacements equals the clearance �. The impact is described
by the conservation law of momentum and a coefficient of restitution R, and it is assumed that the duration of impact
is negligible compared to the period of the force.

The motion processes of the system, between any two consecutive impacts, are considered. Between any two
consecutive impacts, the time T is always set to zero directly at the instant when the former impact is over, and
the phase angle � is used only to make a suitable choice for the origin of time in the calculation. The state of the
vibro-impact system, immediately after impact, has become initial conditions in the subsequent process of the motion.
Between consecutive impacts, the non-dimensional differential equations of motion are given by[

�m 0
0 1

]{
ẍ1
ẍ2

}
+
[

2�(1 + �1) −2�
−2� 2�(1 + �3)

]{
ẋ1
ẋ2

}
+
[
k1 + 1 −1

−1 k3 + 1

]{
x1
x2

}
=
{

1 − f20
f20

}
sin(�t + �),

(1)

where the non-dimensional quantities

�m = M1

M2
, ki = Ki

K2
, �i = Ci

C2
, i = 1, 3,

f20 = P2

P1 + P2
, � = �

√
M2

K2
, t = T

√
K2

M2
, � = C2

2
√

K2M2
, � = � · K2

P1 + P2
, xi = XiK2

P1 + P2
(2)

have been introduced. In Eq. (1) a dot (·) denotes differentiation with respect to the non-dimensional time t.
When the impact occurs, for x1(t) − x2(t) = �, the velocities of the masses M1 and M2 are changed according to

the conservation law of momentum, and the impact equation of both masses and the coefficient of restitution r are

K3 K2 K1

M1M2

C3 C2
C1

X1X2

P2 sin (�T + �) P1 sin (�T + �)

Fig. 1. Schematic of the impact oscillator with double masses and a clearance.
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given by

�mẋ1+ + ẋ2+ = �mẋ1− + ẋ2−, R = (ẋ2+ − ẋ1+)/(ẋ1− − ẋ2−), (3)

where the subscript minus sign denotes the states just before impact and the subscript plus sign denotes the states just
after impact, ẋi− and ẋi+ (i = 1, 2) represent the velocities of immediately before and after the impact of the masses
Mi , respectively.

Impacting systems are conveniently studied by use of a mapping derived from the equations of motion. Each iterate
of this map corresponds to the mass M1 striking the mass M2 once. Under suitable system parameter conditions, the
system shown in Fig. 1 can exhibit periodic-impact behavior. We can characterize periodic motions of the system by a
symbol q =p/n, where p is the number of impacts and n is the number of the forcing cycles. The symbol q, originated
by Peterka, is of important significance in analyzing the periodic-impact motions and bifurcation characteristics, and
quantity q has rational and irrational value for periodic and chaotic motions, respectively; see Ref. [19]. Let 	 = �t ,
we can choose a Poincaré section 
 = {(x1, ẋ1, x2, ẋ2, 	) ∈ R4 × S, x1 − x2 = �, ẋ1 = ẋ1+, ẋ2 = ẋ2+} to establish the
Poincaré map of the vibro-impact system. The q = 1

1 motion and its disturbed map are derived exactly in Ref. [12].
The disturbed map of q = 1

1 motion is expressed briefly by

X′ = f (v, X), (4)

where X ∈ R4, v ∈ R1 or R2; X = X∗ + �X, X′ = X∗ + �X′, X∗ = (ẋ1+, x20, ẋ2+, �0)
T is a fixed point in the

hyperplane 
, �X and �X′ are the disturbed vectors of X∗.
Linearizing the Poincaré map at the fixed point X∗ results in the matrix

Df (v, X∗) = �f (v, X)

�X

∣∣∣∣
(v,X∗)

.

The stability and local bifurcation of q= 1
1 motion can be analyzed by computing eigenvalues of the linearized matrix

Df (v, X∗) of Poincaré map. If the moduli of all eigenvalues of Df (v, X∗) are less than one (i.e. |�i (v)| < 1), then the
corresponding q = 1

1 motion is stable. In contrast, if the modulus of one of the eigenvalues of Df (v, X∗) is greater
than unity, the fixed point is unstable. In general, bifurcations occur in various ways according to the numbers of the
eigenvalues on the unit circle and their positions on the unit circle. In the following sections, Hopf-flip bifurcation of
the repeated impact system will be analyzed.

3. Center manifold and normal form map

We continue to consider the Poincaré map X′ =f (v, X). X∗ is a fixed point for the map for v in some neighborhood
of a critical value v = vc at which Df (v, X∗) satisfies the following assumptions:

H1. Jacobian matrix Df (v, X∗) has the eigenvalues �1(vc) = −1, �2(vc) = �̄3(vc) and |�2,3(vc)| = 1;
H2. the remainder of the spectrum of Df (v, X∗) are strictly inside the unit circle.

For all v in some neighborhood of vc, the map (4), under the change of variables �1 = v1 − v1c, �2 = v2 − v2c,
� = (�1, �2)

T and X = X∗ + P Ỹ , becomes

Ỹ ′ = F̃ (�; Ỹ ), (5)

where P is the eigenmatrix [7], Ỹ = (y1, y2, y3, y4)
T, F̃ = (F1, F2, F3, F4)

T.
Let z1 = y1, z2 = y2 + iy3, z̄2 = y2 − iy3, z = (z1, z2, z̄2)

T, W = y4, G1 = F1 − �1z1, G2 = F2 + iF3 − �2z2 and
H = F4 − �4W , the map (5) is expressed by

z′
1 = �1z1 + G1(z1, z2, z̄2, W ; �), z′

2 = �2z2 + G2(z1, z2, z̄2, W ; �),

W ′ = �4W + H(z1, z2, z̄2, W ; �), (6)
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in which �1 = �̃1(�) = �1(vc + �), �2 = �̃2(�) = �2(vc + �), �1(0) = −1, �2,3(0) = � ± i, |�2,3(0)| = 1. For the map
(6), there exists a local center manifold W(z1, z2, z̄2; �), which can be determined by the equation

W(z′
1, z

′
2, z̄

′
2; �) = �4W(z1, z2, z̄2; �) + H(z1, z2, z̄2, W(z1, z2, z̄2; �); �). (7)

On the center manifold the local behavior of the map (7) can be reduced to a three-dimensional map �̃(z; �), which
is now

z′
1 = �1(�)z1 + G1(z1, z2, z̄2, W(z1, z2, z̄2; �); �), z′

2 = �2(�)z2 + G2(z1, z2, z̄2, W(z1, z2, z̄2; �); �), (8)

where the Taylor series expansion of W(z1, z2, z̄2; �) and Gi(z1, z2, z̄2, W(z1, z2, z̄2; �); �) about (0, 0, 0, �) can be
determined by a similar method used in Ref. [13].

By using the center manifold theorem technique and normal form method of maps, we can reduce the map (8) to the
normal form map �(z; �), which is given by

z′
1 = −z1 + �1z1 + az3

1 + bz1|z2|2 + O(|z|5), z′
2 = �2(0)z2 + �̃2z2 + c̃z2

1z2 + d̃z2|z2|2 + O(|z|5). (9)

The normal form map (9) �(Y ; �), in the real form, is expressed by{
y′

1 = −y1 + �1y1 + ay3
1 + by1(y

2
2 + y2

3 ) + h.o.t

y′
2 = (� + �2)y2 − ( + �3)y3 + (cy2 − ey3)y

2
1 + (dy2 − fy3)(y

2
2 + y2

3 ) + h.o.t

y′
3 = ( + �3)y2 + (� + �2)y3 + (cy3 + ey2)y

2
1 + (dy3 + fy2)(y

2
2 + y2

3 ) + h.o.t

(10)

in which, � = (�1, �2, �3)
T, �i = �i (�), �i (0) = 0.

4. Local codim 2 bifurcation of the normal form map

Let us assume that there exist period two fixed points for the map �(Y ; �). In view of the normal form map, the
period two points Y

(2)
1 and Y

(2)
2 satisfy the equation

�2(Y
(2)
i ; �) = Y

(2)
i . (11)

Ignoring the terms of high order, the solutions of Eq. (11) are

Y
(2)
1 =

(√−�1/a, 0, 0
)T

, Y
(2)
2 =

(
−√−�1/a, 0, 0

)T
. (12)

If �1/a < 0, there exist the period two points Y (2) = (Y
(2)
1 , Y

(2)
2 )T, and they are symmetrical about the origin. The

linearized maps of �(Y ; �) at the fixed point and �2(Y ; �) at the period two points, respectively, are given by

Q1 = ��(Y ; �)

�Y

∣∣∣∣
(0,�)

, Q2 = ��2(Y ; �)

�Y

∣∣∣∣∣
(Y

(2)
i ,�)

. (13)

The partial bifurcation sets for the normal form map can be determined by computing and analyzing the eigenvalues
of Jacobian matrices (13). However, a full understanding of the normal form map (10) requires more than Jacobian
matrices (13). So it is necessary to change the normal form map to the polar coordinate form �(r, 	; �0) ∈ R2 × S,
(x, r, 	) → (x′, r ′, 	′).

Let �̃2 = �̃2(0)�̃20, c̃ = �̃2(0)c̃0, d̃ = �̃2(0)d̃0, the normal form map (9) becomes

z′
1 = −z1(1 − �1 − az2

1 − b|z2|2) + O((|z1| + |z2|)5),

z′
2 = �̃2(0)z2(1 + �̃20 + c̃0z

2
1 + d̃0|z2|2) + O((|z1| + |z2|)5). (14)

In polar coordinates, the map �(z; �0) ∈ R3 is changed to �(x, r, 	; �0) ∈ R2 × S, which is given by

x′ = −x(1 − �1 − ax2 − br2) + h.o.t, r ′ = r(1 + �20 + c0x
2 + d0r

2) + h.o.t ,

	′ = 	 + 	0 + �30 + e0x
2 + f0r

2 + h.o.t . (15)
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in which �20 = ��2 + �3, �30 = ��3 − �2, c0 = �c + e, d0 = �d + f , e0 = �e − c, f0 = �f − d. We ignore
the influence of phase angle 	 to the map (15) temporarily so that a simplified map is obtained, which is

x′ = −x(1 − �1 − ax2 − br2) + h.o.t, r ′ = r(1 + �20 + c0x
2 + d0r

2) + h.o.t . (16)

Let the iterated map �̂
2
(x, r; �0) = (x(2), r(2); �0)

T, then we can write

x(2) = x + 2(−x�1 − ax3 − bxr2) + h.o.t, r(2) = r + 2(r�20 + c0x
2r + d0r

3) + h.o.t . (17)

The map (16) has two fixed points Y0 = (0, 0)T and Y ∗
1 = (0,

√−�20/d0)
T, and the iterated map (17) has two pairs of

fixed points Y ∗
21 = (

√−�1/a, 0)T, Y ∗
22 = (−√−�1/a, 0)T;

Y ∗
31 =

(√
b�20 − d0�1

ad0 − bc0
,

√
c0�1 − a�20

ad0 − bc0

)T

, Y ∗
32 =

(
−
√

b�20 − d0�1

ad0 − bc0
,

√
c0�1 − a�20

ad0 − bc0

)T

.

Three main cases associated with scheme of coefficients of high order terms, i.e.,
Case (I): a > 0, b > 0, c0 < 0, d0 < 0, ad0 − bc0 < 0, a + c0 > 0 and b + d0 > 0;
Case (II): a > 0, b > 0, c0 > 0, d0 > 0, ad0 − bc0 < 0;
Case (III): a < 0, b < 0, c0 < 0, d0 < 0, ad0 − bc0 < 0, are considered, respectively. The Cases (I) and (II) are called

the simple cases; the Case (III) the complex case.
The bifurcation set for the map (16), near � = (�1, �20)

T = (0, 0)T, can be illustrated by Figs. 2(a)–(c). Only the
positive (x, r) quadrant is shown in Figs. 2(a)–(c). Since the portraits are symmetric under reflection about r axis. The
bounds of the regions, shown in Figs. 2(a) and (b), can be listed as follows:

L1: �1 = 0, �20 < 0; L2: �20 = c0
a

�1, �1 < 0 ; L3: �20 = d0(a+c0)
a(d0+b)

�1, �1 < 0;

L4: �20 = 0, �1 > 0; L5 : �20 = d0
b

�1, �1 < 0.

The bounds of the regions, shown in Fig. 2(c), can be listed as follows

L1: �1 = 0, �20 < 0; L2 : �20 = 0, �1 > 0; L3: �20 = d0
b

�1, �1 > 0;

L4: �20 = d0(a+c0)
a(d0+b)

�1, �1 > 0, L5: �20 = c0
a

�1, �1 > 0.

Now we consider the influence of phase angle 	 to the map (15). By making a comparison between the map (16)
and normal form map, we can unfold qualitative analyses for the normal form map. The fixed point Y ∗

1 of the map (16)

corresponds to the invariant circle of the normal form map, which is associated with the fixed point Y
(1)
0 = (0, 0, 0)T.

The fixed points Y ∗
2i of the map (16) correspond to period two fixed points of the map (10). The fixed points Y ∗

3i of
the map (16) correspond to the invariant circles associated with the period two fixed points for the map (10). For the
normal form map in the simple Cases (I) and (II), Hopf and period-doubling bifurcations associated with the fixed
point Y

(1)
0 occur as parameters crossing the lines L4 and L1 from the region R1, respectively; crossing the line L2

Hopf bifurcation associated with period two fixed points Y
(2)
i occurs. The Hopf bifurcation associated with the fixed

point Y
(1)
0 is supercritical for the Case (I), subcritical for the Case (II). For the normal form map in the complex Case

(III), crossing the lines L2 and L1 Hopf and period-doubling bifurcations associated with the fixed point Y
(1)
0 occur,

respectively; as the parameters crossing the line L3 from the region R2, the closed circle becomes non-attracting and
the torus bifurcation occurs, which causes that the quasi-periodic attractor represented by two attracting closed circles
is born. The quasi-periodic attractor represented by two closed circles is attracting in region R3, and non-attracting in
region R4. It is to be noted that the period-doubling bifurcation associated with the fixed point Y

(1)
0 is subcritical for the

complex case.
In view of Jacobian matrixes (13), we can find that there exist the period two fixed points Y (2) = (Y

(2)
1 , Y

(2)
2 )T

as �1/a < 0. According to the unfolding of the simple Case (I), the bifurcation set of the normal form map (10),
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Fig. 2. The partial bifurcation sets of the simplified map and normal form map: (a) Case (I), the simplified map; (b) Case (II), the simplified map;
(c) Case (III), the simplified map; (d) Case (I), the normal form map.

near � = (0, 0, 0)T, can be further illustrated by Fig. 2(d) in which � < 0. The bounds of the regions shown in Fig. 2(d)
can be listed as follow

L11: �1 = 0, �2 > 0; L12: �2 = 0, �1 > 0; L13: �2 = e + c�

�a
�1, �1 < 0,

L14: �2 = �d + f

�b
�1, �1 < 0; L15: �2 = (�d + f )(a + �c + e)

�a(b + �d + f )
�1, �1 < 0, (18)

The bifurcation sets of the normal form map (10), associated with the Cases (II) and (III), can be obtained by using
a similar method.

According to the center manifold theory, local behavior of map f (v, X), near the bifurcation point vc, is equivalent
to that of �(Y ; �) for � near � = (0, 0, 0)T. By virtue of the analyses of local bifurcation of the normal form map (10),
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we can find out dynamical behavior of the vibro-impact system in the case of Hopf-flip bifurcation. Local behavior of
map f (v, X), near the bifurcation point vc, conforms to the numerical results below.

5. Numerical analyses

In this section the analysis developed in the former section is verified by the presentation of results for the vibro-
impact system. The existence and stability of q = 1

1 motion are analyzed explicitly. Also, local bifurcations at the
points of change in stability, discussed in the previous section, are considered, thus giving some information on
dynamical behavior near the point of Hopf-flip bifurcation. The system, with parameters: �m = 2.0, k1 = 4.0, k3 = 3.0,
� = 0.02, f20 = 0 and R = 0.7, has been chosen for analysis. The forcing frequency � and damping ratio � are
taken as the control parameters, i.e. v = (�, �)T. The eigenvalues of Df (v, X∗) are computed with � ∈ [5.025, 5.2]
and � ∈ [0.01, 0.02]. All eigenvalues of Df (v, X∗) stay inside the unit circle for v = (0.02, 5.025)T. By gradually
increasing � and decreasing � from the point v = (0.02, 5.025)T to change the control parameter v, we can obtain
the eigenvalues �1(vc) = −1.0000002 and �2,3(vc) = −0.3768488 ± 0.9262742i (|�2,3(vc)| = 0.9999994) which are
very close to the unit circle, and the fourth eigenvalue (�4(vc) = −0.4031064) still stays inside the unit circle as v

equals vc = (0.0121275, 5.074519)T. The eigenvalues �1(v) and �2,3(v) have scaped the unit circle as � (increasingly)
and �(decreasingly) pass through v = (0.0121274, 5.07452)T. The eigenvalues �1(v)and �2,3(v) almost escape the
unit circle simultaneously, so vc = (0.0121275, 5.074519)T may be approximately taken as the value of Hopf-flip
bifurcation.

Local behavior of the vibro-impact system, near the point of Hopf-flip bifurcation, is obtained by numerical simu-
lation. The partial bifurcation set near the critical value is plotted in Fig. 3. The bifurcation diagrams are shown for a
series of values of � in Fig. 4. There exist two windows of q = 1

1 motion in Figs. 4(a), (b) and (c), and only the second
one occurs near the value of Hopf-flip bifurcation. It should be noted that the second region of forcing frequency
associated with q = 1

1 motion is narrow, and vanishes for � < 0.0121275 (see Figs. 4(d) and (e)). With increase in
damping ratio � (� > 0.0121275), the second window of q = 1

1 motion becomes wide gradually; see Figs. 4(a)–(c). The
q = 1

1 motion, associated with the first window, will undergo Hopf bifurcation with increase in �; see Fig. 4. In the
second region of forcing frequency associated with q = 1

1 motion, the motion will undergo period doubling bifurcation
with increase in �, and q = 2

2 motion stabilizes. And then Hopf bifurcation of q = 2
2 motion occurs so that the system

exhibits the quasi-periodic impact motion associated with q = 2
2 motion. The transition process of q = 1

1 motion is
plotted locally in an amplified form in Fig. 4(a1). The results from simulation show that no period doubling cascade of
q = 1

1 motion occurs, near the point of Hopf-flip bifurcation, due to occurrence of Hopf bifurcation of q = 2
2 motion.

Moreover, subcritical Hopf bifurcation of q = 1
1 motion, in the second window, occurs with decrease in � as seen

in Figs. 4(a), (b) and (c), and the type of q = 1
1 fixed point, from stable focus to unstable focus, is changed. Some

projected Poincaré sections are plotted in Figs. 5–7. A representative analysis is given by choosing the damping ratio
� = 0.01225 and changing the forcing frequency � in numerical analysis. The numerical results show that the system
exhibits stable q = 1

1 motion with � ∈ (5.073489, 5.074559) as seen Fig. 3 and Fig. 4(a1). The q = 1
1 motion undergoes

Fig. 3. The partial bifurcation set near the point of codim 2 bifurcation.
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Fig. 4. Bifurcation diagrams near the point of codim 2 bifurcation: (a) � = 0.01225; (a1) � = 0.01225; (b) � = 0.0135; (c) � = 0.0175; (d) � = 0.012;
(e) � = 0.007.

Fig. 5. Projected Poincaré sections: (a) transient points as well as q = 9
9 fixed points, starting from the initial condition near the fixed point of q = 1

1
motion (unstable focus), � = 5.0724, � = 0.01225; (a1) local map near the unstable q = 1

1 point, � = 5.0724, � = 0.01225.

Hopf bifurcation as � passes through �c1 = 5.073489 decreasingly. The eigenvalues of Df (�, X∗) are given for �c1
as follows

�1,2(�c1) = −0.3773860 ± 0.9260564i, |�1,2(�c1)| = 1.0000001, �3(�c1) = −0.9876892,

�4(�c1) = −0.4073028.

We can conclude, by the result from simulation, that subcritical Hopf bifurcation of q = 1
1 motion occurs for

� < 5.073489, and the type of q = 1
1 fixed point, from stable focus to unstable focus, is changed; see Fig. 5 which

shows transient points as well as stable q = 9
9 fixed points, starting from the initial condition near the unstable fixed

point of q = 1
1 motion for � = 5.0724. The Period doubling bifurcation of q = 1

1 motion occurs as � is increased
gradually and passes through �c2 = 5.074559, and the system exhibits stable q = 2

2 motion; see Fig. 4(a1). The q = 2
2

motion changes its stability for � > 5.07585, and Hopf bifurcation of q = 2
2 motion occurs so that the system exhibits

quasi-periodic impact motion associated with q = 2
2 points as seen in Figs. 6(a) and (b). With further increase in �,

the closed circle becomes quasi-attracting. The quasi-attracting invariant circle is attracting for the map point inside

8



Fig. 6. Projected Poincaré sections: (a) attracting invariant circles of q = 2
2 points, � = 5.076, � = 0.01225; (b) attracting invariant circles of q = 2

2
points, � = 5.083, � = 0.01225; (c) chaos, � = 5.095, � = 0.01225; (d) chaos, � = 5.096, � = 0.01225.

Fig. 7. Projected Poincaré sections: (a) attracting invariant circle of q = 1
1 point, � = 4.75; (b) attracting invariant circle of q = 1

1 point, � = 4.8;
(c) phase locking, � = 4.85; (d) chaos, � = 4.855.

the circle, and repelling for the map point on or outside it. The system falls into chaotic motion immediately via the
quasi-attracting invariant circle; see Figs. 6(c) and (d).

The q = 1
1 motion, associated with the first window, undergoes Hopf bifurcation as � passes through �c3 = 4.74017

increasingly. With increase in the forcing frequency �, the quasi-periodic attractor transits to chaos via phase locking;
see Fig. 7.

The dynamic behavior near the point of Hopf-flip bifurcation, occurring in the system of Fig. 1, corresponds with
the unfolding of the simple Case (II) shown in Fig. 2(b).

In order to observe Hopf-flip bifurcations and transition phenomena of periodic-impact motions associated the
complex case, we consider a vibro-bouncing system shown in Fig. 8. A body with mass m bounces on the flat horizontal
surface of a vibro-bench with masses M1 and M2. Displacements of these masses m, M1 and M2 are represented by
Y0, X1 and X2, respectively. The masses M1 and M2 are connected to linear springs with stiffnesses K1 and K2, and
linear viscous dashpots with damping constants C1 and C2. The excitations on both masses of the vibro-bench are
harmonic with amplitudes P1 and P2. The mass M1 impacts mutually with the bouncing mass m when they are on the
same height, so the mass m exhibits the bouncing motion.

The motion processes of the system, between any two consecutive impacts, are considered. Between consecutive
impacts, the non-dimensional differential equations of motion are given by[

1 0
0 �m

]{
ẍ1
ẍ2

}
+
[

2� −2�
−2� 2�(1 + �c)

]{
ẋ1
ẋ2

}
+
[

1 −1
−1 1 + �k

]{
x1
x2

}
=
{

1 − f20
f20

}
sin(�t + �), (19)

ÿ = −�, (20)

where the non-dimensional quantities are given by

�m = M2

M1
, �k = K2

K1
, �c = C2

C1
, f20 = P2

P1 + P2
, � = �

√
M1

K1
, t = T

√
K1

M1
,
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Y0

M1

M2

C2

C1

P1 sin (�T + �)

P2 sin (�T + �)

K1

K2

m

X1

X2

Fig. 8. Schematic of the vibro-impact system.

� = C1

2
√

K1M1
, xi = XiK1

P1 + P2
, � = M1g

P1 + P2
, � = m

M1
, y = Y0K1

P1 + P2
. (21)

When the impact occurs, for x1(t)=y(t), the velocities of masses m and M1 are changed according to the conservation
law of momentum, and the impact equation of both masses m and M1 and the coefficient of restitution R are given by

ẋ1− + �ẏ− = ẋ1+ + �ẏ+, ẋ1+ − ẏ+ = −R(ẋ1− − ẏ−). (22)

where the subscript minus sign denotes the states just before impact and the subscript plus sign denotes the states just
after impact, the velocities of two masses M1 and m, just immediately before and after the impact, are represented
respectively by ẋ1−, ẏ−, ẋ1+ and ẏ+.

A Poincaré section 
 = {(x1, ẋ1, x2, ẋ2, y, ẏ, 	) ∈ R6 × S, x1 = y, ẋ1 = ẋ1+, ẏ = ẏ+} is chosen to establish Poincaré
map of the impact system, which can be derived analytically from the equations of motion. The disturbed map of period
one single-impact motion is expressed by

X′ = f̃ (v, X), (23)

whereX ∈ R6,v ∈ R1 or R2 is varying parameter;X=X∗+�X,X′=X∗+�X′,�X=(�ẋ1+, �x1, �ẋ2, �x2, �ẏ+, ��)T

and �X′ = (�ẋ′
1+, �x′

1, �ẋ′
2, �x′

2, �ẏ′+, ��′)T are the disturbed vectors of X∗, X∗ = (ẋ1+, x10, ẋ2, x20, ẏ+, �0)
T is a

fixed point in the hyperplane 
.
An interest torus doubling bifurcation is found to exist in the vibro-impact system near the point of Hopf-flip bifurca-

tion associated with the complex case. The torus doubling bifurcation makes the quasi-periodic attractor associated with
q = 1

1 motion transit to the other quasi-periodic attractor represented by two attracting closed circles. The phenomenon
concerning torus doubling bifurcation is demonstrated by the example in the following text.

The vibro-bounce system, with parameters: � = 0.3, �k = 1, �c = 1, � = 0.5, f20 = 0, � = 0.05 and R = 0.6, has
been chosen for analysis. The forcing frequency � and distribution of masses �m are taken as the control parameters,
i.e. v = (�m, �)T. The eigenvalues of Jacobian matrix Df̃ (v, X∗) are computed. All eigenvalues of Df̃ (v, X∗) stay
inside the unit circle for v = (0.72, 0.5275)T. By gradually decreasing �m and � from the point v = (0.72, 0.5275)T to
change the control parameters v, we obtain the critical value vc = (0.7084388, 0.5275136)T, at which all eigenvalues

10



Fig. 9. The partial bifurcation set near the point of codim 2 bifurcation.

Fig. 10. Projected Poincaré sections: (a) attracting invariant circle of q = 1
1 point, � = 0.5275; (b) transient points, the non-attracting invariant

circle as well as two attracting invariant circles caused by torus bifurcation, starting from the initial condition near the fixed point of q = 1
1 motion,

� = 0.5274; (c) tori doubling, � = 0.52723; (d) chaos, � = 0.52715.

of Jacobian matrix Df̃ (v, X∗) are given by

�1,2(vc) = −0.28803001 ± 0.95762230i, |�1,2(vc)| = 1.0000, �3(vc) = −0.99999874,

�4(vc) = −0.1849545, �5,6(vc) = −0.11229740 ± 0.08878266i.

The eigenvalues �1,2(vc) and �3(vc) are very close to the unit circle. As v passes through v = (0.7084387, 0.5275134)T

decreasingly the eigenvalues �1,2(v) and �3(v) have escaped the unit circle. So vc = (0.7084388, 0.5275136)T is
approximately taken as the value of Hopf-flip bifurcation.

The partial bifurcation set near the critical value is plotted in Fig. 9. Numerical results are shown for �m=0.70845 and
a series of values of � in Fig. 10. The process of torus bifurcation can be observed clearly from the projected portraits
of Poincaré map. As the forcing frequency � passes through the critical value �c1 = 0.527511 decreasingly, a complex
conjugate pair eigenvalues of Df̃ (�, X∗) escape the unit circle, and supercritical Hopf bifurcation associated with
q = 1

1 motion occurs. The quasi-periodic attractor is shown for �=0.5275 in Fig. 10(a). With decrease in �, instability
of the closed circle associated with q = 1

1 point occurs, and the torus bifurcation leads to two attracting invariant circles;
see Fig. 10(b). With further decrease in �, the two invariant circles become non-attracting and tori doubling are born,
which subsequently becomes unstable and chaotic; see Figs. 10(c) and (d). As the forcing frequency � passes through
�c2 = 0.5275321 increasingly, a real eigenvalue of Jacobian matrix Df̃ (�, X∗) escapes the unit circle from the point
(−1, 0), and period doubling bifurcation associated with q= 1

1 motion occurs. However, the period doubling bifurcation
is subcritical. Stable q = 1

1 motion and unstable q = 2
2 motion coexist in the region � ∈ (0.527511, 0.5275321). After

� passes through �c2 = 0.5275321 increasingly, the q = 1
1 motion becomes unstable and there exists no q = 2

2 motion.
The dynamic behavior near the point of Hopf-flip bifurcation, occurring in the example of the system shown in Fig.

8, corresponds with the unfolding of the complex Case (III) shown in Fig. 2(c).
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6. Conclusions

Dynamical behavior of the vibro-impact systems, near the point of Hopf-flip bifurcation, is investigated by qualitative
analyses and numerical simulation. The vibro-impact systems, under the condition of codim 2 bifurcation, can exhibit
more complicated quasi-periodic impact motions than those which occur in non-resonance and weak resonance cases
[13]. Near the point of Hopf-flip bifurcation there exists not only Hopf bifurcation of q = 1

1 motion, but also Hopf
bifurcation of q = 2

2 motion or torus bifurcation. The period doubling bifurcation of q = 1
1 motion is commonly existent

for the simple cases near the point of Hopf-flip bifurcation. However, no period doubling cascade of the motion emerges
due to occurrence of Hopf bifurcation of q = 2

2 motion. The q = 2
2 fixed points are symmetrical about the corresponding

q = 1
1 point. The results from simulation show also that the attracting invariant circles associated with q = 2

2 points are
smooth in nature and symmetrical about the corresponding q = 1

1 point near the value of Hopf bifurcation of q = 2
2 fixed

points. As the value of � moves further away from the value of Hopf bifurcation, two attracting invariant circles expand,
and the smoothness and symmetry of the quasi-periodic attractor are changed by degrees until they are destroyed.

An interest torus doubling bifurcation is found to exist near the value of Hopf-flip bifurcation. The torus doubling
bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transit to the other
quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different
from the typical torus doubling bifurcation occurring in the vibro-impact systems.

The strict condition of codimension two bifurcation is not easy to encounter in practical application of engineering.
However, there exist the possibilities that actual nonlinear dynamical systems, with two varying parameters or more,
work near the critical value of codim 2 bifurcation due to change of parameters. The impact-forming machinery is
a typical example. Besides the forcing frequency �, the clearance varies also with different thickness of the formed
workpieces [22]. Another representative example is the inertial shaker, of which the distribution of masses is generally
metabolic with the casts with different masses, and the forcing frequency is also important parameter changed [21]. The
change of multi-parameters possibly leads to the results that the vibro-impact systems work near the critical parameters
of codim 2 bifurcation. It is necessary to study the bifurcations caused by change of multi-parameters and dynamical
behavior of nonlinear systems near the points of bifurcations.
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