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Abstract. The deep learning paradigm tackles problems on which shal-
low architectures (e.g. SVM) are affected by the curse of dimensionality.
As part of a two-stage learning scheme involving multiple layers of non-
linear processing a set of statistically robust features is automatically ex-
tracted from the data. The present tutorial introducing the ESANN deep
learning special session details the state-of-the-art models and summarizes
the current understanding of this learning approach which is a reference
for many difficult classification tasks.

1 Introduction

In statistical machine learning, a major issue is the selection of an appropriate
feature space where input instances have desired properties for solving a par-
ticular problem. For example, in the context of supervised learning for binary
classification, it is often required that the two classes are separable by an hy-
perplane. In the case where this property is not directly satisfied in the input
space, one is given the possibility to map instances into an intermediate feature
space where the classes are linearly separable. This intermediate space can ei-
ther be specified explicitly by hand-coded features, be defined implicitly with a
so-called kernel function, or be automatically learned. In both of the first cases,
it is the user’s responsibility to design the feature space. This can incur a huge
cost in terms of computational time or expert knowledge, especially with highly
dimensional input spaces, such as when dealing with images.

As for the third alternative, automatically learning the features with deep
architectures, i.e. architectures composed of multiple layers of nonlinear pro-
cessing, can be considered as a relevant choice. Indeed, some highly nonlinear
functions can be represented much more compactly in terms of number of param-
eters with deep architectures than with shallow ones (e.g. SVM). For example,
it has been proven that the parity function for n-bit inputs can be coded by
a feed-forward neural network with O(log n) hidden layers and O(n) neurons,
while a feed-forward neural network with only one hidden layer needs an expo-
nential number of the same neurons to perform the same task [1]. Moreover, in
the case of highly varying functions, learning algorithms entirely based on local
generalization are severely impacted by the curse of dimensionality [2]. Deep
architectures address this issue with the use of distributed representations and
as such may constitute a tractable alternative.
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Figure 1: The deep learning scheme: a greedy unsupervised layer-wise pre-
training stage followed by a supervised fine-tuning stage affecting all layers.

Unfortunately, training deep architectures is a difficult task and classical
methods that have proved effective when applied to shallow architectures are
not as efficient when adapted to deep architectures. Adding layers does not
necessarily lead to better solutions. For example, the more the number of layers
in a neural network, the lesser the impact of the back-propagation on the first
layers. The gradient descent then tends to get stuck in local minima or plateaus
[3], which is why practitioners have often preferred to limit neural networks to
one or two hidden layers.

This issue has been solved by introducing an unsupervised layer-wise pre-
training of deep architectures [3, 4]. More precisely, in a deep learning scheme
each layer is treated separately and successively trained in a greedy manner: once
the previous layers have been trained, a new layer is trained from the encoding
of the input data by the previous layers. Then, a supervised fine-tuning stage of
the whole network can be performed (see Fig. 1).

This paper aims at providing to the reader a better understanding of the
deep learning through a review of the literature and an emphasis of its key
properties. Section 2 details a widely used deep network model: the deep belief
network or stacked restricted Boltzmann machines. Other models found in deep
architectures are presented in Sect. 3, i.e. stacked auto-associators, deep kernel
machines and deep convolutional networks. Section 4 summarizes the main
results in the different application domains, points out the contributions of the
deep learning scheme and concludes the tutorial.

2 Deep learning with RBMs

2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) are at the intersection of several fields
of study and benefit from a rich theoretical framework [5, 6]. First, we will
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Figure 2: The RBM architecture with a visible (v) and a hidden (h) layers.

present them as a probabilistic model before showing how the neural network
equations arise naturally.

An RBM defines a probability distribution p on data vectors v as follows:

p(v) =
∑
h

e−E(v,h)∑
u,g e

−E(u,g)
. (1)

The variable v is the input vector and the variable h corresponds to unob-
served features [7] that can be thought of as hidden causes not available in the
original dataset. An RBM defines a joint probability on both the observed and
unobserved variables which are referred to as visible and hidden units respec-
tively (see Fig. 2). The distribution is then marginalized over the hidden units
to give a distribution over the visible units only. The probability distribution
is defined by an energy function E (RBMs are a special case of energy-based
models [8]), which is usually defined over couples (v,h) of binary vectors by:

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

wijvihj , (2)

with ai and bj the biases associated to the input variables vi and hidden variables
hj respectively and wij the weights of a pairwise interaction between them. In
accordance with (1), configurations (v,h) with a low energy are given a high
probability whereas a high energy corresponds to a low probability.

The energy function above is crafted to make the conditional probabilities
p(h|v) and p(v|h) tractable. The computation is done using the usual neural
network propagation rule (see Fig. 2) with:

p(v|h) =
∏
i

p(vi|h) and p(vi = 1|h) = sigm

⎛
⎝aj +

∑
j

hjwij

⎞
⎠ ,

p(h|v) =
∏
j

p(hj |v) and p(hj = 1|v) = sigm

(
bj +

∑
i

viwij

)
, (3)

where sigm(x) = 1/(1 + exp(−x)) is the logistic activation function.
The model with the energy function (2) defines a distribution over binary

vectors and, as such, is not suitable for continuous valued data. To address this
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issue, E can be appropriately modified to define the Gaussian-Bernoulli RBM
by including a quadratic term on the visible units [3]:

E(v,h) =
∑
i

(vi − ai)
2

2σ2
i

−
∑
j

bjhj −
∑
i,j

wij
vi
σi

hj ,

where σi represents the variance of the input variable vi. Using this energy
function, the conditional probability p(h|v) is almost unchanged but p(v|h)
becomes a multivariate Gaussian with mean ai + σi

∑
j wijhj and a diagonal

covariance matrix:

p(vi = x|h) = 1

σi

√
2π

· e
−

(
x− ai − σi

∑
j wijhj

)2
2σ2

i ,

p(hj = 1|v) = sigm

(
bj +

∑
i

vi
σi

wij

)
. (4)

In a deep architecture using Gaussian-Bernoulli RBM, only the first layer
is real-valued whereas all the others have binary units. Other variations of the
energy function are given in [3, 9, 10] to address the issue of continuous valued
inputs.

2.2 Learning with RBMs and Contrastive Divergence

In order to train RBMs as a probabilistic model, the natural criterion to maxi-
mize is the log-likelihood. This can be done with gradient ascent from a training
set D likewise:

∂ log p(D)

∂wij
=

∑
x∈D

∂ log p(x)

∂wij

=
∑
x∈D

∑
g

∂E(x,g)

∂wij
e−E(x,g)

∑
g e

−E(x,g)
−
∑
x∈D

∑
u

∑
g

∂E(u,g)

∂wij
e−E(u,g)

∑
u

∑
g e

−E(u,g)
,

= Edata

[
∂E(x,g)

∂wij

]
− Emodel

[
∂E(u,g)

∂wij

]
,

where the first term is the expectation of ∂E(x,g)
∂wij

when the input variables are set
to an input vector x and the hidden variables are sampled according to the condi-
tional distribution p(h|x). The second term is an expectation of ∂E(u,g)

∂wij
when u

and g are sampled according to the joint distribution of the RBM p(u,g) and is
intractable. It can however be approximated with a Markov chain Monte Carlo
algorithm such as Gibbs sampling: starting from any configuration (v0,h0), one
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samples ht according to p(h|vt−1) and vt according to p(v|ht) until the sample
(vt,ht) is distributed closely enough to the target distribution p(v,h).

In practice, the number of steps can be greatly reduced by starting the
Markov chain with a sample from the training dataset and assuming that the
model is not too far from the target distribution. This is the idea behind the
Contrastive Divergence (CD) learning algorithm [11]. Although the maximized
criterion is not the log-likelihood anymore, experimental results show that gra-
dient updates almost always improve the likelihood of the model [11]. Moreover,
the improvement to the likelihood tend to zero as the length of the chain in-
creases [12], an argument which supports running the chain for a few steps only.
Notice that the possibility to use only the sign of the CD update is explored in
the present special session [13].

2.3 From stacked RBMs to deep belief networks

In an RBM, the hidden variables are independent conditionally to the visible
variables, but they are not statistically independent. Stacking RBMs aims at
learning these dependencies with another RBM. The visible layer of each RBM of
the stack is set to the hidden layer of the previous RBM (see Fig. 3). Following
the deep learning scheme, the first RBM is trained from the input instances
and other RBMs are trained sequentially after that. Stacking RBMs increases a
bound on the log-likelihood [14], which supports the expectation to improve the
performance of the model by adding layers.

Figure 3: The stacked RBMs architecture.

A stacked RBMs architecture is a deep generative model. Patterns generated
from the top RBM can be propagated back to the input layer using only the
conditional probabilities as in a belief network. This setup is referred to as a
Deep Belief Network [4].
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Figure 4: The training scheme of an AA.

3 Other models and variations

3.1 Stacked Auto-Associators

Another module which can be stacked in order to train a deep neural network
in a greedy layer-wise manner is the Auto-Associator (AA) [15, 16].

An AA is a two-layers neural network. The first layer is the encoding layer
and the second is the decoding layer. The number of neurons in the decoding
layer is equal to the network’s input dimensionality. The goal of an AA is to
compute a code y of an input instance x from which x can be recovered with
high accuracy. This models a two-stage approximation to the identity function:

fdec(fenc(x)) = fdec(y) = x̂ � x,

with fenc the function computed by the encoding layer and fdec the function
computed by the decoding layer (see Fig. 4).

An AA can be trained by applying standard back-propagation of error deriva-
tives. Depending on the nature of the input data, the loss function can either be
the squared error LSE for continuous values or the cross-entropy LCE for binary
vectors:

LSE(x, x̂) =
∑
i

(x̂i − xi)
2,

LCE(x, x̂) =
∑
i

[xi log x̂i + (1− xi) log(1− x̂i)].

The AA training method approximates the CD method of the RBM [14].
Another important fact is that an AA with a nonlinear fenc differs from a PCA
as it is able to capture multimodal aspects of the input distribution [17].

Similarly to the parametrization in an RBM, the decoder’s weight matrix
Wdec can be set to the transpose of the encoder’s weight matrix, i.e. Wdec =
W ᵀ

enc. In such a case, the AA is said to have tied weights. The advantage of
this constraint is to avoid undesirable effects of the training process, such as
encoding the identity function, i.e. fenc(x) = x. This useless result is possible
when the encoding dimensionality is not smaller than the input dimensionality.

An interesting variant of the AA is the Denoising Auto-Associator (DAA)
[18]. A DAA is an AA trained to reconstruct noisy inputs. To achieve this
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Figure 5: The training scheme of a DAA. Noisy components are marked with a
cross.

goal, the instance fed to the network is not x but a corrupted version x̃. After
training, if the network is able to compute a reconstruction x̂ of x with a small
loss, then it is admitted that the network has learned to remove the noise in the
data in addition to encode it in a different feature space (see Fig. 5).

Finally, a Stacked Auto-Associator (SAA) [3, 19, 18, 20] is a deep neural
network trained following the deep learning scheme: an unsupervised greedy
layer-wise pre-training before a fine-tuning supervised stage, as explained in
Sect. 2.3 (see also Fig. 1). Surprisingly, for d dimensional inputs and layers
of size k � d, a SAA rarely learns the identity function [3]. In addition, it is
possible to use different regularization rules and the most successful results have
been reported with adding a sparsity constraint on the encoding unit activations
[20, 21, 22]. This leads to learning very different features (w.r.t RBM) in the
intermediate layers and the network performs a trade-off between reconstruction
loss and information content of the representation [21].

3.2 Deep Kernel Machines

The Multilayer Kernel Machine (MKM) [23] has been introduced as a way to
learn highly nonlinear functions with the iterative application of weakly nonlin-
ear kernel methods.

The authors use the Kernel Principal Component Analysis (KPCA) [24]
for the unsupervised greedy layer-wise pre-training stage of the deep learning
scheme. From this method, the �+ 1th layer learns a new representation of the
output of the layer � by extracting the n� principal components of the projection
of the output of � in the feature space induced by the kernel.

In order to lower as much as possible the dimensionality of the new rep-
resentation in each layer, the authors propose to apply a supervised strategy
devoted to selecting the best informative features among the ones extracted by
the KPCA. It can be summarized as follows:

1. rank the nl features according to their mutual information with the class
labels;

2. for different values of K and ml ∈ {1 . . . nl}, compute the classification
error rate of a K-NN classifier using only the ml most informative features
on a validation set;
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3. the value of ml with which the classifier has reached the lowest error rate
determines the number of features to retain.

However, the main drawback of using KPCA as the building block of an MKM
lies in the fact that the feature selection process must be done separately and
thus requires a time-expensive cross validation stage. To get rid of this issue
when training an MKM it is proposed in this special session [25] to use a more
efficient kernel method, the Kernel Partial Least Squares (KPLS).

KPLS does not need cross validation to select the best informative features
but embeds this process in the projection strategy [26]. The features are ob-
tained iteratively, in a supervised manner. At each iteration j, KPLS selects the
jth feature the most correlated with the class labels by solving an updated eigen-
problem. The eigenvalue λj of the extracted feature indicates the discriminative
importance of this feature. The number of features to extract, i.e. the number
of iterations to be performed by KPLS, is determined by a simple thresholding
of λj .

3.3 Deep Convolutional Networks

Convolutional networks are the first examples of deep architectures [27, 28] that
have successfully achieved a good generalization on visual inputs. They are the
best known method for digit recognition [29]. They can be seen as biologically
inspired architectures, imitating the processing of “simple” and “complex” corti-
cal cells which respectively extract orientations information (similar to a Gabor
filtering) and compositions of these orientations.

The main idea of convolutional networks is to combine local computations
(convolution of the signal with weight sharing units) and pooling. The convo-
lutions are intended to give translation invariance to the system, as the weights
depend only on spatial separation and not on spatial position. The pooling al-
lows to construct a more abstract set of features through nonlinear combination
of the previous level features, taking into account the local topology of the input
data. By alternating convolution layers and pooling layers, the network succes-
sively extracts and combines local features to construct a good representation of
the input. The connectivity of the convolutional networks, where each unit in a
convolution or a pooling layer is only connected to a small subset of the preceding
layer, allows to train networks with as much as 7 hidden layers. The supervised
learning is easily achieved, through an error gradient backpropagation.

On the one hand, convolutional framework has been applied to RBM and
DBN [10, 30, 31]. In [31] the authors derive a generative pooling strategy which
scales well with image size and they show that the intermediate representations
are more abstract in the higher layer (from edges in the lower layers to object
parts in the higher). On the other hand, the unsupervised pre-training stage of
deep learning have been applied to convolutional networks [32] and can greatly
reduce the number of labeled examples required. Furthermore, deep convolu-
tional networks with sparse regularization [33] yield very promising results for
difficult visual detection tasks, such as pedestrian detection.
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4 Discussion

4.1 What are the applicative domains for deep learning?

Deep learning architectures express their full potential when dealing with highly
varying functions, requiring a high number of labeled samples to be captured by
shallow architectures. Unsupervised pre-training allows, in practice, to achieve
good generalization performance when the training set is of limited size by po-
sitioning the network in a region of the parameter space where the supervised
gradient descent is less likely to fall in a local minimum of the loss function.
Deep networks have been largely applied to visual classification databases such
as handwritten digits1, object categories2 3 4, pedestrian detection [33] or off-
road robot navigation [34], and also on acoustic signals to perform audio clas-
sification [35]. In natural language processing, a very interesting approach [36]
gives a proof that deep architectures can perform multi-task learning, giving
state-of-the-art results on difficult tasks like semantic role labeling. Deep archi-
tectures can also be applied to regression with Gaussian processes [37] and time
series prediction [38]. In the latter, the conditional RBM have given promising
results.

Another interesting application area is highly nonlinear data compression.
To reduce the dimensionality of an input instance, it is sufficient for a deep
architecture that the number of units in its last layer is smaller than its input
dimensionality. In practice, limiting the size of a neuron layer can promote in-
teresting nonlinear structure of the data. Moreover, adding layers to a neural
network can lead to learning more abstract features, from which input instances
can be coded with high accuracy in a more compact form. Reducing the di-
mensionality of data has been presented as one of the first application of deep
learning [39]. This approach is very efficient to perform semantic hashing on
text documents [22, 40], where the codes generated by the deepest layer are
used to build a hash table from a set of documents. Retrived documents are
those whose code differs only by a few bits from the query document code. A
similar approach for a large scale image database is presented in this special
session [41].

4.2 Open questions and future directions

A significant part of the ongoing research aims at improving the deep networks
building blocks For RBMs, several propositions have been made to use real-
valued units rather than binary ones either by integrating the covariance of the
visible units in the hidden units update [42] or by approximating real-valued
units by noisy rectified linear units [9, 10]. For AAs, the denoising criterion is
particularly investigated since it achieves very good results on visual classifica-
tion tasks [43].

1MNIST: http://yann.lecun.com/exdb/mnist/
2Caltech-101: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3NORB: http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
4CIFAR-10: http://www.cs.utoronto.ca/~kriz/cifar.html
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Because the construction of good intermediate representations is a crucial
part of deep learning, a meaningful approach is to study the response of the
individual units in each layer. An effective strategy is to find the input pattern
that maximizes the activation of a given unit, starting from a random input and
performing a gradient ascent [44].

A major interrogation underlying the deep learning scheme concerns the role
of the unsupervised pre-training. In [44], the authors argue that pre-training acts
as an unusual form of regularization. By selecting a region in the parameter space
which is not always better than a random one, pre-training systematically leads
to better generalization. The authors provide results showing that pre-training
does not act as an optimization procedure which selects the region of the pa-
rameter space where the basins of attraction are the deepest. Pre-training only
modifies the starting point of supervised training and the regularization effect
does not vanish when the number of data increases. Deep learning breaks down
the problem of optimizing lower layers given that the upper layers have not yet
been trained. Lower layers extract robust and disentangled representations of
the factors of variations (e.g. on images: translation, rotation, scaling), whereas
higher layers select and combine these representations. A fusion of the unsuper-
vised and supervised paradigms in one single training scheme is an interesting
way to explore.

Choosing the correct dimensions of a deep architecture is not an obvious
process and the results shown in [29] open new perspectives on this topic. A
convolution network with a random filter bank and with the correct nonlinearities
can achieve near state-of-the-art results when there is few training labeled data
(such as in the Caltech-101 dataset). It has been shown that the architecture of
convolutional network has a major influence on the performance and that it is
possible to achieve a very fast architecture selection using only random weights
and no time-consuming learning procedure [45]. This, along with the work of
[46], points toward new directions for answering the difficult question of how to
efficiently set the sizes of layers in deep networks.

4.3 Conclusion

The strength of deep architectures is to stack multiple layers of nonlinear pro-
cessing, a process which is well suited to capture highly varying functions with a
compact set of parameters. The deep learning scheme, based on a greedy layer-
wise unsupervised pre-training, allows to position deep networks in a parameter
space region where the supervised fine-tuning avoids local minima. Deep learn-
ing methods achieve very good accuracy, often the best one, for tasks where a
large set of data is available, even if only a small number of instances are la-
beled. This approach raises many theoretical and practical questions, which are
investigated by a growing and very active research community and casts a new
light on our understanding of neural networks and deep architectures.
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